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Abstract001

Large reasoning models (LRMs) have recently002
demonstrated impressive capabilities in com-003
plex reasoning tasks by leveraging increased004
test-time computation and exhibiting behav-005
iors reminiscent of human-like self-reflection.006
While LRMs show a clear capacity for valu-007
able self-reflection, how this ability interacts008
with other model behaviors remains underex-009
plored. We investigate this connection by ana-010
lyzing verbalized confidence, how models ar-011
ticulate their certainty, as a lens into the nature012
of self-reflection in LRMs. We find that su-013
pervised fine-tuning on reasoning traces (i.e.,014
distillation) and reinforcement learning can015
improve verbalized calibration in reasoning-016
intensive settings in a progressive, laddered017
fashion. However, our results also indicate018
that reasoning models may possess a dimin-019
ished awareness of their own knowledge bound-020
aries, as evidenced by significantly lower “I021
don’t know” response rates on factuality bench-022
marks. Moreover, we examine the relation-023
ship between verbalized confidence and reason-024
ing chains, finding that models tend to express025
higher confidence when providing shorter or026
less elaborate reasoning. Our findings highlight027
how reasoning-oriented training can enhance028
performance in reasoning-centric tasks while029
potentially incurring a reasoning tax, a cost030
reflected in the model’s reduced ability to ac-031
curately recognize the limits of its own knowl-032
edge in small-scale models. More broadly, our033
work showcases how this erosion of knowledge034
boundaries can compromise model faithfulness,035
as models grow more confident without a com-036
mensurate understanding of when they should037
abstain.038

1 Introduction039

Large reasoning models (LRMs) have emerged as040

a dominant paradigm in the development of large041

language models (LLMs), achieving state-of-the-042

art performance across a range of complex tasks,043

Base Models

Instruct Models

SFT Reasoning 
Models

Math
Instruction

Coding
RLHF

RL Reasoning 
Models

Reasoning Data 

Reasoning Distillation

Reasoning SFT

Format Reward 

Acc Reward 

RL

Figure 1: An illustration of different pathways of
LLM/LRM training; we compare three key categories
of models for their calibration performances.

including mathematics (Ye et al., 2025; Moshkov 044

et al., 2025), complex reasoning (OpenAI et al., 045

2024b; DeepSeek-AI et al., 2025a), and coding 046

(OpenAI et al., 2025). A defining characteristic of 047

LRMs is the emergence of self-reflective behaviors, 048

where models appear capable of reassessing and 049

refining their reasoning, sometimes displaying be- 050

havior suggestive of a nascent form of introspection 051

that internally assesses whether particular stepwise 052

inferences are likely correct or flawed (e.g. “Wait, 053

but..."). 054

While verbalized uncertainty is widely used to 055

assess calibration in LLMs (Wei et al., 2024; Phan 056

et al., 2025; Wei et al., 2025), its association with 057

the emerging self-reflective behaviors in LRMs 058

remains underexplored. If reasoning models are 059

truly more introspective, their verbalized confi- 060

dence should better align with actual correctness. 061

This motivates our central research question: Are 062

reasoning models better calibrated? That is, do 063

their improved reasoning capabilities lead to more 064

faithful and reliable confidence estimates? 065

Prior studies have shown that LLMs often strug- 066

gle to produce well-calibrated confidence estimates, 067

frequently displaying overconfidence in their ver- 068

balized uncertainty. For example, Xiong et al. 069

(2024) conducted a broad empirical study and 070

found that many instruction-tuned LLMs system- 071
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atically overstate their certainty across a variety of072

tasks, regardless of their actual correctness. More-073

over, Tian et al. (2023); Xiong et al. (2024); Yang074

et al. (2024) have highlighted that model calibra-075

tion is highly sensitive to prompt design, under-076

scoring the fragility and lack of robustness in cur-077

rent approaches to verbalized uncertainty estima-078

tion in instruction-tuned models. While prior work079

suggests that human-inspired prompting strategies,080

such as chain-of-thought (CoT) or TopK, can en-081

hance calibration, we extend this line of inquiry by082

investigating whether LRMs, which inherently em-083

bed long CoT chains and self-reflective behaviors,084

can further improve calibration.085

In this work, we conduct a comprehensive empir-086

ical study to assess the calibration of LRMs across087

a diverse set of benchmarks spanning mathematics,088

factuality, scientific reasoning, and general reason-089

ing. To isolate the effects of different training strate-090

gies, we evaluate models that share the same base091

architecture but vary in their post-training proce-092

dures. Our analysis focuses on three distinct model093

categories: (1) instruct models, trained mainly us-094

ing SFT and general RL for alignment purposes;095

(2) SFT reasoning models, fine-tuned primarily on096

long CoT outputs generated by stronger reasoning097

models; and (3) RL reasoning models, trained with098

reasoning RL to explicitly optimize reflective rea-099

soning behaviors. An overview of these training100

pipelines is illustrated in Figure 1. Through sys-101

tematic pairwise comparisons, our key findings are102

as follows:103

• On reasoning-heavy benchmarks, both SFT104

reasoning models and RL reasoning mod-105

els consistently outperform instruction-tuned106

models in terms of both task accuracy and107

calibration quality.108

• While SFT on reasoning traces leads to sub-109

stantial performance gains, RL offers addi-110

tional improvements in calibration, even when111

the RL training domain (e.g., math) differs112

from the evaluation domain (e.g., science),113

highlighting its generalizability.114

• On factuality-focused benchmarks, calibra-115

tion improvements are less consistent: small-116

scale SFT reasoning models often exhibit117

worse calibration than instruction-tuned mod-118

els, while RL reasoning models generally119

show some recovery. Further analysis indi-120

cates that open-source LRMs produce signif-121

icantly fewer “I don’t know” responses com- 122

pared to instruction-tuned models, suggesting 123

a reduced awareness of their own knowledge 124

boundaries. 125

2 Related Work 126

Large Reasoning Models. Following the develop- 127

ment of models such as o1 (OpenAI et al., 2024b), 128

a new generation of LLMs has emerged, designed 129

to handle complex, multi-step reasoning tasks. The 130

training of LRMs typically begins with an SFT 131

phase on reasoning-intensive data, a process often 132

referred to as a cold start. Even with limited cu- 133

rated data, this phase has shown strong results; for 134

instance, Ye et al. (2025) demonstrates that fine- 135

tuning on just 817 human-curated examples can 136

yield substantial improvements on mathematical 137

and reasoning-heavy tasks. Building on this foun- 138

dation, a second phase applies outcome-based RL 139

to further enhance model performance by promot- 140

ing self-exploration and reflective reasoning. No- 141

table examples include DeepCoder-14B (Luo et al., 142

2025), QwQ (Qwen Team, 2025), and DeepSeek- 143

R1 (DeepSeek-AI et al., 2025a), which use RL to 144

refine the introspective and reasoning capabilities 145

of LRMs beyond what SFT alone can achieve. 146

Uncertainty Quantification. Effectively quanti- 147

fying uncertainty or confidence in LLMs is critical 148

for assessing whether these models are inherently 149

calibrated. Vashurin et al. (2025) provide a compre- 150

hensive benchmark of uncertainty quantification 151

techniques across general-purpose LLMs, high- 152

lighting the strong performance of sampling-based 153

methods, such as semantic entropy (Kuhn et al., 154

2023) and SentenceSAR (Duan et al., 2024), par- 155

ticularly in open-ended generation tasks. However, 156

despite their accuracy, these approaches are compu- 157

tationally expensive, motivating increased interest 158

in verbalized confidence as a lightweight alterna- 159

tive. For instance, Tian et al. (2023) show that ver- 160

balized confidence can yield strong calibration in 161

RLHF-trained models. Yet, findings remain mixed: 162

Xiong et al. (2024) report that many LLMs sys- 163

tematically overestimate their certainty, leading to 164

poor calibration in practice. In this work, we revisit 165

this issue by systematically comparing instruction- 166

tuned models and reasoning models within a uni- 167

fied evaluation framework to examine how training 168

paradigms affect verbalized calibration behavior. 169
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Figure 2: Verbalized confidence evaluation across various tasks, prompting strategies, and model types.

3 Experimental Setup170

3.1 Models171

To evaluate the three model variants, we consider172

the following representative models within each173

category:174

• Instruct models: These include Qwen2.5-175

14B-Instruct, Qwen2.5-32B-Instruct (hence-176

forth Qwen2.5-14/32B) (Qwen et al., 2025),177

and DeepSeek-V3 (DeepSeek-AI et al.,178

2025b). Specifically, these models were179

trained using SFT on both reasoning and non-180

reasoning data, then followed by general RL,181

mainly for alignment purposes.182

• SFT reasoning models: We evaluate183

DeepSeek-R1-Distill-Qwen-14B/32B184

(DeepSeek-AI et al., 2025a), both of which185

are fine-tuned on 800k examples (600k long186

reasoning chains and 200k non-reasoning187

data) distilled from the outputs of the188

intermediate DeepSeek-R1 model.189

• RL reasoning models: This category in-190

cludes DeepCoder-14B-Preview (Luo et al.,191

2025), Skywork-OR1-32B-Preview (He et al.,192

2025), and DeepSeek-R1 (DeepSeek-AI et al.,193

2025a). We chose the former two models be-194

cause they are trained on top of our evaluated195

SFT reasoning models, so that we could di-196

rectly observe the reasoning RL’s effects.197

3.2 Datasets198

We evaluate the models across the following199

datasets:200

• Math: AIME 2024 and AIME 2025 201

(MAA Committees), each consisting of 30 202

challenging mathematical questions designed 203

to test mathematical reasoning skills. We run 204

both datasets five times and report the aggre- 205

gated results. 206

• Factuality: SimpleQA (Wei et al., 2024) and 207

FreshQA-2025-04-28 (Vu et al., 2023), two 208

factuality benchmarks that evaluate the abil- 209

ity of language models to answer fact-seeking 210

questions. In evaluation, we adopt the same 211

prompt as in Wei et al. (2024) to categorize 212

responses into correct, incorrect, or not at- 213

tempted. 214

• Scientific Reasoning: GPQA-diamond (Rein 215

et al., 2023), containing 198 graduate-level 216

scientific multiple-choice questions; and Su- 217

perGPQA (M-A-P Team et al., 2025), in 218

which we randomly sample 500 questions 219

from easy, medium, and hard levels, totaling 220

1500 questions. 221

• General Reasoning: The reasoning portion 222

of LiveBench (White et al., 2024), containing 223

150 reasoning problems which are a harder 224

version of Web of Lies from Big-Bench Hard 225

(Suzgun et al., 2022) and Zebra Puzzles. We 226

also run this dataset five times and report ag- 227

gregated results. 228

Building on our experimental setup, we exam- 229

ine how reasoning-focused training affects model 230

calibration across domains. Specifically, we test 231

whether SFT on long reasoning traces improves 232
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calibration over general post-training and whether233

reasoning RL further enhances calibration. Finally,234

we assess whether these calibration gains transfer235

to less reasoning-focused domains like factuality, a236

key test of robustness and generalizability in real-237

world settings.238

3.3 Experimental Settings239

For model inference, we use the Huggingface240

Transformers library (Wolf et al., 2020) for all mod-241

els except the DeepSeek variants, for which we rely242

on API-based inference. We consistently set the de-243

coding temperature to 0.6 and allow up to 32,000244

new tokens to ensure the generation of sufficiently245

detailed reasoning chains.246

For prompting strategies, we evaluate the follow-247

ing approaches: (1) Vanilla chain-of-thought (CoT)248

prompting: We use a slightly modified version of249

the method introduced by Wei et al. (2024), incor-250

porating a single CoT component to elicit reasoning251

from all models; (2) Vanilla CoT prompting with252

probability mass: Motivated by Yang et al. (2024),253

who find that requesting confidence estimates as254

probability scores (ranging from 0.0 to 1.0) can255

improve calibration, we also test this approach; and256

(3) Self-reflection prompting: This strategy uses a257

two-round dialogue, with the first round eliciting258

an answer and the second prompting the model259

to evaluate its own confidence. Detailed prompt260

templates are provided in Appendix A.261

3.4 Tasks and Metrics262

Leveraging the confidence scores elicited from263

LLMs, we investigate two complementary tasks:264

calibration and failure prediction (Yuan et al., 2021;265

Xiong et al., 2022). Calibration assesses how well266

a model’s predicted confidence matches its actual267

accuracy. For example, a well-calibrated model268

should be correct 70% of the time when it assigns269

70% confidence to its predictions. In contrast, fail-270

ure prediction evaluates a model’s ability to dis-271

tinguish between correct and incorrect predictions272

based on its confidence scores. Ideally, a model273

should assign higher confidence to correct answers274

and lower confidence to incorrect ones.275

To quantify calibration performance, we use276

the Expected Calibration Error (ECE) (Guo et al.,277

2017), which measures the average discrepancy be-278

tween predicted confidence and empirical accuracy279

across bins. Specifically, ECE involves dividing280

samples into M equal bins by confidence scores,281

then computing the mean absolute difference be-282

tween each bin’s accuracy and average confidence: 283

ECE =
∑M

m=1
|Bm|
n |acc(Bm)− avgConf(Bm)|, 284

with n as the total number of samples and Bm is the 285

set of samples in the m-th bin. Additionally, to ad- 286

dress ECE’s sensitivity to binning strategies and its 287

potential high variance, we also employ the Adap- 288

tive Calibration Error (ACE) (Nixon et al., 2019): 289

ACE = 1
M

∑M
m=1 |acc(Bm)− avgConf(Bm)|, 290

which dynamically adjusts bin boundaries to en- 291

sure each bin contains an equal number of samples 292

based on the data distribution. In all experiments, 293

we use M = 10 bins for both ECE and ACE. 294

Specifically, when we are evaluating calibration 295

on factuality benchmarks, we only take attempted 296

questions into calculation. 297

To assess how well confidence scores distinguish 298

correct from incorrect predictions, we report the 299

AUROC. We also include AUPRC for both positive 300

and negative instances, as it offers complementary 301

insight in imbalanced settings or when model ac- 302

curacy varies. Finally, we report accuracy as a 303

baseline measure of overall performance. 304

4 Results 305

The results of our main evaluation are presented 306

in Table 1. As a sanity check, we observe that the 307

overall performance closely aligns with the results 308

reported in prior work (DeepSeek-AI et al., 2025a; 309

Luo et al., 2025). This consistency indicates that 310

the inclusion of confidence elicitation alongside 311

answer generation does not substantially affect the 312

models’ general performance. 313

4.1 General Results 314

Observation 1

SFT on reasoning data significantly improves
both accuracy and calibration in reasoning-
dense scenarios.

315

To evaluate the effect of SFT on reasoning 316

data, we compare SFT and reasoning SFT vari- 317

ants of Qwen2.5 at both 14B and 32B model scales. 318

The results reveal a consistent and notable trend: 319

fine-tuning on long-form reasoning traces substan- 320

tially improves task accuracy, while also leading to 321

markedly better calibration, reflected in lower ECE 322

and ACE scores. For example, R1-Distill-Qwen- 323

32B improves accuracy on AIME from 9.67% to 324

65.7%, reduces ECE from 0.752 to 0.240, and 325

boosts AUROC from 0.695 to 0.810, indicating 326

that the model not only becomes more capable but 327
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Math Science Reasoning General Reasoning Factuality
Metric Model AIME 2024 & 2025 GPQA-Diamond SuperGPQA LiveBench-Reasoning SimpleQA FreshQA

Acc ↑

Qwen2.5-14B 11.3% 35.8% 29.3% 38% 6.04% 38.3%
R1-Distill-Qwen-14B 46.7% 54.0% 40.67% 58.7% 5.69% 32.2%
DeepCoder-14B 57.7% 56.1% 41.4% 62.7% 5.28% 32.7%
Qwen2.5-32B 9.67% 39.4% 31.2% 42.7% 5.32% 35.2%
R1-Distill-Qwen-32B 65.7% 62.6% 48.1% 73.3% 7.28% 36.3%
Skywork-32B 51.3% 63.6% 50.4% 84.7% 6.80% 36.2%
Deepseek-V3 23.0% 48.5% 39.3% 50.0% 21.4% 52.4%
Deepseek-R1 68.0% 68.7% 60.3% 89.3% 29.7% 53.5%

ECE/ACE ↓

Qwen2.5-14B 0.760/0.759 0.469/0.466 0.514/0.511 0.540/0.536 0.625/0.625 0.436/0.432
R1-Distill-Qwen-14B 0.342/0.342 0.244/0.243 0.386/0.385 0.265/0.285 0.719/0.719 0.523/0.525
DeepCoder-14B 0.222/0.227 0.225/0.233 0.378/0.377 0.222/0.227 0.705/0.705 0.514/0.514
Qwen2.5-32B 0.752/0.751 0.411/0.406 0.446/0.444 0.472/0.472 0.623/0.622 0.438/0.440
R1-Distill-Qwen-32B 0.240/0.240 0.217/0.234 0.352/0.352 0.152/0.162 0.702/0.702 0.483/0.485
Skywork-32B 0.183/0.188 0.174/0.179 0.298/0.293 0.074/0.053 0.624/0.623 0.442/0.446
Deepseek-V3 0.570/0.572 0.354/0.357 0.427/0.424 0.389/0.389 0.515/0.515 0.356/0.358
Deepseek-R1 0.136/0.142 0.082/0.094 0.160/0.156 0.081/0.081 0.324/0.324 0.299/0.300

AUROC ↑

Qwen2.5-14B 0.670 0.637 0.597 0.489 0.622 0.726
R1-Distill-Qwen-14B 0.847 0.737 0.633 0.766 0.613 0.754
DeepCoder-14B 0.873 0.779 0.627 0.797 0.632 0.738
Qwen2.5-32B 0.695 0.603 0.644 0.556 0.615 0.732
R1-Distill-Qwen-32B 0.813 0.798 0.659 0.777 0.611 0.769
Skywork-32B 0.928 0.790 0.665 0.876 0.615 0.789
Deepseek-V3 0.798 0.719 0.645 0.696 0.695 0.740
Deepseek-R1 0.942 0.793 0.657 0.908 0.705 0.767

AUPRC-P/AUPRC-N ↑

Qwen2.5-14B 0.170/0.941 0.449/0.731 0.423/0.768 0.381/0.60 0.110/0.949 0.629/0.765
R1-Distill-Qwen-14B 0.816/0.856 0.742/0.659 0.536/0.685 0.794/0.654 0.096/0.958 0.615/0.847
DeepCoder-14B 0.895/0.846 0.821/0.672 0.535/0.678 0.815/0.690 0.094/0.965 0.552/0.822
Qwen2.5-32B 0.135/0.959 0.489/0.668 0.442/0.776 0.467/0.632 0.159/0.917 0.628/0.785
R1-Distill-Qwen-32B 0.870/0.753 0.868/0.630 0.641/0.642 0.896/0.476 0.111/0.949 0.676/0.821
Skywork-32B 0.957/0.870 0.870/0.639 0.656/0.625 0.974/0.387 0.100/0.954 0.658/0.858
Deepseek-V3 0.442/0.933 0.648/0.711 0.520/0.734 0.663/0.690 0.363/0.879 0.737/0.724
Deepseek-R1 0.960/0.906 0.896/0.543 0.714/0.538 0.974/0.498 0.499/0.843 0.765/0.748

Table 1: Performance metrics for all models using the vanilla CoT prompting strategy. Accuracy (Acc) reflects
task performance; ECE/ACE, AUROC, and AUPRC-P/N assess calibration and failure prediction. Fewer than 1.5%
of instances did not follow instructions and are excluded from analysis. Colors indicate model types: orange for
instruct, blue for SFT, and red for RL reasoning models.
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also more aligned in its confidence assessments.328

However, we also observe an intriguing side ef-329

fect: AUPRC-N (which quantifies how well the330

model can distinguish incorrect answers) often de-331

clines following SFT. This suggests that while the332

model becomes more accurate and confident, its333

errors become less separable by confidence level,334

possibly because incorrect predictions now occur 335

in harder or more ambiguous cases, where the 336

model remains relatively confident. This highlights 337

a trade-off where SFT enhances overall capability 338

and confidence calibration, but may obscure signals 339

useful for failure prediction. 340

Despite this nuance, the overall benefits are 341

clear. Reasoning-oriented SFT significantly im- 342

proves both task performance and calibration in 343

reasoning-heavy scenarios, and these gains are con- 344

sistent across different model scales. This indicates 345

that SFT on reasoning traces provides a scalable 346

and effective approach for improving not just ac- 347

curacy, but also the reliability of verbalized uncer- 348

tainty in LRMs. 349

Observation 2

Reasoning RL provides additional calibration
and performance benefits beyond SFT, even in
the presence of domain mismatch.

350

Beyond the improvements achieved through 351

reasoning-oriented SFT, RL further enhances both 352

model performance and calibration. When com- 353

paring RL reasoning models such as DeepCoder- 354
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14B and Skywork-32B to their SFT-only counter-355

parts, we observe consistent gains in calibration356

and failure prediction metrics, including lower ECE357

and higher AUROC scores. While accuracy gains358

are somewhat task-dependent, the calibration ad-359

vantage of RL reasoning models is robust across360

all evaluated reasoning benchmarks. Notably, al-361

though DeepSeek-R1 is not a direct RL continua-362

tion of DeepSeek-V3, the contrast between the two363

provides additional evidence that RL-style training364

meaningfully improves the alignment between con-365

fidence and correctness. As shown in Figure 3, we366

witness a clear trend of the gains from instruct to367

SFT and finally RL models.368

These findings suggest that RL serves as a valu-369

able complement to SFT, encouraging models to370

develop not only stronger reasoning capabilities371

but also more trustworthy self-assessment. Further-372

more, the fact that DeepCoder and Skywork were373

fine-tuned with RL on different domains (coding374

and mathematics, respectively) and developed by375

independent organizations, yet still exhibit calibra-376

tion improvements across a wide range of tasks,377

supports the view that RL-enhanced calibration378

generalizes across domains. More broadly, this379

highlights RL as a promising direction for aligning380

LLMs’ verbalized confidence with actual reliabil-381

ity, a key requirement for deploying these systems382

in high-stakes or decision-making applications.383

4.2 A Deep Look into the Factuality384

Benchmark385

Observation 3

Reasoning models usually show significantly
lower “not attempted” responses with non-
significant accuracy improvement.

386

While reasoning-oriented training enhances both387

performance and calibration on complex reason-388

ing tasks, our analysis reveals a potential drawback389

in domains that demand factual precision and less390

reasoning. As shown in the performances of Sim-391

pleQA and FreshQA, small-scale reasoning mod-392

els generally exhibit lower calibration compared393

to instruction-tuned models, though RL reasoning394

models show a slight improvement over SFT coun-395

terparts.396

To further investigate this, we first report the397

number of “not attempted” responses across the398

models we evaluate, as shown in Table 2. Our399

results indicate that LRMs usually exhibit signif-400

icantly lower rates of “I don’t know” responses 401

compared to instruction-tuned models, which were 402

trained with general-purpose RL for alignment 1. 403

However, despite this reduced hesitation, LRMs do 404

not consistently achieve a significantly higher ac- 405

curacy on factuality benchmarks except DeepSeek- 406

R1. Taken together, these results suggest that small- 407

scale LRMs might have a diminished ability to 408

recognize the limits of their own knowledge. 409

Model Size Instruct SFT Reasoning RL Reasoning

14B 1136 102 103
32B 2492 76 63
DeepSeek 480 - 81

Table 2: The total number of “not attempted” responses
in SimpleQA and FreshQA.

In Table 3, we delve deeper into our factual- 410

ity benchmarks by analyzing two types of ques- 411

tions: (1) questions that are answered by both 412

instruction-tuned and reasoning models of the same 413

scale (shared questions), and (2) questions that are 414

not attempted by instruction-tuned models but are 415

answered by same-scale reasoning models. Our 416

results show that, for shared questions, smaller rea- 417

soning models generally do not achieve notable 418

accuracy gains and often exhibit worse calibration, 419

particularly in the case of SFT reasoning models. 420

A similar trend is observed in the second category, 421

where smaller reasoning models attempt additional 422

questions but achieve only marginal accuracy and 423

display relatively high calibration error. 424

In contrast, larger reasoning models such as 425

DeepSeek demonstrate clear performance gains in 426

both categories. Notably, they also show improved 427

calibration on shared questions, indicating that 428

larger-scale models benefit more from reasoning- 429

focused training, both in terms of capability and 430

confidence alignment. These findings suggest that 431

reasoning RL plays an important role in produc- 432

ing more reliable verbalized uncertainty, even in 433

factuality-focused tasks where reasoning is less 434

central. 435

4.3 Do Prompting Strategies Matter? 436

We present the ECE results of the three prompting 437

strategies in Table 4. On reasoning benchmarks, 438

RL reasoning models, regardless of model size, 439

consistently achieve the best calibration across all 440

1Given our evaluated reasoning models start from the base
model, we also test SFT reasoning models which start from
instruct models. Details are attached in Appendix B.
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Question Categories Model Size Metric Instruct SFT Reasoning RL Reasoning

Shared Attempted

14B Acc 12.5% 10.5% 9.98%
ECE 0.598 0.692 0.684

32B Acc 17.4% 17.5% 17.1%
ECE 0.591 0.640 0.600

DeepSeek Acc 27.5% - 34.6%
ECE 0.496 - 0.317

Only LRMs Attempted

14B Acc 0% 2.37% 2.75%
ECE - 0.718 0.690

32B Acc 0% 3.7% 3.23%
ECE - 0.717 0.653

DeepSeek Acc 0% - 11.4%
ECE - - 0.371

Table 3: Factuality evaluation results for two question categories across instruct, SFT reasoning, and RL reasoning
models. Instruct models do not have ECE for not attempted responses.

Metric Model AIME 2024 & 2025 GPQA-Diamond SuperGPQA LiveBench-Reasoning SimpleQA FreshQA

V V.Prob SR V V.Prob SR V V.Prob SR V V.Prob SR V V.Prob SR V V.Prob SR

ECE ↓

Qwen2.5-14B 0.760 0.768 0.422 0.469 0.508 0.479 0.514 0.531 0.474 0.540 0.481 0.443 0.625 0.664 0.515 0.436 0.432 0.287
R1-Distill-Qwen-14B 0.342 0.305 0.223 0.244 0.235 0.244 0.386 0.421 0.420 0.265 0.228 0.199 0.719 0.709 0.738 0.523 0.530 0.477

DeepCoder-14B 0.222 0.260 0.244 0.225 0.220 0.255 0.378 0.400 0.425 0.222 0.225 0.227 0.705 0.696 0.734 0.514 0.521 0.465
Qwen2.5-32B 0.752 0.740 0.289 0.411 0.385 0.382 0.446 0.422 0.382 0.472 0.496 0.473 0.623 0.614 0.506 0.438 0.396 0.389

R1-Distill-Qwen-32B 0.240 0.223 0.193 0.217 0.257 0.189 0.352 0.374 0.370 0.152 0.213 0.100 0.702 0.700 0.725 0.483 0.492 0.439
Skywork-32B 0.183 0.195 0.076 0.174 0.192 0.208 0.298 0.292 0.338 0.074 0.037 0.080 0.624 0.617 0.656 0.442 0.442 0.370
Deepseek-V3 0.570 0.562 0.502 0.354 0.368 0.379 0.427 0.414 0.413 0.389 0.308 0.309 0.515 0.505 0.500 0.356 0.376 0.338
Deepseek-R1 0.136 0.142 0.167 0.082 0.074 0.119 0.160 0.162 0.265 0.081 0.071 0.077 0.324 0.305 0.551 0.301 0.294 0.324

Table 4: ECE (↓) of models across datasets and prompting strategies. Here, V stands for vanilla CoT, V.Prob stands
for vanilla CoT with probability mass, and SR stands for self-reflection.

prompting strategies. This finding highlights the441

stable and robust effect of reasoning RL in improv-442

ing the alignment between model confidence and443

accuracy. In contrast, on factuality benchmarks,444

smaller-scale reasoning models tend to be more445

miscalibrated than instruction-tuned models, a pat-446

tern that persists across different prompting strate-447

gies. Notably, it is only among large-scale reason-448

ing models, such as DeepSeek, that we observe449

consistently improved calibration. This pattern re-450

inforces the idea that both model scale and the451

application of RL training paradigms play a criti-452

cal role in achieving generalizable, well-calibrated453

confidence estimates.454

Interestingly, we observe divergent effects of455

self-reflection (SR) prompting in factuality-focused456

tasks. In SimpleQA, SR often harms calibration,457

increasing model overconfidence. Conversely, in458

FreshQA, SR generally improves calibration, par-459

ticularly for smaller models. This contrast sug-460

gests that the utility of SR prompting may be in-461

fluenced by dataset-specific characteristics, such462

as the prevalence of false premises in FreshQA or463

overall task difficulty. Taken together, these find-464

ings indicate that while prompting strategies like465

SR can modulate calibration in certain contexts, the466

dominant factors shaping verbalized uncertainty 467

remain the model’s training paradigm and scale, 468

especially the inclusion of RL-based objectives. 469

4.4 A Deep Look Into the Length of 470

Reasoning Chains 471

In this section, inspired by the concept of 472

Thoughtology (Marjanović et al., 2025), we an- 473

alyze the relationship between reasoning chain 474

length and model behavior, focusing on accuracy, 475

verbalized confidence, and calibration (measured 476

by ECE). These results are visualized in Figure 4, 477

using our Science QA benchmarks as the testbed. 478

Consistent with the findings of Marjanović et al. 479

(2025), we observe that longer reasoning chains are 480

generally associated with lower accuracy. In our 481

analysis, this decline in accuracy is also accompa- 482

nied by a reduction in verbalized confidence, sug- 483

gesting that models may internally register when 484

they are failing to answer well as they generate 485

extended reasoning traces. This effect is especially 486

pronounced in DeepSeek-R1, where we observed 487

a significant drop in confidence for longer chains. 488

However, the relationship between reasoning 489

chain length and calibration is less straightforward. 490

For reasoning chains shorter than 10,000 tokens, 491
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Figure 4: The relationship between length and confidence, calibration, and accuracy on GPQA-diamond and
SuperGPQA benchmarks.

ECE remains relatively stable, with no clear trend492

of improvement or degradation. When chain length493

exceeds this threshold, we observe a modest in-494

crease in ECE for small-scale models, implying495

that extremely long reasoning chains may introduce496

additional uncertainty or overconfidence that mod-497

els do not appropriately adjust for. In DeepSeek-498

R1, we did not observe excessively long reason-499

ing chains, and ECE remained lower even when500

surpassing 10,000 tokens, likely due to the more501

pronounced drop in model confidence.502

5 Discussion503

Our results show that reasoning-oriented training504

strategies improve performance on complex reason-505

ing tasks. However, their effects on confidence cal-506

ibration, particularly in factuality-focused bench-507

marks, are inconsistent.508

Wei et al. (2024) compared the calibration of509

OpenAI’s o1 model with GPT-4o (OpenAI et al.,510

2024a) on factuality tasks, finding that o1 exhib-511

ited both better calibration and a higher rate of512

“not attempted” responses. These results both align513

with and diverge from our observations. On one514

hand, we find that open-source LRMs attempt a515

substantially higher proportion of questions than516

instruction-tuned models, suggesting a reduced517

ability to recognize the limits of their knowledge, a518

potential weakness in current open-source LRM519

training pipelines. On the other hand, our re-520

sults confirm that RL reasoning models, such as521

DeepSeek-R1, show improved calibration relative522

to their instruction-tuned counterparts, consistent523

with the o1-vs-GPT-4o comparison. However,524

reasoning-based SFT alone often leads to degraded525

calibration on factual benchmarks when compared526

to instruction-tuned baselines. Interestingly, we ob-527

serve a partial recovery in calibration performance528

on factual benchmarks for RL reasoning models, 529

revealing a “U-shaped” trajectory in calibration 530

quality across training paradigms: from instruction 531

tuning, to reasoning SFT, to RL. 532

These findings contribute to ongoing discussions 533

about the distinct roles of SFT and RL in shap- 534

ing model generalization. Chu et al. (2025) de- 535

scribe SFT as a process that “memorizes,” while 536

RL “generalizes.” Our results refine this distinc- 537

tion: reasoning-based SFT improves in-domain 538

calibration for complex reasoning tasks but may 539

undermine calibration in domains requiring factual 540

precision. In contrast, RL appears to support the de- 541

velopment of more reflective and domain-agnostic 542

confidence estimation, helping models slightly re- 543

cover their verbalized uncertainty with correctness, 544

even outside the primary distribution of their train- 545

ing data. These insights underscore the importance 546

of balancing capability improvements with faithful 547

self-assessment, especially as LLMs are deployed 548

in increasingly open-ended and high-stakes envi- 549

ronments. 550

Our results suggest that RL improves the cali- 551

bration of verbalized uncertainty. Unlike sampling- 552

based or post-hoc methods, verbalized confidence 553

provides a natural, interpretable interface for 554

human-AI interaction, allowing users to assess 555

model certainty directly. In this context, calibration 556

becomes essential for trustworthy deployment. We 557

find that RL-trained models show more consistent 558

alignment between expressed confidence and ac- 559

tual correctness, likely due to RL’s ability to foster 560

reflective behavior beyond what SFT offers. As 561

LLMs are increasingly deployed in high-stakes set- 562

tings, reliable verbalized uncertainty is crucial for 563

effective human-model collaboration. 564
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Limitations565

This paper has two main limitations. First, de-566

spite prior work showing that reasoning models can567

handle code reasoning effectively (OpenAI et al.,568

2025), we found that most models struggled to569

output both code snippets and confidence simulta-570

neously. As a result, we excluded code reasoning571

from our evaluation. Second, while we follow the572

same evaluation procedure as Wei et al. (2024) for573

factuality benchmarks, we do not include human574

verification of the outputs.575
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- At the end, present your final answer and a
confidence score in the following XML format:
<answer>final answer here</answer>
<confidence>confidence score here</confidence>

Example output:
[YOUR_REASONING]
<answer>123</answer>
<confidence>80%</confidence>

Now, here is the problem:
{problem}

778

vanilla_mc_prompt_template

Task: Solve the following multiple-choice problem.
Provide your best guess along with a confidence
score (0% to 100%).

Instructions:
- Carefully read and analyze the problem.
- Reason through the solution step by step, if helpful.
- At the end, present your final answer and a
confidence score in the following XML format:
<answer>final answer here</answer>
<confidence>confidence score here</confidence>

Example output:
[YOUR_REASONING]
<answer>A</answer>
<confidence>80%</confidence>

Now, here is the problem:
{problem}

779

vanilla_simpleqa_prompt_template

Task: Solve the following QA problem. Provide
your best guess along with a confidence score (0% to
100%).

Instructions:
- Carefully read and analyze the problem.
- Reason through the solution step by step, if helpful.
- At the end, present your final answer and a
confidence score in the following XML format:
<answer>final answer here</answer>
<confidence>confidence score here</confidence>

Example output:
[YOUR_REASONING]
<answer>123</answer>
<confidence>80%</confidence>

Now, here is the problem:
{problem}

780

livebench_reasoning_prompt_template

Task: Solve the following reasoning problem.
Provide your best guess along with a confidence
score (0% to 100%).

Instructions:
781

- Carefully read and analyze the problem.
- Reason through the solution step by step, if helpful.
- You might see several questions in the problem. You
need to answer all of them and provide your final
anwser separated by commas.
- At the end, present your final answer and a
confidence score in the following XML format:
<answer>final answer here</answer>
<confidence>confidence score here</confidence>

Example output:
[YOUR_REASONING]
<answer>no, yes, no</answer>
<confidence>80%</confidence>

Now, here is the problem:
{problem}

782

vanilla_aime_prob_prompt_template

Task: Solve the following math problem. Provide
your best guess along with a confidence probability
score (0.0 to 1.0).

Instructions:
- Please reason step by step.
- At the end, present your final answer and a
confidence probability score in the following XML
format:
<answer>final answer here</answer>
<confidence>confidence probability score
here</confidence>

Example output:
[YOUR_REASONING]
<answer>123</answer>
<confidence>0.8</confidence>

Now, here is the problem:
{problem}

783

vanilla_mc_prob_prompt_template

Task: Solve the following multiple-choice problem.
Provide your best guess along with a confidence
probability score (0.0 to 1.0).

Instructions:
- Carefully read and analyze the problem.
- Reason through the solution step by step, if helpful.
- At the end, present your final answer and a
confidence probability score in the following XML
format:
<answer>final answer here</answer>
<confidence>confidence probability score
here</confidence>

Example output:
[YOUR_REASONING]
<answer>A</answer>
<confidence>0.8</confidence>

Now, here is the problem:
{problem}

784
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vanilla_simpleqa_prob_prompt_template

Task: Solve the following QA problem. Provide your
best guess along with a confidence probability score
(0.0 to 1.0).

Instructions:
- Carefully read and analyze the problem.
- Reason through the solution step by step, if helpful.
- At the end, present your final answer and a
confidence probability score in the following XML
format:
<answer>final answer here</answer>
<confidence>confidence probability score
here</confidence>

Example output:
[YOUR_REASONING]
<answer>123</answer>
<confidence>0.8</confidence>

Now, here is the problem:
{problem}

785

livebench_reasoning_prob_prompt_template

Task: Solve the following reasoning problem.
Provide your best guess along with a confidence
probability score (0.0 to 1.0).

Instructions:
- Carefully read and analyze the problem.
- Reason through the solution step by step, if helpful.
- You might see several questions in the problem. You
need to answer all of them and provide your final
anwser separated by commas.
- At the end, present your final answer and a
confidence probability score in the following XML
format:
<answer>final answer here</answer>
<confidence>confidence probability score
here</confidence>

Example output:
[YOUR_REASONING]
<answer>no, yes, no</answer>
<confidence>0.8</confidence>

Now, here is the problem:
{problem}

786

self_reflection_aime_prompt_template

Task: Solve the following math problem.

Instructions:
- Please reason step by step.
- At the end, present your final answer in the following
XML format:
<answer>final answer here</answer>

Example output:
[YOUR_REASONING]
<answer>123</answer>

787

Now, here is the problem:
{problem}

788

self_reflection_mc_prompt_template

Task: Solve the following multiple-choice problem.

Instructions:
- Carefully read and analyze the problem.
- Reason through the solution step by step, if helpful.
- At the end, present your final answer in the following
XML format:
<answer>your final answer here</answer>

Example output:
[YOUR_REASONING]
<answer>A</answer>

Now, here is the problem:
{problem}

789

self_reflection_simpleqa_prompt_template

Task: Solve the following QA problem.

Instructions:
- Carefully read and analyze the problem.
- Reason through the solution step by step, if helpful.
- At the end, present your final answer in the following
XML format:
<answer>final answer here</answer>

Example output:
[YOUR_REASONING]
<answer>123</answer>

Now, here is the problem:
{problem}

790

self_reflection_livebench_reasoning_prompt_template

Task: Solve the following reasoning problem.

Instructions:
- Carefully read and analyze the problem.
- Reason through the solution step by step, if helpful.
- At the end, present your final answer in the following
XML format:
<answer>final answer here</answer>

Example output:
[YOUR_REASONING]
<answer>no, yes, no</answer>

Now, here is the problem:
{problem}

791

reflection_prompt_template

Task: Reflect on the following problem and solution,
and provide a final confidence score to the solution.

792
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Instructions:
- Carefully read and analyze the problem and solution.
- Reason through the solution step by step, if helpful.
- At the end, present your final answer in the following
XML format:
<confidence>confidence score here</confidence>

Example output:
[YOUR_REASONING]
<confidence>80%</confidence>

Now, here is the problem and solution:
Problem:
{problem}

Solution:
{solution}

793

B More Analyses of Factuality794

Benchmarks795

As noted in the main text, our evaluated SFT rea-796

soning models are fine-tuned from base models797

without general-purpose RL. To further examine798

the impact of initialization, we also evaluated two799

additional SFT reasoning models, OpenThinker2-800

32B (Team, 2025) and R1-Distill-Llama-70B801

(DeepSeek-AI et al., 2025a), both of which are fine-802

tuned from instruction-tuned checkpoints rather803

than base models. Their results are presented in804

Table 5. These findings indicate that the original805

trend persists: SFT reasoning models fine-tuned806

from instruction-tuned checkpoints continue to ex-807

hibit significantly lower “not attempted” rates as808

those initialized from base models.809

Model Size Instruct SFT Reasoning

32B 2492 43
70B 1107 78

Table 5: The total number of “not attempted” responses
in SimpleQA and FreshQA. These SFT reasoning mod-
els are trained from instruction-tuned checkpoints.

C GenAI Statement810

The authors used Cursor for coding support and811

ChatGPT for writing revisions as needed.812
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