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ABSTRACT

We introduce DRUGFLOW, a generative model for structure-based drug design
that integrates continuous flow matching with discrete Markov bridges, demon-
strating state-of-the-art performance in learning chemical, geometric, and physical
aspects of three-dimensional protein-ligand data. We endow DRUGFLOW with an
uncertainty estimate that is able to detect out-of-distribution samples. To further
enhance the sampling process towards distribution regions with desirable metric
values, we propose a joint preference alignment scheme applicable to both flow
matching and Markov bridge frameworks. Furthermore, we extend our model to
also explore the conformational landscape of the protein by jointly sampling side
chain angles and molecules.

1 INTRODUCTION

Small molecules are the predominant class of FDA-approved drugs with a share of 85%, and more
than 95% of known drugs target human or pathogen proteins (Santos et al., 2017). At the same time,
the cost and duration of the development of new drugs are skyrocketing (Simoens & Huys, 2021).
This sparks increasing interest in the computational design of small molecular compounds that bind
specifically to disease-associated proteins and thus reduce the amount of costly experimental testing.

In recent years, the machine learning community has contributed a plethora of generative tools ad-
dressing drug design from various angles (Du et al., 2024). Some methods directly optimize specific
drug properties, using techniques such as reinforcement learning (Popova et al., 2018; Gottipati
et al., 2020) or search-based approaches (Gómez-Bombarelli et al., 2018; Swanson et al., 2024).
However, these methods typically require careful tuning of the objective function to avoid exploiting
imperfect computational oracles and overly maximizing one desired property (e.g. binding affinity)
at the expense of another (e.g. oral bioavailability). Additionally, one often aims to design a suitable
3D binding pose along with the chemical structure of the molecule, which substantially increases the
degrees of freedom. Many optimization algorithms struggle to efficiently navigate such vast design
spaces.

Following a different approach, probabilistic generative models learn to generate drug-like
molecules directly from data (Hoogeboom et al., 2022; Vignac et al., 2022). Here, the design objec-
tives are implicitly encoded in the training data set. While these methods may not outperform direct
optimization on isolated metrics, they are well suited for the multifaceted nature of drug design as
they learn “what a drug looks like” in a more general way. Once trained on sufficient high-quality
data, these models can capture a more holistic picture of the molecular space compared to models
optimized for a limited set of target metrics.

The strength of generative modeling lies in its ability to reproduce patterns seen in the training data.
However, many prior works on generative molecular design have focused on absolute metric values
in baseline comparisons (e.g. identifying the best docking scores or synthetic accessibility esti-
mates), even though the proposed models did not directly optimize these quantities. For example,
Table 6 from the recent survey on generative structure-based drug design methods by Zhang et al.
(2023b) highlights a common evaluation strategy used in this context. We argue that the evaluation
of generative models for drug design should instead be centered around their ability to represent
the training distribution accurately – analogous to how image generation methods are typically as-
sessed (Heusel et al., 2017). Without additional fine-tuning or sampling strategies, it is unreasonable
to expect a model to substantially improve any score compared to the training set.
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Figure 1: Method overview. DRUGFLOW operates on continuous ligand atom coordinates xt, dis-
crete atom types ht, and bond types et. Its extension FLEXFLOW additionally operates on continu-
ous side chain angles χt. As shown on the left, coordinates and angles are sampled from a Gaussian
prior in 3D and a uniform prior on the torus, respectively. Discrete types are sampled from categor-
ical prior distributions (uniform or marginal). Denoising schemes for continuous and discrete data
types are based on conditional flow matching (top) and Markov bridge models (bottom). As shown
in the middle, at time step t, we process the noisy data to obtain the 3D graph: side chain angles are
transformed into vector features pointing to atom positions using NERF, and three types of edges are
introduced using different distance cutoffs—edges between ligand atoms eL▷L

t , edges between ligand
and protein Cα atoms eP▷L

t , and edges between protein Cα atoms eP▷P
t . The graph is processed by a

neural network θ which outputs velocities vθ(xt, t), vθ(χt, t) and type predictions ĥt, êt which are
fed into the generative modeling framework. The model can adapt the size of the molecule during
sampling and label excessive atoms that will be eventually removed (shown as crosses on the right).
Additionally, DRUGFLOW outputs per-atom uncertainty values σ̂tot.

In this work, we present DRUGFLOW, a new generative model for structure-based drug design,
that simultaneously learns the distribution of protein-binding molecules in three data domains.
DRUGFLOW generates discrete atom and bond types as well as atom coordinates in the Euclidean
space. Its extended version, FLEXFLOW, additionally samples side chain configurations of the bind-
ing pocket represented as angles on a hypertorus. This allows us to sample probabilistic ensembles
of possible binding modes and enables drug design for targets in unbound conformations. Both
DRUGFLOW and FLEXFLOW are conditioned on fixed protein backbone coordinates and amino
acid types, which are used as context for denoising. We further introduce a virtual node type to
allow the model to dynamically add or remove atoms and thus learn about the distribution of ligand
sizes rather than requiring it to be pre-specified. Finally, we add an uncertainty head to our model
that is trained in an end-to-end fashion to identify out-of-distribution samples and rank molecules at
inference time.

Based on our observations, we focus our evaluation primarily on the distribution learning capa-
bilities of the proposed generative model, comparing it to established baselines. To this end, we
assess molecular properties and structural features using distance functions between distributions de-
rived from generated samples and training data points, and demonstrate that DRUGFLOW molecules
closely match the data distribution across a broad range of metrics. This suggests that DRUGFLOW
can be retrained on curated datasets to steer the generation of samples towards desired regions of
the chemical space for various practical applications. However, recognizing that excessive filtering
may lead to insufficient training data, we present an alignment strategy which allows us to update a
pre-trained model based on user preferences.

We summarize the main contributions of this work as follows.

Conceptual novelty We present DRUGFLOW and FLEXFLOW, new generative models for
structure-based drug design, and introduce three conceptually new features: (1) and end-to-end
trained uncertainty estimate that successfully detects out-of-distribution samples, (2) an adaptive
size selection method that discards excessive atoms during sampling, and (3) a protein conformation
sampling module that samples realistic side chain rotamers.

Performance We propose to evaluate generative models in a way that better captures their training
objective, and use the new benchmarking framework to show that DRUGFLOW is a state-of-the-art
distribution learner for structure-based drug design.
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Practical relevance Recognizing that medicinal chemists ultimately aim to optimize molecules for
specific design objectives, we implement a preference alignment scheme that allows us to efficiently
sample molecules with improved target properties.

2 METHODS

Our base model is a probabilistic model operating simultaneously on atom types, bond types and
coordinates, thereby combining generative processes for discrete and continuous data types. We
use Euclidean flow matching (Lipman et al., 2022) for ligand coordinates and combine it with
Markov bridge models (Igashov et al., 2023) applied to atom and bond types to generate the dis-
crete molecular graphs. More background on these generative modeling frameworks is presented in
Appendix A.1.

The backbone model is a heterogeneous graph neural network that has independent trainable weights
for ligand and protein node types, as well as ligand, protein, and interaction edge types. Each protein
node represents a whole residue but we include vector-valued input features to encode the locations
of all atoms belonging to the residue. This allows us to reduce computational complexity while
preserving full atomic detail. The neural network predicts several node-level and edge-level outputs
required for sampling, including logits for atom and bond types and vectors for the coordinates. All
trainable operations applied to geometric quantities are implemented as geometric vector percep-
trons (GVPs) (Jing et al., 2020) to ensure that predicted vector fields transform equivariantly. Full
architectural details are provided in Appendix A.5.

Below, we describe our conceptual novelties one by one, starting with uncertainty estimation in
Section 2.1, followed by ligand size adaptation in Section 2.2 and protein flexibility in Section 2.3.
Finally, we present a fine-tuning approach to align the general distribution learner with user specified
preferences in Section 2.4. Our method is schematically depicted in Figure 1.

2.1 UNCERTAINTY ESTIMATION

To identify out-of-distribution (OOD) samples and endow DRUGFLOW with an intrinsic uncertainty
estimate, we rely on a technique that has been successfully used for regression problems in the
past (Nix & Weigend, 1994; Lakshminarayanan et al., 2017). We assume that the flow matching
regression error is normally distributed with standard deviation σθ, and derive a loss function that
maximises the likelihood of the true vector field under this uncertainty model. The derivation is
provided in Appendix A.2. In this framework, the regular regression loss is recovered for σ2

θ = 1.
To avoid deviating too much from the base model, we impose a Gaussian prior with mean 1 and
tunable variance 1/λ, and perform maximum a posteriori (MAP) estimation to get the final loss
function for simultaneous out-of-distribution estimation:

LFM-OOD = Et,q(x1),p(x0)
d

2
log σ2

θ(xt, t)+
1

2σ2
θ(xt, t)

∥vθ(xt, t)− ẋt∥2+
λ

2
|σ2

θ(xt, t)−1|2, (1)

where vθ(xt, t) ∈ Rd and σθ(xt, t) ∈ R are two output heads of the neural network and ẋt is the
ground-truth conditional vector field.

A model trained in this way provides us with a per-atom uncertainty score in addition to the vec-
tor field for flow matching at every sampling step. We integrate the step-wise score to obtain an
uncertainty value for the entire sampling trajectory (motivated in Appendix A.3) as

σ̂tot =

√∫ 1

0

σ2
θ(xt, t)dt, (2)

and assign this value to the resulting generated atom.

2.2 END-TO-END SIZE ESTIMATION

It is common practice to choose molecule sizes for diffusion and flow matching models in structure-
based drug design a priori. The number of generated atoms is often either a user-specified hyper-
parameter, sampled from the empirical distribution of sizes in the training set (Hoogeboom et al.,

3
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2022; Schneuing et al., 2022; Guan et al., 2023a), or estimated by a separate neural network (Igashov
et al., 2022). This approach, however, prevents the generative neural network from adapting to the
context as the current sample evolves. For instance, if initially too many atoms are specified it might
be impossible for the model to create a molecule without steric clashes with the surrounding protein
atoms.

In order to also learn this aspect of the data distribution in an end-to-end manner, we aim to adapt
the molecule size during the generative process, which effectively changes the dimension of the
modeled system (Campbell et al., 2024). To do so, we introduce a virtual (“no atom”) node type
the model can sample. All nodes of this type are treated as completely disconnected (i.e. all bonds
of virtual nodes have “None” type) and will be removed at the end of sampling. During training,
we add nvirt ∼ U(0, Nmax) virtual nodes to each training sample. In order to treat virtual nodes and
atoms in the same way, we need to attach coordinates to them as well. While different design choices
are possible, we find that placing them in the center of mass of the ligand works well in practice as
it provides a clear reference point for the network to regress toward. Note that this approach still
requires pre-specifying the number of nodes in the computational graph which serves as an upper
bound for the number of atoms in the generated molecule.

2.3 PROTEIN FLEXIBILITY

Incorporating the dynamics and flexibility of protein structures is one of the key open challenges
for structure-based drug design (Fraser & Murcko, 2024). As a first step to addressing scenarios
in which the bound structure of the target protein is unknown or assuming a single static pocket
configuration is too restrictive, we extend our base model to also generate side chain torsion angles
for all pocket residues while sampling new ligands, thereby permitting full side chain flexibility.

To this end, we apply flow matching on the hypertorus that describes all torsion angles. Following
the Riemannian Flow Matching framework of Chen & Lipman (2023), we approximate vector fields
in the tangent space. More details and definitions for flow matching on Riemannian manifolds is
provided in Appendix A.1. Similar to related works on flow matching for angular domains (Yim
et al., 2023a; Lee & Kim, 2024) we find a non-linear scheduler κ(t), which controls how quickly the
geodesic distance between start and end point of a trajectories decreases, to be beneficial to sample
quality. However, unlike these works we adopt a polynomial scheduler κ(t) = (1− t)k with k = 3.
This has a similar effect on the sampling trajectories as the exponential scheduler κ(t) = e−ct if
c = 5 but strictly fulfills the theoretical requirement on the boundary conditions: κ(0) = 1 and
κ(1) = 0. Using the exponential and logarithm maps associated with the manifold, we derive the
following updated flow and vector fields:

xt = expx0

(
(1− (1− t)k) logx0

(x1)
)
, (3)

ẋt = k(1− t)k−1 logx0
(x1). (4)

We use this scheduler both for training and sampling.

While the generative process is performed entirely in angular space to enforce physical plausibility,
we present the full-atomic information more explicitly to the neural network and convert the side
chain dihedral angles back to atom positions in every training and sampling step. This operation
is performed efficiently using the Natural Extension Reference Frame (NERF) algorithm (Parsons
et al., 2005; Alcaide et al., 2022) in parallel for each residue.

2.4 MULTI-DOMAIN PREFERENCE ALIGNMENT

Many real-world applications require generating molecules with properties underrepresented in the
initial training data. To address this need, we employ an alignment scheme inspired by Direct Pref-
erence Optimization (DPO), a technique originally used to align large language models (Rafailov
et al., 2023) and later adapted to diffusion models (Wallace et al., 2024).

Using a pre-trained reference model θ, we generate a synthetic dataset of preference pairs D =
{(xwi , xli)}i, where the winning samples xwi have more desirable molecular properties compared to
the losing samples xli (see Section 3.5 for details on our preference datasets). To align our method
with these preferences, we introduce another (aligned) model φ, initialised with the weights of the
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Table 1: Wasserstein distance between marginal distributions of continuous molecular data (bond
distances and angles), drug-likeness (QED), synthetic accessibility (SA), lipophilicity (logP) and
numbers of rotatable bonds (RB). The last column reports the Jensen-Shannon divergence between
the joint distributions of four molecular properties (QED, SA, logP and Vina efficiency score). The
best result is highlighted in bold, the second best is underlined.

Top-3 bond distances Top-3 bond angles Molecular properties

Method C–C C–N C=C C–C=C C–C–C C–C–O QED SA logP RB JSDall

POCKET2MOL 0.050 0.024 0.045 2.173 2.936 3.938 0.072 0.576 1.209 2.861 0.223
DIFFSBDD 0.041 0.039 0.042 3.632 8.166 7.756 0.065 1.570 0.774 0.928 0.274
TARGETDIFF 0.017 0.019 0.028 4.281 3.422 4.125 0.050 1.518 0.489 0.354 0.242
DRUGFLOW 0.017 0.016 0.016 0.952 2.269 1.941 0.014 0.317 0.665 0.144 0.099

Table 2: Wasserstein distance between distributions of binding efficiency scores and normalized
numbers of different protein-ligand interactions. The best result is highlighted in bold, the second
best is underlined.

Binding efficiency Protein-ligand interactions

Method Vina Gnina H-bond H-bond (acc.) H-bond (don.) π-stacking Hydrophobic

POCKET2MOL 0.064 0.044 0.040 0.026 0.014 0.007 0.027
DIFFSBDD 0.086 0.043 0.047 0.030 0.017 0.011 0.044
TARGETDIFF 0.034 0.030 0.031 0.021 0.010 0.012 0.039
DRUGFLOW 0.028 0.013 0.019 0.012 0.007 0.006 0.036

reference model θ. From now on, the reference model θ is no longer optimised, and further training
is only performed on the new model φ.

For each data domain c ∈ {coord, atom, bond}, we compute the loss terms Lw
c (φ) := Lc(x

w, φ)
and Ll

c(φ) := Lc(x
l, φ) for winning and losing samples, respectively. More specifically, these are

the flow matching loss for coordinates (Eq. 12) and the Markov bridge model loss for atom and
bond types (Eq. 24). Additionally, we calculate the corresponding loss terms Lw

c (θ) and Ll
c(θ)

using the reference model θ with fixed parameters. Using individually weighted loss differences
∆w

c = Lw
c (φ)−Lw

c (θ) and ∆l
c = Ll

c(φ)−Ll
c(θ), we define the multi-domain preference alignment

(MDPA) loss as follows,

LMDPA(φ) =− log σ

(
− βt

∑
c

λc
(
∆w

c −∆l
c

))
+ λwLw(φ) + λlLl(φ), (5)

where λc, λw, λl are adjustable weights, and σ is the sigmoid function. Note that we regularize
training by adding the overall loss terms Lw(φ) and Ll(φ) (Eq. 25) for the winning and losing
samples, respectively. We find that such a regularization significantly enhances training stability.
More details are provided in Appendix A.4.

3 EXPERIMENTS

3.1 MULTI-DOMAIN DISTRIBUTION LEARNING

In this work, we focus on the generative capabilities of our model, namely on its ability to learn the
training data distribution. While a common trend in the community is to report absolute values of
various molecular properties and docking scores, we stress that such an evaluation is relevant only
for methods whose primary goal is property optimisation, such as preference alignment (Cheng
et al., 2024) or optimisation in the latent space (Gómez-Bombarelli et al., 2018). Unless stated
specifically, DRUGFLOW does not optimise for any specific property and aims to learn the data
distribution only. Therefore, instead of absolute values of molecular properties we measure the
proximity of distributions of these properties computed on the generated samples and the training
data. As we show in Section 3.5, absolute values of the target metrics can be increased by fine-tuning
on relevant data or using the preference alignment scheme.

5
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Metrics We compute Jensen-Shannon divergences for the categorical distributions of atom types,
bond types and ring systems (Walters, 2022; 2021). We use the Wasserstein-1 distance for the bond
length distributions of the three most common bond types (C–C, C–N and C=C), the three most
common bond angles (C–C=C, C–C–C and C–C–O) as well as the number of rotatable bonds per
molecule. We also apply the Wasserstein distance to computational scores relevant to applications
in medicinal chemistry: Quantitative Estimate of Drug-likeness (QED) (Bickerton et al., 2012),
Synthetic Accessibility (SA) (Ertl & Schuffenhauer, 2009) and lipophilicity (logP) (Wildman &
Crippen, 1999). Binding efficiency, defined as a computational binding affinity score divided by
the number of atoms in the molecule, is assessed in the same manner. We report efficiency scores
instead of affinity scores due to the high correlation of the latter with molecule size (Cremer et al.,
2024). We use both Vina and Gnina docking scores (McNutt et al., 2021) as binding affinity oracles.
Besides, we compare normalized counts of various types of non-covalent interactions as detected by
ProLIF (Bouysset & Fiorucci, 2021). To do this, we divide the number of interactions by the number
of atoms in each molecule and compute Wasserstein distances to compare the resulting distributions.
Finally, we also employ the Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) to assess how
well the model approximates the training data distribution.
Dataset & Baselines We use the CrossDocked dataset (Francoeur et al., 2020) with 100 000
protein-ligand pairs for training and 100 proteins for testing, following previous works (Luo et al.,
2021; Peng et al., 2022). The data split was done by 30% sequence identity using MMseqs2
(Steinegger & Söding, 2017). Ligands that do not pass all PoseBusters Buttenschoen et al. (2024) fil-
ters were removed from the training set. We compare DRUGFLOW with an autoregressive method,
POCKET2MOL (Peng et al., 2022), and two diffusion-based methods, TARGETDIFF (Guan et al.,
2023a) and DIFFSBDD (Schneuing et al., 2022). We generated 100 samples for each test set target
with DRUGFLOW and selected only molecules that passed the RDKit validity filter.

Table 3: Fréchet ChemNet Distance and Jensen-
Shannon divergence between distributions of dis-
crete molecular data. The best result is high-
lighted in bold, the second best is underlined.

Method FCD Atoms Bonds Rings

POCKET2MOL 12.703 0.081 0.044 0.446
DIFFSBDD 11.637 0.050 0.227 0.588
TARGETDIFF 13.766 0.076 0.240 0.632
DRUGFLOW 4.278 0.043 0.060 0.391

Results The distances between sampling dis-
tributions measured on the various discrete and
continuous characteristics of molecules and in-
teractions are summarized in Tables 1, 2 and
3. DRUGFLOW shows convincing all-round
performance and outperforms other methods in
almost all aspects. POCKET2MOL achieves
slightly better results on bond types and hy-
drophobic interactions. TARGETDIFF gets the
best results on the lipophilicity metric. How-
ever, in these few cases DRUGFLOW consis-
tently ranks a close second. Along with the
marginal distributions of various geometric and
chemo-physical characteristics, we compare joint distributions of the molecular properties. To do
this, we created histograms of the joint distributions of QED, SA, logP and Vina efficiency scores (10
bins per score, Figure 20) and compute the Jensen-Shannon divergence between them. DRUGFLOW
outperforms other methods by a large margin, as demonstrated by JSDall in Table 1. Addition-
ally, our method substantially outperforms other baselines in FCD. To further analyse this result,
we applied Principal Component Analysis (PCA) to reduce the dimensionality of the ChemNet em-
beddings and visualized the first two principal components on a 2D plane. As shown in Appendix
Figure 7, DRUGFLOW covers considerably more modes of the training distribution compared to the
other methods. Distributions of other metrics are provided in Appendix B.1. Additionally, we com-
pute novelty, uniqueness, and overall quality of the samples using PoseBusters (Buttenschoen et al.,
2024). As shown in Appendix Table 6, DRUGFLOW demonstrates competitive results in all these
metrics as well. Appendix Tables 7, 8, and 9 provide additional results for different variations of
DRUGFLOW and FLEXFLOW. The statistical significance is ensured in Appendix B.9.

3.2 OUT-OF-DISTRIBUTION DETECTION

The uncertainty estimation technique described in Section 2.1 provides per-atom uncertainty scores,
as shown in Figure 2A. Here, we showcase six molecules of the same size with the highest and
lowest global (i.e. averaged over atoms) uncertainty scores.

To demonstrate the ability of our uncertainty score to detect out-of-distribution samples, we plotted
histograms of several basic geometric properties of the generated molecules. The histogram bins

6
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Figure 2: Uncertainty estimate detects out-of-distribution samples and correlates with various
molecule characteristics. (A) Examples of samples with the same size (30 heavy atoms) and high
and low global uncertainties. Each atom is highlighted according to its local uncertainty score.
(B) Distributions of top-3 bond angles and bond lengths in DRUGFLOW samples (histograms) and
training data (dashed lines). The histogram bins are color-coded according to the average uncertainty
values of the corresponding data points. In all cases, samples from the distribution tails have high
uncertainty. Main modes of the distributions have lower uncertainty on average. The color bar is
scaled for a better visibility. (C) Correlation of the global uncertainty score with Gnina efficiency
score and size of the molecules. (D) Atoms clashing with the protein have higher uncertainty scores
than non-clashing atoms.

are color-coded according to the average uncertainty values of the corresponding data points. As
shown in Figure 2B, the model tends to assign high uncertainty to data points in the tails of the
distributions, while sampling from the central regions (modes) with high confidence. The slight
limitation is that most of the values fall within the range of 0.85 to 0.92. However this does not
affect the discriminative ability of the score.

Furthermore, our analysis reveals strong correlations between global uncertainty and both molecule
size and docking efficiency, as shown in Figure 2C. While the correlation with molecule size is
expected, the correlation with size-agnostic ligand efficiency scores is particularly interesting and
has practical implications. We hypothesize that this correlation may be a byproduct of an efficient
distribution learning process, wherein, among other data aspects, the model learns to avoid steric
clashes between protein and ligand atoms. Indeed, as shown in Figure 2D, atoms sampled without
clashes tend to have lower uncertainty values compared to clashing atoms.

3.3 DISTRIBUTION OF MOLECULES SIZES

As explained in Section 2.2, at every training step we add to the molecule a random number of
virtual nodes sampled from U(0, Nmax). It means that on average the model was trained to label as
virtual (i.e. to remove) Nmax/2 atoms per molecule. In our experiments, we set Nmax = 10, and
therefore expect the model to remove on average 5 atoms during sampling. To test this hypothesis,
we sampled molecules with ground-truth sizes and 5 atoms added on top. As shown in Figure 3C, the
model indeed tends to remove about 5 atoms. The deviation from the uniform training distribution
(shown in red) is evidence of the model’s ability to learn the conditional distribution of molecule
sizes given pockets. CrossDocked pockets are defined based on a distance cutoff, which introduces
a dependency between ligand and pocket sizes.

Next, we studied the ability of the model to minimise steric clashes with the pocket when a large
number of (computational) nodes is provided. To maximise the number of geometric constraints, we
selected a protein with a deeply buried pocket (PDB: 1L3L) and a tightly bound ligand (17 atoms),
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Figure 3: DRUGFLOW learns the conditional size distribution of molecules given protein pock-
ets. (A) Our model effectively removes redundant atoms to avoid clashes. (B) Trained with maxi-
mum Nmax = 10 virtual nodes, the model struggles to remove much more atoms. (C) Even though
the training distribution of number of added virtual nodes is U(0, Nmax), the distribution of the re-
moved nodes during sampling suggests that the model learned the dependency between ligand and
pocket sizes.

as shown in Appendix Figure 15. For different input sizes (between 17 and 67 atoms), we sampled
1000 molecules per each size value and measured the percentage of clashing atoms and numbers
of atoms removed by the model. We repeated the same experiment with a similar model trained
without virtual nodes. As shown in Figure 3A, the model produces minimum clashes as long as the
number of excessive atoms does not exceed 10, the “bandwidth” the model was trained with. Higher
numbers are out of the training distribution, and therefore the model fails to remove more, as shown
in Figure 3B. We believe that scaling up the maximum number of virtual nodes during training will
enable the model to operate in a fully adaptive size selection regime.

3.4 LEARNING THE DISTRIBUTION OF SIDE CHAIN ROTAMERS

Here we evaluate how well FLEXFLOW, the version of our model that simultaneously generates side
chain conformations, recovers the distribution of bound side chain rotamers. Because all proteins in
our test set are provided in ligand-bound form, we repacked their side chains in absence of the small
molecule to approximate their unbound structures. We relaxed side chains with the Rosetta repack
protocol (Conway et al., 2014) and achieved an RMSD of about 1.98Å for side chain heavy atoms
(Figure 4A, middle).

Recovering bound configurations As a first test, we sampled 20 sets of side chain torsion angles
per test set target with FLEXFLOW while keeping the ligand fixed. We achieve this by using the
ground truth vector field and transition probabilities instead of the predicted quantities for all ligand-
related variables. Figure 4A shows that the model samples pocket structures close to the original
bound conformations (with median side chain of RMSD 1.75Å). This decrease in RMSD compared
to the unbound pocket is expected because fixing the ligand binding pose constrains the space of
feasible solutions. For comparison, we also include the distribution of RMSD values that results
from simply taking random angles from the prior distribution (Figure 4, left).

Distribution of side chain angles Next, we freely generate molecules and bound configurations
of the protein-ligand complex and assess whether the resulting side chain rotamers are in accor-
dance with the bound structures from the training set. Starting from a completely random prior,
FLEXFLOW manages to recover the rotameric modes of the reference structures accurately. Fig-
ure 4B shows the distributions of the first two side chain torsion angles of three bulky amino acids.
Analogous plots for all 14 amino acids with at least two side chain angles are presented in Appendix
Figure 16.

3.5 PROPERTY OPTIMIZATION WITH PREFERENCE ALIGNMENT

We conduct preference alignment with respect to four molecular properties: QED, SA, Vina effi-
ciency score, and Rapid Elimination of Swill (REOS) filters (Walters et al., 1998). REOS filters in-
clude various structural alerts designed to detect problematic compounds in screening libraries (Baell
& Holloway, 2010; Hann et al., 1999; Pearce et al., 2006). For REOS, molecules are classified as
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A B
Training setSamples

Figure 4: FLEXFLOW samples realistic side chain conformations. (A) Side chain root-mean-
square deviation (RMSD) for random samples from the model’s prior (left), relaxed pockets in
absence of the ligand (middle), and FLEXFLOW-generated side chain conformers for a fixed ligand
structure (right). (B) Distributions of χ1 and χ2 angles for Arginine, Lysine and Tryptophan. We
compare FLEXFLOW samples to the bound pocket conformations from the training set.

either passing all REOS filters (winning) or failing at least one (losing). For continuous metrics,
we set thresholds requiring the winning sample to outperform the losing one by at least 0.5 for
SA, and 0.1 for both QED and Vina efficiency. In each pair, both molecules are generated for the
same pocket. In addition, we curate a dataset where winning samples surpass losing samples across
all four properties. To perform preference alignment, we initialize the model with the reference
DRUGFLOW model parameters and train until convergence of the loss LMDPA (Eq. 5). We then
select a checkpoint using the validity metric on the validation set. To compare our preference align-
ment method against a simpler optimization strategy, we fine-tune the same reference model on the
winning samples only.

Figure 5 shows the performance gains of the aligned and fine-tuned models compared to the training
data and the reference model. Additionally, we visualize distribution shifts of the target metrics in
Appendix Figure 17 and show their statistical significance in Figure 18. Our results indicate that
the preference-aligned models consistently exceed their fine-tuned counterparts across all metrics.
However, these improvements are achieved at the cost of moderately reduced molecular validity
(Appendix Table 12). Notably, the model optimised for all four properties at once demonstrates
competitive results across all target metrics.

4 RELATED WORK

Generative models for molecule generation This paper builds on a large body of work on proba-
bilistic models for molecule generation. Some of these models generate molecules unconditionally
without knowledge of the target protein. They either create molecular graphs (Jo et al., 2022; Vignac
et al., 2022), 3D atomic point clouds (Gebauer et al., 2019; Garcia Satorras et al., 2021; Hoogeboom
et al., 2022) or both Vignac et al. (2023). More closely related to the work presented here, another
family of models attempts to generate novel chemical matter conditioned on three-dimensional con-
text, typically a structural model of a target protein. Among these, most of the models sample atom
positions and types without providing explicit information about covalent bonds (Liu et al., 2022;
Ragoza et al., 2022; Schneuing et al., 2022; Igashov et al., 2022; Guan et al., 2023a; Lin et al., 2022;
Xu et al., 2023). Others generate the full molecular graph structure and binding pose jointly (Peng
et al., 2022; Guan et al., 2023b; Zhang et al., 2023a). Notably, most recent 3D models belong to
the family of diffusion probabilistic models (Schneuing et al., 2022; Guan et al., 2023a; Lin et al.,
2022; Xu et al., 2023; Guan et al., 2023b; Weiss et al., 2023) or follow the related flow matching
paradigm (Song et al., 2024; Dunn & Koes, 2024; Irwin et al., 2024). So far, it is uncommon for
these models to handle varying dimensionality (i.e. molecule sizes) (Campbell et al., 2024) or incor-
porate protein flexibility although torsional flow matching has already been applied to protein side
chain packing (Lee & Kim, 2024) and peptide design (Lin et al., 2024).

Confidence prediction Neural confidence estimates are crucial components of many popular meth-
ods for biomolecular applications (Jumper et al., 2021; Corso et al., 2022; Abramson et al., 2024).
Typically, such estimates are obtained by training a separate neural network or auxiliary output head
to approximate the prediction error of the main model either during training (Jumper et al., 2021;
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Figure 5: Preference alignment improves target properties. Comparison of models across four
molecular properties: REOS, QED, SA, and Vina efficiency. Bars represent the training set (gray),
reference model (green), fine-tuned model (blue), preference-aligned model with combined pref-
erences (dashed), and preference-aligned model for the metric specified above each plot (red).
Preference-aligned models consistently outperform fine-tuning, with the best results in the metric-
specific models. Results are based on 100 sampled molecules per target.

Abramson et al., 2024) or for samples from a trained model (Corso et al., 2022). Unlike our ap-
proach, this requires minimizing a separate secondary loss function. Furthermore, to enable this
form of confidence estimation based on final outputs during training, diffusion (or flow matching)
models like AlphaFold 3 (Abramson et al., 2024) must perform expensive rollout schemes to regress
their output errors directly. Here, we circumvent this by deriving a global uncertainty score from
local, step-wise predictions.

Preference alignment Generating molecules with desired properties is a critical step in applying
generative models to biomolecules. Existing methods, such as reinforcement learning (RL)-based
approaches (Zhou et al., 2019) or GANs (Maziarka et al., 2020), often involve a two-step process:
first, to generate molecules, then optimize them. In contrast, preference alignment techniques allow
generative models to directly produce outputs aligned with human or domain-specific preferences in
a single step. DPO offers a key advantage over RL by eliminating the need to learn a reward function,
making it a less exploitable way to optimize preferences (Rafailov et al., 2023). DPO has been
applied to fine-tune chemical language models (Park et al., 2023) and its adaptation for diffusion
models (Wallace et al., 2024) has already found applications in antibody design (Zhou et al., 2024)
and structure-based drug design (Cheng et al., 2024; Gu et al., 2024). In DecompDPO (Cheng et al.,
2024), molecules are decomposed into fragments, allowing preference optimization at both local
and global levels, which helps resolve conflicting preferences between molecular substructures. In
AliDiff (Gu et al., 2024), the DPO objective is decomposed across atom types and coordinates and
rescaled according to reward differences in preference pairs. Our approach extends this by applying
a preference alignment scheme simultaneously in different generative frameworks (continuous flow
matching and discrete Markov bridge models).

5 CONCLUSION

In this work, we advocate for a distribution learning-centered evaluation of generative models for
drug design. Methods that perform well in this framework, can later improve their task-specific
performance through curated datasets, advanced sampling strategies, or fine-tuning to better align
with user preferences. We introduce DRUGFLOW and demonstrate that it consistently achieves state-
of-the-art distribution learning performance across various orthogonal metrics. DRUGFLOW also
learns the distribution of molecular sizes and is able to detect out-of-distribution samples. Besides,
its extension, FLEXFLOW, additionally operates on protein residues and learns the distribution of
side chain conformations. Finally, we discuss a preference alignment strategy that allows us to
sample molecules with improved properties, and show its effectiveness across four different metrics.

REPRODUCIBILITY STATEMENT

All methodological details are described in Section 2 and Appendix A. All methodological details
are described in Section 2 and Appendix A. Code to reproduce our results is provided as supplemen-
tary material.
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A EXTENDED METHODS

A.1 GENERATIVE FRAMEWORK

A.1.1 FLOW MATCHING

Flow matching describes a class of deep generative models that approximate a time-dependent vector
field ut(x), x ∈ Rd which generates a sequence of probability distributions {pt : t ∈ [0, 1]}
pushing a prior p ≡ p0 towards the data distribution q ≡ p1. The flow ψt : [0, 1] × Rd → Rd is
defined through an ordinary differential equation (ODE) given the vector field ut:

d

dt
ψt(x) = ut(ψt(x)). (6)

Efficient training of flow matching models is only possible because one does not need to define the
true vector field ut(x) but can instead match the conditional flow ut(x|x1) which is much easier to
parameterize (Lipman et al., 2022) based on a data point x1. Thus, the conditional flow matching
loss amounts to

LCFM(θ) = Et,q(x1),p(x0)∥vθ(xt, t)− ẋt∥2, (7)
where ẋt = d/dt ψt(x0|x1) is the time derivative of the conditional flow xt = ψt(x0|x1).

For sampling, we obtain a sample x0 from the prior p and simulate the ODE in Eq. 6 replacing the
true vector field ut with the learned vector field vθ(xt, t).

In this work, we build on a variant called Independent-coupling Conditional Flow Matching
(ICFM) (Albergo & Vanden-Eijnden, 2022; Tong et al., 2023) and consider a Gaussian conditional
probability path

pt(x|x1) = N (x|µt(x1), σt(x1)
2I) (8)

with generating vector field

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt (x1)) + µ′

t(x1). (9)

We use this setup with
µt(x1) = tx1 + (1− t)x0, σt(x1) = σ (10)

to model the flow for ligand coordinates. This results in a constant velocity vector field

ẋt =
x1 − xt

1− t
= x1 − x0, (11)

and the following flow matching loss:

Lcoord(θ) = Et,q(x1),p(x0)∥vθ(xt, t)− (x1 − x0)∥2. (12)

A.1.2 RIEMANNIAN CONDITIONAL FLOW MATCHING

For side chain torsion angles, we need to define a flow on the torus [−π, π)N . Fortunately, all
components of the flow matching framework can be computed in a simulation-free manner on this
simple manifold. We use the explicit Riemannian conditional flow matching (RCFM) loss derived
by Chen & Lipman (2023):

LRCFM(θ) = Et,q(x1),p(x0)∥vθ(xt, t)− ẋt∥2g. (13)

The norm ∥ · ∥g on the tangent space TxM at point x on manifold M is induced by the Riemannian
metric g which is the standard inner product ⟨u,v⟩g = ⟨u,v⟩, u,v ∈ TxM in this particular case.

Choosing the geodesic path to define the conditional flow xt = ψt(x0|x1) we can compute inter-
mediate points in closed-form as

xt = expx0

(
(1− κ(t)) logx0

(x1)
)

(14)

using the exponential and logarithm maps expx(u) = w(x + u) and logx(y) = atan2(sin(y −
x), cos(y − x)) 1. w(α) = ((α+ π) mod 2π) − π wraps values within the range [−π, π) and is
applied element-wise.

1x,y ∈ M and u,v ∈ TxM.
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Here, we additionally use a scheduler κ(t), that satisfies κ(0) = 1 and κ(1) = 0, to control the rate
at which the geodesic distance d between x0 and x1 decreases (Chen & Lipman, 2023):

d(xt,x1) = κ(t)d(x0,x1). (15)

Thus, we obtain the loss function

Lχ(θ) = Et,q(x1),p(x0)∥vθ(xt, t)− ẋt∥2 (16)

with
ẋt = −κ̇(t) logx0

(x1). (17)

Here, the learned vector field vθ(xt, t) represents vectors on the tangent plane.

A.1.3 MARKOV BRIDGE MODEL

The molecular graph consists of discrete entities (node and edge types) and can therefore not be
easily modeled in the flow matching framework. While discrete diffusion formulations (Austin
et al., 2021; Vignac et al., 2022) can be used in principle, we decided to employ the Markov bridge
model (Igashov et al., 2023) instead which is conceptually more similar to the flow matching scheme
used for the continuous variables as it does not require a closed-form prior.

The Markov bridge model captures the stochastic dependency between two discrete-valued spaces
X and Y . It defines a Markov process between fixed start and end points z0 = x and z1 = y,
respectively, through a sequence of N + 1 random variables (zt=i/N )Ni=0 for which

p(zt|z0, z0+∆t, ...,zt−∆t, z1 = y) = p(zt|zt−∆t, z1 = y) (18)

with ∆t = 1/N . Additionally, since the process is pinned at its end point, we have

p(z1 = y|z1−∆t,y) = 1. (19)

Each transition is given by

p(zt+∆t|zt, z1 = y) = Cat(zt+∆t;Qtzt) (20)

where zt ∈ {0, 1}K is a one-hot representation of the current category and Qt is a transition matrix
parameterised as

Qt := Qt(y) = βtI + (1− βt)y1
T
K . (21)

Any intermediate state of the Markov chain can be probed in closed form:

p(zt|z0, z1) = Cat(zt; Q̄t−∆tz0) (22)

with
Q̄t = QtQt−∆t...Q0 = β̄tI + (1− β̄t)y1

T
K . (23)

In this work, we choose a linear schedule for β̄ = 1 − t which implies βt = β̄t/β̄t−∆t = (1 −
t)/(1− t+∆t).

The neural network θ approximates y so that we can sample from the Markov bridge without know-
ing the true final state. It is trained by maximizing the following lower bound on the log-likelihood
qθ of the end point y given the start point x

log qθ(y|x) ≥ −T · Et,zt∼p(zt|x,y)DKL(p(zt+∆t|zt,y)||qθ(zt+∆t|zt)) =: −LMBM(θ). (24)

A.1.4 TRAINING LOSS

Our overall loss function is a weighted sum of the previously introduced loss terms:

L = λcoordLcoord + λχLχ + λaLMBM, atom + λbLMBM, bond. (25)

18
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A.2 PREDICTIVE UNCERTAINTY ESTIMATES FOR REGRESSION PROBLEMS

We view the task of approximating the target variable y ∈ Rd as maximum likelihood estimation
with a Gaussian model for the error ϵ = y− ŷ and maximise the probability density of data x under
this Gaussian uncertainty model:

p(y; ŷ, Σ̂) = N (y; ŷ, σ̂2I) (26)

=
1√

(2π)d det Σ̂
exp(−1

2
(y − ŷ)T Σ̂−1(y − ŷ)) (27)

=
1

(2π)d/2σ̂d
exp(− 1

2σ̂2
∥y − ŷ∥2) (28)

where a neural network approximates both ŷ := ŷθ(x) and σ̂ := σ̂θ(x).

Maximising the log-likelihood yields

argmax
θ

[log p(y; ŷ, Σ̂)] = argmax
θ

[−d
2
log 2π − d log σ̂ − 1

2σ̂2
∥y − ŷ∥2] (29)

= argmax
θ

[−d
2
log σ̂2 − 1

2σ̂2
∥y − ŷ∥2] (30)

= argmin
θ

[
d

2
log σ̂2 +

1

2σ̂2
∥y − ŷ∥2], (31)

which motivates our loss function

L(θ) = d

2
log σ̂2 +

1

2σ̂2
∥y − ŷ∥2. (32)

A.3 MOTIVATION FOR THE FINAL UNCERTAINTY SCORE

In the flow matching setting, we integrate an ordinary differential equation (ODE) along a time-
dependent vector field. However, the true data generating vector field is not known and we only
have access to the estimated neural vector field vθ(xt, t) which introduces epistemic uncertainty
into the process. We can model the true vector field ut(x) as a sum of the estimated vector field and
a normally distributed error term ϵt ∼ N (0, σ2

θ(xt, t)I)

ut(x) = vθ(xt, t) + ϵt. (33)

The newly introduced stochasticity can be described with a stochastic differential equation (SDE)
rather than the original ODE

dxt = vθ(xt, t)dt+ σθ(xt, t)dBt, (34)

where Bt is the Wiener process.

As a result of integration, the final data point is

xt = x0 +

∫ t

0

vθ(xs, s)ds+

∫ t

0

σθ(xs, s)dBs. (35)

We could find an approximate numerical solution using the Euler-Maruyama method:

xt+∆t = xt + vθ(xt, t)∆t+ σθ(xt, t)
√
∆tz, (36)

where z ∼ N (0, I). However, here we opt to use the learned vector field in the standard way and
integrate it in a deterministic manner. This means we only have access to vθ(·, s) and σθ(·, s) along
a deterministic trajectory. If we assume an alternative SDE parameterized by these values, we can
write

x̃t = x0 +

∫ t

0

vθ(s)ds+

∫ t

0

σθ(s)dBs (37)
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and compute mean and variance of the final variable as2

E[x̃t] = x0 +

∫ t

0

vθ(s)ds, (38)

Var[x̃t] =

∫ t

0

σ2
θ(s)ds. (39)

This means we obtain the most likely data point according to our learned model by following the
predicted mean as in conventional flow matching. However, this view point additionally provides
us with an estimated variance of the sample. Note that Eq. 37 represents a purely hypothetical
scenario created to motivate our final uncertainty score. More specifically, it does not describe
actual DrugFlow sampling trajectories, which are fully deterministic except for the prior. Therefore
E[x̃t] and Var[x̃t] do not represent the mean and standard deviation of sampling outputs.

A.4 PREFERENCE ALIGNMENT

Our preference alignment scheme is based on Direct Preference Optimisation (DPO), a technique
proposed by Rafailov et al. (2023) as a more stable alternative to reinforcement learning from human
feedback methods aimed to optimise a model with respect to a target metric (i.e. reward function).
Instead of explicitly learning the reward, Rafailov et al. (2023) proposed to fine-tune a pre-trained
(reference) model θ on a synthetic dataset D = {(xwi , xli)}i collected from its own samples. This
dataset consists of pairs of winning and losing samples xwi and xli, respectively, which are labeled
according to problem-specific preferences (i.e. using human feedback or some other oracle). To
align the method with these preferences, the authors introduce a new (aligned) model φ, initialised
with θ and further optimised with a new loss that accounts for the provided preferences (Rafailov
et al., 2023).

Initially proposed for aligning large language models, DPO was further adapted to diffusion models
by Wallace et al. (2024). For noisy versions xwt and xlt (for clarity, we omit indices i) of the winning
and losing data points, the diffusion DPO loss is computed using the true transition kernel p and
approximated transition kernels qθ and qφ of the reference and aligned diffusion models as follows,

LDPO-Diffusion(φ) = −E(xw
1 ,xl

1)∼D,t∼U(0,1),xw
t ∼p(xw

t |xw
1 ),xl

t∼p(xl
t|xl

1)

log σ(−βT (
+DKL(p(x

w
t+∆t|xw1 , t)∥qφ(xwt+∆t|xwt ))

−DKL(p(x
w
t+∆t|xw1 , t)∥qθ(xwt+∆t|xwt ))

−DKL(p(x
l
t+∆t|xl1, t)∥qφ(xlt+∆t|xlt))

+DKL(p(x
l
t+∆t|xl1, t)∥qθ(xlt+∆t|xlt)))). (40)

We propose to apply this framework to the Markov bridge models. Using Eq. 24, we can derive:
LDPO-MBM(φ) = − log σ

(
− β(Lw

MBM(φ)− Lw
MBM(θ)− Ll

MBM(φ) + Ll
MBM(θ))

)
. (41)

Here, Lw
MBM(φ) and Ll

MBM(φ) are Markov bridge loss terms of the aligned model for winning and
losing samples, respectively, and Lw

MBM(θ) and Ll
MBM(θ) are the loss terms for the pre-trained refer-

ence model θ with fixed parameters.

We then apply the same scheme to the coordinate flow matching loss and define the multi-domain
preference alignment (MDPA) loss as a weighted sum of the different loss components. Further-
more, we scale the weighting constant by the sampled time t ∈ [0, 1], as proposed in Cheng et al.
(2024):

L̃MDPA(φ) =− log σ
(
− βt(λcoord∆coord + λatom∆atom + λbond∆bond)

)
, (42)

where
∆coord = Lw

coord(φ)− Lw
coord(θ)− Ll

coord(φ) + Ll
coord(θ),

∆atom = Lw
MBM, atom(φ)− Lw

MBM, atom(θ)− Ll
MBM, atom(φ) + Ll

MBM, atom(θ),

∆bond = Lw
MBM, bond(φ)− Lw

MBM, bond(θ)− Ll
MBM, bond(φ) + Ll

MBM, bond(θ).

2Note that we cannot derive this formal solution if the stochastic process appears on both sides as in Eq. 35
because the integrands will contain expectations and variances as well.
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Figure 6: Architecture of our backbone neural network. (A) Different input types are featurized
independently and processed with an E(3)-equivariant heterogeneous graph neural network based
on Geometric Vector Perceptrons (GVP) (Jing et al., 2020). (B) One layer of the geometric het-
erogenous GNN (GH-GNN). Messages are computed based on source and destination node features
and the corresponding edge features using GVPs. They are aggregated separately for appropriate
destination node types and passed to the output block. (C) The output block of GH-GNN layers
contains another equivariant GVP module.

Next, we introduce an additional regularization term, which is the scaled original loss (Eq. 25)
applied to both winning and losing samples. The overall loss function is defined as the weighted
sum of L̃MDPA and the regularization term:

LMDPA(φ) = λMDPAL̃MDPA(φ) + λwLw(φ) + λlLl(φ). (43)

Setting λMDPA = λl = 0 corresponds to simple fine-tuning of the model on the winning samples,
which we use as a baseline in our experiments.

A.5 MODEL ARCHITECTURE AND TRAINING

Input graph definition While the computational graph of the generated small molecule must
necessarily be complete so that bond types can be generated freely, we improve the computational
efficiency by removing edges between pocket residues or between residues and ligand atoms based
on a predefined cutoff distance (10Å). Nodes in this graph correspond either to a ligand atom or
a pocket residue. The coordinates of the residue nodes are defined by the position of their Cα

atoms. To retain the full atomic information while adopting this coarse-grained representation for
the protein pocket (one computational node per residue), we include difference vectors to each atom
of the residue in addition to the Cα coordinate and amino acid type as node input features similar
to Zhang et al. (2023a). A schematic representation of the input graph showing different types of
nodes and edges is provided in Figure 1.

Featurization We consider the atom types {C, N, O, S, B, Br, Cl, P, I, F, NH, N+, O-} where +/-
indicate charges and NH is a nitrogen atom with explicit hydrogen. In all other cases, hydrogens are
assumed to be implicit following normal valence assumptions. Furthermore, DRUGFLOW generates
single, double, triple, aromatic, and “None” as bond types. FLEXFLOW additionally outputs five
torsion angles {χ1, χ2, χ3, χ4, χ5} for each residue. Since not all angles are present in every residue
we mask predictions where appropriate. For ligand nodes we include node-level cycle counts up to
size 5 following Vignac et al. (2022) and Igashov et al. (2023).

Self-conditioning Self-conditioning (Chen et al., 2022) is a sampling strategy in which the neural
network takes its previous prediction as additional input during iterative sampling. Like previous
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works (Yim et al., 2023b; Stärk et al., 2023) we observe significant performance improvements
using this technique.

Neural network Since our computational graph contains two distinct groups of nodes, ligand and
residue, and four different kinds of edges, ligand-to-ligand (L▷L), ligand-to-pocket (L▷P), pocket-to-
ligand (P▷L) and pocket-to-pocket (P▷P), we use a heterogeneous graph neural network architecture
as depicted in Figure 6. It performs message passing operations using separate learnable message
functions for each edge type, and separate update functions for each node type. All these functions
are implemented with geometric vector perceptron (GVP) layers (Jing et al., 2020; 2021) to ensure
equivariance to global roto-translations.

Number of nodes To choose a number of computational nodes during sampling, which represent
an upper bound on the final number of atoms, we compute the categorical distribution p(N |M)
(histogram) of molecule sizes N given the number of residues M in the target pocket based on the
training set, sample from it, and add Nmax/2 extra nodes to account for the expected number of
virtual nodes.

Hyperparameters Important model hyperparameters are summarized in Table 4.

Table 4: Model hyperparameters.

Model

Parameter DRUGFLOW DRUGFLOW-OOD FLEXFLOW DRUGFLOW-PA

Num. weights (M) 12.1 12.1 12.6 12.1
Model size (MB) 48.408 48.411 50.557 48.408
Training epochs 600 600 700 50+
Virtual nodes Nmax 10 10 10 10
Sampling steps 500 500 500 500

Uncertainty head No Yes No No
Flexible side chains No No Yes No
OOD λ – 10 – –
Scheduler k – – 3 –

Preference alignment

β – – – 100
λcoord – – – 1
λatom – – – 0.5
λbond – – – 0.5
λw – – – 1
λl – – – 0.2
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B EXTENDED RESULTS

B.1 EXTENDED DISTRIBUTION LEARNING METRICS

In this section, we provide visual comparisons of distributions of various molecular characteristics
from Tables 1, 2, and 3. First, we apply PCA to the molecular embeddings computed by ChemNet,
the neural network used to calculate the Fréchet ChemNet Distance (FCD) (Preuer et al., 2018). We
compare distributions of the first two principal components in Figure 7. Next, we compare distribu-
tions of discrete data types (atom and covalent bonds) in Figure 8. Finally, we provide violinplots for
continuous distributions of various geometric and chemical properties, binding efficiency scores and
normalised interaction counts in Figures 9, 10, and 11. Note that we remove outliers (beyond the 1st
and the 99th percentiles) for better visibility. We additionally report Jensen-Shannon divergence for
various geometric and chemical quantities, following the methodology chosen in other works (Guan
et al., 2023a). To do this, we compute histograms of the scores splitting them in 100 bins of equal
sizes on ranges defined by the minimum and maximum values of the corresponding quantities in the
training data. The results are provided in Table 5.

Train data
Samples

Figure 7: Distributions of the first two principle components of molecule embeddings computed by
the FCD neural network. In each plot, we compare training data (blue areas) and samples generated
by different methods (black solid lines).

Figure 8: Distributions atom types (4 most popular types) and covalent bond types in the training
data and samples.
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Figure 9: Distributions of bond distances and angles. Training data is visualized in blue and samples
in red. Outliers falling beyond the 1st and the 99th percentiles are removed for better visibility.

Figure 10: Distributions of molecular properties. Training data is visualized in blue and samples in
red. Outliers falling beyond the 1st and the 99th percentiles are removed for better visibility.

Figure 11: Distributions of binding efficiency scores and normalised numbers of interactions. Train-
ing data is visualized in blue and samples in red. Outliers falling beyond the 1st and the 99th
percentiles are removed for better visibility.
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Figure 12: Mann-Whitney U test to assess whether there is a statistically significant difference
between samples across various scores and methods. Here, we compare distributions of bond lengths
and angles. We perform pairwise comparisons of distributions for all possible pairs of methods and
report the resulting p-values. As shown in the last row of each matrix, the distribution differences
between DRUGFLOW and other methods are statistically significant almost everywhere.
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Figure 13: Mann-Whitney U test to assess whether there is a statistically significant difference be-
tween samples across various scores and methods. Here, we compare distributions of molecular
properties and binding efficiency scores. We perform pairwise comparisons of distributions for all
possible pairs of methods and report the resulting p-values. As shown in the last row of each matrix,
the distribution differences between DRUGFLOW and other methods are statistically significant al-
most everywhere.
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Figure 14: Mann-Whitney U test to assess whether there is a statistically significant difference be-
tween samples across various scores and methods. Here, we compare distributions of normalised
numbers of protein-ligand interactions. We perform pairwise comparisons of distributions for all
possible pairs of methods and report the resulting p-values. As shown in the last row of each matrix,
the distribution differences between DRUGFLOW and other methods are statistically significant al-
most everywhere.

Table 5: Jensen-Shannon divergence between distributions of continuous molecular data (bond dis-
tances and angles), drug-likeness (QED), synthetic accessibility (SA), lipophilicity (logP) and num-
bers of rotatable bonds (RB). The best result is highlighted in bold, the second best is underlined.

Top-3 bond distances Top-3 bond angles Molecular properties

Method C–C C–N C=C C–C=C C–C–C C–C–O QED SA logP Rotatable bonds

POCKET2MOL 0.357 0.289 0.400 0.312 0.197 0.276 0.247 0.230 0.330 0.400
DIFFSBDD 0.339 0.312 0.354 0.329 0.315 0.343 0.162 0.479 0.203 0.115
TARGETDIFF 0.236 0.219 0.321 0.317 0.222 0.254 0.138 0.470 0.148 0.083
DRUGFLOW 0.223 0.218 0.242 0.164 0.154 0.177 0.089 0.170 0.156 0.064

B.2 ABSOLUTE METRICS

In Table 6, we provide additional metrics evaluating overall quality of samples in absolute values.
For reference, we also provide the training set numbers and remind that it is unreasonable to expect
the model trained solely with the likelihood objective to substantially surpass metric values from the
training data.

Table 6: Absolute values of various quality metrics. The best result is highlighted in bold, the second
best is underlined.

Passed filters, % Binding efficiency

Method Size PoseBusters ↑ REOS ↑ Clashes ↑ Gnina ↑ Vina ↓ Uniqueness ↑ Novelty ↑
POCKET2MOL 13.024 0.867 0.408 0.926 0.318 -0.443 0.892 0.996
DIFFSBDD 24.397 0.380 0.110 0.696 0.231 -0.293 1.000 1.000
TARGETDIFF 24.150 0.510 0.174 0.884 0.244 -0.345 0.989 0.998
DRUGFLOW 20.827 0.731 0.245 0.897 0.261 -0.351 0.956 0.997

Training set 23.648 0.948 0.248 0.977 0.274 -0.379 — —
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B.3 ABLATION STUDIES

Here, we study the effect of using virtual nodes, uncertainty estimation and flexible side chains on
the metrics we reported in the main text. We repeat the same evaluation procedure and compare four
models:

• DRUGFLOW, our base model from Tables 1, 2, and 3. This model uses virtual nodes but
not the uncertainty head;

• DRUGFLOW (no virt. nodes), an identical model without virtual nodes;
• DRUGFLOW-OOD, an identical model trained with additional uncertainty head to be able

to detect out-of-distribution (OOD) samples. This model uses virtual nodes;
• FLEXFLOW, an identical model that additionally operates on protein side chains. This

model uses virtual nodes but does not have the uncertainty head.

As shown in Tables 7, 8, and 9, DRUGFLOW-OOD demonstrates competitive performance with
DRUGFLOW. Notably, it remarkably improves Wasserstein distance on bond angles, QED, and
SA scores. The model without virtual nodes demonstrates consistently worse performance across
all metrics except lipophilicity. FLEXFLOW performs worse on metrics related to pocket interac-
tions. This result is expected due to the much higher complexity of the flexible design task. While
DRUGFLOW learns the conditional distribution of molecules given fixed (ground-truth) pockets,
FLEXFLOW learns the joint distribution of molecules and side chain conformations.

To further contextualize the performance of our models, we include a simple, unconditional baseline.
For each test set protein, we randomly selected and docked 100 molecules from the 2.4M compounds
in the ChEMBL database (release 34). We also repeated this procedure for CrossDocked training
set molecules to provide another simple baseline.

The results in Tables 7 and 8 highlight the importance of training set curation for generating
molecules with desirable properties. Most molecular properties (such as QED, SA score, and logP)
deviate more from the CrossDocked training set than DrugFlow’s generated molecules. The FCD
is substantially higher as well. A notable exception are more fundamental molecular features like
bond lengths and angles for which the ChEMBL baseline is competitive. This can be explained by
the universal physical rules all molecules must obey. Furthermore, Table 9 demonstrates the impor-
tance of pocket-conditioning. Because ChEMBL molecules have been selected without taking into
account the structure of the binding pocket, the distributions of most interaction-related features are
matched consistently worse by this baseline than any of the DrugFlow variants.

Lastly, we also study the performance of DRUGFLOW depending on the number of training epochs.
As shown in Tables 10 and 11, the performance varies with training and is generally improving
(Validity, FCD, Rings, RB), as can be expected. Some other properties such as atom types, bond
types and geometries (distances and angles) are however learned rather quickly, and more training
alone does not seem to guarantee better results.

Table 7: Fréchet ChemNet Distance and Jensen-Shannon divergence between distributions of dis-
crete molecular data. The best result is highlighted in bold, the second best is underlined.

Method FCD Atoms Bonds Rings

DRUGFLOW 4.278 0.043 0.060 0.391
DRUGFLOW-OOD 4.328 0.054 0.019 0.374
DRUGFLOW (no virt. nodes) 5.380 0.050 0.093 0.411
FLEXFLOW 6.001 0.086 0.068 0.376

CHEMBL 9.255 0.124 0.038 0.377
CROSSDOCKED 0.578 0.066 0.003 0.186
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Table 8: Wasserstein distance between distributions of continuous molecular data (bond distances
and angles), drug-likeness (QED), synthetic accessibility (SA), lipophilicity (logP) and numbers of
rotatable bonds (RB). The best result is highlighted in bold, the second best is underlined.

Top-3 bond distances Top-3 bond angles Molecular properties

Method C–C C–N C=C C–C=C C–C–C C–C–O QED SA logP RB

DRUGFLOW 0.017 0.016 0.016 0.952 2.269 1.941 0.014 0.317 0.665 0.144
DRUGFLOW-OOD 0.021 0.029 0.021 0.683 1.412 1.478 0.005 0.140 0.796 0.176
DRUGFLOW (no virt. nodes) 0.027 0.028 0.018 1.149 2.681 1.964 0.021 0.512 0.658 0.214
FLEXFLOW 0.019 0.019 0.017 1.021 1.731 1.937 0.029 0.231 1.115 0.497

CHEMBL 0.024 0.022 0.020 0.536 0.517 2.966 0.028 0.322 1.656 1.456
CROSSDOCKED 0.001 0.001 0.000 0.013 0.085 0.060 0.002 0.011 0.028 0.041

Table 9: Wasserstein distance between distributions of binding efficiency scores and normalized
numbers of different protein-ligand interactions. The best result is highlighted in bold, the second
best is underlined.

Binding efficiency Protein-ligand interactions

Method Vina Gnina H-bond H-bond (acc.) H-bond (don.) π-stacking Hydrophobic

DRUGFLOW 0.028 0.013 0.019 0.012 0.007 0.006 0.036
DRUGFLOW-OOD 0.044 0.019 0.027 0.015 0.011 0.003 0.043
DRUGFLOW (no virt. nodes) 0.054 0.020 0.030 0.018 0.011 0.007 0.038
FLEXFLOW 0.073 0.040 0.077 0.052 0.025 0.012 0.203

CHEMBL 0.176 0.078 0.083 0.055 0.028 0.003 0.061
CROSSDOCKED 0.149 0.071 0.061 0.042 0.019 0.004 0.081

B.4 VIRTUAL NODES

Reference 17 starting atoms 27 starting atoms 37 starting atoms 47 starting atoms 57 starting atoms

Figure 15: Samples for the pocket 1L3L with varied input size.
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Table 10: Dependency of the evaluation results on the number of training epochs. Validity, Fréchet
ChemNet Distance and Jensen-Shannon divergence between distributions of discrete molecular data.
The best result is highlighted in bold, the second best is underlined.

Epochs Validity FCD Atoms Bonds Rings

100 0.785 6.064 0.044 0.070 0.476
300 0.807 5.775 0.078 0.045 0.416
500 0.885 5.154 0.067 0.063 0.416
600 0.891 4.278 0.043 0.060 0.391

Table 11: Dependency of the evaluation results on the number of training epochs. For all scores,
Wasserstein distance between the corresponding distributions is reported. The best result is high-
lighted in bold, the second best is underlined. RB: number of rotatable bonds.

Top-3 bond distances Top-3 bond angles Molecular properties

Epochs C–C C–N C=C C–C=C C–C–C C–C–O QED SA logP RB

100 0.040 0.035 0.025 1.021 2.035 1.811 0.022 0.655 0.344 0.719
300 0.015 0.020 0.014 0.508 1.533 1.372 0.055 0.589 1.260 0.515
500 0.016 0.024 0.018 0.883 1.417 1.417 0.014 0.438 0.487 0.347
600 0.017 0.016 0.016 0.952 2.269 1.941 0.014 0.317 0.665 0.144
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B.5 DISTRIBUTION OF SIDE CHAIN ANGLES

Samples
Training set

Figure 16: Distributions of χ1 and χ2 angles for the 14 amino acids that have at least two side
chain torsion angles. We compare FLEXFLOW samples to the bound pocket conformations from the
training set.
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B.6 ADDITIONAL PREFERENCE ALIGNMENT RESULTS

Figure 17: Preference alignment shifts property distributions. Distributions of QED, SA, and
Vina efficiency values with and without preference alignment. Gray shaded areas represent the
training set distributions, and green areas show distributions from DRUGFLOW as the reference
model. Solid red lines indicate the distributions for preference-aligned models for each specific
property, while the dashed red line shows the distribution for the model aligned with combined
preferences. Preference alignment leads to significant shifts toward more desirable values in QED,
SA, and Vina efficiency across all metrics.

Table 12: Preference alignment comparison. Performance comparison of preference-aligned (PA)
models vs. fine-tuned (FT) models on REOS, QED, SA, Vina efficiency, and combined preference
pairs, using DRUGFLOW as the baseline. We also report Vina scores (after local minimization), even
though our models were not directly optimized for these scores. Values for AliDiff (Gu et al., 2024)
and DecompDPO (Cheng et al., 2024) are as reported by their authors (SA values were mapped to
the original scale using SA = 10−9SAnorm). The authors of AliDiff provide sampled molecules and
Vina scores, which we use for re-evaluation.3 Bold values indicate the best performance, and un-
derlined values indicate the second-best. Molecular validity, uniqueness, novelty, and PoseBusters
success rates are also reported. The preference-aligned models achieve the highest performance on
the target metrics, with combined preference alignment models ranking second. Preference align-
ment models show a 10-20% drop in molecular validity compared to less than 5% for fine-tuned
models. PoseBusters measures robustness against common failure modes of generative models (But-
tenschoen et al., 2024).

Molecular properties Interactions

Method Valid. ↑ Uniq. ↑ Nov. ↑ PoseB. ↑ REOS ↑ QED ↑ SA ↓ Vina eff. ↓ Vina min ↓
Baseline 0.89 0.95 1.00 0.73 0.25 0.53 3.49 -0.35 -6.67
FT (REOS) 0.87 1.00 1.00 0.62 0.55 0.57 3.85 -0.29 -7.35
FT (QED) 0.85 1.00 1.00 0.62 0.28 0.58 3.88 -0.30 -7.33
FT (SA) 0.86 1.00 1.00 0.58 0.24 0.50 3.45 -0.30 -7.41
FT (Vina efficiency) 0.77 1.00 1.00 0.52 0.22 0.50 4.37 -0.33 -8.25
FT (Combined) 0.84 1.00 1.00 0.57 0.51 0.58 3.74 -0.30 -7.47
PA (REOS) 0.79 0.97 1.00 0.67 0.88 0.65 3.90 -0.37 -7.08
PA (QED) 0.78 0.99 1.00 0.52 0.41 0.71 3.62 -0.36 -6.80
PA (SA) 0.76 0.93 1.00 0.45 0.29 0.57 2.39 -0.35 -6.50
PA (Vina efficiency) 0.65 0.95 1.00 0.37 0.29 0.56 3.83 -0.45 -7.78
PA (Combined) 0.73 0.94 1.00 0.69 0.76 0.67 2.45 -0.40 -7.18

AliDiff (our evaluation)3 0.92 0.99 1.00 ≤ 0.26 0.20 0.50 4.92 -0.34 -7.87
AliDiff (Vina) - - - - - 0.50 4.87 - -8.09
AliDiff (Vina, SA) - - - - - 0.52 4.60 - -8.00
AliDiff (Vina, QED) - - - - - 0.51 4.87 - -8.01
DecompDPO (Vina) - - - - - 0.48 4.06 - -8.49
DecompDPO (Vina, SA, QED) - - - - - 0.48 4.24 - -7.93

Training set 1.00 - - 0.95 0.25 0.53 3.23 -0.38 -8.29

3For evaluating AliDiff, molecules sampled for the CrossDocked test set were retrieved from
github.com/MinkaiXu/AliDiff. For PoseBusters, only pocket-independent checks were completed, as pocket
information was unavailable in the provided samples. Vina efficiency scores were derived from the reported
Vina minimization scores.
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Figure 18: Mann-Whitney U test to assess whether there is a statistically significant difference
between different preference alignment methods for REOS, QED, SA, and Vina efficiency scores
reported in Figure 5. We perform pairwise comparisons of distributions for all possible pairs of
methods and report the resulting p-values. As shown in the last two rows of each matrix, the distri-
bution differences between the preference aligned model and other methods are statistically signifi-
cant everywhere.

B.7 PREDICTION ERROR
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Figure 19: Distribution of the prediction error of a trained DRUGFLOW model. The values are
computed as vθ(xt, t)− (x1 − x0) for one training batch.
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B.8 DISTRIBUTION OF THE JOINT QED, SA, LOGP AND VINA SCORES

Pocket2Mol: JSDall= 0.223 Di�SBDD: JSDall= 0.274 TargetDi�: JSDall= 0.242 DrugFlow: JSDall= 0.099

Figure 20: Histograms of the joint distributions of QED, SA, logP and Vina efficiency scores (10
bins per score). We show top-5000 bins as the rest is not populated.

B.9 SIGNIFICANCE OF DIFFERENCES IN WASSERSTEIN DISTANCE AND JENSEN-SHANNON
DIVERGENCE

Table 13: Sample mean and standard deviation of the
Jensen-Shannon divergence between distributions of molec-
ular data, as presented in Table 3. The final column shows
the Jensen-Shannon divergence for the joint distributions of
four molecular properties: QED, SA, LogP, and Vina effi-
ciency. Standard deviations are provided in brackets.

Method Atoms Bonds Rings JSDall

POCKET2MOL 0.082 (0.004) 0.045 (0.006) 0.491 (0.011) 0.226 (0.011)
DIFFSBDD 0.052 (0.003) 0.227 (0.005) 0.613 (0.007) 0.277 (0.005)
TARGETDIFF 0.078 (0.004) 0.240 (0.011) 0.649 (0.007) 0.247 (0.010)
DRUGFLOW 0.044 (0.005) 0.060 (0.005) 0.433 (0.006) 0.106 (0.006)

To evaluate the variability and sta-
tistical significance of sample-based
Wasserstein distances and Jensen-
Shannon divergences, we generated
20 bootstrap samples, each contain-
ing 500 data points (5 samples per
test target). These samples were used
to compute distances to the training
set, as in Section 3.1. Tables 13–15
provide the mean values and standard
deviations of these distances over the
bootstrapped samples. Statistical sig-
nificance of the DrugFlow’s superior
performance is verified with Student’s t-test, as shown in Figures 21–23.

Table 14: Sample mean and standard deviation of Wasserstein distances reported in Table 1.

Top-3 bond distances Top-3 bond angles Molecular properties

Method C–C C–N C=C C–C=C C–C–C C–C–O QED SA logP RB

POCKET2MOL 0.050 (0.001) 0.024 (0.001) 0.046 (0.002) 2.174 (0.123) 2.967 (0.262) 3.957 (0.254) 0.073 (0.004) 0.576 (0.057) 1.210 (0.036) 2.861 (0.071)
DIFFSBDD 0.041 (0.001) 0.039 (0.002) 0.042 (0.002) 3.632 (0.193) 8.165 (0.250) 7.754 (0.301) 0.065 (0.008) 1.571 (0.030) 0.781 (0.047) 0.935 (0.188)
TARGETDIFF 0.018 (0.001) 0.019 (0.001) 0.028 (0.002) 4.277 (0.235) 3.430 (0.169) 4.149 (0.240) 0.053 (0.017) 1.527 (0.082) 0.514 (0.114) 0.420 (0.101)
DRUGFLOW 0.017 (0.001) 0.017 (0.001) 0.016 (0.002) 0.957 (0.083) 2.276 (0.336) 1.972 (0.292) 0.015 (0.005) 0.320 (0.046) 0.682 (0.056) 0.214 (0.053)

Table 15: Sample mean and standard deviation of Wasserstein distances reported in Table 2.

Binding efficiency Protein-ligand interactions

Method Vina Gnina H-bond H-bond (acc.) H-bond (don.) π-stacking Hydrophobic

POCKET2MOL 0.064 (0.005) 0.044 (0.005) 0.040 (0.003) 0.026 (0.002) 0.014 (0.001) 0.008 (0.001) 0.028 (0.008)
DIFFSBDD 0.086 (0.004) 0.043 (0.002) 0.047 (0.002) 0.030 (0.002) 0.017 (0.002) 0.011 (0.001) 0.044 (0.003)
TARGETDIFF 0.036 (0.007) 0.031 (0.004) 0.055 (0.012) 0.045 (0.009) 0.013 (0.005) 0.012 (0.003) 0.063 (0.024)
DRUGFLOW 0.028 (0.005) 0.013 (0.003) 0.019 (0.003) 0.012 (0.002) 0.008 (0.001) 0.006 (0.001) 0.037 (0.004)
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Figure 21: Statistical analysis of Wasserstein distance differences using Student’s t-test across vari-
ous metrics and methods for bond lengths and angles. Wasserstein distances were computed using
n = 20 bootstrap samples, each containing 500 datapoints. A two-sample t-test was conducted to
determine whether the differences of the sample means of the Wasserstein distances were statisti-
cally significant. The p-values are reported on a log-scale and visualized as a heatmap. As illustrated
in the last row of each matrix, the differences between DRUGFLOW and other methods are statisti-
cally significant in nearly all cases.
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Figure 22: Statistical analysis of Wasserstein distance differences using Student’s t-test across
molecular property distributions, including QED, SA, LogP, number of rotatable bonds, and
Vina/Gnina efficiency. As in Figure 21, p-values are displayed on a log-scale heatmap, with the
last row indicating that distance differences for DRUGFLOW are statistically significant in all cases.

Figure 23: Statistical analysis of Wasserstein distance differences using Student’s t-test across nor-
malised numbers of protein-ligand interactions. As in Figure 21, p-values are displayed on a log-
scale heatmap, with the last row indicating that distance differences for DRUGFLOW are statistically
significant in all cases.
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