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Abstract: Humans can often perform a new task after observing a few demonstra-1

tions by inferring the underlying intent. For robots, recovering the intent of the2

demonstrator through a learned reward function can enable more efficient, inter-3

pretable, and robust imitation through planning. A common paradigm for learning4

how to plan-from-demonstration involves first solving for a reward via Inverse Re-5

inforcement Learning (IRL) and then deploying it via Model Predictive Control6

(MPC). In this work, we unify these two procedures by introducing planning-7

based Adversarial Imitation Learning, which simultaneously learns a reward and8

improves a planning-based agent through experience while using observation-only9

demonstrations. We study advantages of planning-based AIL in generalization, in-10

terpretability, robustness, and sample efficiency through experiments in simulated11

control tasks and real-world navigation from few- and single-demonstration.12

Keywords: Imitation Learning, Model Predictive Control, Inverse Reinforcement13

Learning14
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Figure 1: Model Predictive Adversarial Imitation
Learning (MPAIL) embeds an MPC agent within
Adversarial Imitation Learning (AIL) for learning
costs from observation. On deployment, the MPC
agent performs online optimization through short
model rollouts, or plans, as they are evaluated by
the learned costs and value networks.

Inverse Reinforcement Learning (IRL) offers a16

principled approach to imitation learning by in-17

ferring the underlying intent, or reward func-18

tion, that explains expert behavior. A funda-19

mental advantage of IRL is that this reward20

is often readily generalizable beyond the sup-21

port of the demonstration data, enabling the22

discovery of new policies through interaction23

and plans through self-prediction. Especially24

when demonstrations are sparse, ambiguous, or25

suboptimal, IRL’s interpretability is particularly26

well-suited for domains where understanding27

preferences and ensuring reliable planning are28

essential, such as routing on Google Maps [1],29

socially aware navigation [2], and autonomous30

driving [3].31

For real-time systems, learned IRL and In-32

verse Optimal Control (IOC) rewards are typ-33

ically deployed via Model Predictive Control34

(MPC) [4, 5, 6, 7, 8, 9, 10]. Here, the offline35
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IRL algorithm iteratively solves a Reinforcement Learning (RL) problem in an inner loop, guided36

by the current reward estimate. An outer loop then updates this reward to minimize the discrepancy37

between the agent’s and the expert’s behavior. Once training is complete, the resulting reward is38

integrated with MPC for real-time planning and control.39

Adversarial Imitation Learning (AIL) has made significant improvements over IRL in algorithmic40

complexity and sample efficiency [11, 12]. However, the reliance on an RL policy in AIL methods41

complicates their use in applications with safety constraints [4, 6, 7]. Further limited by partial42

observability, these deployments will often prioritize planning using a model for the sake of real-43

time performance, trustworthiness, and interpretability [13, 14, 15].44

In this work, we derive planning-based AIL, yielding key benefits:45

1. Planning-from-Observation (PfO). Towards interpretable yet scalable imitation learning,46

a predictive model precludes the need for expert action data and enables access to the47

agent’s optimization landscape. This grants crucial insight and steerability into the agent’s48

decision making process even as it learns from ambiguous expert data. We further show that49

this improves on out-of-distribution generalization, robustness, and sample efficiency when50

compared to policy-based AIL. We also demonstrate how policy-based AIL is fundamentally51

limited by the absence of reward deployment.52

2. Unification of IRL and MPC. Otherwise considered independent training and deployment53

procedures, planning-based AIL allows for end-to-end interactive learning of the entire54

planner. Critical online settings (e.g., dynamics, preferences, control constraints) can thus55

be brought into training while enabling experience-based reasoning beyond the planning56

horizon, which we demonstrate in this work. We also find this induces a more effective57

adversarial dynamic than policy-based generators when learning from partial observations58

in the real world.59

To our knowledge, this work presents the first end-to-end planning-from-observation (PfO) frame-60

work, extending PfO to continuous spaces and interactive learning. By choosing Model Predictive61

Path Integral control (MPPI) [16] as the embedded planner, we further gain theoretical perspective62

on planning-based AIL and its relationship to the seminal GAIL objective [11, 17]. Thus, we name63

this learning algorithm: Model Predictive Adversarial Imitation Learning (MPAIL {impale}).64

2 Related Work65

IRL-MPC. High-dimensional continuous control applications often require an online planner for66

real-time control, trustworthiness, safety, or additional constraints. When using IRL to learn a re-67

ward, online deployments of these reward functions tend to rely on an independent online MPC68

procedure. To enable learning local costmaps across perception and control for off-road navigation,69

Lee et al. [4] and Triest et al. [6] similarly propose solving the forward RL problem by using MPPI70

but deploy the learned reward on a different configuration more suitable for real-time planning and71

control. This reward deployment framework of IRL-then-MPC is currently the dominant approach72

for planning in high-dimensional continuous control tasks from demonstration [4, 5, 6, 7, 8, 9, 10].73

Model-Based IRL and Planning-Based RL. The proposed framework, MPAIL, might naively be74

categorized as a model-based AIL approach. Various other works have also explored model-based75

AIL [18, 3, 19]. However, scope is directed at training stabilization and policy optimization rather76

than examining planning with learned reward. When the reward is known, as in RL, planning-based77

algorithms have demonstrated considerable improvement in simulation benchmarks over existing78

state-of-the-art RL algorithms through developments such as: online trajectory optimization, value79

bootstrapping, latent state planning, policy-like or learned sampling priors, and much more [20,80

21, 22]. This work’s implementation of MPAIL performs online trajectory optimization and value81

bootstrapping. This work does not implement latent state planning nor a policy-based prior to better82

isolate our investigations in interpretability and planning [23, 19].83
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3 Model Predictive Adversarial Imitation Learning84

3.1 The POMDP Setting and the Model Predictive Agent85

We adopt the Partially Observable Markov Decision Process (POMDP) to best consider highly desir-86

able applications of IRL in which partial observability and model-based planning play crucial roles.87

In an unknown world state sw ∈ Sw, the agent makes an observation o ∼ p(o|sw). From a history88

of observations o0:t, the Agent perceives its state st ∼ p(s|o0:t). Actions a ∈ A and states s ∈ S to-89

gether allow the agent to self-predict forward in time using its predictive model f : S×A → S. Note90

that these definitions crucially suggest the partial observability of s due to the implicit dependency91

on the observation history o0:t through the agent’s perception (e.g. mapping [24]). However, partial92

observations in S are desirably used for demonstrations to perform IRL and AIL, as full observation93

history would quickly become intractable [6]. The planner itself is a model predictive agent. It is94

capable of performing model rollouts τ (H)
t = {st′ , at′}t+Ht′=t such that st′+1 = f(st′ , at′). Each95

rollout is then mapped to a cost C(τt). Finally, the agent’s objective is to create an H-step action96

sequence at:t+H , or plan, that best minimizes its corresponding trajectory cost.97

3.2 Adversarial Imitation Learning from Observation98

IRL algorithms aim to learn a cost function that minimizes the cost of expert trajectories while99

maximizing the cost of trajectories induced by other policies [17, 11]. As the problem is ill-posed100

and many costs can correspond to a given set of demonstrations, the principle of maximum entropy is101

imposed to obtain a uniquely optimal cost. It can be shown that the entropy maximizing distribution102

is a Boltzmann distribution [25]. Towards scalable learning-from-observation (LfO), we further103

consider demonstration data in which only states are available, as actions can be challenging or104

impossible to obtain [26]. In this context, the state-only IRL from observation problem can be105

formulated by costing state-transitions c(s, s′) rather than state-actions c(s, a) as in [17]:106

IRLfOψ(πE) = arg max
c∈RS×S

−ψ(c) +
(
min
π∈Π
−λH(π) + Eπ[c(s, s′)]

)
− EπE

[c(s, s′)], (1)

where ψ(c) is a convex cost regularizer, πE is the expert policy, H(·) is the entropy, and Π is a family107

of policies.108

As shown in [11, 17], this objective can be shown to be dual to the Adversarial Imitation Learning109

(AIL) objective under a specific choice of cost regularizer ψ,110

min
π∈Π

max
D∈[0,1]S×S

Eπ[log(D(s, s′))] + EπE
[log(1−D(s, s′))]− λH(π), (2)

where D(·) is the discriminator function. The exact form of D has consequences on the policy111

objective and differs by AIL algorithm. The following section expands on choices for this work.112

3.3 Choosing a Policy and Reward113

In brief, we set our sights on the AIL objective (Equation (2)) which, dual to MaxEnt IRL, aims114

to learn rewards from demonstration. However, the formulation remains intimately connected with115

policy optimization through the assumption of an RL procedure. Towards planning-based optimiza-116

tion, we proceed by modifying the RL formulation in Equation (1) as described in [11, 23]. Similar117

to [27], we replace the entropy loss −λH(π) with a Kullback-Leibeler (KL) divergence constraint118

on the previous policy π:119

min
π∈Π

Eπ[c(s, s′)] + β KL(π ||π). (3)

Note that this incorporates prior information about the policy (i.e. previous plans) while seeking the120

next maximum entropy policy. Specifically, as shown in Appendix B.1, the closed form solution to121

Equation (3) is π∗(a|s) ∝ π(a|s)e
−1
β c(s,a), where c(s, a) =

∑
s′∈S T (St+1 = s′|St = s)c(s, s′)122

and T (St+1 = s′|St = s) denotes the transition probability from state s to s′.123
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We then observe that a choice of planner satisfies the RL objective as in Equation (3). By choosing124

Model Predictive Path Integral (MPPI) as the planner, as proven in Appendix B.1, we solve an equiv-125

alent problem provided the MDP is uniformly ergodic. Namely, MPPI solves for a KL-constrained126

cost-minimizer over trajectories [27]:127

min
π∈Π

Eτ∼π [C(τ) + βKL(π(τ) ||π(τ))] (4)

where C(τ) is the discounted cost of a trajectory and KL(π(τ)||π(τ)) is the discounted KL diver-128

gence over a trajectory.129

For practical reasons, model rollouts are often limited to some timestep length, H . However, this130

can often result in myopic plans or limit applications to short-horizon tasks [21]. To resolve this,131

infinite-horizon MPPI introduces a terminal cost-to-go function to be evaluated on the final states in132

the rollouts [21, 28, 29, 22]. This can be done by utilizing a learned value function Vϕ : S → R that133

estimates the expected return Gt of a state st as Gt = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = st],134

where Rt+1 = R(st, st+1). The result of MPPI’s approximately global policy optimization at each135

timestep is what is referred to as the MPPI policy, πMPPI. Appendix B.1 proves how this formulation136

can be equivalent to the entropy-regularized RL objective, while also in the observation-only setting.137

Pseudocode for the MPPI procedure can be found in Algorithm 2 as well as for its adaptation as an138

RL policy in Algorithm 3. Figure 2 illustrates the policy.139
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Figure 2: Illustration of πMPPI in MPAIL. (1) A
set of action sequences (plans) are sampled and
rolled out. (2) Plans are costed according to the
discriminator, shifting the distribution towards the
expert. Temperature λ decreases during train-
ing, narrowing the optimized distribution in sub-
sequent episodes. (3) The policy πMPPI is the re-
sult of a Gaussian fit to the optimized plans and
their respective first actions.

In short, our chosen AIL agent, infinite-horizon140

MPPI, can be viewed as an approximately141

global optimizer for an entropy-regularized pol-142

icy at a given state. Borrowing from the online143

learning perspective [30], these optimizations144

occur online rather than offline as part of, for145

instance, the canonical actor-critic update.146

Provided the agent (policy), we now proceed147

with selecting its objective. Recent work has148

shown many potential choices of valid policy149

objectives, each with various empirical trade-150

offs [31]. We found the reward as defined151

in Adversarial Inverse Reinforcement Learn-152

ing (AIRL) [23] to be most stable when com-153

bined with the value function when applied154

to infinite-horizon MPPI. In the state-only set-155

ting, the policy objective becomes r(s, s′) =156

log(D(s, s′))− log(1−D(s, s′)) and the discriminatorD(s, s′) = fθ(s, s
′). Simply put, the reward157

is just the logit of the discriminator r(s, s′) = fθ(s, s
′).158

In summary, our choice of πMPPI and r(s, s′) yields the MPAIL framework. As proven in Ap-159

pendix B.2, MPAIL is indeed an AIL algorithm in the sense that it minimizes divergence from the160

expert policy. The procedure (Algorithm 1) itself closely resembles the original GAIL procedure.161

However, upon updating the value network, MPAIL does not require a policy update thereafter. We162

also find in practice that a temperature decay can be helpful for preventing local minima, espe-163

cially in the case of online model learning. We leave a theoretical justification for this choice for164

future work. An overview of the training procedure can be found in Figure 1. A discussion of fur-165

ther meaningful implementation details, like spectral normalization, can be found in Appendix C.166

Though, these modifications are kept to a minimum towards our analysis of πMPPI in AIL.167

4 Experimental Results168

Expectations. At a high level, MPAIL can be viewed as a model-based RL algorithm with a si-169

multaneous expert-distribution matching objective. With a model, one might expect MPAIL to be170
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Algorithm 1 Model Predictive Adversarial Imitation Learning

Require: Expert state-transitions DE = {(s, s′)}
Require: Maximum-Entropy Planner πMPPI, Discriminator Dθ, Value Vϕ

1: while not converged do
2: Collect transitions (s, s′, rθ(·)) ∈ dπ by running πMPPI in the environment
3: Update Discriminator parameters using θ:

∇θEs,s′∼dπ [log(Dθ(s, s
′))] +∇θEs,s′∼dπE [log(1−Dθ(s, s

′))] (5)

4: Update Value parameters ϕ using estimated returns:

∇ϕEs∼dπ [(Gt − Vϕ(s))2] (6)

5: end while

more sample-efficient yet have lower asymptotic performance than current model-free methods like171

GAIL and AIRL [32].172

Questions. Without a policy network, the conventional generator (i.e., policy) improvement step173

does not exist. In fact, the distinction between the discriminator and the policy blurs due to the174

direct discriminator costing in MPPI. While direct discriminator optimization is more akin to classi-175

cal GAN networks [12], it is impractical to solve the optimal policy to completion under the current176

reward through planning as in IRL. This raises a central question regarding MPAIL’s training dynam-177

ics: Are approximated policies through value bootstrapping as in infinite-horizon MPPI sufficiently178

effective and stable to perform as adversarially generative policies?179

In this section, we empirically validate that MPAIL indeed behaves as an AIL algorithm while pro-180

viding the benefits of planning. We also aim to answer these follow-up questions in our experiments:181

Q1 Is a learned AIL planner more robust than a learned AIL policy?182

Q2 How can MPAIL help enable real-world planning capabilities from observation?183

Q3 How does MPAIL compare to existing AIL algorithms?184

Hyperparameter settings are kept consistent across all experiments. Exact values and other imple-185

mentation details such as regularization and computation are reported and discussed in Appendix C.186

4.1 Simulated Navigation Task187

For simulated evaluation, we design a navigation task with a 10-DoF vehicle. Reward is proportional188

to the negative squared distance to (10, 10). Initial poses (t = 0) are within 1 m of (0, 0). The state189

is 12-dimensions: position, orientation, linear velocity, and angular velocity. Actions include target190

velocity and steering angle. MPAIL plans using an approximate prior model, the Kinematic Bicycle191

Model [33]. This approximate model is not tuned to the agent dynamics. For instance, slipping and192

suspension dynamics occur in simulation but are unmodeled.193

An expert is trained on this environment using PPO [34] and is used for expert data. At conver-194

gence, the optimal policy occasionally circles near the goal instead of stopping on it precisely (see195

Figure 9). While the total return between these two behaviors are nearly identical, we choose to use196

the circling demonstrations as expert data, because it is a more challenging behavior to imitate. This197

is corroborated by Orsini et al. [31], who stress that demonstrator suboptimality and multimodality198

is a critical component in algorithm evaluation towards practical AIL from human data.199

The expert’s circling behavior presents itself as a challenging “distractor mode”. In training, the200

policy may begin to only circle around the origin. If the AIL algorithm is not able to sufficiently201

explore, training collapses on this mode where the policy continuously circles the origin, unable to202

return to the expert distribution which requires the circling behavior to occur around the goal. For203

instance, we find that AIRL is unable to successfully learn both behaviors likely due to the instability204

introduced by its logit shift [31].205
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Figure 3: Comparison of policy-based and planning-based AIL in Out-of-Distribution (OOD)
states. Agents trained on the navigation task (Section 4.1) are placed uniformly with random orien-
tation between a 40× 40 m box centered on (0, 0). The policy and planner are run for 100 timesteps
in the environment. Data support of the expert exists mainly between (0, 0) and (10, 10)*. Quanti-
tative evaluation of this experiment can be found in Figure 4.

4.2 Out-of-Distribution Recovery Through Planning – Q1206

Figure 4: Quantitative OOD
Comparison. Agent initial poses
vary from In-distribution (ID) to
OOD relative to the expert data and
are plotted with their final reward
after 100 timesteps. Metric from
[35] (see Appendix D.2).

When deploying learning-based methods to the real-world, re-207

liable performance in out-of-distribution (OOD) states are of208

critical importance, especially in imitation learning when ex-209

pert data can be extremely sparse. We show that planning-210

based AIL (MPAIL) improves generalization capabilities211

when OOD. In this experiment, we use the simulated nav-212

igation environment but expand the region of uniformly dis-213

tributed initial positions and orientations from a 1×1 square214

to a large 40×40 m square around the origin (Figure 3). The215

policy-based approach is represented by GAIL, as AIRL does216

not meaningfully converge in the navigation task (Section 4.1).217

Only four expert demonstrations are used in training.218

We find that planning-based AIL generalizes to significantly219

more states than policy-based AIL when outside the support220

of expert data. In this experiment, the planner’s horizon is a221

maximum of 3 meters. As a result, the task horizon may be up222

to 15 times longer than the planning horizon. Evidently, a planner could not navigate to the goal223

if the learned optimization landscape (induced by cost cθ and value Vϕ) did not also generalize to224

OOD states. These results suggest a fundamental limitation of current AIL approaches and their225

single policy solution. The trained reward and value are inefficiently underutilized in policy-based226

AIL and not utilized at all on deployment. By contrast, MPAIL re-introduces the reward and value227

online to solve for new policies each moment in time. These results illustrate that generalization in228

AIL is substantially improved through reward deployment in addition to reward learning.229

*Note that the state space is 12-dimensional; expert data support is extremely sparse in this environment.
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4.3 Real-Sim-Real Navigation from a Single Demonstration – Q2230

Figure 5: Real-Sim-Real Experiment. Bottom Left
(MPAIL). Real-time (20 Hz) parallel model rollouts
and costing are visualized while the robot navigates
through the turn. Current optimal plan for the next 1
second in gold. Bottom Right. Trajectories performed
by MPAIL, GAIL, and IRL-MPC (see Table 1 for eval-
uation).

Real-world evaluation of AIL is currently231

challenging. RL-like interaction efficiency232

renders training in simulation more practi-233

cal than in the real-world [36], but demon-234

strations must realistically still be from the235

real-world. Nonetheless, it is imperative to236

evaluate AIL methods on real-world sub-237

optimal data and hardware since results238

may diverge significantly from ideal set-239

tings and simulation [31, 37].240

Our hardware experiment evaluates GAIL,241

IRL-MPC, and MPAIL through Real-to-242

Sim-to-Real: 1) a single partially observ-243

able (position and body-centric velocity)244

demonstration is collected from the real-245

world, 2) the method is trained using in-246

teractions from simulation 3) the method247

is deployed zero-shot to the real-world for248

evaluation. This experiment uses a small-249

scale RC car platform with an NVIDIA250

Jetson Orin NX [38]. For IRL-MPC,251

the reward and value is trained through252

GAIL, then deployed on MPPI. Unavoid-253

ably, MPPI must be hand-tuned to adapt254

the learned rewards in IRL-MPC.255

We find that MPAIL is able to qualitatively256

reproduce the expert trajectory with an av-257

erage Relative Cross-Track-Error (CTE [39]) of 0.17 m while traveling an average of 0.3 m/s slower.258

In addition, Figure 5 illustrates a key advantage of planning-based AIL. By granting access to259

the agent’s optimization landscape, MPAIL significantly improves on the interpretability of agents260

trained through ambiguous and complex human demonstration data when compared to black-box261

policies. Note the lower costing of on-track trajectories and final plan.262

GAIL does not reliably converge to the expert even in training. During deployment, GAIL’s policy263

consistently veers off-path or collapses into driving in a circle. Various starting configurations were264

attempted without success. While literature on the evaluation of AIL methods in the real-world are265

sparse, we find that AIL policies can be extremely poor performing in the real-world, as corroborated266

by [19]. A more detailed discussion is provided in Appendix D.1.267

CTE (m)

Max Mean Average
Speed (m/s)

Expert - - 1.0
GAIL 1.29 0.56 0.37
IRL-MPC 1.28 0.37 0.30
MPAIL 0.76 0.17 0.70

Table 1: Evaluation of Real Ex-
periment. Relative Cross-Track
Error (CTE) and speed are com-
puted over the best five laps.

IRL-MPC acts as a middle-ground between MPAIL and GAIL;268

the learned reward and value are exactly the same as GAIL’s and269

thus differs by the deployment of the reward through planning.270

IRL-MPC’s improvements over GAIL provides evidence that:271

(i) model-based planning can grant robustness to a model-free272

reward and, (ii) despite GAIL’s poor performance, the learned273

reward was still meaningfully discriminative and suggests a fail-274

ure of the policy to optimize this reward. On the other hand, IRL-275

MPC diverges from MPAIL by mainly learned reward and value.276

As a result, we find that online policy optimization through πMPPI277

induces a more competitive adversarial dynamic than offline pol-278

icy optimization as in actor-critic RL. In this case, the end-to-end inclusion of the planner enables279

training the reward and value to completion.280
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4.4 Benchmarking – Q3281

While we have shown theoretical justification for the classification of MPAIL as an AIL algorithm,282

we perform additional benchmarking experiments for empirical validation. We train GAIL, AIRL,283

and MPAIL on the navigation task and the cartpole task across varying quantities of expert demon-284

strations and random seeds as done in [11, 40]. While MPAIL uses an approximate prior model for285

the navigation task, we choose to learn a model during training of the cartpole task to demonstrate286

the generality of MPC and support future work on additional tasks. This is represented by the label,287

MPAIL (OM), indicating that there is a fully Online Model. Implementation details of the learned288

model can be found in Appendix D.3.289

Figure 6: Benchmarking Results. Top row
rewards are computed across all demonstration
quantities and seeds. Bottom row rewards are the
average of the final 10 episodes computed across
seeds.

On the navigation task, MPAIL reaches opti-290

mality in less than half the number of interac-291

tions when compared to GAIL. We also observe292

MPAIL to train more stably than GAIL on this293

task. AIRL struggles to learn from the multi-294

modal data (see Section 4.1). This navigation295

benchmark helps support MPAIL’s characteri-296

zation as a model-based AIL algorithm as it297

is more sample-efficient when provided a prior298

model. On the cartpole task, expert demonstra-299

tion data results in optimal-but-sparse state visi-300

tation and, equivalently, AIL reward signal. It is301

likely that, due to online dynamics model learn-302

ing, MPAIL requires more exploratory interac-303

tions to combat a large local minima induced304

and reinforced by sparse discriminator reward,305

model bias, and task dynamics. Asymptoti-306

cally, MPAIL attains comparable performance307

while maintaining the benefits of model-based308

planning, such as interpretability and robustness.309

5 Conclusion310

In this work, we address the Planning-from-Observation (PfO) setting through the introduction of311

MPAIL, a planning-based AIL algorithm. By comparing to existing AIL algorithms in out-of-312

distribution settings, we highlight how reward deployment, not simply reward learning as in current313

AIL, is critical towards generalizable IRL. MPAIL addresses this by re-introducing the learned re-314

ward online to solve for new policies at each time step. This perspective unifies IRL and MPC under315

a single interactive learning algorithm, enabling continual improvement of a planning-based agent316

with a handful of demonstrations. From a single partially observable demonstration in real-world317

navigation, we find that MPAIL is the only successful imitator when compared to policy-based AIL318

and IRL-MPC. When benchmarked with existing model-free AIL, MPAIL demonstrates empirical319

connections to model-based RL through improved sample-efficiency using a prior model. Towards320

safe and interpretable robot learning, MPAIL employs representations (i.e. model, reward, value)321

which grant access to the agent’s optimization landscape and thus decision-making process.322

MPAIL is derived from, and naturally admits, abstractions from Model Predictive Control, model-323

based RL, and imitation learning. Thus, its open-source implementation aims to reflect this and of-324

fers common ground for instantiating the many possible extensions to adjacent work through these325

connections: off-policy value estimation for improved sample efficiency [40], policy-like proposal326

distributions and latent dynamics for scaling MPPI [20], model-free and model-based reward blend-327

ing for alleviating model bias [21], and much more. We envision that this work can provide a328

theoretically and empirically justified foundation for future work at the intersection of MPC, RL,329

and Imitation Learning.330
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6 Limitations331

As noted in Section 3, the implications of the temperature decay remains to be investigated. We332

suspect that there may be a more adaptable approach towards scheduling or balancing its effects333

similar to well-studied entropy-regularized RL methods.334

Vanilla MPPI is also known to struggle with high-dimensional tasks [41]. We direct the interested335

reader to Appendix D.5 to view results and discussion on the higher-dimensional (S ⊆ R60; A ⊆336

R8) Ant task. However, vanilla MPPI still demonstrates promise towards scaling MPAIL through337

learned walking behavior. We believe that a biased sampling distribution, integration of existing338

MPPI optimization improvements [41], and latent state planning [20] offer promising solutions for339

scaling MPAIL to higher dimensions.340

Consistent with recent findings on the limited reliability of simulation-based AIL when applied to341

human demonstrations [31], our experiments further highlight that real-world deployment of AIL342

would benefit from additional investigation [19]. In particular, choosing appropriate evaluation mod-343

els can be cumbersome, especially in settings without clear performance metrics [42].344

As AIL is fundamentally an interactive learning algorithm, MPAIL benefits from real-world RL345

approaches which seek to make training in the real-world practical. This would help alleviate losses346

in performance due to reward entanglement with environment dynamics by precluding the Real-347

Sim-Real alternative.348

In Figure 3, stark OOD configurations around (−15,−15) remain challenging for cost and value.349

In our real-world experiments, un-trained regions of cost or reward are still capable of leading the350

agent astray. Albeit, this occurs at far lesser rates and impact than policy networks due to MPPI’s351

connections to optimal control and disturbance rejection. Further regularization or structural insights352

into training the discriminator are promising directions towards further robustifying these networks.353
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A Infinite Horizon Model Predictive Path Integral575

In this section we present the full algorithm in detail, including MPPI as described in [16]. Modifi-576

cations to “conventional” MPPI for MPAIL are highlighted in blue. Where applicable, (x)i indicates577

the ith entry of x (in its first dimension, if x is a tensor).578

Algorithm 2 MPPI

Require:
Number of trajectories to sample N ;
Planning horizon H;
Number of optimization iterations J
Fixed action sampling variance Σ;
Previous optimal plan a∗t−1 = {(a∗t−1)t′}Ht′=0;
Current state st;
Dynamics model fψ(s, a)
Costs cθ(s, s′)
Value Vϕ(s)

1: Procedure MPPI(st,a∗t−1)

2: (at)
0
i ← (a∗t−1)i+1 ▷ Roll previous plan one timestep forward

3: (at)
0
H ← 0 ▷ Set sampling mean to 0 for last timestep

4: for j ← 0 to J − 1 do
5: for k ← 0 to N − 1 do ▷ Model rollouts and costing (parallelized)
6: s̃k0 ← st
7: for t′ ← 0 to H − 1 do
8: akt′ ∼ N ((at)t′ ,Σ) ▷ Sample action at predicted state

9: s̃kt′+1 ← fψ(s̃
k
t′ , a

k
t′) ▷ Predict next state

10: ckt′ ← cθ(s
k
t′ , s

k
t′+1) ▷ Compute state-transition costs

11: end for
12: C(τk)←−ηHVϕ(s̃kH) +

∑H−1
t′=0 η

t′ckt′ ▷ Total trajectory cost
13: end for
14: β ← mink[C(τk)]
15: Z ←

∑n
k=1 exp−

1
λC(τk)

16: for k ← 0 to N − 1 do ▷ Weight using exponential negative cost
17: w(τk)← 1

Z exp− 1
λC(τk)

18: end for
19: for t′ ← 0 to H − 1 do ▷ Optimal plan from weighted-average actions

20: (ajt )t′ ←
∑N−1
k=0 w(τk)a

k
t′

21: end for
22: end for
23: for i← 0 to |A| do ▷ Compute optimized standard deviations for policy

24: (σt)i ←
√∑N−1

k=0 w(τk)[((a
J
t )0)i − (ak0)i]

2

25: end for
26: return aJt , σt
27: End Procedure

B Proofs579

In Section 3, we introduce the replacement of the entropy loss in Equation (2) with a KL divergence580

loss. This replacement allows the MPPI planner, in place of a policy, to solve the required forward581

RL problem. Integrated with the AIL objective in Equation (2), we further show that this allows582

MPAIL to correctly recover the expert state occupancy distribution ρE(s, s′). In this section, we583

prove both of these claims.584
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Algorithm 3 πMPPI

Require:
Reward rθ := −cθ;
Value Vϕ;
MPPI(s,a) = MPPI(s,a;N,H, J,Σ, fψ, cθ, Vϕ) (Algorithm 2);
T length of episode

1: a∗0 ← 0 ▷ Initialize optimal plan
2: B ← {}
3: for t← 1 to T do
4: st ∼ T (·|st−1, at−1) ▷ Step and perceive environment
5: a∗t , σt ← MPPI(st,a∗t−1)
6: if Train then
7: at ∼ N ((a∗t )0, Iσt)
8: else if Deploy then
9: at ← (a∗t )0

10: end if
11: rt ← rθ(st, st+1) ▷ Reward from discriminator
12: B ← B ∪ (st, at, rt, st+1)
13: end for
14: return B

B.1 MPPI as a Policy585

In this section we justify claims regarding MPPI in the forward RL problem. For completeness, we586

also verify that known results remain consistent with our state-only restriction.587

Proposition B.1.1. The closed form solution of Equation (3),588

min
π∈Π

Eπ[c(s, s′)] + β KL(π ||π), (3)

is589

π∗(a|s) ∝ π(a|s)e
−1
β c(s,a) where c(s, a) =

∑
s′∈S
T (St+1 = s′|St = s)c(s, s′) (7)

Proof. We begin by noting that590

Eπ[c(s, s′)|St = s] =
∑
a∈A

π(a|s)c(s, a) (8)

where the weighted cost c(s, a) is defined as591

c(s, a) :=
∑
s′∈S
T (St+1 = s′|St = s)c(s, s′) (9)

Then for a fixed state s ∈ S, noting that the policy is normalized over actions
∑
a∈A π(a|s) = 1,592

we may form the Lagrangian with respect to the objective in Equation (3) as:593

L(π, β, λ) =
∑
a∈A

π(a|s)c(s, a) + β
∑
a∈A

π(a|s) log π(a|s)
π(a|s)

+ λ
∑
a∈A

π(a|s) − 1 (10)

Taking the partial derivative with respect to π(a|s) and setting to 0 we have594

∂L
∂π(a|s)

= c(s, a) + β log
π(a|s)
π(a|s)

+ 1 + λ = 0 (11)

Finally,595

β log
π(a|s)
π(a|s)

= −c(s, a)− 1− λ (12)

π(a|s) ∝ π(a|s)e−
1
β (c(s,a)+1+λ) (13)

π(a|s) ∝ π(a|s)e−
1
β c(s,a)
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Remark B.1.2. Given a uniform policy prior, the KL Objective in Equation (3),596

min
π∈Π

Eπ[c(s, s′)] + β KL(π ||π), (3)

is equivalent to the Entropy Objective,597

min
π∈Π

Eπ[c(s, s′)]− λH(π). (14)

Proof. In order to prove this, it suffices to note that minimizing KL is equivalent to maximizing598

entropy:599

KL(π||π) =
∑
s∈S

dπ(s)
∑
a∈A

π(a|s) log π(a|s)
π(a|s)

(15)

=
∑
s∈S

dπ(s)

[
−H(π(·|s))−

∑
a∈A

π(a|s) log π(a|s)

]
(16)

= −
∑
s∈S

dπ(s)H(π(·|s))−
∑
s∈S

∑
a∈A

π(a|s) log π(a|s) (17)

= −H(π)−
∑
s∈S

log ks (18)

where ks = π(a|s) for any a ∈ A. Note that the sum on the left collapses by definition and the inner600

sum on the right collapses since the probability of taking an action in any given state is 1. Finally,601

since all the ks are constant, the second term on the right hand side is constant. Since both objectives602

differ by a constant, minimizing the KL is equivalent to maximizing the Entropy given a uniform603

policy prior.604

Proposition B.1.3. Provided the MDP is uniformly ergodic, the MPPI objective in Equation (4),605

min
π∈Π

Eτ∼π [C(τ) + βKL(π(τ) ||π(τ))] (4)

is equivalent to the RL objective in Equation (3),606

min
π∈Π

Eπ[c(s, s′)] + β KL(π ||π). (3)

Proof. Before continuing, we verify that infinite horizon MPPI indeed predicts an infinite horizon607

estimate of the return. For simplicity, we momentarily revert to a reward only formulation, replacing608

the cost cθ(s, s′) with the reward Rθ(s, s
′) and the control discount η with γ. We proceed by609

expanding the return,610

Eτ∼π[R(τ)] = Eτ∼π[γHVϕ(sH) +

H−1∑
t=1

γtR(st, st+1)] (19)

= Eτ∼π[Eπ[
∞∑
t=H

γtR(st, st+1)|SH = sH ] +

H−1∑
t=1

γtR(st, st+1)] (20)

= Eτ∼π[
∞∑
t=H

γtR(st, st+1) +

H−1∑
t=1

γtR(st, st+1)] (21)

= Eτ∼π[
∞∑
t=1

γtR(st, st+1)] (22)

where we have made use of the definition of a value function Vϕ (Equations 18 to 19) and the tower611

property of expectation (Equations 19 to 20).612
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Let f(s, s′) = c(s, s′) + βKL(π(·|s)||π(·|s)). For either objective to be valid the cost and KL613

Divergence would have to be bounded. Thus, we may safely assume that f is uniformly bounded614

||f ||∞ ≤ K. Let δt = Est,st+1∼dt [f(st, st+1)]− Es,s′∼dπ [f(s, s′)] be the error between estimates615

of the objective.616

Since the MDP is uniformly ergodic, we may bound the rate of convergence of the state distribution617

at a time t, dt to the stationary distribution dπ618

∃λ ∈ (0, 1),M ∈ N s.t ||dt − dπ||TV ≤Mλt (23)

where || · ||TV is the total variation metric.619

Continuing by bounding error δt,620

|δt| ≤ ||f ||∞||dt − dπ||TV ≤ KMλt (24)

We then have that |
∑∞
t=0 η

tδt| ≤ KM
∑∞
t=0(ηλ)

t = KM
1−ηλ = C <∞.621

We may now begin working with the MPPI Objective in Equation (4)622

Eτ∼π[C(τ)+βKL(π(τ) ||π(τ))] (25)

=

∞∑
t=0

ηt Est,st+1∼dt [f(st, st+1)] (26)

=

∞∑
t=0

ηt [Es,s′∼dπ [f(s, s′)] + δt] (27)

=
1

1− η
Es,s′∼dπ [f(s, s′)] +

∞∑
t=0

ηtδt (28)

Note that the MPPI objective and Entropy Regularized RL objective differ by scaling and a bounded623

additive constant, independent of π. Thus, minimizing both objectives are equivalent.624

B.2 MPAIL as an Adversarial Imitation Learning Algorithm625

In this section, we integrate findings from Appendix B.1 with the AIL objective to theoretically626

validate MPAIL as an AIL algorithm. Specifically, we observe that at optimality, we recover the627

log expert-policy transition density ratio, which in turns yields a maximum entropy policy on state-628

transitions. We then discuss the identifiability limits imposed by observing only (s, s′) rather than629

(s, a, s′). Throughout this section we make use of the state-transition occupancy measure, defined630

as ρπ : S × S → R where ρπ(s, s′) =
∑∞
t=1 γ

tT (St+1 = s′, St = s |π) as in [17].631

Proposition B.2.1. The optimal reward is632

f∗θ (s, s
′) = log

(
ρE(s, s

′)

ρπ(s, s′)

)
(29)

Proof. Note that the optimal discriminator is achieved when D∗(s, s′) = ρE(s,s′)
ρE(s,s′)+ρπ(s,s′)

as used633

in [43] and shown in [44] Section 4 Proposition 1.634

f∗θ (s, s
′) = log(D∗(s, s′))− log(1−D∗(s, s′)) (30)

= log

(
ρE(s, s

′)

ρE(s, s′) + ρπ(s, s′)

)
− log

(
ρπ(s, s

′)

ρE(s, s′) + ρπ(s, s′)

)
(31)

= log

(
ρE(s, s

′)

ρπ(s, s′)

)
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This shows that, by setting r(s, s′) = fθ(s, s
′), the recovered reward function is the log-ratio of635

state-transition occupancy measure from the expert to the policy.636

Lemma B.2.2. MPAIL minimizes a regularized KL divergence between the policy’s state-transition637

occupancy measure and the expert’s.638

Proof. Recall from Proposition B.1.1 that while solving for the RL objective, MPPI finds a policy639

of the form640

π(a|s) ∝ π(a|s)e−
1
β c(s,a) (32)

Applying Proposition B.2.1, we plug c(s, s′) = −f∗θ (s, s′) into Equation (9) to obtain641

π∗(s, a) ∝ π(s, a) exp

(
− 1

β

∑
s′∈S
T (s′|s)[log ρπ − log ρE)]

)
(33)

Note that when the policy distribution ρπ matches the expert distribution ρE the exponential term642

collapses. Thus, when the occupancy measures match, the policy updates cease to have an effect643

and the optimization attains a fixed point.644

In fact, we may note that for any fixed state s ∈ S, the cost accumulated by the policy is645

∑
s′∈S

ρπ(s, s
′)c∗(s, s′) =

∑
s′∈S

ρπ(s, s
′) log

(
ρπ(s, s

′)

ρE(s, s′)

)
= KL(ρπ(s, ·)||ρE(s, ·)) (34)

Finally, the MPPI objective can be written as646

min
π∈Π

KL(ρπ||ρE) + β KL(π ||π) (35)

showing that the MPAIL procedure minimizes the entropy regularized KL Divergence between state-647

transition occupancy measures. In this sense, we have shown that MPAIL can be indeed classified648

as an AIL algorithm which seeks to match the expert’s occupancy measure through an MPPI Policy.649

650

Remark B.2.3. On Identifiability. A question naturally arises about the limitations that being state-651

only imposes. If state transitions are deterministic and invertible, observing (s, s′) is the same as652

observing the unique action a that caused it. Then r(s, s′) = r(s, a) and by the 1-1 correspondence653

of policies with state-action occupancy measures [11], the recovered policy becomes unique.654

In general, this assumption has varying degrees of accuracy. When transitions are many to655

one or stochastic, multiple actions can produce the same transition (s, s′). Then ρπ(s, s
′) =656

ρπ(s)
∑
a∈A π(a|s)T (s′|s, a) becomes a mixture over actions which induces a range of respec-657

tive policies. For instance, if T (s′|s, a1) = T (s′|s, a2) for actions a1, a2, the expert could perform658

either action and a state-transition based reward would not distinguish between them. Nonetheless,659

IRL is already an ill-posed problem due to the many to one relationships between policies, rewards,660

and demonstrations. Though the ambiguity is exacerbated by lack of demonstrated actions, it is still661

inherent to the problem.662

C Implementation663

In this section we provide further details about the algorithm implementation. Some features in-664

corporated here are deemed well-known (i.e. spectral normalization) or not rigorously studied for665

statistical significance but included for completeness and transparency.666
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C.1 Regularization667

Spectral Normalization. As often found in GAN and AIL surveys [31, 45], we corroborate that668

applying spectral normalization to the discriminator architecture appeared to have improved MPAIL669

training stability and performance. Application of spectral normalization to the value network did670

not appear to make a noticeable difference.671

L2 Weight Regularization. Some experimentation was done with L2 weight regularization, but672

it was ultimately not used for any simulation results. Instead, usage of the weight regularization673

for the real experiment (Section 4.3) appeared to help stabilize training and allow for more reliable674

model selection and deployment.675

C.2 Hyperparameters676 Hyperparameter Value
Disc. optimizer (θ) Adam (β1 = 0.5, β2 = 0.999)
Disc. learning rate 1e-4
Disc. hidden width 32
Disc. hidden layers 2
Disc. L2 coefficient 0 (sim), 0.001 (real)
Value optimizer (ϕ) Adam (β1 = 0.9, β2 = 0.999)
Value learning rate 1e-3
Value hidden width 32
Value hidden layers 2

Value loss clip 0.2
Discount (γ) 0.99

Generalized return (λ) 0.95
Value max grad norm 1.0

Mini batches 3
Epochs 3

Trajectories (N ) 512
Planning horizon (H) 10

Iterations (J) 5
Sampling variance (Σ) diag([0.3 . . . ])
Initial temperature (λ0) 1.0
Markup/Discount (η) 1.01

Temp. decay rate 0.01
Minimum temp. 1e-5

Value:Disc update ratio 3:1 (sim), 1:1 (real)

Table 2: MPAIL Hyperparameters. Used across
all experiments unless specified otherwise.

Fundamentally derived from AIL and MPPI,677

we can etymologically partition hyperparame-678

ters into those induced by AIL (orange) and by679

MPPI (blue). Remaining non-highlighted pa-680

rameters for this work are introduced and dis-681

cussed below.682

Temperature Decay. As noted in Section 3,683

we found that an initial temperature with a684

gradual decay (down to a minimum) was help-685

ful in preventing early and unrecoverable col-686

lapse. The intuition for this decision is simi-687

lar to that of decaying policy noise injection in688

many popular RL frameworks [46, 20], since689

the temperature is directly related to the vari-690

ance of the optimized gaussian distribution.691

This component remains under investigation as692

its usage is not always necessary for meaningful693

convergence, but it is perhaps practically useful694

as it alleviates temperature tuning labor.695

Value-to-Discriminator Update Ratio. Com-696

mon to existing AIL (and GAN) implementations, MPAIL benefits from a balancing of generator697

and discriminator updates. Note that, like GANs, AIL tends to oscillate aggressively throughout698

training [47]. As MPAIL does not enforce a constrained policy update each epoch (as TRPO does699

[48]), the policy is exposed more directly to the discriminator’s oscillations which can further hinder700

on-policy value estimation. A further converged value function is also theoretically more stationary701

from the perspective of πMPPI as infinite-horizon MPPI.702

Markup. A notable quirk discovered during implementation is the relationship between costs and703

rewards. While the two concepts are generally regarded as dual (with negation), it is worthwhile704

noting that discounting is not closed under negation. Meaning, it is not correct to apply the same705

discount factor to the costs as they are done to the summation of rewards in the return Gt. Consider706

the reward with a discount applied r1 = γ r(s, s′) and the reward of a cost with a discount applied707

r2 = −γ c(s, s′). Observe that for γ < 1, r1 decreases while r2 increases. Thus, when using costs,708

the H-step factor in the MPPI horizon, η, should not decrease over t′. In fact, when applying η < 1,709

we found that MPAIL does not meaningfully converge ever on the navigation task. Geldenbott and710

Leung [49] names the usage of η > 1 as a markup. In our case, we apply a similar empirical factor711

such that η := 1/γ > 1. While we suspect a more rigorous relationship between η and γ, we712

leave its derivation for future work. However, we remark that a reward-only variant of MPPI which713

precludes these relationships is equally possible as done in [50]. Costs are maintained in this work714

due to wider familiarity in practice [13, 16, 51, 52].715
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Figure 7: Comparing “Inference” Times
for Navigation Task. Time taken to com-
plete one episode of 100 timesteps with 64
parallel environments across varying horizon
lengths and MPPI optimization iterations.
PPO (in policy-based AIL) is used as imple-
mented in the RSL library [53]. All train-
ing runs in this work are performed on an
NVIDIA RTX 4090 GPU. Isaac Lab is cho-
sen as our benchmarking and simulation en-
vironment due to its parallelization and robot
learning extensions [54].

MPAILPolicy initialized. Total number of params: 3779

Dynamics: 0

Sampling: 0

Cost: 3778

Temperature: 1

MPAILPolicy(

(dynamics): KinematicBicycleModel()

(costs): TDCost(

(ss_cost): GAIfOCost(

(reward): Sequential(

(0): Linear(in_features=24, out_features=32, bias=True)

(1): LeakyReLU(negative_slope=0.01)

(2): Linear(in_features=32, out_features=32, bias=True)

(3): LeakyReLU(negative_slope=0.01)

(4): Linear(in_features=32, out_features=1, bias=True)

)

)

(ts_cost): CostToGo(

(value): Sequential(

(0): Linear(in_features=12, out_features=32, bias=True)

(1): ReLU()

(2): Linear(in_features=32, out_features=32, bias=True)

(3): ReLU()

(4): Linear(in_features=32, out_features=1, bias=True)

)

)

)

(sampling): DeltaSampling()

)

Figure 8: PyTorch [55] Model Architecture
from Train Log. MPAIL readily admits other
well-studied components of the model-based
planning framework (e.g. sampling, dynamics)
[56, 57]. This work focuses on costing from
demonstration.

C.3 Computation716

MPAIL is crucially implemented to be parallelized across environments in addition to trajectory op-717

timization. In other words, in a single environment step, each parallel environment independently718

performs parallelized sampling, rollouts, and costing entirely on GPU without CPU multithreading.719

MPPI also allows for customize-able computational budget, similar to [20] (see Figure 7). For the720

navigation and cartpole tasks, we find that online trajectory optimization implemented this way in-721

duces little impact on training times. In exchange, MPPI can be more space intensive due to model722

rollouts having space complexity of O(HN |S|) per agent. On the navigation task benchmark set-723

tings, this is an additional 245 kB per agent or 15.7 MB in total for 64 environments. Figure 7 shows724

benchmarks on training times that demonstrate comparable times to PPO’s policy inference. Over-725

all, training runs for Section 4.4 between MPAIL and GAIL on the navigation task are comparable726

at about 45 minutes each for 500 iterations.727

D Experimental Details728

D.1 Real-Sim-Real Navigation729

Setup Details. Before continuing with the discussion of our results, we provide further details about730

the setup of the experiment. The platform itself is an open-source MuSHR platform as detailed in731

[38]. Notably, the compute has been replaced with an NVIDIA Jetson Orin NX as mentioned in732

Section 4.3. Poses (position, orientation; [x y z r p y]) are provided by a motion-capture733

system at a rate of 20 Hz. Velocities are body-centric as estimated by onboard wheel encoders734

(v = vxb1 + vyb2 + vzb3, such that b1 points forward, b2 points left, and b3 completes the735

right-hand frame; basis vectors are rigidly attached to the vehicle [13]). Note that the vehicle is736

operated without slipping nor reversing such that vy ≈ vz ≈ 0 and vx > 0 [33]. The recorded states737

used for the expert demonstration data is 240 timesteps long. Altogether, the data can be written as738

sE ∈ {(xt, yt, zt, vx,t, vy,t, vz,t)}240t=1.739
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A remark: GAIL for this task is necessarily implemented with “asymmetry” between actor and740

reward. Since, the discriminator must receive as input expert observations sE while the agent is741

provided (r, p, y) in addition to observations in sE . In theory, there should be no conflict with the742

IRLfO (Equation (1)) formulation as this remains a valid reward but on a subset of the state.743

Additional Discussion of Results.744

Note that the direction of travel cannot be uniquely determined by a single state s due to the par-745

tially observable body-centric velocity. Rather, only with the state-transition (sE , s
′
E) is it pos-746

sible to deduce the direction of travel. For instance, consider a simplified hand-designed cost747

using the partially observable expert data c(s, s′|sE , s′E). A reference vector can be computed748

through the difference of positions between s′ and s then scaled by the demonstrated velocities:749

c(s, s′|sE , s′E) := ∥Iv(s, s′) − vxE [(x
′
E − xE)e1 + (y′E − yE)e2]∥2 where ei are global basis750

vectors for global frame I and Iv(s, s′) is the robot velocity in I. Of course, this example assumes751

the ability to correctly choose the corresponding (sE , s
′
E) pair for input (s, s′) out of the entirety of752

the expert dataset dE . It should be clear that partial observability and state-transitions play critical753

roles in the recovery of this non-trivial cost function. This experiment presents a necessary challenge754

towards practical AIL [31] and scalable Learning-from-Observation (LfO) [26].755

IRL-MPC was evaluated across three ablations: (a) reward-only, (b) value-only, and (c) reward-and-756

value. The results in Figure 5 reflect the performance of (a) reward-only. The other implementations757

were distinctly worse than (a) and frequently devolved into turning in circles much like GAIL.758

In both cases of GAIL and MPAIL, we find that the agents occasionally travel counter-clockwise759

(where the expert travels clockwise) during training, suggesting that (sE , s
′
E) appears close to760

(s′E , sE) through the discriminator. As the data is collected through real hardware, it is suspected761

that state estimation noise introduces blurring between states that are separated by only 50 ms.762

GAIL is otherwise known to perform poorly in the existence of multi-modal data [58]. This is fur-763

ther corroborated by its unstable performance on the navigation benchmark. And, to the best of764

our knowledge, similar Real-Sim-Real applications of AIL appear sparse if existent at all. Adjacent765

works which use real demonstration data but train in real include [37, 19]. Even while training in766

real, GAIL’s performance drops signficantly (90%→ 20%) when presented with imperfect demon-767

strations for even straightforward tasks like reaching [37, 19]. These observations might suggest768

why the GAIL discriminator is unable to learn meaningfully in simulation and produces a poor769

policy.770

Meanwhile, MPAIL’s success and IRL-MPC’s improvement over GAIL is attributed to model-based771

planning capabilities. If the robot should find itself away from the expert distribution, the online772

planner enables the agent to sample back onto the demonstration. This becomes especially important773

when the demonstration data is severely under-defined as in this partially observable setting, which774

results in positive reward signal in most states in the environment. This is further supported by the775

fact that discriminator predictions are comparatively uncertain when training over real data. Recall776

that low discriminator confidence is reflected by low magnitude logit fθ (cost) predictions. For777

reference, real experiment cost values are in the range of (−0.022,−0.0180) whereas cost values778

in benchmarking runs with synthetic demonstrations are in the range of (−3, 3). On real data, the779

discriminator also required more frequent updates to provide more reliable signals (see Table 2).780

D.2 Simulated Navigation Task Details781

Reward and Data. The exact form of the reward used for training PPO and for metrics is given by782

r(s) :=
√
102 + 102 −

√
(x− 10)2 + (y − 10)2.

Figure 9 visualizes four demonstrations from the converged PPO “expert” policy. Additional demon-783

strations are generated by playing more environments from this policy for one episode such that each784

demonstration is distinct. Each episode is 100 timesteps long, where each timestep is 0.1 seconds.785
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Figure 9: Visualization of Four Expert Trajectories in Navigation Task. Cars are initialized
around (0, 0) and navigate towards (10, 10) where the “circling” behavior begins, as discussed in
Section 4.1.

OOD Experiment. OOD Energy in Figure 4 is computed as described by Liu et al. [35]. Namely,786

with respect to the expert data dE , we fit a reference distribution using P̃E = N (µ̄E , Σ̄E). Then,787

the OOD energy is given by E(s; pE) = log pE(s). Some limitations of this procedure can be ob-788

served given that ID points for GAIL do not receive as much reward as one might expect. However,789

this remains reasonable considering that the GAIL policy may forget ID behavior, which can be790

seen in Figure 3 by agents clearly ID remaining static throughout the episode. Future work might791

better explore quantifying OOD towards measuring AIL generalization through direct usage of the792

discriminator.793

D.3 Predictive Model Learning Towards Generalizable MPAIL794

For tasks beyond navigation (see also Appendix D.5 for the Ant environment), planning rollouts795

were generated from a deterministic dynamics model fψ(s, a) learned entirely online. The dynamics796

model was trained to minimize the mean squared error between the predicted and observed st+1,797

given st and at. The loss being optimized can be written as:798

ŝi+1 = fψ(si, ai), L =
1

HB

∑
s,a∈B

(si+1 − ŝi+1)
T (si+1 − ŝi+1) (36)

with model parameters ψ, transition buffer B, and a mini-batch of size HB sampled from B. If799

used, the update for the model occurs after line 4 in Algorithm 1.800

801

Dynamics Model Hyperparameter Value
Optimizer Adam(β1 = 0.9, β2 = 0.999)

Learning rate 1e-3
LR decay rate 0.9

LR decay frequency (ep.) 25 (Ant), 15 (Cartpole)
Min. LR 1e-6

Hidden width 256 (Ant), 64 (Cartpole)
Hidden layers 3

Table 3: Dynamics Learning Hyperparameters.

Training augmentations. Several train-802

ing augmentations were made to improve803

model accuracy and stability. A transi-804

tion replay buffer, which stored transitions805

from multiple episodes, was used to train806

the dynamics model for multiple epochs807

during each MPAIL training iteration. Af-808

ter each episode, the buffer was updated809

by randomly replacing old transitions with those from the latest episode. This off-policy buffer810

helped stabilize training and prevent overfitting when training using multiple epochs. Furthermore,811

applying a step-based learning rate decay improved convergence speed. Dynamics model-specific812

hyperparameters are listed in Table 3.813
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Figure 11: Ablating single-step costs cθ and value Vϕ across different Horizon (H) lengths.
“Cost-only” experiments are performed by not evaluating Vϕ on the final state in each model rollout.
“Value-only” experiments are performed by not evaluating cθ on the H-step state-transitions. See
Algorithm 2, line 12 for exact usage.

D.4 Ablations814

Figure 11 shows the results of an ablation study, investigating the effect of including costs or values815

in the MPAIL formulation. We find that including both is necessary for reasonable behavior across816

varying horizon lengths. We observe that value-only planning can quickly improve but is highly817

unstable and is unreliable as a generator. As expected, cost-only planning performs progressively818

better at longer planning horizons. However, should the agent find itself off-distribution, it is not able819

to return to the distribution until it randomly samples back in, which may potentially never occur.820

For instance, many agents which are initialized facing the opposite direction drive randomly without821

ever returning to the distribution. Without a value function guiding the agent, the discriminator (i.e.822

cost) does not provide a significant reward signal for returning to the distribution. This can be823

observed in the H = 10 plot where the performance of cost-only planning quickly drops as the824

discriminator is further refined on the expert data, decreasing the likelihood of randomly sampling825

into distribution. In this sense, the combination of cost and value operates as intended: costing826

is necessary for defining and staying inside the expert distribution, while value is necessary for827

generalizing the reward beyond the support of the expert elsewhere in the environment.828

D.5 Towards High-Dimensional Tasks from Demonstration with Sampled-Based MPC829

Figure 12: Isaac Lab Ant-v2
Experiment.

Figure 12 provides an experiment of MPAIL training an agent830

in the Isaac Lab implementation of the Ant-v2 environment as a831

step towards high-dimensional applications. As expected, MPPI’s832

(vanilla) sampling procedure struggles to be competitive with833

policy-based optimization in higher-dimensional spaces. How-834

ever, MPAIL demonstrates signs of life in enabling MPPI to op-835

timize a state space otherwise considered extremely challenging for836

sample-based planning. Note that Isaac Lab’s Ant implementation837

prescribes a 60-dimensional observation and 8-dimensional action838

space, rather than Mujoco’s 26-dimensional observation. Thus, the839

space is 120-dimensional for costing cθ(s, s′) and 80-dimensional840

for MPPI with a planning horizon of 10 timesteps. Despite this,841

a learned cost is capable of guiding a real-time vanilla MPPI opti-842

mization to execute walking behaviors in the ant task, albeit slower,843

even from few demonstrations.844

“Remembering” locally optimal policies through a learned policy-845

like proposal distribution may help planning capabilities generalize846

to higher-dimensional spaces. Additionally, modeling dynamics in847

latent-space and using model ensembles have been shown to significantly improve performance in848
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model-based reinforcement learning [50] and are promising directions for future work for high-849

dimensional tasks. Finally, Figure 8 illustrates a key takeaway of this framework: learning costs850

through MPAIL remains orthogonal to other works which seek to improve sample-based MPC851

through sampling [41, 57, 59], optimization [57, 60], and dynamics [20]. We believe that inte-852

gration of developments in MPC along with application-specific cost regularization [52] may be853

critical for exploring the full potential of planning from observation.854
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