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ABSTRACT

Modern time series datasets can easily contain hundreds or thousands of temporal
time points, however, Transformer based models scale poorly to the size of the
sequence length constraining their context size in the seq-to-seq setting. In this
work, we introduce VQ-TR which maps large sequences to a discrete set of la-
tent representations as part of the Attention module. This allows us to attend over
larger context windows with linear complexity with respect to the sequence length.
We compare this method with other competitive deep learning and classical uni-
variate probabilistic models and highlight its performance using both probabilistic
and point forecasting metrics on a variety of open datasets from different domains.

1 INTRODUCTION

Deep learning based probabilistic time series forecasting models (Benidis et al., 2022) typically con-
sists of a component that learns representations of a time series’ history, while another component
learns some emission model (point or probabilistic) conditioned on this representation of the history.
One can typically use Recurrent Neural Networks (RNNs), Casual Convolutional networks or the
popular architecture at time of writing namely, Transformers (Vaswani et al., 2017) to learn histor-
ical representations. Transformers offer good inductive bias for the forecasting task (Zhou et al.,
2021), as they can look back over the full context history of a time series, while RNNs suffer from
forgetting and convolutions network have limited temporal receptive fields for the amount of pa-
rameters. Transformers however suffer from quadratic complexity for memory and compute in the
size of sequence over which they are learning representations. This constrains the size of contexts
over which Transformer based models can make predictions over which can potentially hinder these
models from learning long-range dependencies as well as constraining the depth of these models
leading to poorer representations being learnt. A number of techniques have been developed to deal
with this issue by reducing the computation or reducing the sequence length.

In this work we start with an observation on the approximation of the Attention module in the
Transformer and design a novel encoder-decoder Transformer based architecture for the forecasting
use case which is linear in its computational and memory use with respect to the sequence size.
We do this by incorporating a Vector Quantization (van den Oord et al., 2017) into the Transformer
which allows us to learn discrete representations in a hierarchical fashion.

2 BACKGROUND

2.1 PROBABILISTIC TIME SERIES FORECASTING

The task of probabilistic time series forecasting in the univariate setting consists of training on a
dataset of D ≥ 1 time series Dtrain = {xi

1:T i} where i ∈ {1, . . . , D} and at each time point t we
have xi

t ∈ R or in N. We are tasked with predicting the potentially complex distribution of the next
P > 1 time steps into the future and we are given a back-testing test set Dtest = {xi

T i+1:T i+P }.
Each time index t is in reality a date-time value which increments regularly based on the frequency of
the dataset in question and the last training point T i for each time series may or may not be the same
date-time. Autoregressive models like (Graves, 2013; Salinas et al., 2019b) estimate the prediction
density by decomposing the joint distribution of all P points via the chain-rule of probability as:

pX (xi
T i+1:T i+P ) ≈ ΠP

t=1p(x
i
T i+t|x

i
1:T i−1+t, c

i
1:T i+P ; θ),
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parameterized by some model with trained weights θ. This requires that the next time point is
conditioned on all the past and covariates cit (detailed in Section 3.3), which is computationally
challenging to scale especially if the time series has a large history. Models like DeepAR (Salinas
et al., 2019b) typically resort to the seq-to-seq paradigm (Sutskever et al., 2014) and consider some
context window of fixed sized C sampled randomly from the full time series history to learn some
historical representation and use this representation in the decoder to learn the distribution of the
subsequent time points of the context. This does however mean that the model falls short of capturing
long-range temporal dependencies in its prediction which can lead to worse approximation of the
future distribution.

Encoder-decoder Transformers (Vaswani et al., 2017) naturally fit the seq-to-seq paradigm where N
encoding Transformer layers can be used to learn a context window sized sequence of representa-
tions denoted by:

{ht}C−1
t=1 = Enc ◦ · · · ◦ Enc({concat(xi

t, c
i
t+1)}C−1

t=1 ; θ).

Afterwards M layers of a causal or masked decoding Transformer can be used to model the subse-
quent P future time points conditioned on the encoding representations as:

ΠC+P−1
t=C p(xi

t+1|xi
t:C , c

i
t+1:C+1,h1, . . . ,hC−1; θ).

For example if we assume the data comes from a Gaussian then the outputs from the Transformer’s
M decoders can be passed to a layer which returns appropriately signed parameters of a Gaussian
whose log-likelihood, given by

C+P−1∑
t=C

log pN (xi
t+1|xi

t:C , c
i
t+1:C+1,h1, . . . ,hC−1; θ),

can be maximized for all i and t from the Dtrain using stochastic gradient descent (SGD) as detailed
in Section 3.1.

Although Transformers offer a better alternative to recurrent neural networks (RNN) (like the LSTM
(Hochreiter & Schmidhuber, 1997) or GRU (Chung et al., 2014) which apart from being sequential
suffer from forgetting with large context windows) or Convolutional models like TCN (Bai et al.,
2018) (which have limited temporal receptive fields) they scale, in terms of compute and memory,
quadratically with the size of sequence length per layer. To reduce the computational requirements
of Transformers, which is an active area of research, one can employ a number of strategies, for
example by compressing the sequence, exploiting locality or by mitigating computation for each of
the input entity.

2.2 VECTOR QUANTIZATION (VQ)

The VQ-VAE (van den Oord et al., 2017; Razavi et al., 2019) is an encoder-decoder Variational
Autoencoder (VAE) (Kingma & Welling, 2019) that maps inputs onto a set of J ≥ 1 discrete latent
variables called the codebook {z1, . . . , zJ}, and a decoder that reconstructs the inputs from the
resulting discrete vectors. The input vector is quantized with respect to its distance to its nearest
codebook vector:

Quantize(q) := zn, n where n = argmin
j

∥q− zj∥2. (1)

The codebook is learned by back-propgation of the gradient coming upstream of the VQ module and
due to the non-differentiable operation one uses the Straight-Through gradient estimator (Hinton
et al., 2012; Bengio et al., 2013) to copy the gradients downstream. Additionally the VQ has two
extra losses namely the latent loss which encourages the alignment of the codebook vectors to the
inputs of the VQ as well as a commitment loss which penalizes the inputs from switching codebook
vectors too frequently. This is done via the “stop-gradient” or “detach” operators of deep learning
frameworks which blocks gradients from flowing into its argument. Thus the additional two VQ
losses can be written as:

∥sg(q)− z∥22 + β∥sg(z)− q∥22, (2)
where β is the hyperparameter weighting the commitment loss. Since the optimal codes would be
the k-means clusters of the input representations, van den Oord et al. (2017) provides an exponential
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moving average training scheme of the latents instead of the latent loss (first term of (2)). Addition-
ally, to aid learning, Jukebox (Dhariwal et al., 2020) proposes to replace the codebook vectors that
have an exponential moving average cluster size less than some threshold by a random incoming
vector from the batch.

3 VQ-TR MODEL

We motivate this method with an observation on the effect of approximations of the query vector in
self-attention. Recall that in self-attention the incoming sequence of vectors are mapped to query,
key, and value vectors. For each t indexed vector, this is denoted by qt,kt, and vt, respectively. Let
us denote the approximation of the query vector qt by q̂t. The attention weight for step t attending
on some u step is (Phuong & Hutter, 2022)

wtu =
exp(qT

t ku)∑
j exp(q

T
t kj)

,

and the output representation is denoted by ot, where ot =
∑

u wtuvu. We then have the following:

Theorem 1. If max
∣∣qT

t ku − q̂T
t ku

∣∣ ≤ δ then for sufficiently small δ > 0 the attention weight with
respect to the approximation q̂t given by ŵtu is bounded by

wtu(1− 2δ) ≤ ŵtu ≤ wtu(1 + 2δ),

and as a result the output representation is

|ot − ôt| ⪯ 2δot.

Proof.

wtu =
exp(qT

t ku)∑
j exp(q

T
t kj)

=
exp(qT

t ku − q̂T
t ku + q̂T

t ku)∑
j exp(q

T
t kj − q̂T

t kj + q̂T
t kj)

=
exp(q̂T

t ku) exp(q
T
t ku − q̂T

t ku)∑
j exp(q̂

T
t kj) exp(qT

t kj − q̂T
t kj)

.

Since, maxj
∣∣qT

t kj − q̂T
t kj

∣∣ ≤ δ, then exp(−δ) ≤ exp(qT
t kj − q̂T

t kj) ≤ exp(δ) ∀j

exp(−2δ) ≤ wtu

ŵtu
≤ exp(2δ)

assuming δ is small,

wtu(1− 2δ) ≤ ŵtu ≤ wtu(1 + 2δ)

or,

|ŵtu − wtu| ≤ 2δwtu.

Since ot =
∑

u wtuvu,

|ot − ôt| ⪯

∣∣∣∣∣∑
u

wtuvu − ŵtuvu

∣∣∣∣∣ ⪯ ∑
u

|wtu − ŵtu|vu ⪯
∑
u

2δwtuvu ⪯ 2δot.

With the above result we see that we can bound the error in the output representation of self-attention
as a result of approximating the query vector. We can see how to make sure δ is small using a discrete
set of approximations given by {z1, . . . , zJ} to the query vectors. We ideally want to

min
z1,...,zJ

max
q∈Q,k∈K

J
min
j=1

∣∣qTk− zTj k
∣∣
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or,

min
z1,...,zJ

max
q∈Q,k∈K

J
min
j=1

(
qTk− zTj k

)2
min

z1,...,zJ

max
q∈Q,k∈K

J
min
j=1

(q− zj)
T
kkT (q− zj)

Instead of minimizing the maximum over all possible q,k, we can minimize the sum or mean, i.e.,

min
z1,...,zJ

Eq∈Q,k∈K
J

min
j=1

(q− zj)
T
kkT (q− zj)

min
z1,...,zJ

Eq∈Q
J

min
j=1

(q− zj)
T (

Ek∈Kkk
T
)
(q− zj)

min
z1,...,zJ

Eq∈Q
J

min
j=1

(q− zj)
T (

Σk + µkµ
T
k

)
(q− zj)

Letting ∥x∥2M = xTMx

min
z1,...,zJ

Eq∈Q
J

min
j=1

∥q− zj∥2Σk+µkµT
k

which is same as the weighted K-means objective. The weights depend on the covariance Σk and
mean µk of the key vectors. Thus, in order to learn good K-means approximations of the query
vectors from a discrete set, we introduce the following model.

In the VQ-TR model we modify the Transformer’s encoder architecture by first mapping the C
incoming vectors, denoted by X ∈ RC×F , through a VQ module:

Z0, indices := VQ(X)

which will return the sequence of C indices of the set of only J vectors denoted by Z0 ∈ RJ×F .
We can apply Transformer based cross-attention to obtain latent Z1 ∈ RJ×F :

Z1 := CrossAttn(X,Z0).

Since there are only J latent vectors and typically in practice J ≪ C, we can process them further
via self-attention L times:

Zl+1 := SelfAttn(Zl).

Finally, we return the original number of sequence by gathering the resulting latent via the indices
with respect to the quantization of the input vectors X:

RC×F ∋ Z := Gather(ZL+1, indices).

This construction leads to an architecture with memory and compute complexity of O(CJ) +
O(LJ2) from the the cross-attention and latent self-attention respectively (Jaegle et al., 2021;
Hawthorne et al., 2022) per number of encoding layers N . One downside however to this archi-
tecture is that we lose the ability to model causal latents. On the other hand, as is commonly done in
time series forecasting, we will use this non-causal encoder part of our architecture to learn discrete
representations of large context windows, while the decoder will be the causal Transformer decoder
and therefore scale O(MP 2) for M decoding layers. Since P ≪ C for the datasets we train on,
this will not hinder us from training or doing inference conditioned on large histories. We present a
schematic of the VQ-TR model in Figure 1 for both the training (Section 3.1) and inference (Section
3.2) scenarios.

A added benefit of this approach is that we can mitigate the quadratic memory and computation
issue caused by a large sequence of input vectors in the vanilla Transformer to learn long term
dependencies.
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Figure 1: VQ-TR model which consists of N encoding vector-quantized cross-attention blocks and
M causal decoding transformer blocks. During training (left) the encoder can take a potentially
long sequence of length C − 1 from a time series and the decoder outputs the prediction length P
parameters of some chosen distribution which are learned via the negative log-likelihood together
with the N Vector Quantizer losses. During inference (right) we pass the last C − 1 length context
window seen during training to the encoder and the very last value in training to the decoder, which
allows us to sample the next time step which we can autoregressively pass back to the decoder to
obtain predictions for our desired horizon.

3.1 TRAINING

Given a set Dtrain of D ≥ 1 time series, we construct batches B of inputs by randomly sampling time
series {xi

1:T i}, with i ∈ Z+ such that i ≤ D, then selecting random t ∈ Z+ with t ≤ T i − C − P ,
and sampling context windows {xi

t:t+C}, and subsequent prediction windows {xi
t+C:t+C+P }, for

fixed context window length C and prediction window length P .

We can then for each batch step minimize the negative log-likelihood of the predicted distribution
with respect to the ground truth predictions together with the N latent and commitment losses from
the VQ module of the encoder jointly. This is in contrast to the practice of first learning the discrete
latent representations in an unsupervised fashion and then using these latents for down stream tasks
as in for example the DALL·E (Ramesh et al., 2021) model.

3.2 INFERENCE

At inference time we go over each time series i ∈ Dtrain and feed the last context sized window
(except for the last entry) to the encoder and the very last entry to decoder to obtain the parameters of
the distribution of the next time point. We can now sample one or more values from this distribution
and feed it back to the decoder to obtain samples for each time point of our desired horizon of P
time steps.

Note that we only need to run the encoder once in order to predict and can repeat tensors in the batch
dimension to obtain many samples from the distribution in parallel. If a point forecast is required
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then we can evaluate the empirical mean or median at each time point of the prediction. Unlike
some generative modeling models, here we do not sample from a reduced temperature distribution
to obtain high quality samples as we are interested in the empirical data distribution of the next time
point conditioned on the past as well as covariates.

3.3 COVARIATES

Positional encoding give the Transformer the ability to encode positional information of sequences
when needed since Attention is a permutation equivariant layer. In the time series setting we can
naturally create positional encodings like Rotary Positional Embedding (RoPE) (Su et al., 2021) via
date-time covariates. More specifically, for a particular time point t, depending on the frequency of
the time series i, we can create hour-of-day, day-of-week, week-of-month, etc. features as a vector
we denote by cit. Due to their temporal nature we can build these covariates for all future time
points we wish to forecast for. Additional covariates can be constructed by considering the running
means, the age of a time series as well as embedding the identity i of each time series in a dataset
via Embedding layers, as done in the DeepAR method.

3.4 SCALING

As detailed in the Salinas et al. (2019b), time series data can be of an arbitrary numerical magnitude
within a dataset. This is unlike the vision, NLP or even audio modalities, and so in order to train
a shared model over potentially very different time series we calculate the mean value of the signal
within its context window and divide the signal with it to normalize it. This context window scale
value is kept as a covariate and more importantly the model’s output distribution is transformed back
to the original scale via it during training and inference to calculate the log-probabilities or to sample
from respectively. If the scaling cannot be done in the output distribution’s parameter space one can
also do it in the data space after sampling. All deep learning based methods in Section 4 incorporate
this heuristic.

4 EXPERIMENTS

We test the performance of VQ-TR for the forecasting task in this section with respect to a number
of methods on a number of open datasets.

Table 1: Number of time series, domain, frequency, total training time steps and prediction length
properties of the training datasets used in the experiments.

Dataset D Dom. Freq. Time step Pred. len.

Exchange 8 R≥0 day 6, 071 30
Solar 137 R≥0 hour 7, 009 24
Elec. 320 R≥0 hour 15, 782 24
Traffic 862 (0, 1) hour 14, 036 24
Taxi 1, 214 N≥0 30-min 1, 488 24
Wikipedia 9, 535 N≥0 day 762 30

For our experiments we use the following open datasets: Exchange (Lai et al., 2018), Solar (Lai
et al., 2018), Elec.1, Traffic2, Taxi3, and Wikipedia4 preprocessed exactly as in Salinas
et al. (2019a), with their properties listed in Table 1. As can be noted in the table, we do not need to
normalize scales for the Traffic dataset. From the names of the datasets, we see that we cover a
number of time series domains including finance, weather, energy, logistics and page-views

We will compare VQ-TR with the following deep learning baseline probabilistic univariate models
1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://archive.ics.uci.edu/ml/datasets/PEMS-SF
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
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Table 2: Forecasting metrics (lower is better) using: SQF-RNN with 50 knots, ETS, MQCNN, and
IQN-RNN, DeepAR, VQ-AR and VQ-TR with Student-T (-t), Negative Binomial (-nb) or IQN
(-iqn) emission heads, on the open datasets. The best metrics are highlighted in bold.

Dataset Method CRPS QL50 QL90 MSIS NRMSE sMAPE MASE

Exchange

SQF-RNN-50 0.010 0.013 0.006 14.15 0.020 0.013 1.800
DeepAR-t 0.012 0.016 0.007 69.29 0.022 0.030 9.980

ETS 0.008 0.010 0.005 15.89 0.015 0.011 1.517
IQN-RNN 0.007 0.010 0.004 17.37 0.014 0.013 3.041
MQCNN 0.015 0.016 0.011 60.04 0.026 0.045 5.440
VQ-AR-t 0.010 0.013 0.007 18.10 0.019 0.015 2.658
VQ-TR-t 0.008 0.010 0.005 34.38 0.015 0.019 2.936

Solar

SQF-RNN-50 0.330 0.431 0.175 5.65 0.929 1.342 1.004
DeepAR-t 0.418 0.543 0.254 7.33 1.072 1.393 1.275

ETS 0.646 0.661 0.383 18.55 1.112 1.546 1.938
IQN-RNN 0.373 0.491 0.165 5.99 1.037 1.356 1.150
MQCNN 0.928 0.960 1.535 73.58 1.920 1.838 2.248

VQ-AR-iqn 0.320 0.414 0.174 5.64 0.885 1.346 0.969
VQ-TR-iqn 0.317 0.435 0.153 4.60 0.909 1.346 1.021

Elec.

SQF-RNN-50 0.078 0.097 0.044 8.66 0.632 0.144 1.051
DeepAR-t 0.062 0.078 0.046 6.79 0.687 0.117 0.849

ETS 0.076 0.100 0.050 9.99 0.838 0.156 1.247
IQN-RNN 0.060 0.074 0.040 8.74 0.543 0.138 0.897
MQCNN 0.129 0.148 0.132 30.54 1.230 0.240 2.000
VQ-AR-t 0.054 0.068 0.036 5.88 0.653 0.107 0.717
VQ-TR-t 0.050 0.063 0.033 6.29 0.495 0.104 0.744

Traffic

SQF-RNN-50 0.153 0.186 0.117 8.40 0.401 0.243 0.76
DeepAR-t 0.172 0.216 0.117 8.02 0.472 0.244 0.89

ETS 0.373 0.386 0.287 17.67 0.647 0.489 1.543
IQN-RNN 0.139 0.168 0.117 7.11 0.433 0.171 0.656
MQCNN 1.220 0.563 2.005 116.69 0.723 0.636 2.712
VQ-AR-t 0.138 0.164 0.113 7.79 0.409 0.185 0.641
VQ-TR-t 0.110 0.130 0.093 6.91 0.392 0.137 0.500

Taxi

SQF-RNN-50 0.286 0.362 0.188 5.53 0.570 0.609 0.741
DeepAR-nb 0.299 0.379 0.203 5.44 0.610 0.582 0.771

ETS 1.059 1.297 0.617 12.24 2.147 1.159 1.552
IQN-RNN 0.295 0.370 0.201 6.51 0.583 0.629 0.758
MQCNN 1.262 1.451 0.488 48.61 2.645 0.912 3.041

VQ-AR-nb 0.286 0.362 0.193 5.43 0.572 0.570 0.741
VQ-TR-t 0.281 0.357 0.184 5.19 0.570 0.561 0.729

Wiki.

SQF-RNN-50 0.283 0.328 0.321 23.71 2.24 0.261 1.44
DeepAR-nb 0.321 0.383 0.361 26.48 2.354 0.327 1.852
DeepAR-t 0.235 0.27 0.267 23.77 2.15 0.219 1.295

ETS 0.788 0.440 0.836 61.68 3.261 0.301 2.214
IQN-RNN 0.221 0.254 0.251 21.78 2.102 0.193 1.214
MQCNN 0.398 0.453 0.327 38.79 2.202 0.379 2.336

VQ-AR-iqn 0.231 0.266 0.252 22.09 2.106 0.208 1.261
VQ-TR-iqn 0.231 0.269 0.260 21.17 2.121 0.213 1.269

• DeepAR Salinas et al. (2019b): an RNN based probabilistic model which learns the pa-
rameters of some chosen distribution for the next time point;

• MQCNN Wen et al. (2017): a Convolutional Neural Network model which outputs chosen
quantiles of the forecast upon which we regress the ground truth via Quantile loss;
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• SQF-RNN Gasthaus et al. (2019): an RNN based non-parametric method which models
the quantiles via linear splines and also regresses the Quantile loss;

• IQN-RNN Gouttes et al. (2021): combines an RNN model with an Implicit Quantile Net-
work (IQN) Dabney et al. (2018) head to learn the distribution similar to SQF-RNN;

• VQ-AR Rasul et al. (2022): an RNN based encoder-decoder model which quantizes its
input via a VQ;

as well as the classical ETS Hyndman & Khandakar (2008) which is an exponential smoothing
method using weighted averages of past observations with exponentially decaying weights as the
observations get older together with Gaussian additive errors (E) modeling trend (T) and seasonality
(S) effects separately.

We follow the recommendations of the M4 competition Makridakis et al. (2020) for reporting fore-
casting performance metrics. In this regard, we report the mean scale interval score Gneiting &
Raftery (2007) (MSIS5) for a 95% prediction interval, the 50-th and 90-th quantile percentile loss
(QL50 and QL90 respectively), as well as the Continuous Ranked Probability Score (CRPS) Gneit-
ing & Raftery (2007); Matheson & Winkler (1976) score. The CRPS is a proper scoring rule which
measures the compatibility of a predicted cumulative distribution function (CDF) F with the ground-
truth samples x as

CRPS(F, x) =

∫
R
(F (y)− I{x ≤ y})2 dy,

where I{x ≤ y} is 1 if x ≤ y and 0 otherwise. We approximate the CDF via empirical samples
at each time point and the final metric is averaged over the prediction horizon and time series of
a dataset. The point-forecasting performance of models is measured by the normalized root mean
square error (NRMSE), the mean absolute scaled error (MASE) Hyndman & Koehler (2006), and
the symmetric mean absolute percentage error (sMAPE) Makridakis (1993). For pointwise metrics,
we use sampled medians with the exception of NRMSE, where we take the mean over our prediction
samples.

The results of our extensive experiments are detailed in Table 2. As can be seen VQ-TR performs
competitively with respect to the methods compared, where the models have been trained using the
hyperparameters from their respective papers using Student-T (-t), Negative Binomial (-nb) or
Implicit Quantile Network (-iqn) emission heads. In particular for VQ-TR we can afford to use a
larger context length of C = 20 × P , where P is the prediction horizon for each dataset, with the
total number of encoder layers N = 2 and decoder layers M = 6. For training we use J = 25
codebook vectors, batch size of 256 for 20 epochs using the Adam (Kingma & Ba, 2015) optimizer
with default parameters, and a learning rate of 0.001. At inference time we sample S = 100 times
for each time point and feed these samples in parallel via the batch dimension autoregressively
through the decoder to produce the reported metrics. The full source code will be made available
after the review period.

5 RELATED WORKS

This method separates the length of the input sequence from the computation of the attention block
by using a discrete set of latents. This strategy of reducing the computational cost is similar to the
Perceiver (Hawthorne et al., 2022), Set Transformer (Lee et al., 2019), Luna (Ma et al.,
2021) and Compression Transformer (Rae et al., 2020) models. Perceiver-AR is the
closest related method, however it is a decoder only architecture and thus at inference time with
many parallel samples for the probabilistic forecasting usecase, we have to run the cross-attention
over a large context window for P times causing both memory and computation bottlenecks. The
use of VQ in sequential generative modeling has been explored in Audio/Speech setting Dhariwal
et al. (2020); Zeghidour et al. (2021); Baevski et al. (2020) where typically a VQ-VAE is trained on
the data and then a generative model trained on these learned latents separately.

The use of VQ in time series forecasting problem has been explored in the VQ-AR (Rasul et al.,
2022) model however it uses an RNN to encode the history of a time series to a discrete latent which

5http://www.unic.ac.cy/test/wp-content/uploads/sites/2/2018/09/
M4-Competitors-Guide.pdf
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is then used for the forecasting decoder RNN. In contrast this work incorporates the VQ module as
part of an approximate Attention block to mitigate issues of large temporal contexts over which to
forecast over.

6 SUMMARY AND DISCUSSION

We have presented VQ-TR a novel architecture which scales linearly with the encoder sequence size
as a probabilistic forecasting model and demonstrated its performance against competitive models
on a number of open datasets. VQ-TR reports good performance at test time and we can control the
trade-off of computation and memory use by increasing or decreasing the number of discrete latents
J .

As the reader might guess, this architecture can also work in other sequential modeling usecases and
in future work we would like investigate the performance of VQ-TR for NLP, Audio or Vision based
problems.
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We further compare against a range of Transformer based models and include the results in Table 3.
We compare, apart from the vanilla Transformer, against:

• TFT Lim et al. (2021): an auto-regressive attention based Seq-to-Seq model with variable
selection network for selecting relevant inputs;

• Informer Zhou et al. (2021): an efficient transformer and full horizon predictor model;
• Autoformer Wu et al. (2021): a transformer which decomposition the trend and sea-

sonal components during the forecasting process together with series-wise auto-Correlation
mechanism;
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Figure 2: VQ-TR and other Transformer based model’s memory usage when training on the different
methods with the same hyper-parameters.

• ETSformer Woo et al. (2022): a transformer architecture which adds the principle of
exponential smoothing and frequency attention in the attention mechanism;

• Hopfield Ramsauer et al. (2021): a modern Hopfield network with continuous state
which generalizes attention;

• Longformer Beltagy et al. (2020): a local attention model with sliding window attention;
• Performer Choromanski et al. (2021): a transformer model which estimates regular full-

rank attention by using linear space/compute complexity;

A.1.1 MEMORY USE

To analyse the amount of memory for the different Transformer based methods, we plot this metric
in Figure 2, when we train on Traffic using the same number of heads (2), encoding/decoding
layers (2), feed-forward dimensions (16), context length (20 times prediction length) and batch size.
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Table 3: Forecasting metrics (lower is better) using Vanilla Transformer and other Transformer
based models with Student-T (-t), Negative Binomial (-nb) or IQN (-iqn) emission heads, on
the open datasets. The best metrics are highlighted in bold.

Dataset Method CRPS QL50 QL90 MSIS NRMSE sMAPE MASE

Exchange

Trans-t 0.018 0.022 0.014 56.26 0.035 0.030 4.834
Tft-t 0.064 0.072 0.086 1647.64 0.087 0.328 55.77

Informer-t 0.012 0.015 0.006 28.89 0.024 0.020 2.779
Autoformer-t 0.014 0.019 0.006 19.16 0.027 0.022 3.591
ETSformer-t 0.009 0.013 0.006 13.51 0.019 0.014 2.148
Hopfield-t 0.016 0.018 0.012 46.46 0.031 0.027 4.208
Reformer-t 0.018 0.022 0.007 95.09 0.031 0.027 6.044
Linformer-t 0.014 0.018 0.008 37.98 0.0266 0.020 2.822
Longformer-t 0.021 0.025 0.009 57.34 0.044 0.028 3.810
Performer-t 0.063 0.070 0.018 206.4 0.092 0.066 8.963

VQ-TR-t 0.008 0.010 0.005 34.38 0.015 0.019 2.936

Solar

Trans-t 0.492 0.638 0.345 7.16 1.233 1.478 1.499
Tft-t 0.931 0.995 1.305 48.04 2.03 1.950 1.950

Informer-t 0.406 0.535 0.192 5.704 1.088 1.381 1.254
Autoformer-t 0.758 0.985 0.308 15.68 2.035 1.854 2.317
ETSformer-t 0.364 0.497 0.170 6.09 0.963 1.371 1.166
Hopfield-t 0.477 0.642 0.243 5.94 1.217 1.471 1.505

Longformer-t 0.432 0.560 0.211 6.41 1.122 1.411 1.314
Performer-t 0.472 0.626 0.294 6.29 1.205 1.466 1.474
VQ-TR-iqn 0.317 0.435 0.153 4.60 0.909 1.346 1.021

Elec.

Trans-t 0.061 0.078 0.035 7.49 0.538 0.115 0.853
Tft-t 0.047 0.059 0.031 5.92 0.516 0.098 0.676

Informer-t 0.064 0.079 0.054 6.47 0.739 0.116 0.788
Autoformer-t 0.070 0.087 0.054 8.02 0.819 0.127 1.00
ETSformer-t 0.068 0.081 0.064 8.43 0.650 0.128 0.904
Hopfield-t 0.056 0.069 0.038 5.87 0.713 0.110 0.736
Reformer-t 0.065 0.080 0.045 7.36 0.699 0.116 0.835
Linformer-t 0.062 0.078 0.042 8.504 0.556 0.127 1.024
Longformer-t 0.274 0.366 0.143 17.27 2.765 0.352 3.465
Performer-t 0.163 0.202 0.119 20.20 1.326 0.248 2.470

VQ-TR-t 0.050 0.063 0.033 6.29 0.495 0.104 0.744

Traffic

Trans-t 0.241 0.294 0.172 11.50 0.521 0.394 1.300
TFT-t 0.139 0.165 0.108 7.82 0.425 0.213 0.648

Informer-t 0.117 0.138 0.096 6.813 0.404 0.148 0.528
Autoformer-t 0.184 0.225 0.146 9.33 0.500 0.272 0.901
ETSformer-t 0.165 0.197 0.137 9.35 0.495 0.260 0.783
Hopfield-t 0.118 0.140 0.095 6.68 0.406 0.142 0.534

Longformer-t 0.317 0.382 0.278 15.92 0.694 0.556 1.651
Performer-t 0.332 0.402 0.204 15.43 0.644 0.483 1.736

VQ-TR-t 0.110 0.130 0.093 6.91 0.392 0.137 0.500

Taxi

Trans-nb 0.308 0.388 0.212 6.09 0.628 0.594 0.790
Tft-nb 0.301 0.377 0.211 6.27 0.617 0.584 0.767

Informer-nb 0.326 0.407 0.230 7.110 0.649 0.634 0.825
Autoformer-nb 0.365 0.458 0.273 7.38 0.726 0.648 0.916
ETSformer-nb 0.311 0.393 0.211 5.85 0.634 0.597 0.797
Hopfield-nb 0.340 0.424 0.265 6.91 0.685 0.634 0.850
Linformer-t 0.648 0.951 0.493 8.326 1.094 1.804 1.855

Longformer-nb 0.398 0.473 0.320 7.40 0.652 0.905 0.937
Performer-nb 0.397 0.471 0.297 7.18 0.626 0.954 0.954

VQ-TR-t 0.281 0.357 0.184 5.19 0.570 0.561 0.729

Wiki.

Trans-nb 0.366 0.394 0.517 84.20 25.225 0.354 1.837
Tft-nb 0.341 0.361 0.494 32.36 7.18 0.286 1.566

Informer-nb 0.253 0.292 0.283 24.03 2.151 0.238 1.357
Hopfield-nb 2.971 1.959 10.11 1630 124.8 0.456 8.367

Longformer-nb 0.529 0.487 0.677 59.04 2.571 0.479 2.211
Performer-nb 0.461 0.401 0.491 31.68 2.283 0.326 1.762
VQ-TR-iqn 0.231 0.269 0.260 21.17 2.121 0.213 1.269
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