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Abstract

Data harmonization is the process of combining disparate datasets while ensuring
that the information is compatible, consistent, and can be accurately compared. In
this context, schema matching is an essential task that identifies correspondences
between attributes coming from different data sources. In this paper, we empirically
show that existing schema-matching methods are not effective at aligning complex
schemas in the biomedical domain. We introduce a new approach for schema
matching that leverages LLMs for (1) generating semantically coherent training
data pairs that can be used to train effective column embedding models using the
contrastive learning framework, and (2) refining final column match selections.
This brings two important benefits: it overcomes the scarcity of in-domain and
semantically diverse training data, which in turn enables the creation of simpler
and cost-effective models for filtering candidate matches; and by making use of the
broad knowledge of LLMs, it attains high accuracy in selecting the correct matches.
We discuss the results of an experimental evaluation using real-world biomedical
datasets which shows that our approach leads to significant improvements compared
to existing state-of-the-art schema matching methods.

1 Introduction
In recent years, the growing volumes of biomedical data have substantially increased our ability
to obtain data-driven insights. But harmonizing data from different sources to answer a research
question or to create a predictive model is difficult [Adhikari et al., 2021]. Researchers often have to
collect and integrate data from various sources, such as supplementary materials from related studies,
and then resolve differences in their schemas, representations, data formats, units of measurement,
terminologies. This ensures that the information can be accurately combined and used for analytics
and machine learning to drive insights and inform decision-making. Harmonization is also applied to
produce datasets that adhere to established standards, facilitating data sharing and interoperability.

Schema matching is a key task in data harmonization. It aims to determine correspondences between
attributes of different schemas and ensure that data from various sources can be integrated despite
differences in naming conventions or formats [Bellahsene et al., 2011]. Formally, the schema-
matching problem can be defined as follows:

Definition 1 (Schema Matching) Let S = {s1, . . . , sn} be a source table and G = {g1, . . . , gm}
be a global table, where si ∈ S and gi ∈ G are attributes that define the table schemas. Schema
matching consists of aligning the table schemas by establishing correspondences between attributes
that represent the same real-world concept or entity.

Challenges in data harmonization. In typical “enterprise” schema matching, both the source S and
global (or target) schema G are commonly structured as relational tables. However, G can also be a
standard schema, a set of candidate column names with their associated descriptions, without any
associated values—similar to ontologies. Standard schemas, such as the Genomic Data Commons

Table Representation Learning Workshop at NeurIPS 2024



(GDC) model [National Cancer Institute, 2024], can include hundreds of columns. Existing schema
matching methods, discussed in Appendix B, do not scale effectively to large schemas and can yield
low accuracy. These approaches struggle with diverse schema elements, ambiguous semantics, and
cross-domain differences. Large Language Models (LLMs) can be used for schema matching [Tu
et al., 2023]. Large models have shown to be effective in some scenarios, however they are resource-
intensive. Smaller models, although more cost-effective, tend to have lower accuracy. This trade-off
hinders their wide adoption. Finally, since no automated schema matching approach is foolproof, it is
crucial to include the user in the loop to review the matching results. Therefore, solutions should
incorporate ranking mechanisms or confidence scores to help users validate and refine matches,
especially for ambiguous results.

Our solution and contributions. We propose SSM (Scalable Schema Matcher), a new approach
to schema matching that addresses specific challenges in data harmonization, namely: the ability
to handle large schemas and to create small (low-cost) yet accurate models. We introduce a novel
contrastive learning framework to train an encoder that generates column embeddings. These
embeddings capture the semantic distinctions between columns, enabling accurate schema matching,
even in scenarios where the number of columns can reach the hundreds. Our solution incorporates an
LLM for column match selection to refine matching results and improve accuracy. We also address
the challenge of limited in-domain training data: we propose a data augmentation technique that
leverages the capabilities of LLMs to generate semantically coherent positive pairs for training. We
demonstrate the effectiveness of our method through an experimental evaluation using real-world
biomedical datasets, curated by domain experts. Our results show that traditional methods attain
poor performance for these datasets, and that our approach outperforms baseline models in both
embedding similarity search and and schema matching tasks, highlighting its suitability for large-scale
biomedical data harmonization.

2 The SSM Schema Matcher
Our approach tackles two key challenges discussed in Section 1: (1) achieving scalability and
accuracy for schema matching, and (2) the lack of in-domain training data to train small retrieval
models. It does so in two main stages. First, in an offline stage, we train a column embedding model
(Section 2.1) to encode table columns as vectors. This allows us to efficiently retrieve semantically
similar columns using vector similarity search in the second (online) stage. To overcome the lack of
in-domain training data, we leverage a generalist LLM to generate synthetic data (Section 2.2) that
can be used to train the embedding model. Finally, to improve the performance of the online matching
phase, we introduce a final selection step based on an LLM that chooses the single best column out
of the top k columns retrieved using the vector similarity search and our proposed embedding model
(Section 2.3). In the remainder of this section, we describe each of these steps in detail.

2.1 Contrastive Learning Framework
We aim to generate column embeddings that spatially cluster similar schemas. This spatial arrange-
ment facilitates the retrieval of semantically related schema representations through cosine similarity.
The core of our training methodology is to minimize the distance between embeddings of identical or
semantically related columns while maximizing the separation between those of distinct schemas.

To achieve this, we employ contrastive learning techniques to train a RoBERTa model which contains
approximately 125 million parameters [Zhuang et al., 2021], specifically leveraging the framework
established by the SimCLR algorithm from Chen et al. [2020]. The foundation of contrastive learning
involves creating positive pairs—data points that should be close in the embedding space, typically
representing identical or closely related columns. In contrast, negative pairs—those that should be
distant in the embedding space—are formed from unrelated columns. Details on the tokenization and
serialization processes used in our model are provided in the Appendix C.

When ground-truth matches are unavailable, a practical strategy to generate positive pairs, as explored
by Fan et al. [2023], involves row shuffling or sampling within columns to synthesize data variations.
However, this method falls short in generating semantically diverse pairs, thus limiting the efficacy
of the learned embeddings for our specific application in semantic schema matching, especially
in the biomedical domain. We propose to use a LLM to address this gap for more nuanced and
context-aware data augmentation, as discussed in Section 2.2. This approach enhances our training
dataset with synthetic yet plausible variations, better capturing the semantic nuances necessary for
effective schema embedding.
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2.2 Generating Positive Training Data Pairs
We employ an LLM for data augmentation. Specifically, we use GPT-4 [Achiam et al., 2023], which
has demonstrated substantial capability in understanding and generating domain-specific knowledge
across various fields [Bonifacio et al., 2022]. This allows us to generate semantically rich and diverse
positive pairs. Given an original column x, we generate its augmented version xi using GPT-4 with
the prompt shown in Appendix D.

To enhance the accuracy and relevance of the synthetic data generated by GPT-4, we include additional
context in the prompt based on the dataset. This context encompasses descriptions of columns and
profiling statistics for numerical features, such as mean, median, and standard deviation. By providing
these details, GPT-4 can generate synthetic matches that are not only structurally varied but also
semantically coherent with the original data (see examples in Appendix E).

This approach enhances the semantic alignment of data points within the embedding space, which
is critical for training robust models. The generated pairs capture a broader range of real-world
variations and semantic nuances, thereby improving the generalization capability of the embedding.
By leveraging the advanced capabilities of GPT-4, we move beyond simple augmentation techniques
and achieve a higher level of data enrichment and variability in the training process.

2.3 Precise Match Selection
The contrastive learning approach allows us to efficiently retrieve a ranked list of the top potential
relevant column matches. However, given that we use a small language model (RoBERTa) to generate
the embeddings, the raking accuracy may be limited by its small number of parameters. To address
this issue, we employ an LLM-based matcher to narrow these down to the most accurate single match.

To implement this idea, we introduce an LLM-based matcher that extends the methodology proposed
by Feuer et al. [2023] (originally proposed for the task of a column type annotation) to our problem.
To construct the prompt, we use as input the potential matches retrieved by the contrastive-learning
method and request the model to select the match that best describes the source column which we
want to find a match for. The full prompt is available in Appendix D. In addition to the top-k results
from the contrastive learning model, we also provide additional context in the prompt by sampling
rows from our source column The enhanced context is then used to prompt the LLM, which identifies
and returns the most suitable match among the candidate columns.

Note that our contrastive learning model plays a crucial role in reducing the problem complexity for
the LLM. The contrastive learning model simplifies the input fed into the LLM by pre-processing and
condensing the data into a more manageable form, effectively addressing the well-known issue of
limited context size. This enables the LLM to operate within its context constraints while benefiting
from a rich, compressed dataset. In our experimental evaluation, we demonstrate that this approach
not only reduces the prompt size but also significantly improves the accuracy of the LLM. By
integrating the broad initial candidate generation capabilities of contrastive learning with the context-
aware analysis afforded by LLMs, our method significantly improves accuracy in match selection by
reducing the potential for errors from LLMs due to the smaller number of candidates.

3 Experimental Evaluation
Dataset. The data used in our evaluation was obtained from a study carried out by the Clinical
Proteomic Tumor Analysis Consortium (CPTAC). It consists of source datasets produced by eight
studies [Clark et al., 2019, Krug et al., 2020, Vasaikar et al., 2019, Wang et al., 2021, Huang et al., 2021,
Satpathy et al., 2021, Cao et al., 2021, Dou et al., 2020], which were harmonized by Li et al. [2023]:
each dataset was aligned with the (target) Genomics Data Commons (GDC) standard [National
Cancer Institute, 2024]. The GDC standard consists of 730 data variables spanning various data
types, such as categorical and numerical, and more complex types, such as proteins. The source
datasets include demographic, diagnostic, and clinical variables for patients with proteogenomic
tumor samples; each dataset contains over 50 columns. The gold data used to evaluate SSM, i.e., the
set of matches between each dataset and the GDC, was manually created by biomedical researchers
to ensure accuracy and reliability.

The schema matching process involves standardizing variable names and value types to align with
GDC format specifications. Included variables are case submitter ID, age at diagnosis, gender, race,
ethnicity, and various pathological specifics as shown in Appendix F. Matching is difficult due to the
large number of columns and the nuance in the semantics of some of the biomedical data types.
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Tables Clark et al. Satpathy et al. Wang et al. Cao et al. Krug et al. Huang et al. Vasaikar et al. Dou et al.
Coma 0.357 0.400 0.500 0.381 0.500 0.111 0.364 0.353
Similarity Flooding 0.286 0.500 0.611 0.381 0.500 0.167 0.455 0.294
Cupid 0.286 0.400 0.389 0.381 0.500 0.111 0.455 0.353
Distribution-based 0.143 0.000 0.111 0.000 0.000 0.056 0.000 0.059
Jaccard Distance 0.214 0.200 0.167 0.143 0.250 0.111 0.091 0.235
Vanilla RoBERTa 0.000 0.000 0.000 0.048 0.000 0.056 0.000 0.000
Starmie 0.286 0.400 0.333 0.238 0.250 0.167 0.091 0.294
Ours 0.429 0.500 0.611 0.381 0.500 0.278 0.636 0.294
Starmie + LLM 0.643 0.500 0.333 0.429 0.750 0.389 0.636 0.647
Ours + LLM 0.786 0.800 0.778 0.762 1.000 0.556 0.909 0.589

Table 1: Precision of the top-1 match results for baseline methods versus our approach, both with and
without the integration of an LLM-based precise matcher. The results demonstrate that our method
consistently outperforms the baseline approaches under both conditions.

Model Contrastive Learning-based Matchers + LLM Precise Match Selection

R@3 R@5 R@10 R@20 R@50 P@1 (k=10) P@1 (k=20) P@1 (k=50)
Starmie 0.421 0.540 0.635 0.730 0.825 0.429 0.460 0.405
Ours 0.722 0.833 0.897 0.944 0.992 0.802 0.619 0.722

Table 2: Comparison of Recall at different cutoffs (R@k) for Starmie and our training data generation
method on the CPTAC task. “Contrastive Learning-based Matchers” refers to using embeddings from
a pre-trained language model fine-tuned using contrastive learning for similarity searches to retrieve
the top-k entries. “+ LLM Precise Match Selection” involves employing the top-k entries retrieved
by the language model to serve as input for an LLM-based top-1 matcher, as detailed in Section 2.3,
comparing precision at top 1 match for label set sizes 10, 20, and 50.

Experiments. We implemented our method using two configurations: 1) a RoBERTa-base model
with around 125 million parameters trained using contrastive learning employing LLM to generate
positive training data, and 2) an enhanced version incorporating LLMs for precise matching (“Ours +
LLM”). Table 1 shows the results of a comparison of our methods against popular schema matching
algorithms including Coma [Do and Rahm, 2002], Similarity Flooding [Melnik et al., 2002], Cupid
[Madhavan et al., 2001], Distribution-based [Zhang et al., 2011], Jaccard Distance, and a single-
column version of Starmie [Fan et al., 2023] also using the RoBERTa-base model. Additionally,
we evaluated a vanilla RoBERTa model without contrastive-learning based fine-tuning, as well as
Starmie with the LLM precise matcher, to highlight our model’s performance improvements using
LLM for training data generation over simple generation techniques.

We employed precision at the top-1 match (Precision@1) and recall at multiple cutoff points (Re-
call@k for k = 3, 5, 10, 20, 50) as our primary metrics. These metrics were chosen to evaluate both
the accuracy of the top match and the completeness of the returned matches up to the 50th rank.

The integration of LLMs into our schema matching process (“Ours + LLM”) demonstrated superior
match accuracy, achieving the highest top-1 precision in 7 out of 8 tables as presented in Table 1,
highlighting the effectiveness of LLMs in deciphering complex schema relationships.

Table 2 shows the performance of our model compared to Starmie, both with and without LLM
augmentation. Our LLM-enhanced approach showed significant improvements, which suggests
a robust capability to capture a wider array of relevant matches. We also assessed the matching
performance across different label set sizes. While our model maintained high recall at label sizes
of 20 and 50 compared to label size of 10, the LLM performance declined, indicating challenges in
achieving precise matches with larger label sets. This underscores the importance of using our model
as a scope reduction tool that narrows down the label set to a smaller, more manageable size before
integrating LLMs, thus optimizing the precision of the matching process.

4 Conclusion
In this work, we propose SSM, a schema matching approach that employs large language models
(LLMs) and contrastive learning to address the challenges of schema matching in biomedical data
harmonization. SSM outperforms traditional methods by leveraging LLMs to generate semantically
rich training data and refine match selections. By creating a smaller specialized model, it provides a
cost-effective solution that balances the trade-off of model size and accuracy. Future work will focus
on extending our approach into a general foundation schema-matching framework applicable across
various domains.
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Appendix

A Formal Statement of Schema Matching Algorithms

A matching algorithm (or matcher) aims to identify pairs (si, gj) where si ∈ S and gj ∈ G likely
represent the same attribute. Thus, a matcher M can be seen as a function that generates a schema
mapping M ⊆ S ×G where each element (s, g) ∈ M represents a correspondence between a source
attribute s and a global attribute g.

B Prior Works on Schema Matching

Schema matching algorithms have traditionally relied on functions that compute the similarity
between attribute pairs (s, g). This similarity can be determined by analyzing various characteristics,
including attribute names, data types, values, and domain constraints. Early approaches relied on
basic string-based metrics, such as Jaccard similarity between attribute names and values, to find
exact matches between schema elements [Madhavan et al., 2001, Melnik et al., 2002]. The COMA
algorithm improved upon these methods by employing a composite matching strategy, combining
multiple features (e.g., name, structure, and data type) to provide a more comprehensive similarity
assessment [Do and Rahm, 2002]. More recently, Koutras et al. [2021] introduced an extensible
experimentation suite for evaluating different schema-matching algorithms, integrating these early
techniques. These approaches often struggle to capture complex relationships and deeper semantics
within data sets, resulting in poor accuracy when identifying semantically valid matches [Khatiwada
et al., 2023]. To address this limitation, approaches using supervised learning have been proposed
[Shraga et al., 2020] and language representation techniques by using fine-tuned language models to
generate contextual embeddings that represent schema information [Cappuzzo et al., 2020, Khatiwada
et al., 2023, Fan et al., 2023, Tu et al., 2023, Cong et al., 2023].

C Tokenization and Serialization Process

To facilitate the contrastive learning approach, columns are serialized in a format that enhances their
discriminative features within the embedding space. This process is crucial for the success of the
model when distinguishing between similar and dissimilar column pairs.

Following the standard tokenization process for the contrastive learning model, given a column
C = {v1, . . . , vm} with header Ch, we serialize C as follows:

serialize(C) = [CLS] ⊕ Encode(Ch)⊕ [SEP] ⊕
m⊕
i=1

Encode(vi)⊕ [SEP],

This serialization ensures that both the header and values within the column are adequately represented
and distinguishable within the model’s embedding space.

D Prompts

The full prompt used as context to the LLM for augmenting a given column is:

Given a table with the header {column_name} and its values
{column_values}, use your expertise to identify one alternative
name for this column as found in other datasets. Ensure this name
follows common database formatting conventions like underscores
and abbreviations. Also, provide distinct possible synonyms or
alternative forms for the values that are technically correct.
Output in format: "alternative_name, value1, value2, value3, ..."
Do not include any other information or use quotes in your response.

For the Precise Match Selection phase, the LLM uses the following prompt (where top_k = 1):
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You are an assistant for column matching. Please select the top
{top_k} class from {labels} which best describes the context. The
context is defined by the column name followed by its respective
values. Please respond only with the name of the classes separated
by semicolon. CONTEXT: {context}

E Training Data Generation Examples

See below some examples of the provided data to GPT-4 and the generated data.

Original Data Generated Data
Column: country_of_residence_at_enrollment Column: enrollment_country
Values: France, Germany, etc. Values: FR, GE, etc.

Column: tissue_source_sites Column: tumor_site
Values: Thyroid, Ovary, etc. Values: Thyroidal, Ovarian, etc.

Column: exon Column: gene_segments
Values: exon11, exon15, etc. Values: segment11, segment15, etc.

Column: masked_somatic_mutations Column: genetic_variants
Values: MET_D1010N, FLT3_ITD, etc. Values: D1010N_MET, ITD_FLT3, etc.

Column: max_tumor_bulk_site Column: primary_tumor_location
Values: Maxilla, Splenic lymph nodes, etc. Values: Maxillary, Splenic_nodes, etc.

F Schema Matching Ground Truth Examples

See below for example columns from Li et al. [2023] and corresponding matches from the GDC
Schema.

Raw Data GDC-formatted Data
Column: Tumor_Site Column: site_of_resection_or_biopsy
Values: Lower pole, Upper pole, etc. Values: Supraglottis, Thymus, etc

Column: tumor_reoccur_after_treatment Column: progression_or_recurrence
Values: 1.0 or 0.0 Values: Yes, No, or Not Reported

Column: Histologic_Grade_FIGO Column: tumor_grade
Values: FIGO grade 1, FIGO grade 2, etc Values: G1, G2, etc

Column: Path_Stage_Reg_Lymph_Nodes-pN Column: ajcc_pathologic_n
Values: pN0, pN1, etc Values: N0, N1, etc

Column: Path_Stage_Primary_Tumor-pT Column: ajcc_pathologic_t
Values: pT1a (FIGO IA), pT3b (FIGO IIIB), etc Values: T1a, T3b, etc
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