
ReMamba: Equip Mamba with Effective Long-Sequence Modeling

Anonymous ACL submission

Abstract001

While the Mamba architecture demonstrates002
superior inference efficiency and competitive003
performance on short-context natural language004
processing (NLP) tasks, empirical evidence005
suggests its capacity to comprehend long con-006
texts is limited compared to transformer-based007
models. In this study, we investigate the long-008
context efficiency issues of the Mamba mod-009
els and propose ReMamba, which enhances010
Mamba’s ability to comprehend long contexts.011
ReMamba incorporates selective compression012
and adaptation techniques within a two-stage013
re-forward process, incurring minimal addi-014
tional inference costs overhead. Experimental015
results on the LongBench and L-Eval bench-016
marks demonstrate ReMamba’s efficacy, im-017
proving over the baselines by 3.2 and 1.6 points,018
respectively, and attaining performance almost019
on par with same-size transformer models.020

1 Introduction021

Transformers (Vaswani et al., 2017), which form022

the backbone of most LLMs, encounter substan-023

tial challenges when dealing with long texts. The024

quadratic computational demands and the linear025

memory costs of the attention mechanism become026

prohibitive as the text length grows. This complex-027

ity poses a significant barrier to effectively model-028

ing long texts, which is crucial for the development029

of LLMs. To address this, Mamba is proposed as030

a solution (Gu and Dao, 2024). Mamba models031

utilize a recurrent inference mode that ensures lin-032

ear time complexity and compress information into033

the fixed state size, resulting in constant memory034

demands during inference. Furthermore, Mamba035

models eliminate the need for positional encod-036

ing, theoretically allowing them to handle inputs of037

any length. Mamba performs competitively against038

transformers on downsteam tasks. Shortly after,039

Mamba2 was introduced, simplifying the struc-040

tured A matrix of Mamba to enable faster training041

and enlarged state size (Dao and Gu, 2024).042

Figure 1: A comparison of pretrained Mamba models
and Transformers of equivalent size across speed, short-
context, and long-context performance metrics. Speed
is measured under conditions of 6k input tokens and 1k
output tokens. “short scores” represents the average ac-
curacy across six tasks (HellaSwag, PIQA, Arc-E, Arc-
C, WinoGrande, OpenbookQA) evaluated within the
LM evaluation harness (Gao et al., 2023). “long scores”
corresponds to the average scores on the LongBench-E
benchmark (Bai et al., 2024). Notably, all LongBench
evaluations employ a maximum token length of 2k to
align with the model’s training configuration.

Despite these advantages, some studies reveal 043

that Mamba models do not perform as well as ex- 044

pected when dealing with long texts reaching 2k 045

tokens or more (Waleffe et al., 2024). As depicted 046

in Figure 1, our experimental findings reveal that 047

the pretrained Mamba model surpasses pretrained 048

Transformers of comparable size, such as llama-3b 049

(Geng and Liu, 2023), on short-context tasks. Con- 050

versely, a substantial performance degradation is 051

observed for Mamba on long-context tasks relative 052

to Transformers. This performance disparity under- 053

scores a significant limitation of Mamba models in 054

practical long-context applications. 055

This long-context deficency issue of Mamba is 056

usually attributed to its RNN-like nature. This kind 057

of architecture exhibits limitations in preserving 058

crucial information from earlier input sequences as 059

the context length increases due to the fixed-size 060

memory (Wen et al., 2024; Yang et al., 2024b). Hy- 061

1



brid architectures (Lieber et al., 2024; Ren et al.,062

2024; Park et al., 2024) have sought to mitigate this063

issue by integrating attention mechanisms from064

transformers. However, these approaches often065

lead to decreased computational efficiency and in-066

creased memory consumption.067

The key challenge in Mamba is the excessive068

degradation of distant information. ReMamba ad-069

dresses this by employing an effective compression070

strategy that condenses the information and reduces071

the context length. Specifically, it selects the top-k072

hidden states during the first forward pass and in-073

tegrates them into the state space using Mamba’s074

selective mechanism in the second pass. ReMamba075

introduces minimal computational overhead (one076

additional forward pass) and maintains low, con-077

stant memory consumption. Experimental results078

demonstrate that our approach significantly im-079

proves Mamba’s long-context performance, bring-080

ing it close to the performance of transformers. Our081

ReMamba model achieves a 3.2 improvement over082

the baseline on LongBench (Bai et al., 2024) and083

1.6 improvement on L-Eval (An et al., 2023). Fur-084

thermore, our methodology exhibits transferability085

to Mamba2, yielding a 1.6 improvement on Long-086

Bench.087

2 Related work088

2.1 Mamba089

The state space model chooses the time-invariant090

Â (state transition matrix) and B̂ (input coefficient091

matrix) thus lacking expressiveness and flexibility.092

Mamba (Gu and Dao, 2024) proposes to make Â093

and B̂ dynamically depend on inputs.094

Recall that in one Mamba layer l , SSM states S095

are transformed as follows:096

∆l
t−1 = Softplus

(
Proj1(h

l−1
t−1)

)
, (1a)097

Bl
t−1 = Proj2

(
hl−1
t−1

)
, (1b)098

Âl, B̂l
t−1 = discretize

(
Al, Bl

t−1,∆
l
t−1

)
, (1c)099

h′lt−1 = Proj3
(
hl−1
t−1

)
, (1d)100

Sl
t = Âl ⊗ Sl

t−1 + B̂l
t−1

(
h′lt−1

)T
. (1e)101

Here, hl−1
t−1 ∈ RH represents the output hidden102

state of Mamba at layer l − 1 and time step t −103

1. The Softplus function is denoted by Softplus,104

and Proj1, Proj2, and Proj3 are abbreviations for105

multiple space projection operations.106

Furthermore, ∆l
t−1 ∈ RH′

is the discrete time 107

step corresponding to the selective mechanism in 108

Mamba, where H ′ is the intermediate hidden size. 109

The continuous and discrete state transformation 110

matrices at layer l are given by Al, Âl ∈ RH′×N , 111

respectively. The continuous and discrete input 112

coefficient matrices are denoted by Bl
t−1, B̂

l
t−1 ∈ 113

RN×1. The state size is represented by N . The 114

discretization method for computing Â and B̂ is in- 115

dicated by “discretize”. The vector h
′l
t−1 ∈ RH′×1 116

and the SSM state is represented by Sl
t ∈ RH′×N . 117

The symbol ⊗ denotes element-wise multiplication, 118

and B̂l
t−1

(
h′lt−1

)T represents matrix multiplication. 119

It is important to note that the definitions of Al and 120

Âl presented here differ from their original defi- 121

nitions due to Mamba’s simplification to diagonal 122

matrices. 123

2.2 Mamba2 124

Dao and Gu (2024) theoretically proves the con- 125

nections between structured state space models and 126

attention mechanisms. They also simplify struc- 127

tured matrix Â further into scalar-times-identity 128

structure and thus develop a new state space duality 129

(SSD) framework with multi-head patterns similar 130

to transformers. 131

2.3 Long Context Mamba and Transformers 132

Positional interpolation has been widely used as a 133

technique to extend the context length of transform- 134

ers (Chen et al., 2023; Peng et al., 2024; Ding et al., 135

2024). But they are specialized for transformers. 136

Mamba has been found to struggle in maintain- 137

ing performance beyond its pretraining context 138

length without additional training. LongMamba 139

(Peiyuan, 2024) made the first successful attempt 140

to extend Mamba’s context length through a few 141

hours of long-context fine-tuning. DeciMamba 142

(Ben-Kish et al., 2024) aims to address the con- 143

text extension problem of Mamba in a training-free 144

manner, proposing a method to progressively re- 145

duce sequence length across layers by empirically 146

removing unimportant tokens. 147

However, our experiments demonstrate that long- 148

context fine-tuned Mamba still lags behind long- 149

context fine-tuned transformers of the same size, 150

despite using the same data. Moreover, Deci- 151

Mamba2.8b appears to be insufficiently effective 152

when evaluated on two widely used long-context 153

benchmarks. 154
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3 Pilot Study155

KV cache compression is widely used in transform-156

ers to reduce memory consumption and improve157

inference speed. However, prompt compression158

often results in performance degradation compared159

to the full context lengths generation in transform-160

ers. Unlike transformers, Mamba does not employ161

a KV cache; instead, it utilizes a fixed-size state162

space in each layer to preserve context memory.163

A potential issue with Mamba is its tendency to164

forget distant information. In our pilot study, we165

hypothesize that the state space update in Mamba166

is insufficient for effectively compressing context167

information, and that techniques like prompt com-168

pression could help relieve this issue.169

To explore this, we apply a simple prompt com-170

pression method: we replace part of the context171

tokens with a few randomly selected hidden states172

from the last layer of Mamba, creating a shorter173

prompt (referred to as random Mamba). This ap-174

proach is similar to that of (Ge et al., 2024), which175

uses soft prompts for information compression. In-176

tuitively, this random compression method may177

lead to significant information loss and degraded178

performance. However, our results show that the179

average scores for different context lengths on180

LongBench between normal Mamba and random181

Mamba are similar when both are trained on the182

same long-context dataset. Furthermore, random183

Mamba outperforms normal Mamba at certain con-184

text lengths, as shown in Figure 3 of 5.4.1. The185

random_select(SFT) represents the fine-tuned ran-186

dom Mamba, while Mamba(SFT) represents the187

fine-tuned normal Mamba.188

This observation suggests that information loss189

in Mamba when handling long contexts is substan-190

tial. To relieve this, we propose selective compres-191

sion and selective adaptation through leveraging192

Mamba’s state space update mechanism.193

4 Methodology194

ReMamba consists of two forward stages. In the195

first stage, three feed-forward networks are em-196

ployed to help determine the significance of hid-197

den states from Mamba’s final layer. These hid-198

den states are selected based on their importance199

scores. The second stage integrates these compres-200

sion hidden states with the input context, adapting201

Mamba’s selective mechanism to incorporate them202

into the state space.203

Our proposed method draws some spirits from204

techniques employed in KV cache compression 205

(Mu et al., 2023; Ge et al., 2024; Yang et al., 2024a; 206

Chevalier et al., 2023; Hwang et al., 2024; Gao 207

et al., 2024) by leveraging the language model 208

itself to aggregate information via hidden states 209

and employing a scoring mechanism to select the 210

most salient representations. Nevertheless, differ- 211

ent from transformers, ReMamba’s compression 212

strategy focuses on two key objectives: 1) com- 213

pressing and selectively retaining crucial informa- 214

tion to minimize information degradation, and 2) 215

reducing the frequency of state space updates to 216

further alleviate the information loss. 217

The selection method employed in ReMamba is 218

a simplified key-query-value-based approach, com- 219

monly used in Retrieval-Augmented Generation 220

and summarization tasks (Lewis et al., 2020; Mao 221

et al., 2022). In this context, we select the most im- 222

portant hidden states from the last layer of Mamba 223

to mitigate information loss during the compression 224

process. 225

4.1 Stage1 : Selective Compression 226

Selective compression involves selectively com- 227

pressing the input prompt by leveraging the final 228

layer hidden states of the Mamba model to decrease 229

state updates and consolidate information. 230

Suppose the sequence length is L and the con- 231

text token embeddings are {ti}Li=1. We define the 232

relative range to be compressed as range := (s, e), 233

where e = s + p, with s and e denoting the rel- 234

ative start and end positions, respectively, and p 235

representing the relative length to compress. These 236

values satisfy 0 ≤ s, p, e ≤ 1. The index set of 237

the context to compress is R := [S,E], where 238

S = L·s+1 and E = L·(s+p). Consequently, the 239

length of the prompt to compress is L′ = E−S+1. 240

For convenience, we use R to represent both the 241

set of indices and the set of actual tokens within the 242

context to be compressed. Furthermore, we define 243

the compression ratio ρ and compress the selected 244

context R into K := |R| ·ρ hidden representations. 245

In Figure 2, the compression hyperparameter 246

settings are: s = 0.2, p = 0.4, range = (0.2, 0.6), 247

R = [3, 6], ρ = 0.5, K = 2. In our experiments, 248

we find that s = 0 yields the best results, which 249

can be attributed to the casual language modeling 250

nature of Mamba (this will be discussed in more 251

details in A.3). 252

As shown in the Stage 1 of Figure 2, we de- 253

note the last layer’s output hidden states as {hi}Li=1, 254

where each hi ∈ RH with H representing the hid- 255
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Figure 2: ReMamba architecture. We just show one layer and leave out the A, B and discrete method here. For
Stage 2, only those value vectors selected need to go through selective adaption. Normal token embeddings just
flow as usual. We select top-K (here is top-2) hidden states in the last layer according to their importance scores
calculated with the last hidden state hL. And we incorporate the scores into the gradient utilizing the selective
mechanism in Mamba.

den size. We then transform the last hidden state hL256

into a query hidden state, namely q, through a feed-257

forward layer named Query. Additionally, the hid-258

den states to be compressed, denoted as {hi}Ei=S ,259

are transformed into {ki}Ei=S via a Key layer (this260

transformation is not shown in Figure 2). Finally,261

the cosine similarity scores, Cos = {cosi}Ei=S , are262

computed to serve as importance scores for the hid-263

den states {hi}Ei=S . The calculation of q, ki, and264

cosi is formulated as follows:265

q = Query(hL)

{ki}Ei=S = Key({hi}Ei=S)

cosi =
ki · q

max(∥ki∥2 · ∥q∥2, ϵ)

(2)266

where ki represents the transformed hidden state at267

position i, and cosi computes the cosine similarity268

between q and ki. The constant ϵ prevents division269

by zero.270

We select the top-K hidden states hj , where j ∈271

G, from the hidden states {hi}Ei=S based on their272

importance scores, denoted by Cos. The index set273

G is defined as:274

G = argmax
A⊂{S,S+1,...,E},|A|=K

∑
i∈A

cosi (3)275

Note that the original order of these indices is276

preserved.277

In our model, after selecting the top-K hidden 278

states hj , we apply a feed-forward layer, V alue, 279

to project them into the token embedding hidden 280

space: 281

{vi}Ki=1 = V ({hj}, j ∈ G) (4) 282

Their corresponding cosine similarity scores are 283

{cos′i}Ki=1. We then replace the token embeddings 284

{ti}Ei=S (R) with {vi}Ki=1. Consequently, the new 285

input embeddings for Mamba are replaced by: 286

Tnew = Cat({ti}S−1
i=1 , {vi}

K
i=1, {ti}Li=E+1) (5) 287

= {t′i}L−L′+K
i=1 (6) 288

where Cat denotes the concatenation operation. 289

The length of Tnew is L − L′ + K, resulting in a 290

significantly shorter input sequence for the second 291

forward pass compared to the first. 292

4.2 Stage 2: Selective Adaption 293

One significant challenge in using top-K se- 294

lection based on importance scores is its non- 295

differentiability, which impedes the ability to train 296

such models effectively. Here we propose a frame- 297

work that integrates importance scores into the se- 298

lective mechanisms of the Mamba model. 299

For hidden states (embeddings) that do not re- 300

quire compression in stage 1, namely {ti}S−1
i=1 and 301
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{ti}Li=E+1, the standard Mamba algorithm is ap-302

plied during the second forward pass. For embed-303

dings at selected positions, specifically {t′i}
S+K−1
i=S304

or equivalently {vi}Ki=1, Equation 1a is reformu-305

lated as follows:306

α = ReLU(cos
′
t−1)

∆l
t−1

′
= Proj1(h

l−1
t−1)

δ = ∆l
t−1

′
· α+Θl

∆l
t−1 = Softplus(δ)

(7)307

where Θl ∈ RH′
is a layer-wise trainable offset308

parameter controlling scale intensity. ReLU is the309

activation function. Intuitively, hidden states with310

low importance scores should minimally impact311

model computations. Therefore, we approximate312

this behavior by setting their corresponding ∆ val-313

ues close to zero. Ideally, directly multiplying ∆ by314

α would be more precise, but this necessitates mod-315

ifications to the selective scan algorithm, leading316

us to adopt the simpler approach.317

4.3 Training318

Following the forward encoding processes, stan-319

dard causal language generation is applied using320

the Mamba architecture. During training, newly321

introduced parameters within the selective com-322

pression mechanism are optimized. These parame-323

ters, except for Θ which is initialized to all zeros,324

are initialized with a subset of the weights from325

the first layer’s in_proj matrix. Additionally, for326

parameters in Mamba, the dt_proj matrix is fully327

trained, while in_proj, out_proj, embeddings, and328

lm_head are updated using Low-Rank Adaptation329

(LoRA) (Hu et al., 2022). In our best implemen-330

tation, to emphasize the significance of specific331

information, gradients flowing into the importance332

scores are scaled proportionally to these scores.333

This approach intuitively prioritizes the training of334

more critical representations.335

5 Experiments336

5.1 Experimental Setups337

Our model is designed for long-context question-338

answering tasks, necessitating a substantial corpus339

of long-context instruction tuning data. To this340

end, we leverage the OpenOrca dataset (Mukher-341

jee et al., 2023) and LongAlpaca-12k (Chen et al.,342

2024). The former comprises a rich collection of343

ChatGPT-augmented FLAN data alignments, while344

the latter is a long-context alignment dataset. We 345

initially filter long instruction tuning instances from 346

OpenOrca and concatenate them with LongAl- 347

paca. To accommodate device memory constraints, 348

prompts are truncated to a maximum length of 349

6,000 tokens. This process yields approximately 350

200,000 long-context training examples. To aug- 351

ment training data diversity, the initial 300,000 stan- 352

dard instances from OpenOrca are incorporated. 353

This dataset is referred to as the LongOrca dataset. 354

We finetune the baseline Mamaba 2.8b model and 355

our ReMamba model on the same dataset. We also 356

finetune a DeciMamba2.8b (Ben-Kish et al., 2024) 357

and a llama-3b (Geng and Liu, 2023) for reference. 358

DeciMamba aims to address Mamba’s context- 359

extension issue without requiring additional train- 360

ing. Although our approach differs slightly in terms 361

of settings and objectives, we still fine-tune Dec- 362

iMamba2.8b using the same data. Given the 2k 363

maximum positional encoding limit of llama-3b, 364

we conduct fine-tuning experiments using the sim- 365

ple linear positional interpolation technique (Chen 366

et al., 2023) to extend its context length. The data 367

construction process for Llama-3b is identical to 368

that of Mamba. Details can be found in A.1. Notice 369

that Mamba2.8b is the largest model we can obtain. 370

5.2 Evaluations 371

We conduct comparative analyses of our model 372

against baseline Mamba2.8b and DeciMamba2.8b 373

(both of finetuned and pretrained) on the widely 374

adopted LongBench benchmark (Bai et al., 2024) 375

and LEval benchmark (An et al., 2023), which en- 376

compass a diverse set of challenging real-world 377

long-context tasks. For consistency, the same 378

prompt templates and greedy decoding configu- 379

rations are employed across all models. 380

To provide a reference point, the performance of 381

a similarly sized transformer architecture (llama- 382

3b) is also included. Both the pretrained and fine- 383

tuned evaluations of Llama-3b utilize the linear 384

positional interpolation technique. 385

5.3 Results 386

Results on LongBench We choose the English 387

branch of LongBench because our training set only 388

contains English. Higher values across all indi- 389

cators are indicative of better performance. We 390

compare the performance of the models in detailed 391

tasks in Table 1 under the max length 6k corre- 392

sponding to the training setting. Here the hyper- 393

parameters for ReMamba are: s = 0, p = 0.18 394
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llama-3b (Pre) 4.07 10.33 3.93 43.17 6.96 7.74 1.78 7.13 3.49 32.14 9.98 15.0 30.65 13.57
llama-3b (SFT) 15.69 24.55 19.69 56.17 19.37 29.73 0.33 6.67 19.73 44.47 33.37 48.67 58.41 28.99

DeciMamba (Pre) 3.89 9.36 3.85 25.69 11.62 4.91 0.83 1.19 3.21 13.88 6.79 6.67 17.72 8.43
DeciMamba (SFT) 19.6 13.74 15.32 23.65 10.91 17.88 1.37 4.96 5.72 12.54 10.59 30.33 46.06 16.36
Mamba (Pre) 3.73 8.72 4.03 24.03 11.31 4.95 0.80 1.75 3.67 12.83 6.86 9.00 17.40 8.39
Mamba (SFT) 22.10 19.08 15.90 40.20 19.36 30.28 0.00 4.67 19.04 36.02 28.30 39.33 45.97 24.63
ReMamba (SFT) 21.18 19.67 20.56 48.21 18.86 26.39 3.21 6.83 16.76 40.40 33.65 48.67 57.73 27.86

Table 1: Performance on LongBench-E (English branch). “MultiQA” denotes MultiFieldQA , “PassCount” denotes
PassageCount, “PassRetrie.” denotes PassageRetrieval. Models are evaluated using a maximum length of 6K tokens,
matching their finetuning configurations. Here “(Pre)” means pretrained model. “(SFT)” means finetuned model.

Model Finetuned Tokens CodeU Coursera GSM QuALITY SFictio TOEFL Average

llama-3b (Pre) % 6k 0.0 24.71 3.0 27.23 32.81 17.47 17.54
llama-3b (SFT) ! 6k 1.11 19.62 7.0 24.26 57.03 27.14 22.69

DeciMamba (Pre) % 6k 2.22 24.71 0.0 25.25 24.6 16.73 15.59
DeciMamba (SFT) ! 6k 0.0 23.69 0.0 26.86 53.17 22.68 21.07
Mamba (Pre) % 6k 2.22 23.26 0.00 25.74 23.44 17.10 15.29
Mamba (SFT) ! 6k 4.44 26.16 1.00 27.72 50.78 23.05 22.19
ReMamba (SFT) ! 6k 2.22 22.97 3.00 25.74 58.59 30.48 23.83

Table 2: Model performance on closed-ended tasks of L-Eval. “Tokens” denotes the max length. “SFT” denotes
finetuned models. “Pre“ denotes pretrained models.

and ρ = 0.009. We will also show later that our395

model’s robustness to various of hyperparameter396

combinations. Table 1 shows that our ReMamba397

model improves the average scores on LongBench398

3.23 compared to the SFT Mamba baseline. Our399

model approaches the pretrained and finetuned400

transformer baseline. The results for DeciMamba401

indicate that it may not be sufficiently effective for402

tasks in LongBench or it may be sensitive to the403

choosing of hyperparameters.404

Results on LEval We compare the performance405

on the closed-ended tasks of L-Eval. The higher all406

indicators are, the better. A snap of detailed task407

scores for the maximum length of 6k is presented408

in Table 2. We can witness a 1.64 improvement409

on average scores compared to the SFT Mamba410

baseline. Here the hyperparameter setting for Re-411

Mamba is: s = 0, p = 0.20 and ρ = 0.05. The412

results for DeciMamba2.8b also show no signifi-413

cant improvements.414

5.4 Analyses and Discussions415

5.4.1 Ablation Study416

To verify the effectiveness of the modules we in-417

troduced, we conduct an ablation study by compar-418

ing ReMamba against three alternative methods: 1.419

Random Selection: which randomly select hidden 420

states as the compressed information according to 421

ρ. 2. Fix Selection: given the ρ we select enough 422

hidden states every k positions. The interval k is 423

calculated based on the compression ratio. 3. Mul- 424

tiplicative Selection: This variant just modifies the 425

selective adaptation process by directly multiplying 426

importance scores with the selected hidden states, 427

aligning with the approach proposed by Raposo 428

et al. (2024). All of those models are trained on the 429

same data as ReMamba. 430

We report the averaged scores on LongBench 431

across various maximum input lengths. As illus- 432

trated in Figure 3, both the fixed and random selec- 433

tion methods achieve performance comparable to 434

the finetuned Mamba baseline. Interestingly, these 435

methods even outperform Mamba at lengths of 5k 436

and 6k. This observation confirms our hypothesis 437

that Mamba models suffer from severe forgetting 438

issues. Even simple methods like dropping some 439

information appear beneficial. The performance of 440

the multiplicative selection method shows some im- 441

provements across varying input lengths. However, 442

the substantial performance gap observed with our 443

selective adaptation module demonstrates its crit- 444

ical role in the ReMamba model. The selective 445
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Figure 3: Ablation study about average scores on
LongBench varying max length from 2k to 9k.
“Mamba(SFT)” is the finetuned Mamba. “fix_select”
is the Fix Selection. “random_select” is the Random
Selection. “multiplicative_select” is the Multiplicative
Selection.

Figure 4: Average scores on LongBench varying max
length from 2k to 9k. The “Pre” means pretrained model
while “SFT” means finetuned model. The performance
of llama-3b (SFT) and llama-3b (Pre) is for reference,
using the max length of 6k.

adaptation module not only mitigates the forget-446

ting problem, but also significantly enhances the447

model’s ability to handle longer input sequences448

effectively.449

5.4.2 Varying Length450

To complement our main results, which employ a451

maximum sequence length of 6k tokens to align452

with training settings, we further evaluate the453

model performance at varying input lengths rang-454

ing from 2k to 9k tokens. This evaluation is con-455

ducted using the LongBench and L-Eval bench-456

marks. As depicted in Figure 4, our ReMamba con-457

sistently outperforms the baseline Mamba model458

across all tested context lengths on LongBench.459

Notably, the performance gap between our model460

and the baseline widens as the context length in-461

Figure 5: Average scores on L-Eval varying max length
from 2k to 9k. The performance of llama-3b (SFT) and
llama-3b (Pre) is for reference, using the max length of
6k.

Figure 6: Memory consumption comparisons during
inference are conducted with a 6144 input sequence and
a 1024 output sequence, using a batch size of 1. The
experiments are done on an A100 80GB GPU.

creases. Furthermore, our model extends the effi- 462

cient context length (the length at which greatest 463

performance is observed) to 6k tokens, compared 464

to 4k tokens for the finetuned Mamba baseline. In 465

Figure 5, we observe performance improvements 466

across all context lengths for our model on L-Eval. 467

5.4.3 Speed Performance and Memory 468

Expense 469

Our model introduces a single additional forward 470

pass during inference, resulting in small constant 471

memory consumption. We visualize the memory 472

consumption during inference with a 6k input se- 473

quence and a 1k output sequence, using a batch 474

size of 1 in Figure 6. The device we use is an 475

A100 80GB GPU. We observe that the encoding 476

process of Llama consumes a substantial amount 477

of memory and the KV cache increases gradually 478

during the decoding process, whereas ReMamba 479

incurs only a small additional memory cost. After 480

the encoding process, ReMamba’s memory con- 481
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Mamba2 (Pre) 2.18 4.76 1.54 23.46 7.71 2.88 0.60 1.47 1.17 14.97 2.07 8.33 10.60 6.29
Mamba2 (SFT) 13.73 19.97 15.05 41.78 19.52 25.20 0.67 5.67 13.44 38.79 33.95 49.67 43.54 24.69
ReMamba2 (SFT) 18.90 19.03 18.09 51.15 17.68 25.82 3.33 5.00 14.84 43.99 23.55 44.00 56.90 26.33

Table 3: The performance comparisons of LongBench-E (English Branch) on Mamba2. Mamba2 (Pre) means
pretrained Mamba2. Mamba2 (SFT) means finetuned Mamba2. ReMamba2 (SFT) means our model. All use the
setting of 6k max length.

Figure 7: Speed (tokens/second) performance compar-
isons. Here 1024_1024 means input 1024 tokens and
output 1024 tokens.

sumption stabilizes at a constant level, which is482

moderately higher than Mamba’s, corresponding483

to the additional parameters introduced to support484

the selection mechanism.485

To evaluate the speed performance, we varys the486

input sequence length from 1k to 8k tokens while487

fixing the output length at 1k tokens. For all the488

experiments, we use a batch size of 1 and measure489

the speed on an NVIDIA A100 80GB GPU. We490

compare the performance of ReMamba, Mamba,491

and the vanilla transformer model (llama-3b), as492

illustrated in Figure 7. The speed metric is given in493

tokens per second. Our experiments indicate that494

ReMamba operates at speeds comparable to the495

original baseline, maintaining a significant speed496

advantage over traditional transformers.497

5.4.4 Robustness varying choices of498

hyperparamters499

The aforementioned results were obtained using500

the hyperparameter settings s = 0, p = 0.18, and501

ρ = 0.009, which demonstrates relatively superior502

performance. In Figure 8, we also show the stabil-503

ity of our model by varying the hyperparameters p504

and ρ. For these experiments, the hyperparameter505

s is fixed at 0.506

Figure 8: Robustness of the ReMamba model with vary-
ing hyperparameters. The row label denotes the relative
ratio of the prompt to be compressed, corresponding to
parameter p. The column label indicates the compres-
sion ratio, corresponding to parameter ρ.

5.4.5 Generalizing to Mamba2 507

While our method is specifically tailored for 508

Mamba, we also conduct experiments to verify 509

its applicability to Mamba2. As is shown in Ta- 510

ble 3, we achieves 1.6 improved performance on 511

LongBench. More details can be found in A.2. 512

6 Conclusions 513

This study investigates the long-context efficiency 514

challenges posed by Mamba models, hypothesiz- 515

ing that distant information within these models 516

is subject to substantial degradation. In response, 517

we introduce ReMamba, a novel approach that 518

compresses and selectively preserves critical in- 519

formation during an initial forward pass. This 520

compressed information is subsequently integrated 521

into the state space during a second forward pass, 522

capitalizing on Mamba’s inherent selective mech- 523

anism. Notably, ReMamba incurs minimal com- 524

putational overhead while substantially enhancing 525

Mamba’s long-context performance, thereby offer- 526

ing a promising avenue for advancing the Mamba 527

model family. 528
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Limitations529

Although ReMamba improves the long-context per-530

formance of Mamba, it is unlikely that Mamba531

can outperform transformers as the context length532

increases, due to its fixed-size state space. Addi-533

tionally, ReMamba primarily relieve the loss of534

long-context information in Mamba through se-535

lective compression. A more promising approach536

would be to directly modify the state space update537

mechanism.538
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A Appendix 702

A.1 Training Details 703

During training, the ReMamba hyperparameter s 704

is fixed at 0. The hyperparameter p is randomly 705

sampled from the interval [0.1, 0.3], while ρ is 706

randomly sampled from the interval [0.05, 0.2]. 707

Most of DeciMamba’s experiments are con- 708

ducted on Mamba130m. The only configura- 709

tion for DeciMamba2.8 provided in the origi- 710

nal paper is decimating_layers = 22, decima- 711

tion_max_p_L_base = 4000, used for language 712

modelling tasks. Here we change the decima- 713

tion_max_p_L_base = 6000. For all other hyper- 714

parameters, we use the default settings: decima- 715

tion_min_seq_len = 20, decimation_beta = 0.5, 716

and decimation_type = “max_p“. The linear po- 717

sitional interpolation configurations for llama-3B 718

are: max_position_embeddings = 6144 and factor 719

= 3. The data construction process for Llama-3b 720

is identical to that of Mamba. We finetune all the 721

models for 1 epoch using DeepSpeed Zero Stage 3 722

on 8 A100-80GB GPUs. Other training details can 723

be found in the Table 4. 724

A.2 Mamba2 Details 725

The hyperparameters here are: s = 0, p = 0.25 726

and ρ = 0.05. The max length is still 6k. It is 727

noteworthy that Mamba2 exhibits nearly no perfor- 728

mance improvement over Mamba on LongBench, 729

suggesting potential limitations within the Mamba 730

model series. 731

A.3 Why compress from the start 732

Experimental results indicate that setting s = 0 is 733

the best. However, one might wonder about the 734

effectiveness of compressing in the middle of the 735

sequence. We conduct additional analytical studies 736

to explore the impact of compressing the input 737

sequence from different starting positions. 738

We train a model utilizing s sampled uniformly 739

from the interval [0.1, 0.3] during the training pro- 740

cess. Subsequently, we evaluate its performance 741
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Model dataset epoch optimizer learning scheduler learning rate warm up steps LoRA rank

llama2-3b (SFT) LongOrca 1 AdamW linear 2e-5 0 32

DeciMamba (SFT) LongOrca 1 AdamW linear 2e-5 0 32
Mamba (SFT) LongOrca 1 AdamW linear 2e-5 0 32
ReMamba (SFT) LongOrca 1 AdamW cosine 2e-5 0 32
Mamba2 (SFT) LongOrca 1 AdamW cosine 2e-5 0 32
ReMamba2 (SFT) LongOrca 1 AdamW cosine 2e-5 0 32

Table 4: Model training details

Model ρ p s model_type average

ReMamba 0.009 0.18 0.00 ReMamba 27.86
middle0.0 0.009 0.18 0.00 middle 25.96
middle0.1 0.009 0.18 0.10 middle 26.45
middle0.2 0.009 0.18 0.20 middle 26.86
middle0.3 0.009 0.18 0.30 middle 26.56
middle0.4 0.009 0.18 0.40 middle 26.43
special 0.009 1.00 1.00 special 15.76

Table 5: Performance of different model variants on
LongBench. Parameters s, p, and ρ represent the rel-
ative start position, relative length to compress, and
compression ratio, respectively. In this context, the “Re-
Mamba” model type constitutes our optimal model. The
“middle” type corresponds to the model variant where
s is non-zero. The “special” model variant compresses
the entire prompt using ρ = 0.009 and subsequently
appends the compressed hidden states to the end of the
original prompt in the second stage.

on LongBench under conditions identical to those742

of the ReMamba model, employing a maximum743

length of 6k tokens, p = 0.18, and ρ = 0.009. We744

evaluate the average scores ranging s from 0 to 0.4.745

Additionally, we train a special model variant that746

compresses the entire prompt based on ρ = 0.009747

and appends the compressed hidden states to the748

end of the original prompt in the second stage.749

Table 5 presents the results of these experiments.750

We observe a performance degradation when the751

compression is applied in the middle of the se-752

quence. The special model variant performs even753

worse than the finetuned Mamba baseline.754

This degradation can be explained by the dis-755

ruption caused to the causal language modeling756

nature of the Mamba model. When compressed757

information is integrated into the initial position,758

the subsequent language modeling process can pro-759

ceed without modification, effectively treating the760

compressed data as a specialized non-zero initial761

state. Conversely, inserting those compressed hid-762

den states as tokens within the sequence disrupts763

the causal language modeling paradigm, which as-764

sumes complete sentences as input. This incon-765

gruity hinders the model’s ability to maintain a 766

coherent state space and can lead to performance 767

degradation. Among the tested models, the spe- 768

cial model variant that appends compressed hidden 769

states to the end of the original prompt exhibits 770

the most pronounced negative impact due to the 771

significant disruption of the model’s expected input 772

structure. 773

Despite these challenges, the model that com- 774

presses in the middle still outperforms the fine- 775

tuned Mamba baseline. This demonstrates that our 776

method exhibits apparent effectiveness. 777
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