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Abstract

Modern image generation (IG) models have been shown to capture rich semantics
valuable for image understanding (IU) tasks. However, the potential of IU mod-
els to improve IG performance remains uncharted. We address this issue using a
token-based IG framework, which relies on effective tokenizers to project images
into token sequences. Currently, pixel reconstruction (e.g., VQGAN) dominates
the training objective for image tokenizers. In contrast, our approach adopts the
feature reconstruction objective, where tokenizers are trained by distilling knowl-
edge from pretrained IU encoders. Comprehensive comparisons indicate that to-
kenizers with strong IU capabilities achieve superior IG performance across a
variety of metrics, datasets, tasks, and proposal networks. Notably, VQ-KDCLIP
achieves 4.10 FID on ImageNet-1k (IN-1k). Visualization suggests that the su-
periority of VQ-KD can be partly attributed to the rich semantics within the VQ-
KD codebook. We further introduce a straightforward pipeline to directly trans-
form IU encoders into tokenizers, demonstrating exceptional effectiveness for IG
tasks. These discoveries may energize further exploration into image tokenizer
research and inspire the community to reassess the relationship between IU and
IG. The code is released at https://github.com/magic-research/vector_
quantization.

1 Introduction

Image understanding (IU) and image generation (IG) have been the core pursuits of computer vision
research for a long time. Thanks to the progress in generative models [35, 37, 15, 36, 48] and
network architectures [43, 9], IG has witnessed remarkable advancements in recent years. These
advancements spurred extensive research on leveraging powerful IG models for IU tasks (Fig. 1).
Studies have shown that IG models can benefit IU tasks in various ways, including data augmentation
through synthetic data generation [51, 46, 45], improved representation learning [28, 16, 52], and
utilizing intermediate features from IG models for solving perception tasks [53, 26]. However, the
reciprocal question remains largely uncharted: how might IU models aid IG tasks?

The primary focus of this paper lies in the AutoRegressive (AR) IG framework, which is gaining
considerable attention for its excellence in generating high-quality images and videos [48, 50, 20].
This framework operates in a two-stage process. The first stage learns a tokenizer to map images
into sequences of discrete tokens. Subsequently, the second stage trains a proposal network to
model the token sequences. As underlined by prior research [49, 4], the quality of the tokenizers
significantly influences overall IG performance. Meanwhile, tokenizers and IU encoders adhere
to a similar structure as they both aim to map images into latent representations, either discrete
or continuous. As a result, the token-based IG framework provides an optimal environment for
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Figure 1: Extensive studies have tried to adopt IG models for IU. However, few attempts have been
made to use IU models in IG.

investigating the relationship between IU and IG. Through comprehensive studies, we demonstrate
that existing IU models from representation learning can be useful in generative models, even if they
are not specifically designed for the IG task.

Our study involves training three components within the AR framework: tokenizer, decoder, and
proposal network. Traditionally, pixel reconstruction has been the dominant objective for training
tokenizers, such as VQGAN [10] and FSQ [25]. To the best of our knowledge, we are the first to sys-
tematically demonstrate that feature reconstruction (VQ-KD [27]) achieves better IG performance. 1

This approach distills knowledge from pretrained IU encoders to tokenizers. Therefore, the training
strategy of the IU encoder is crucial for the performance of the tokenizer. In this regard, we inves-
tigate four representative IU encoders: ViT [9], CLIP [29], DINO [3], and MAE [13]. Following
VQGAN [10], we train decoders to restore pixel values from discrete tokens, and proposal networks
(AR or NAR) that can model the distribution of image tokens. The models are then evaluated using
various metrics, including codebook usage, Fréchet Inception Distance (FID) [14], Inception Score
(IS) [34], perplexity (PPL), etc.

Initially, we compare the above tokenizers on IN-1k for class-conditional IG. VQ-KD achieves 4.10
FIDAR, outperforming VQGAN (15.78 FIDAR) by a large margin. FSQ experiments confirm that the
superiority of VQ-KD is not solely attributable to the specific quantization operation or high code-
book usage. More generally, VQ-KD consistently outperforms across different proposal networks,
datasets, and tasks.

We analyze VQ-KD from multiple perspectives. By visualizing the codebook, we discover that
codes from VQ-KD carry more semantics than VQGAN, which makes them easier to model and
subsequently improve the IG quality. Building upon this insight, we propose a straightforward
pipeline to efficiently transform IU encoders into tokenizers, outperforming VQ-KD on the MS-
COCO dataset. We also find that tokenizers with weaker IU capabilities require larger proposal
networks for effective AR modeling and show less robustness to variations in the training images.
Finally, we conduct qualitative analysis to present the visual results.

In sum, the key insights from our study include the following: 1) This research is the first to demon-
strate that IU models can substantially enhance IG through VQ-KD; 2) Tokenizers with strong IU
capabilities consistently outperform conventional VQGAN-based methods across various metrics,
datasets, tasks, and network architectures; 3) The VQ-KD codebook encapsulates more semantics
than VQGAN, contributing to the superiority of VQ-KD in IG.

We believe these findings can benefit future research on image tokenizers and provoke further dis-
cussion on the relationship between IU and IG.

2 Related Work

Image Tokenization. Vector Quantization (VQ) [11] is originally developed for data compression.
To circumvent posterior collapse in the VAE [19] framework, VQ-VAE [41] adopts VQ for image
tokenization. Subsequently, VQGAN [10] introduces adversarial and perceptual losses to enhance
the quality of the generated images.

1VQ-KD was initially proposed for image pretraining.
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Figure 2: The token-based IG framework. Solid and dashed lines represent training and inference
pipelines, respectively. During training, the tokenizer T tokenizes an image I into discrete codes
z. A proposal network P is trained to model the distribution p(z), while a decoder D learns to
reconstruct I. During inference, we sample codes ẑ from P , which guides D to perform generation.

Vanilla VQGAN suffers from limitations like low codebook usage, limited semantic representa-
tion ability, and the trade-off between modeling efficiency and image quality. To address these
challenges, researchers have focused on improving the codebook. ViT-VQGAN [47] adopts a ViT-
based [9] autoencoder to create more expressive code vectors. SeQ-GAN [12] improves the per-
ceptual loss and decoder to balance between semantic compression and detail preservation. SQ-
VAE [40] improves VQ-VAE with stochastic quantization and a trainable posterior categorical dis-
tribution. VQ-WAE [44] builds upon SQ-VAE by encouraging the discrete representation to be a
uniform distribution via a Wasserstein distance. HQ-VAE [39] employs random re-initialization of
inactive code vectors. CVQ-VAE [55] selects encoded features as anchors to update dead codes.
VQ-KD [27] adopts knowledge distillation instead of image reconstruction as the objective to train
VQ-VAE. LFQ [49] and FSQ [25] adopt bounded scalar quantization techniques from neural com-
pression to harness the potential of extra-large codebooks.

Furthermore, several works explore the potential of multiple codebooks. VQ-VAE-2 [32] extends
VQ-VAE to a multi-scale hierarchical organization. RQ-VAE [21] and MoVQ [54] aim to represent
each feature as a stack of tokens, where RQ-VAE adopts an iterative way to factorize features into a
series of residuals and MoVQ models features across multiple channels via specialized modulation.

Token-based Image Generation. Inspired by the success of GPT [30, 31, 2], VQ-VAE and most
of its derivative works [10, 54] adopt AR transformers to model the token sequence. This approach
leverages techniques from text generation to enhance IG performance. However, the decoding
time of AR models scales linearly with the length of the token sequence. To accelerate decoding,
MaskGIT [5] introduces a bidirectional transformer, referred to as the NAR proposal network.

Given the versatility of token-based modeling, both AR and NAR proposal networks can be easily
extended to conditional IG scenarios. For instance, VQGAN uses a class token as the condition in
its AR proposal network for class-conditional IG. With an NAR proposal network, MUSE [4] adopts
text embeddings to predict masked image tokens in Text-to-Image generation.

3 Token-Based Image Generation

We start with the two-stage IG framework in Sec. 3.1. Subsequently, Sec. 3.2 details the architecture
and training protocol for the tokenizers under consideration. Sec. 3.3 explains the evaluation bench-
mark. Sec. 3.4 further outlines our main observations derived from the IN-1k experiments. Lastly,
we validate the observations under different settings in Sec. 3.5.

3.1 Two-Stage Image Generation

We illustrate the two-stage IG framework in Fig. 2. Given an image I ∈ RH×W×3, the encoder
E converts this image into a feature map x ∈ Rh×w×d, where (h,w) = (H/f,W/f) and f is a
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Figure 3: The architecture and training objective of different image tokenizers.

downsample factor. Let a codebook C be a set of N code vectors {ci}Ni=1 ∈ RN×d, where each
code vector ci ∈ Rd corresponds to a specific code i. A quantizer Q then maps x into a sequence
of codes z = {zi}Li=1, where L = h × w defines the sequence length and zi is an integer that
falls within the range [1, N ]. Let czi denote the code vector that corresponds to code zi. Similarly,
C(z) = {czi}Li=1 ∈ RL×d represents a sequence of code vectors associated with the code sequence
z. The encoder E , quantizer Q, and codebook C collectively form an image tokenizer T .

The proposal network P models the distribution over z, where the distribution is denoted as
p(z). Early proposal networks are implemented as an AR transformer, which sequentially models
p(zi|z1:i−1) and formulates p(z) as

∏h×w
i=1 p(zi|z1:i−1). While the AR transformers can be trained

in parallel, it has to sequentially decode z during inference, which renders it inefficient. Therefore,
NAR proposal networks are being prevalent [5], which typically adopt bidirectional transformers to
model z. We denote the two types of proposal networks as PAR and PNAR, respectively.

Finally, a decoder D maps the code vectors to the pixel space. In training, D takes C(z) as input
and learns to reconstruct the original image I as Î ∈ RH×W×3. In inference, a sequence of codes ẑ
is sampled from p(z), translated to C(ẑ), and then fed into D to generate an image Ĩ.

3.2 Image Tokenizers

In this paper, we focus on three types of image tokenizers: VQGAN [10], FSQ [25], and VQ-
KD [27].

Let xi,j ∈ Rd be a vector in the feature map x. As shown in Fig. 3a, to quantize xi,j , the VQGAN
tokenizer looks up the codebook C for the closest code vector in terms of Euclidean distance:

zi,j = argmin
z

∥xi,j − cz∥2. (1)

Since the quantization process is non-differentiable, VQGAN adopts the Straight-Through Estimator
(STE) [1] to optimize the encoder E , which copies gradients from C(z) to x. As a result, the
codebook C receives no gradient. To optimize C, VQGAN introduces a quantization loss LQ:

LQ = ∥sg[x]−C(z)∥22 + β∥x− sg[C(z)]∥22, (2)

where sg[·] denotes the stop-gradient operation and β is the loss weight. The first term is the code-
book loss, which optimizes the codebook. The second term is the commitment loss to make sure the
encoder E commits to a code vector [41]. Therefore, the overall loss for VQGAN is defined as:

L = LQ + Lrec(I, Î), (3)

where Lrec is the reconstruction loss between image I and reconstruction Î, which includes ℓ1 loss,
perceptual loss, and adversarial loss.

Based on VQGAN, FSQ introduces a simpler image tokenizer, without the need for codebook
lookup and quantization loss. As shown in Fig. 3b, FSQ adopts finite scalar quantization to quantize
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Table 1: Comparison between image tokenizers on IN-1k.

Tokenizer T Codebook
Usage (%) rFID ↓ PAR PNAR

PPL ↓ FIDAR ↓ ISAR FIDNAR ↓ ISNAR

VQGAN 4.9 5.09 116.75 24.11 39.52 20.03 48.30
FSQ 100.0 4.96 791.56 40.17 26.40 29.78 33.63

VQ-KDCLIP 100.0 4.96 53.73 11.78 128.18 9.51 121.33
VQ-KDViT 100.0 3.69 89.30 11.40 107.56 8.45 108.75
VQ-KDDINO 100.0 3.41 74.07 13.15 80.89 10.21 91.39
VQ-KDMAE 100.0 4.93 280.06 26.85 40.03 16.11 59.05

each channel of xi,j into a finite set of scalars. Since the quantization process involves no trainable
parameter, FSQ can be trained with solely the reconstruction loss Lrec(I, Î).

Unlike VQGAN and FSQ, which are designed for IG, VQ-KD was originally presented in BEiT v2
to provide supervision for IU models. As shown in Fig. 3c, VQ-KD is trained to reconstruct the
feature map xT encoded by a pretrained teacher T ′

. Formally, the reconstruction loss is defined as:

Lrec = − cos
(
D(C(z)), xT ) , (4)

where cos(·, ·) represents cosine similarity.

In this study, we examine VQ-KD using four types of pretrained teachers, including fully-
supervised, text-supervised, contrastive, and Masked Image Modeling (MIM). We use VQ-KDCLIP
and VQ-KDDINO to represent VQ-KD tokenizers trained with CLIP [29] and DINO [3] teachers,
respectively. VQ-KDMAE and VQ-KDViT represent tokenizers trained with MAE [13] and ViT [9]
teachers. The latter two teachers are pretrained on IN-1k utilizing a ViT-B/16 architecture.

3.3 Benchmark

We detail how we fairly compare different tokenizers for token-based IG here.

For each tokenizer, we train a proposal network P and a decoder D to constitute an image generator.
In training, the tokenizer is frozen to ensure fairness. Thus, P and D can be trained in parallel. We
follow VQGAN [10] to train the AR proposal network and the decoder. The NAR proposal network
is trained following MAGE [22]. Implementation details can be found in Appendix B.

Our benchmark adopts various metrics to comprehensively evaluate the image tokenizers. Given
an image tokenizer, we assess the effectiveness of its encoding process by evaluating the codebook
usage. To assess the generative capabilities of the image tokenizers, we evaluate IS [34] and FID [14]
on the generated images Ĩ. We assess the reconstruction capabilities of the image tokenizers by
reporting the reconstruction FID (rFID). In addition, we present the PPL scores to appraise the AR
modeling proficiency of the image tokenizers. A low PPL score implies that PAR easily models z.
Details about the evaluation metrics can be found in Appendix C.

3.4 Main Observation

We evaluate the class-conditional IG performance of VQGAN, FSQ, and VQ-KD tokenizers on
IN-1k. The results in Tab. 1 leads to the following observations.

VQ-KD significantly enhances generation quality over VQGAN. Equipped with either AR or
NAR proposal networks, VQ-KD tokenizers consistently outperform VQGAN and FSQ, as evi-
denced by superior FID and IS metrics. In particular, VQ-KDViT attains an FIDAR of 11.40 and an
FIDNAR of 8.45, both less than half of those from VQGAN (24.11 FIDAR and 20.03 FIDNAR).

Tab. 2 presents a system-level comparison between VQ-KDCLIP and other class-conditional IG mod-
els on IN-1k at a resolution of 256× 256. With a 1.4B AR proposal network, VQ-KDCLIP achieves
an FID of 4.10, surpassing prior AR, NAR, and several VQ-based diffusion models.
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Table 2: System level comparison on IN-1k.

Model Architecture #params FID ↓
VQGAN [10] AR 1.4B 15.78
RQ-VAE [21] AR 1.4B 8.71

ViT-VQGAN [47] AR 1.7B 5.30

MoVQ [54] NAR 307M 8.78
MaskGIT [5] NAR 227M 6.18

FSQ [25] NAR 227M 4.53

LDM-8-G [33] Diffusion 506M 7.76
CVQ-VAE [8] Diffusion 400M 6.87

VQ-KDCLIP [27] (ours) AR 1.4B 4.10

The superiority of VQ-KD is irrel-
evant to the quantization operation
and codebook usage. Both VQ-KDCLIP
and FSQ record 100.0% codebook usage
and 4.96 rFID, but VQ-KDCLIP achieves
lower FIDAR and higher ISAR scores.
Moreover, VQ-KD proves robustness to
high codebook usage, with the PPL met-
ric of most VQ-KD tokenizers surpass-
ing VQGAN. In contrast, FSQ lags be-
hind VQGAN in terms of PPL, suggest-
ing that the high codebook usage of FSQ
hinders PAR from modeling the code se-
quence z. As demonstrated in Sec. 4.1,
this difference is likely due to the rich
semantics in the VQ-KD feature map.

Tokenizers with stronger semantic understanding tend to deliver superior IG performance.
Considering the FID and IS metrics, we find that VQ-KD tokenizers with supervised teachers
(CLIP and ViT) consistently surpass those with unsupervised teachers (DINO and MAE). While
VQ-KDDINO achieves the lowest rFID and PPL, its 13.15 FIDAR is worse than VQ-KDCLIP (11.78)
and VQ-KDViT (11.40). This trend can be attributed to the superior capability of supervised models
in capturing semantics compared to the unsupervised ones.

3.5 Further Verification

The superiority of VQ-KD holds across proposal networks. As seen in Tab. 1, all VQ-KD tok-
enizers surpass VQGAN and FSQ in the FIDNAR and ISNAR metrics. In particular, VQ-KDViT scores
the lowest FIDNAR at 8.45 and VQ-KDCLIP scores the highest ISNAR at 121.33. In contrast, VQ-
GAN only achieves an FIDNAR of 20.03 and an ISNAR of 48.30. It is also worth mentioning that
VQ-KDCLIP and VQ-KDViT show slightly better performance than VQ-KDDINO and VQ-KDMAE,
further supporting our conclusion that superior semantic understanding in supervised models plays
a significant role in enhancing the quality of IG.

Table 3: Comparison between image tokenizers on MS-COCO. T2I experiments are conducted on
the MS-COCO Captions dataset.

Tokenizer T Codebook
Usage (%) rFID ↓ PAR FIDT2I ↓

PPL ↓ FIDAR ↓
VQGAN 2.4 16.21 47.89 38.43 24.11
FSQ 100.0 4.62 1040.02 44.64 23.36

VQ-KDCLIP 82.2 5.48 72.31 29.80 11.17
VQ-KDViT 100.0 3.70 117.10 23.51 15.49
VQ-KDDINO 100.0 2.69 129.93 17.55 11.50
VQ-KDMAE 100.0 3.51 317.98 44.01 15.60

The superiority of VQ-KD holds across datasets. We conduct unconditional IG experiments on
the MS-COCO dataset [23], which contains images of greater complexity than IN-1k. As demon-
strated in Tab. 3, VQ-KDDINO achieves a FIDAR metric of 17.55, significantly outperforming VQ-
GAN (38.43) and FSQ (44.64). Since the ViT teacher in VQ-KDViT is pretrained on IN-1k, the rFID
and FIDAR metrics of VQ-KDViT are slightly inferior to VQ-KDDINO. Note that the PPL metric of
VQGAN is misleadingly favorable, due to its low codebook usage (2.4%).

The superiority of VQ-KD holds across tasks. Text-to-Image (T2I) experiments are conducted on
the MS-COCO Captions dataset [6]. As shown in Tab. 3, the FIDT2I metric of VQ-KD tokenizers
range from 11.17 to 15.60, while VQGAN and FSQ only achieves 24.11 and 23.36, respectively.
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4 Analysis

In this section, we analyze tokenizers based on feature reconstruction from various perspectives.

4.1 Codebook Visualization

We delve into the superiority of VQ-KD by visualizing its codebook. From IN-1k, we randomly
choose four categories: golden retriever, pirate ship, valley, and sea anemone. For each image
belonging to these categories, we deploy t-SNE [42] to project the feature map x and the code
vectors C(z) into a two-dimensional space. x is colored according to the image category and C(z)
is illustrated in black. As depicted in Fig. 4, the feature space of VQ-KD shows superior organization
compared to VQGAN. In the VQ-KD feature space, x from the same category are grouped together.
This implies that each code in the VQ-KD codebook conveys clear semantics. As codes with similar
semantics are likely to present concurrently in an image, it becomes easier for the proposal network
to model the code sequence z. Conversely, each code in the VQGAN codebook is shared by multiple
categories, resulting in semantics ambiguity. Hence, as illustrated in Tab. 1, the PPL metric for
VQGAN is higher than VQ-KD, even though its codebook usage is considerably lower.

Figure 4: Codebook visualization of VQGAN and VQ-KDViT. Best viewed in color.

4.2 Clustering Pretrained Models as Tokenizers

To better harness the semantics in IU encoders, we propose a straightforward pipeline that transforms
IU encoders into tokenizers via feature clustering. Given a pretrained IU model T ′

, we employ it
to encode the feature map xT and subsequently utilize a clustering approach [55] to acquire N

clusters. The cluster centroids constitute a codebook C. T ′
remains frozen during training, which

significantly accelerates the training process. As shown in Tab. 4, ClusterViT presents 13.40 FIDAR,
10.58 FIDT2I, and 0.245 CLIP score on MS-COCO, outperforming all tokenizers in Tab. 3. This
suggests that pretrained models with simple feature clustering can become good tokenizers. How-
ever, the cluster-based tokenizers behave worse in terms of rFID, since they encode little appearance
detail in xT , which is essential for exact reconstruction. As a result, their FID and IS metrics on
IN-1k are marginally weaker than those of their VQ-KD counterparts.

Table 4: Performance of cluster-based tokenizers.

Encoder E IN-1k MS-COCO

rFID ↓ FIDAR ↓ FIDNAR ↓ rFID ↓ FIDAR ↓ FIDT2I ↓
CLIP 9.13 14.81 12.83 7.28 20.03 12.82
ViT 4.78 11.87 8.59 4.59 13.40 10.58
DINO 5.16 14.53 11.23 4.02 25.35 7.66
MAE 15.15 38.72 34.26 10.08 62.17 18.85
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4.3 Scaling Up the Proposal Network

Table 5: AR modeling with a large-scale proposal net-
work or strong data augmentation.

Tokenizer T GPT-2 XL Strong Aug.

FIDAR ↓ ISAR FIDAR ↓ ISAR

VQGAN 17.13 59.19 32.76 26.76
FSQ 25.87 49.59 52.17 18.09

VQ-KDCLIP 11.27 150.63 15.24 90.41
VQ-KDViT 9.23 146.00 13.32 81.44
VQ-KDDINO 9.50 120.26 19.39 52.74
VQ-KDMAE 17.11 69.03 36.63 28.49

ClusterCLIP 14.00 110.26 17.22 83.72

We examine the IG performance of to-
kenizers with a large-scale proposal net-
work. Following VQGAN, we adopt GPT-
2 XL as PAR, which comes with 1.4B pa-
rameters. In line with Tab. 1, VQ-KDViT
leads with 9.23 FIDAR, while VQ-KDCLIP
achieves the highest IS metric at 150.63.
Upon comparing with Tab. 1, tokenizers
with stronger IU capabilities exhibit less
improvement in the FIDAR metric. For in-
stance, VQ-KDMAE improves significantly
from 26.85 to 17.11, while VQ-KDCLIP re-
veals a marginal enhancement from 11.78
to 11.27. This suggests that a small-
scale PAR is sufficient for tokenizers with
strong IU capabilities, whereas those with
weaker IU abilities benefit from a large-
scale PAR.

4.4 Influence of Strong Data Augmentation

We investigate the impact of strong data augmentation on the AR modeling performance of tok-
enizers. Specifically, we employed a strong random crop, where the crop scale ranges from 0.08 to
1.0, introducing greater variability into the training data. As shown in Tab. 5, all tokenizers exhibit
worse FIDAR metrics than their counterparts in Tab. 1. Interestingly, tokenizers with stronger IU ca-
pabilities demonstrate greater robustness to the strong data augmentation. For instance, VQ-KDViT
experiences a minor increase in FIDAR of just 1.92 (from 11.40 to 13.32), whilst VQ-KDMAE records
a considerable leap of 9.78 (from 26.85 to 36.63).

4.5 Large Teacher Models in VQ-KD

Table 6: Effect of different teachers in VQ-KD.

OpenCLIP rFID ↓ PPL ↓ FIDAR ↓ ISAR

ViT-L/14 4.03 80.56 10.31 146.21
ViT-H/14 3.60 97.32 9.64 161.13
ViT-G/14 3.80 77.79 8.70 152.71

We incorporate OpenCLIP [17] models of
varying sizes as teacher models to train
the VQ-KD tokenizers. As illustrated in
Tab. 6, the FIDAR metric sees a reduc-
tion from 10.31 to 8.70 when the size of
the OpenCLIP model escalates from ViT-
L/14 to ViT-G/14. Given that larger Open-
CLIP models inherently possess stronger
IU capabilities, these findings further cor-
roborate the superiority of image tokeniz-
ers with more potent IU capabilities.

Table 7: Effect of codebook size and dimension. Experiments are conducted on VQ-KDCLIP.

(a) Codebook size.

Codebook C rFID ↓ FIDAR ↓ ISAR
Size (log2) Usage (%)

10 100.0 6.59 11.65 114.90
11 100.0 5.99 10.98 119.72
12 100.0 5.64 11.71 123.42
13 100.0 4.96 11.78 128.18
14 93.7 4.53 11.61 131.51

(b) Codebook dimension.

Codebook C rFID ↓ FIDAR ↓ ISAR
Dim Usage (%)

16 100.0 4.94 12.19 124.71
32 100.0 4.96 11.78 128.18
64 97.4 4.64 11.00 126.60

128 89.6 5.03 10.50 119.78
256 48.7 6.80 12.08 103.07

8



O
ri

g
in

a
l

V
Q

G
A

N
F
S

Q
V

Q
-K

D
C

lu
st

er

Figure 5: Reconstruction results of different image tokenizers.

4.6 Codebook Size and Dimension

The size and dimension of the codebook exert a significant influence on the IG performance of
tokenizers [10, 47]. Tab. 7a showcases the performance of VQ-KDCLIP with varying codebook
sizes. Large codebooks aid the tokenizers in representing fine-grained semantics, contributing to a
consistent decrease in the rFID metric from 6.59 to 4.53. The IS metric also shows favor towards
larger codebooks, with size 214 leading to the highest IS metric of 131.51. However, choosing the
correct code from a large codebook is harder than from a small codebook, hindering PAR from
achieving lower FID scores with larger codebooks.

Tab. 7b demonstrates the influence of codebook dimension. High-dimensional codes carry more
information but lead to lower codebook usage. As a result, the rFID metric initially drops from 4.96
to 4.64, then increases drastically to 6.80. Similar to Tab. 7a, the FID and IS metrics favor different
codebook dimensions. FID favors 128-dimensional codebooks, where codebook usage is relatively
low. In contrast, IS favors 32-dimensional codebooks, possibly due to a superior diversity.

4.7 Qualitative Analysis

The reconstruction quality of various tokenizers is demonstrated in Fig. 5. Original images are
displayed in the first row. Regions where VQGAN and FSQ fail to reconstruct are highlighted with
red boxes. In contrast, VQ-KD reconstructions are visually more accurate. Since the IU encoder in
Cluster emphasizes encoding semantics over visual details, Cluster fails to preserve all visual details
during reconstruction. Nonetheless, the reconstruction results of Cluster still appear more natural
than VQGANand FSQ, especially in the highlighted areas. Fig. 6 and Fig. 7 further illustrates the AR
and NAR generation results, showcasing the superior visual performance of VQ-KD and Cluster.
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Figure 6: Class-conditional AR generation results of different image tokenizers.
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Figure 7: Unconditional NAR generation results of different image tokenizers.

5 Conclusion

In this paper, we show that image understanding (IU) models can be useful in image generation
(IG). Through comprehensive studies, observe that the VQ-KD tokenizers significantly enhance
generation quality over VQGAN, irrelevant of the quantization operation and codebook utilization.
Within the VQ-KD tokenizers, stronger IU capabilities tends to deliver superior IG performance.
Further verification shows that the superiority of VQ-KD holds across proposal networks, datasets,
and tasks. Lastly, we analyze VQ-KD from multiple angles, including clustering pretrained models
as tokenizers, scaling up the proposal network, influence of strong data augmentation, large teacher
models in VQ-KD, and codebook size and dimensions.
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A Datasets

The experiments are conducted on two image datasets: ImageNet-1k (IN-1k) [7] and MS-
COCO [23]. The IN-1k dataset contains approximately 1.28 million training images and 50, 000
validation images across 1, 000 diverse categories. The MS-COCO dataset comprises 82, 783 im-
ages for training and 40, 504 for validation. Each image is annotated with several captions.

For a given image, we first resize its shorter side to s pixels, where s symbolizes the input size.
Subsequently, a central crop is performed to derive an image fragment sized s × s pixels. Our
default augmentation strategy incorporates a random crop (between 0.8 and 1.0) partnered with
random horizontal flipping.

B Implementation Details

The image tokenizers under consideration generate token sequences of length 256 upon a 256×256
input image. All tokenizers remain frozen throughout the training of the decoder and the proposal
networks. Experiments are performed using 8 A100 80GB GPUs. The approximate training times
for the VQ-KD tokenizer is around 30 hours, the decoder requires roughly 68 hours, while the AR
proposal network and NAR proposal network necessitate about 29 hours and 72 hours, respectively.
In total, a single experiment takes approximately 200 hours training.

The CNN-based VQGAN tokenizers, with 27.9M parameters, are trained following the identical
procedure employed for decoders. The codebook dimension of VQGAN is 256. FSQ levels L are
set to (8, 8, 5, 5, 5), equivalent to codebook size 8, 000.

As per BEiT v2 [27], an AdamW optimizer is utilized to train the VQ-KD tokenizers. The learning
rate warms up linearly to 10−4 for 25, 000 steps, subsequently decaying to 10−5 under a cosine
schedule. Unless specifically stated, VQ-KD tokenizer is trained with an input size of 224 × 224
and codebook dimension of 32.

VQGAN [10] is adopted for training both the decoder and the AR proposal networks. Both D and
PAR training span 260, 000 steps with a collective batch size of 96 for IN-1k and 24 for MS-COCO.
The decoder is a CNN-based VQGAN decoder, consisting of 40.5M parameters. The decoders
utilize the Adam [18] optimizer with learning rates set at 5.4 × 10−5, β1 = 0.5, and β2 = 0.9.
Their discriminators are also trained via Adam optimizer, employing learning rates of 4.32× 10−4,
while keeping the β constants identical. Subsequent training of AR proposal networks relies on the
AdamW [24] optimizer with β1 = 0.9, β2 = 0.98, and a 0.2 weight decay. An initial learning rate
of 10−4 is set, after which it decays to 0 on a cosine schedule. The AR proposal network is a GPT-2
Medium [31], with 335M parameters.

We follow MAGE [22] for training NAR proposal networks. PNAR is trained for 300 epochs with a
collective batch size of 512 on ImageNet-1k. NAR proposal networks are trained with the AdamW
optimizer with β1 = 0.9, β2 = 0.95, and a 0.05 weight decay. The learning rate warms up linearly
to 3 × 10−4 throughout 10 epochs before decaying to 0 following a cosine schedule. The encoder
of PNAR is a ViT-B/16, with 86M parameters.

C Evaluation

Codebook usage is defined as the proportion of codes from the codebook that have been used at
least once when encoding the dataset. A low value for codebook usage might be an indication of the
‘codebook collapse’ issue.

IS provides a measure of both the fidelity and diversity of Ĩ. However, IS significantly relies on the
classification capabilities of a pretrained Inception-v3 model [38]. Complex images are likely to be
misinterpreted as lacking fidelity by IS. Therefore, we limit the use of IS to IN-1k experiments only.

To circumvent the limitations of IS, FID computes the statistical distance in the Inception-v3 feature
space between the real images I and the generated images Ĩ. A lower FID score indicates that Ĩ is
statistically similar to I.
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rFID is defined as the FID between I and their reconstructed counterparts Î. Obtaining a low rFID
score requires that the image tokenizer encode sufficient visual details within the codes C(z) to
enable accurate reconstruction by the decoder.

The PPL score is defined as:

PPL = exp

(
− 1

L

L∑
i=1

log p(zi|z1:i−1)

)
, (5)

where z denotes a sequence of codes offered by the tokenizer, L represents the length of z, and p(z)
embodies the distribution modeled by the AR proposal network PAR.

Both reconstruction and AR modeling serve as two pivotal capabilities in an image generator. We
anticipate that these metrics will lead to a more thorough insight into the generative capacities of
image tokenizers.

D Limitations

The VQ-KD tokenizers are designed to mimic the IU encoders, yielding superior quantitative results
compared to traditional tokenizers like the VQGAN and FSQ. Nonetheless, qualitative analysis
suggest that the VQ-KD may modify visual details during the pixel reformation process, thereby
posing challenges for tasks such as image editing.

E Broader Impacts

This paper explores the question how might image understanding (IU) models aid image generation
(IG) tasks. We envision that our findings will motivate research on image tokenizers and prompt the
community to reconsider the correlation between IU and IG.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of the paper are summarized in the last paragraph
of sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work is discussed in appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The model architecture is demonstrated in sec. 3.1. The implementation
details are illustrated in appendix B. The code is released at https://github.com/
magic-research/vector_quantization.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is released at https://github.com/magic-research/vector_
quantization. The data used are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Implementation details are illustrated in appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: Given the massive amount of experiments conducted in this paper, providing
error bars would be computationally prohibitive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are described in appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Potential societal impacts of the work are discussed in appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper mainly uses the BEiT v2 repository, which is cited in the paper and
mentioned in the code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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