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ABSTRACT

In this paper, we develop a theoretical framework for bounding the CVaR of a
random variable X using another related random variable Y , under assumptions
on their cumulative and density functions. Our results yield practical tools for
approximating CVaRα(X) when direct information about X is limited or sam-
pling is computationally expensive, by exploiting a more tractable or observable
random variable Y . Moreover, the derived bounds provide interpretable concen-
tration inequalities that quantify how the tail risk of X can be controlled via Y .

1 INTRODUCTION

Conditional Value-at-Risk (CVaR) has emerged as a critical risk measure in modern artificial intel-
ligence, particularly in settings where decision-making under uncertainty and rare but severe events
must be rigorously addressed. Unlike traditional expected value objectives, which can overlook tail
risks, CVaR explicitly quantifies the expected loss in the worst-case fraction of scenarios, providing
a principled framework for robust and risk-sensitive learning and planning. This property makes
CVaR especially valuable in reinforcement learning, safe control, and robust optimization, where
agents must balance performance with safety guarantees in the presence of model misspecification,
adversarial disturbances, or highly uncertain environments. As AI systems increasingly operate in
high-stakes domains—from autonomous driving to financial trading—the ability to reason about and
control tail risks via CVaR is becoming an essential component of reliable and trustworthy AI.

The Conditional Value at Risk (CVaR) Rockafellar et al. (2000) is a widely used risk measure that
facilitates the optimization of the upper tail of the cost’s distribution. The dual representation of
CVaR Artzner et al. (1999) enables its interpretation as the worst-case expectation of the cost Chow
et al. (2015), thereby motivating its use for risk-averse decision making. CVaR is also a coherent
risk measure with desirable properties for safe planning Majumdar & Pavone (2020), and its estima-
tors have performance guarantees that ensure their reliability in practice Brown (2007); Thomas &
Learned-Miller (2019).

In this paper, we derive bounds on the CVaR of a random variable X , given another random variable
Y , where the relationship between X and Y is characterized in terms of their cumulative distri-
bution functions (CDFs) and probability density functions (PDFs). These bounds have two key
contributions in practice. First, they enable the approximation of CVaRα(X) when direct access
to X is limited, by leveraging a related distribution Y for which information is accessible. Second,
they lead to interpretable concentration inequalities, encompassing existing concentration bounds
for CVaRα(X) as a special case. Specifically, they characterize the CVaR of X through the CVaR
of Y with an appropriately adjusted confidence level.

Owing to space constraints, proofs that do not appear in the main text are provided in the Appendix,
and the simulations code is available in the supplemental material. While the present work is mostly
theoretical, it provides mathematical background needed for risk-averse online agents’ deployment
acceleration in reinforcement learning; a detailed motivation is given in Appendix A.
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2 PRELIMINARIES

Let X be a random variable defined on a probability space (Ω,F , P ), where F = 2Ω is the σ-
algebra, and P : F → [0, 1] is a probability measure. Assume further that E|X| < ∞. We denote
the cumulative density function (CDF) of the random variable X by FX(x) = P (X ≤ x). The
value at risk at confidence level α ∈ (0, 1) is the 1− α quantile of X , i.e

V aRα(X) ≜ inf{x ∈ R : F (x) > 1− α} (1)
For simplicity we denote qXα = V aRα(X). The conditional value at risk (CVaR) at confidence level
α is defined as Rockafellar et al. (2000)

CV aRα(X) ≜ inf
w∈R

{w +
1

α
E[(X − w)+]|w ∈ R}, (2)

where (x)+ = max (x, 0). For a smooth F , it holds that Pflug (2000)

CV aRα(X) = E[X|X > V aRα(X)] =
1

α

∫ 1

1−α

F−1(v)dv. (3)

Let Xi
iid∼ F for i ∈ {1, . . . , n}. Denote by

Ĉα(X) ≜ Ĉα({Xi}ni=1) ≜ inf
x∈R

{
x+

1

nα

n∑
i=1

(Xi − x)+
}

(4)

the estimate of CV aRα(X) Brown (2007). Theorem 2.1, that bounds the deviation of the estimated
CVaR and the true CVaR, was proved in Brown (2007).

Theorem 2.1 If supp(X) ⊆ [a, b] and X has a continuous distribution function, then for any δ ∈
(0, 1],

P
(
CV aRα(X)− Ĉα(X) > (b− a)

√
5ln(3/δ)

αn

)
≤ δ, (5)

P
(
CV aRα(X)− Ĉα(X) < − (b− a)

α

√
ln(1/δ)

2n

)
≤ δ. (6)

equation 4 can be expressed as

Ĉα(X) = X(n) − 1

α

n−1∑
i=1

(X(i) −X(i−1))
( i

n
− (1− α)

)+
, (7)

where X(i) is the ith order statistic of X1, . . . , Xn in ascending order Thomas & Learned-Miller
(2019). The results presented in Theorems 2.2 and 2.3, following the work of Thomas & Learned-
Miller (2019), yield tighter bounds on the CVaR compared to those established by Brown (2007).

Theorem 2.2 If X1, . . . , Xn are independent and identically distributed random variables and
Pr(X1 ≤ b) = 1 for some finite b, then for any δ ∈ (0, 0.5],

Pr

(
CVaRα(X1) ≤ Zn+1 −

1

α

n∑
i=1

(Zi+1 − Zi)×

(
i

n
−
√

ln(1/δ)

2n
− (1− α)

)+)
≥ 1− δ,

(8)
where Z1, . . . , Zn are the order statistics (i.e., X1, . . . , Xn sorted in ascending order), Zn+1 = b,
and x+ ≜ max{0, x} for all x ∈ R.

Theorem 2.3 If X1, . . . , Xn are independent and identically distributed random variables and
Pr(X1 ≥ a) = 1 for some finite a, then for any δ ∈ (0, 0.5],

Pr

(
CVaRα(X1) ≥ Zn − 1

α

n−1∑
i=0

(Zi+1 − Zi)×
(
min

{
1,

i

n
+

√
ln(1/δ)

2n

}
− (1− α)

)+)
≥ 1− δ,

(9)
where Z1, . . . , Zn are the order statistics (i.e., X1, . . . , Xn sorted in ascending order), Z0 = a, and
x+ ≜ max{0, x} for all x ∈ R.
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3 PROBLEM FORMULATION

Let X and Y be two random variables. This paper seeks to establish upper and lower bounding
functions, fU and fL, which take as input the random variable Y and a confidence level α, and
satisfy

fL(Y, α) ≤ CV aRα(X) ≤ fU (Y, α). (10)
For instance, one may take X to be a Gaussian mixture distribution and Y a normal distribution,
in which case the bound provides a control of the Gaussian mixture’s CVaR in terms of the normal
distribution.

4 THEORETICAL CVAR BOUNDS

In this section, we establish bounds for the CVaR of the random variable X by leveraging an auxil-
iary random variable Y . Two forms of distributional relationships between their respective CDFs are
considered: a uniform bound and a non-uniform bound, as illustrated in Figure 1b and Figure 1c.
These results provide the theoretical basis for subsequent sections, in which the derived bounds
are applied to estimate the CVaR of random variables that are either computationally intractable or
prohibitively expensive to sample directly.

Theorem 4.1 bounds CVaRα(X) in terms of CVaRα(Y ) under the sole condition that the cumula-
tive distribution functions of X and Y differ by at most a known uniform bound. This representation
enhances the interpretability of the bound and constitutes a novel aspect of the result, made possible
by framing the bounding problem in terms of distributional discrepancies. In the next section, we
demonstrate that the bounds established in Thomas & Learned-Miller (2019) (theorems 2.2 and 2.3)
arise as a special case of Theorem 4.1, thereby providing an interpretation for existing CVaR bounds
that are otherwise difficult to interpret.

Theorem 4.1 Let X and Y be random variables and ϵ ∈ [0, 1].

1. Upper bound: assume that P (X ≤ bX) = 1, P (Y ≤ bY ) = 1 and ∀z ∈ R, FY (z) −
FX(z) ≤ ϵ, then

(a) If α > ϵ,

CV aRα(X) ≤ ϵ

α
max(bX , bY ) + (1− ϵ

α
)CV aRα−ϵ(Y ). (11)

(b) If α ≤ ϵ, then CV aRα(X) ≤ max(bX , bY ).

2. Lower Bound: If P (X ≥ aX) = 1, P (Y ≥ aY ) = 1 and ∀z ∈ R, FX(z) − FY (z) ≤ ϵ,
then

(a) If α+ ϵ ≤ 1,

CV aRα(X) ≥ (1 +
ϵ

α
)CV aRα+ϵ(Y )− ϵ

α
CV aRϵ(Y ) (12)

(b) If α+ ϵ > 1 and amin = min(aX , aY ),

CV aRα(X) ≥ E[Y ]− ϵCV aRϵ(Y ) + (α+ ϵ− 1)amin (13)

Proof. Due to space constraints, we provide only a proof sketch here; the complete proof can be
found in the supplementary material.

The strategy of the proof is to construct two distributions derived from FY , denoted FL
Y and FU

Y ,
such that FX is first-order stochastically dominated by FU

Y and first-order stochastically dominates
FL
Y ; that is, ∀x ∈ R, FL

Y (x) ≥ FX ≥ FU
Y (x). Consequently, since CVaR is a coherent risk measure,

it follows that CV aR
FL

Y
α ≤ CV aRFX

α ≤ CV aR
FU

Y
α , where CV aR

FL
Y

α , CV aRFX
α , and CV aR

FU
Y

α

denote the CVaR at level α corresponding to the distributions FL
Y , FX , and FU

Y , respectively.

Let amin = min(aX , aY ) and bmin = min(bX , bY ), and assume P (aX ≤ X ≤ bX) = 1, P (aY ≤
Y ≤ bY ) = 1. Define the interval [bmin, bX) to be ∅ if bmin = bX , and equal to [bY , bX) otherwise.
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Analogously, define [amin, aX) in the same manner. We then define upper and lower bounds for FY

as follows (see Figure 1a):

FU
Y (y) =



0 y < max(aX , qY1−ϵ)

min(FY (y)− ϵ, 1− ϵ) y ∈ [max(aX , qY1−ϵ),

, bmin)

1− ϵ y ∈ [bmin, bX)

1 y ≥ max(bX , bY )

(14)

FL
Y (y) =


0 y < amin

ϵ y ∈ [amin, aY )

min(FY (y) + ϵ, 1) y ∈ [aY ,min(qYϵ , bX))

1 y ≥ min(qYϵ , bX).

(15)

As a first step, it is necessary to verify that FL
Y and FU

Y are valid cumulative distribution functions
and that they satisfy FL

Y ≤ FX ≤ FU
Y . This verification is deferred to the supplementary material.

Figure 1a illustrates the corresponding upper and lower bounding CDFs.

Upper bound for CV aR
FU

Y
α : From Acerbi & Tasche (2002), CVaR is equal to an integral of the

VaR

CV aR
FU

Y
α =

1

α

∫ 1

1−α

inf{y ∈ R : FU
Y (y) ≥ τ}dτ =

1

α

∫ 1+ϵ

1−α+ϵ

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ}dτ

(16)
If α ≤ ϵ, then 1− α+ ϵ ≥ 1, rendering the bound in the preceding equation trivial, as it attains the
maximum value of the support of both X and Y .

1

α

∫ 1+ϵ

1−α+ϵ

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ} ≤ 1

α

∫ 1+ϵ

1−α+ϵ

max(bX , bY )dτ = max(bX , bY ). (17)

That is, CV aRα(X) ≤ max(bX , bY ).

If α > ϵ, then 1 − α + ϵ < 0, and the integral may be decomposed into one term that is trivially
bounded by the maximum of the support and another term that can be computed explicitly

CV aR
FU

Y
α =

1

α

∫ 1+ϵ

1−α+ϵ

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ}dτ

=
1

α
[

∫ 1+ϵ

1

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ}dτ︸ ︷︷ ︸

≜A1

+

∫ 1

1−α+ϵ

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ}dτ︸ ︷︷ ︸

≜A2

]
(18)

The term A1 is bounded, in a manner analogous to equation 45, by ϵmax(bX , bY ), which is es-
sentially the tightest bound attainable given the definition of FU

Y . The term A2 can be expressed
in terms of the CVaR of Y , evaluated at a shifted confidence level. Specifically, the variable τ − ϵ
in A2 lies within the interval [1 − α, 1 − ϵ]. Over this range, for all y ∈ [max(aX , qY1−ϵ), bmin],
the inequality FU

Y (y) ≤ FY (y) − ϵ holds. This follows because if qY1−ϵ ≥ aX , then by definition
FU
Y (y) = min(FY (y)−ϵ, 1−ϵ), and if aX > qY1−ϵ, then FU

Y (y) = 0 ≤ FY (y)−ϵ for y ∈ [qY1−ϵ, aX ]

and again FU
Y (y) = min(FY (y)− ϵ, 1− ϵ) for y ∈ [aX , bmin].

A2 ≤
∫ 1

1−α+ϵ

inf{y ∈ R : FY (y)− ϵ ≥ τ − ϵ}dτ =

∫ 1

1−(α−ϵ)

inf{y ∈ R : FY (y) ≥ τ}dτ

= (α− ϵ)CV aRα−ϵ(Y ).

(19)

Note that the confidence level is valid, as α, ϵ ∈ (0, 1) and α > ϵ imply α−ϵ ∈ (0, 1). By combining
the previous two expressions, we obtain a single bound:

CV aR
FU

Y
α ≤ ϵ

max(bX , bY )

α
+ (1− ϵ

α
)CV aRϵ−α(Y ). (20)
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(a) (b) (c)

Figure 1: Illustrations of bounds on FX(x). (a) Bounds on FX . (b) Bounds from Theorem 4.1. (c)
Bounds from Theorem 4.3, where g depends on x and yields a tighter result than FY (x) + ϵ.

In the case where aX = −∞, we have max(aX , qY1−ϵ) = qY1−ϵ, and the definition of FU
Y no longer

involves aX . Therefore, the inequality remains valid in the case of aX = −∞.

Lower bound for CV aR
FL

Y
α : The detailed proof is provided in the supplementary material. The

proof follows an approach analogous to that of the upper bound: specifically, the integral defining
CV aR

FL
Y

α is decomposed into terms that exhibit the structure of a CVaR expression. □

The parameter ϵ quantifies the discrepancy between the random variables X and Y , and is defined as
a uniform bound on the difference between their cumulative distribution functions. By construction,
ϵ takes values in the interval [0, 1]. In the limiting case where ϵ = 1, Y provides no information about
X . In this setting, the bounds provided by Theorem 4.1 reduce to trivial bounds on CVaRα(X)
involving the essential supremum of both X and Y , rendering them ineffective for practical use.
When ϵ = 0, the cumulative distribution functions of X and Y are identical, and thus the bound
becomes exact, yielding CVaRα(X) = CVaRα(Y ).

Theorem 4.2 Under the definitions of X , Y , ϵ, and α specified in Theorem 4.1, the lower and upper
bounds established therein converge to CVaRα(X) as ϵ → 0.

In the non-extreme cases, it holds that α > ϵ and α + ϵ ≤ 1, reducing the bounding problem to
equation 69 and equation 70. As we will see in the next section, ϵ could be very close to zero in
practice. For α > ϵ, the lower bound on CVaRα(X) is a weighted average of the CVaR of Y
at a confidence level shifted by the distributional discrepancy ϵ and the maximum of the supports
of X and Y , where the weights are proportional to the amount of distributional discrepancy. For
α+ ϵ ≤ 1, by restructuring equation 70 as follows,

CV aRα(X) ≥ CV aRα+ϵ(Y ) +
ϵ

α
(CV aRα+ϵ(Y )− CV aRϵ(Y )). (21)

The lower bound corresponds to the CVaR of Y evaluated at a confidence level adjusted by the
distributional discrepancy ϵ, augmented by a correction term that is proportional to the distributional
discrepancy.

Theorem 4.1 assumes that the parameter ϵ provides an upper bound on the pointwise difference
between the cumulative distribution functions FX and FY . As illustrated in Figure 1b, this bound
is particularly conservative in the vicinity of x = −1, where the actual discrepancy between FX

and FY is significantly smaller than the global bound ϵ. Ideally, a tighter bound on FX(x) would
allow for variation with respect to x, rather than relying on a uniform constant. Specifically, one
seeks a pointwise bound of the form FX(x) ≤ FY (x) + g(x) for some non-negative function g,
as illustrated in Figure 1c. In this paper, we defer the study of specific choices of the function g to
future work, and instead provide general assumptions under which a feasible tighter bound can be
established using such a function.

Theorem 4.3 (Tighter CVaR Lower Bound) Let α ∈ (0, 1), X and Y be random variables. Define
the a random variable Y L such that FY L(y) ≜ min(1, FY (y) + g(y)) for g : R → [0,∞). Assume
limx→−∞g(x) = 0, g is continuous from the right and monotonic increasing. If ∀x ∈ R, FX(x) ≤
FY (x) + g(x), then FY L is a CDF and CV aRα(Y

L) ≤ CV aRα(X).

5
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Theorem 4.3 defines a random variable Y L, constructed from Y and the function g, such that the
distributional discrepancy between Y L and X is determined explicitly by g rather than being uni-
formly bounded as in Theorem 4.1. In addition, it offers a criterion for determining whether a given
function g can be used to derive a lower bound on the CVaR. This bound extends the lower bound
established in Theorem 4.1, which is obtained when g(x) is constant and equal to ϵ for all x ∈ R.

Note that in Theorem 4.3, the function g is assumed to be non-decreasing and right-continuous. If
one assumes only that |FX(x) − FY (x)| ≤ g(x) for some function g : R → [0,∞), which is not
necessarily monotonic or continuous, then the most general form of the CVaR bounds is given by

CV aRα(X) =
1

α

∫ 1

1−α

inf{z ∈ R : FX(z) ≥ τ}dτ ≥ 1

α

∫ 1

1−α

inf{z ∈ R : FY (z) + g(z) ≥ τ}dτ,

(22)

CV aRα(X) =
1

α

∫ 1

1−α

inf{z ∈ R : FX(z) ≥ τ}dτ ≤ 1

α

∫ 1

1−α

inf{z ∈ R : FY (z)− g(z) ≥ τ}dτ.

(23)

Another option is to specify the distributional discrepancy through the density functions underlying
the cumulative distribution functions. Let fx and fy be the probability density functions of X and Y ,
respectively, and let h : R → [0,∞) describe the pointwise discrepancy between them. Theorem 4.4
specifies conditions on the function h under which a lower bound for the CVaR of X can be obtained.
A key advantage is that this bound takes the form of the CVaR of a random variable, enabling its
estimation with performance guarantees via CVaR concentration bounds given in Theorems 2.1, 2.3,
2.2 and Theorem 5.1.

Theorem 4.4 Let α ∈ (0, 1), X and Y random variables. Define h : R → [0,∞) to be a continuous
function, g(z) ≜

∫ z

−∞ h(x)dx and Y L to be a random variable such that FY L(y) ≜ min(1, FY (y)+

g(y)). If limz→−∞ g(z) = 0 and ∀x ∈ R, fx(x) ≤ fy(z) + h(x), then FY L is a CDF and
CV aRα(Y

L) ≤ CV aRα(X).

Theorem 4.4 is obtained as a corollary of Theorem 4.3 by defining a function g, as illustrated in
Figure 1c, in terms of the function h. This construction demonstrates that the function g in Theorem
4.3 can be generated from a broad class of density discrepancy functions.

5 CONCENTRATION INEQUALITIES

In this section, we derive concentration inequalities for CVaRα(X) based on samples drawn from
an auxiliary random variable Y . A notable special case of these inequalities arises when Y is taken
to follow the empirical cumulative distribution function (ECDF) of X . In such cases, concentration
inequalities for CVaRα(X) are obtained.

Let X1, . . . , Xn
i.i.d.∼ FX , where FX is the CDF of a random variable X . The ECDF based on these

samples is defined by F̂X(x) = 1
n

∑n
i=1 1Xi≤x, for x ∈ R. Let EF̂X

[X] denote the expectation

with respect to F̂X , and let CF̂X
α denote the CVaR computed under the empirical distribution F̂X .

Theorem 5.1 Let X a random variable, α ∈ (0, 1], δ ∈ (0, 0.5), ϵ =
√
ln(1/δ)/(2n). Let

X1, . . . , Xn
iid∼ FX be random variables that define the ECDF F̂X .

1. Upper Bound: If P (X ≤ b) = 1, then

(a) If α > ϵ then P (CV aRα(X) ≤ (1− ϵ
α )C

F̂X
α−ϵ +

ϵ
αb) > 1− δ.

(b) If α ≤ ϵ then CV aRα(X) ≤ b

2. Lower Bound: If P (X ≥ a) = 1, then

(a) If α+ ϵ < 1, then P (CV aRα(X) ≥ (1 + ϵ
α )C

F̂X
α+ϵ − ϵ

αC
F̂X
ϵ ) > 1− δ.

(b) If α+ ϵ ≥ 1, then P (CV aRα(X) ≥ 1
α [(α+ ϵ− 1)a+ EF̂X

[X]− ϵCF̂X
ϵ ]) > 1− δ.

6
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Theorem 5.1 provides concentration inequalities for CVaRα(X) in a form that enables the user to
specify a desired bound consistency level δ, which determines the probability that the bound holds.
This result follows as a corollary of Theorem 4.1, in which the auxiliary random variable Y is
instantiated as the ECDF of X , whereas X denotes the underlying true random variable, which is
inaccessible in practice. The distributional discrepancy required by Theorem 4.1, denoted by ϵ, is
controlled in Theorem 5.1 via the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality Dvoretzky et al.
(1956). The DKW inequality ensures that the supremum distance between the true CDF and the
ECDF converges to zero at a rate of order 1/

√
n as the number of samples n increases. Corollary

5.2 establishes the asymptotic convergence of the bounds given in Theorem 5.1 as the sample size
tends to infinity.

Corollary 5.2 Let X be a random variable, α ∈ (0, 1], δ ∈ (0, 0.5), ϵ =
√
ln(1/δ)/(2n), a ∈

R, b ∈ R, η > 0. Let X1, . . . , Xn
iid∼ FX be random variables that define the ECDF F̂X . Denote by

U(n) and L(n) the upper and lower bounds respectively from Theorem 5.1, where n is the number
of samples, then

1. If P (X ≤ b) = 1, then limn→∞ U(n)
a.s
= CV aRα(X).

2. If P (X ≥ a) = 1, then limn→∞ L(n)
a.s
= CV aRα(X).

where a.s denotes almost sure convergence.

The concentration bounds established by Thomas & Learned-Miller (2019) coincide with those
given in Theorem 5.1, rendering the results of Thomas & Learned-Miller (2019) a special case
of Theorem 5.1. This equivalence arises because both Theorem 5.1 and Thomas & Learned-Miller
(2019) derive concentration bounds for CVaRα(X) by constructing an alternative CDF that stochas-
tically dominates the true distribution FX , employing the DKW inequality to control the discrep-
ancy. The principal distinction between the two results lies in the formulation of the CVaR bound:
Thomas & Learned-Miller (2019) express the bound through a sum of reweighted order statistics
(theorems 2.2 and 2.3), resulting in a more intricate form, whereas Theorem 5.1 presents a more in-
terpretable bound in terms of CVaR. The interpretability of these bounds constitutes a contribution
of this paper.

Theorem 5.2 provides concentration inequalities for the theoretical CV aRα(X) based on samples
drawn from an auxiliary random variable Y , assuming only a bound on the distributional discrepancy
between X and Y .

Theorem 5.3 Let X and Y be random variables, ϵ ∈ [0, 1], δ ∈ (0, 0.5), and η =√
ln(1/δ)/(2n), ϵ′ = min(ϵ + η, 1). Let Y1, . . . , Yn be independent and identically distributed

samples from FY , and denote by F̂Y the associated empirical cumulative distribution function.

1. Upper Bound: If ∀z ∈ R, FY (z) − FX(z) ≤ ϵ and P (X ≤ bX) = 1, P (Y ≤ bY ) = 1,
then

(a) If α > ϵ′ then P
(
CV aRα(X) ≤ ϵ′

αmax(bX , bY ) + (1− ϵ′

α )CV aR
F̂L

Y

α−ϵ′

)
> 1− δ.

(b) If α ≤ ϵ′, then CV aRα(X) ≤ max(bX , bY )

2. Lower Bound: If ∀z ∈ R, FX(z) − FY (z) ≤ ϵ and P (X ≥ aX) = 1, P (Y ≥ aY ) = 1,
then

(a) If α+ ϵ′ ≤ 1, then

P
(
CV aRα(X) ≥ (1 +

ϵ′

α
)CV aR

F̂L
Y

α+ϵ′ −
ϵ′

α
CV aR

F̂L
Y

ϵ′

)
> 1− δ. (24)

(b) If α+ ϵ′ > 1, then

P
(
CV aRα(X) ≥ EF̂L

Y
[Y ]− ϵ′CV aRF̂Y

ϵ′ + (α+ ϵ′ − 1)amin

)
> 1− δ. (25)
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Proof. We begin by establishing that ϵ′ bounds the distributional discrepancy between F̂L
Y and FX ,

under the assumption that supx
(
F̂L
Y (x)− FY (x)

)
≤ ϵ. Let x ∈ R,

F̂L
Y (x)− FX(x) = F̂L

Y (x)− FY (x) + FY (x)− FX(x)

≤ |F̂L
Y (x)− FY (x)|+ |FY (x)− FX(x)| ≤ ϵ+ η = ϵ′.

(26)

Assume that α > ϵ′. Note that, conditional on the event supz∈R
(
F̂Y (z) − FX(z)

)
≤ ϵ′, the upper

bound in Theorem 4.1 holds deterministically. Consequently, the probability that

CV aRα(X) ≤ ϵ′

α
max(bX , bY ) + (1− ϵ′

α
)CV aR

F̂L
Y

α−ϵ′ (27)

holds is equal to one. From the law of total probability,

P
(
CV aRα(X) ≤ ϵ′

α
max(bX , bY ) + (1− ϵ′

α
)CV aR

F̂L
Y

α−ϵ′

)
≥ P (sup

z∈R

(
F̂Y (z)− FX(z)

)
≤ ϵ′).

(28)
The full derivation of the last inequality is available in the Appendix. From DKW Dvoretzky et al.
(1956) inequality the following inequalities can be derived Thomas & Learned-Miller (2019)

P

(
sup
x∈R

(
F̂ (x)− F (x)

)
≤
√

ln(1/δ)

2n

)
≥ 1−δ, P

(
sup
x∈R

(
F̂ (x)− F (x)

)
≥
√

ln(1/δ)

2n

)
≥ 1−δ.

(29)
P (sup

z∈R

(
F̂Y (z)− FX(z)

)
≤ ϵ′) ≥ P (sup

z∈R

(
F̂Y (z)− FY (z)

)
+ sup

z∈R

(
FY (z)− FX(z)

)
≤ ϵ′)

≥ P (sup
z∈R

(
F̂Y (z)− FY (z)

)
+ ϵ ≤ ϵ+ η) = P (sup

z∈R

(
F̂Y (z)− FY (z)

)
≤ η) > 1− δ.

(30)

The first inequality follows from the triangle inequality; the second holds since ϵ bounds the distri-
butional discrepancy between X and Y ; and the third follows from equation 76.

As with the preceding equations, all bounds in Theorem 4.1 hold deterministically for a given distri-
butional discrepancy, where the discrepancy between F̂Y and FX is ϵ′. Consequently, the remaining
probabilistic guarantees hold with probability at least 1− δ. □

The parameter ϵ in Theorem 5.2 captures the distributional discrepancy between X and Y , consistent
with its role in Theorem 4.1. Additionally, the theorem introduces ϵ′ to represent the discrepancy be-
tween FX and F̂Y , where F̂Y denotes the empirical CDF of Y constructed from the sample {Yi}ni=1.
The parameter η accounts for the additional distributional discrepancy beyond ϵ, and captures the
estimation error in approximating FY using the empirical sample {Yi}ni=1. By combining Theorem
4.1 with the DKW inequality Dvoretzky et al. (1956), we obtain probabilistic guarantees for the
estimated bounds.

6 EXPERIMENTS

In this simulation study, we demonstrate how the CVaR of an inaccessible or computationally ex-
pensive distribution can be bounded using an auxiliary distribution that is more tractable. We then
verify that the concentration bounds for CV aRα(X) established in Theorem 5.1 coincide with those
of Thomas & Learned-Miller (2019), which arise as a special case of our more general results. In
our experiments, both approaches exhibit identical empirical performance. Specifically, we compare
a truncated Gaussian Mixture Model (GMM) and its corresponding truncated Normal approxima-
tion for CVaR estimation under bounded support. Such a setting arises, for example, in POMDP
planning, where a computationally expensive model used by the agent during online planning is re-
placed with a more tractable surrogate model, thereby improving the agent’s decision-making speed
Lev-Yehudi et al. (2024). In these settings, the agent’s decisions may rely on bounds for the original
value function that are derived from the tractable surrogate model Barenboim & Indelman (2022).

The GMM consists of five components with means µ1 = 0.2, µ2 = −0.2, µ3 = −0.5, µ4 = 0.5,
µ5 = 0.0, variances σ2

1 = 0.5, σ2
2 = 0.2, σ2

3 = 0.1, σ2
4 = 0.1, σ2

5 = 0.3, and weights w1 = 0.6,
w2 = 0.4, w3 = 0.1, w4 = 0.1, w5 = 0.8. The Normal approximation matches the GMM’s
mean and variance but cannot reproduce its multi-modal structure or outlier effects. All samples are

8
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(a) (b) (c)

Figure 2: Figure 2a shows the bounds established in Theorem 5.3, demonstrating how a simple
truncated Normal distribution can be employed to bound the CVaR of a truncated GMM. Figure 2b
presents a comparison of the sampling times for each distribution, while Figure 2c reports the total
computation time required to sample from the truncated GMM and estimate its CVaR, in contrast to
sampling from the truncated Normal surrogate and computing the associated concentration bounds.
All of the experiments were configured with confidence level α = 0.2, and probability of error
δ = 0.05. Both Figures 2b and 2c display 95% confidence intervals around the empirical means.

truncated to the interval [−1, 1], which reshapes the tails and slightly distorts boundary components.
We compute CVaR at the 20% quantile for sample sizes ranging from 100 to 10,000, with 100
independent repetitions per setting to ensure statistical reliability. The distributional discrepancy (ϵ
in Theorem 5.3) between the truncated GMM and the truncated Normal distribution is assessed via
simulation, by estimating their respective cumulative distribution functions over a common set of
bins and computing the maximum difference across all bins. This setup enables a direct assessment
of the trade-off between computational efficiency and statistical accuracy when approximating a
complex truncated mixture by a single truncated Normal distribution.

Figure 2b presents the sampling time comparison between the truncated GMM and the truncated
Normal distribution, with an observed average time ratio of approximately 3.6 in favor of the Normal
distribution. Figure 2c reports a total computational speedup of approximately 3.17 when comparing
the process of sampling from the truncated GMM and estimating its CVaR to that of sampling
from the truncated Normal and computing both upper and lower bounds as given in Theorem 5.3.
Figure 2a illustrates the convergence behavior of the CVaR bounds as a function of the number
of samples, comparing estimates obtained from the truncated GMM with bounds derived from the
truncated Normal surrogate. It is important to note that these bounds are obtained without requiring
full knowledge of the underlying GMM distribution. Instead, they rely solely on the discrepancy
between the corresponding CDFs.

We evaluated the concentration bounds established by Thomas & Learned-Miller (2019) along-
side our proposed bounds from Theorem 5.1 on a set of probability distributions: Beta(2, 2),
Beta(0.5, 0.5), Beta(2, 5), Beta(5, 2), Beta(10, 2), Beta(2, 10), and the Laplace(0, 1) distribution.
These distributions were selected to match those used in the original study by Thomas & Learned-
Miller (2019), enabling a direct comparison under identical conditions. For each distribution, our
bounds precisely coincide with those reported by Thomas & Learned-Miller (2019), resulting in
complete overlap between the two sets of bounds. The graphs exhibiting these results are available
in the supplemental material.

7 CONCLUSIONS

This work presented interpretable concentration inequalities for CV aRα(X), expressed in terms
of the CVaR of an auxiliary random variable Y . The proposed bounds were validated through
simulation studies, effectively bounding the CVaR of a truncated GMM by employing a less complex
truncated Normal distribution. A comprehensive theoretical framework was developed for bounding
CVaR using both uniform and non-uniform bounds on the cumulative and density functions of X
and Y . Notably, the state-of-the-art bounds introduced by Thomas & Learned-Miller (2019) emerge
as a special case of the proposed general framework, which also offers a novel interpretation of their
result.

9
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Section B contains the proofs of the theoretical bounds, while Section C presents the proofs of the
concentration inequalities. Finally, Section D includes simulations demonstrating that our bounds
are consistent with the results of Thomas & Learned-Miller (2019).
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A MOTIVATION

This section aims to motivate the mathematical results presented in the paper. Although these re-
sults are general and not confined to any particular application, we illustrate their relevance using
reinforcement learning. We begin with a brief overview of Partially Observable Markov Decision
Processes (POMDPs), a generalization of Markov Decision Processes that constitutes the standard
framework for reinforcement learning. Next, we define the reinforcement learning setting in terms
of the value function and provide background on agent acceleration, commonly referred to as ‘sim-
plification’ in the literature. Finally, we reinterpret the theoretical random variables X and Y from
the main text in the context of reinforcement learning and demonstrate their significance in this
setting.

A.1 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

A finite-horizon Partially Observable Markov Decision Process (POMDP) is defined as the tuple
(X,A,Z, T,O, c, b0), where X , A, and Z denote the state, action, and observation spaces, respec-
tively. The transition model T (xt+1 | xt, at) ≜ P (xt+1 | xt, at) specifies the probability of tran-
sitioning from state xt to xt+1 given action at. The observation model is given by the conditional
density O(zt | xt) ≜ P (zt | xt), representing the likelihood of observing zt given the underlying
state xt. Let B denote the belief space (the set of all probability distributions over X), and define
the stage-wise cost function as c : B ×A → R.

At each time step t, the agent maintains a belief bt ∈ B, representing the posterior distribution
over the state space given the history of actions and observations. The history is denoted by Ht =
{z1:t, a0:t−1, b0}, and the belief is defined as bt(xt) ≜ P (xt | Ht) for xt ∈ X .

A policy πt : B → A at time t is defined as a mapping from a belief state bt to an action at = πt(bt).
The state-dependent immediate cost incurred by executing action at under belief bt is given by
c(bt, at) ≜ Ex∼bt [cx(x, at)], where cx(x, at) denotes the cost associated with taking action at in
state x, and is uniformly bounded by Rmin ≤ |cx(x, at)| ≤ Rmax. The cumulative cost over a finite
horizon T ∈ N, referred to as the return, is given by Rt:T ≜

∑T
τ=t c(bτ , aτ ), which serves as the

performance criterion starting at time t.

The value function associated with a policy π and initial belief bk is defined as

V π(bk) ≜ E[Rk:T | bk, π] =
T∑

t=k

E[c(bt, at) | bk, π], (31)

and the corresponding Q-function is

Qπ(bk, ak) ≜ Ezk+1
[c(bk, ak) + V π(bk+1) | bk, ak] . (32)

A POMDP can equivalently be viewed as a belief-MDP, where the belief state bt serves as the fully
observed state.

A.2 SIMPLIFIED POMDP PLANNING

Simplification in POMDPs is employed to mitigate computational burden during online POMDP
planning, as POMDPs are hard to solve Papadimitriou & Tsitsiklis (1987). The term simplification
refers to a replacement of any component of a POMDP with a computationally cheaper alternative
while providing formal performance guarantees on planning performance. Simplification of the
observation model in POMDPs was studied in Lev-Yehudi et al. (2024), wherein the observation
model was replaced with a computationally less expensive alternative, while deriving finite-sample
convergence guarantees. ? considered simplification of the state and observation spaces, provided
deterministic guarantees.

As a formal example of observation model simplification, consider the original POMDP M =
(X,A,Z, T,O, c, b0) and the simplified POMDP Ms = (X,A,Z, T,Os, c, b0), which differ only in
the observation model. In practice, the observation model O may be represented by a computation-
ally expensive neural network, whereas Os may correspond to a more lightweight neural network
that is faster to sample from.
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Figure 3: Illustration of action–sequence elimination based on bounding intervals. On the left, two
actions are shown with disjoint bounds. In this case, the agent prefers action 1, as its associated
action–value function is smaller. On the right, the two actions have overlapping bounds, and conse-
quently the agent cannot distinguish between them based on the bounds.

One approach to accelerating agent decision making through model simplification is action elimi-
nation based on the simplified model. Let V π

M (b) and Qπ
M (b) denote the value function and action-

value function of the original POMDP M , and let V π
Ms

(b) and Qπ
Ms

(b) denote the corresponding
functions of the simplified POMDP Ms. A central aspect of such acceleration methods is the estab-
lishment of formal theoretical guarantees relating the simplified and original action-value functions,
specifically by identifying conditions under which

P (|Qπ
M (b)−Qπ

Ms
(b)| > ϵ) ≤ δ, (33)

where ϵ > 0, δ ∈ (0, 1). In these cases, bounds for the original POMDP can be derived from the
simplified POMDP, enabling the elimination of actions whose bounds do not overlap. An illustration
of this procedure is given in Figure 3.

A.3 CVAR-BASED RISK-AVERSE RL

CVaR is a widely studied risk measure with numerous applications. In this example, we focus on
one of its most direct formulations, also considered in Chow & Ghavamzadeh (2014), wherein the
value function is defined as the CVaR of the return. Specifically,

V π,CV aR
M (bk, α)≜CV aRα[

T∑
t=k

c(bt, π(bt))|bk, π], (34)

Qπ,CV aR
M (bk, ak, α) ≜ CV aRα[c(bk, ak) +

T∑
t=k+1

c(bt, π(bt))|bk, π]. (35)

We denote by V π,CV aR
Ms

and Qπ,CV aR
Ms

the value and action-value functions with respect to the
simplified POMDP. This definition of the value function would be used in the next section.

A.4 CONNECTION TO THIS PAPER

In this section, we establish the connection between the random variables X and Y introduced earlier
and the POMDP simplification framework. We first observe that, when the return is continuous with
respect to the belief b, the properties of CV aR imply that for α = 1

V π,CV aR
M (b, α) = V π

M (b), Qπ,CV aR
M (b, a, α) = Qπ

M (b, a), (36)

V π,CV aR
Ms

(b, α) = V π
Ms

(b), Qπ,CV aR
Ms

(b, a, α) = Qπ
Ms

(b, a). (37)
Thus, the CVaR-based value function can be interpreted as a generalization of the standard
expectation-based value function, since under mild conditions the latter arises as a special case
of the former.

The POMDP determines the distribution of the return. Consequently, the results in this paper show
that, if the distributional discrepancy between the return under the original POMDP and that un-
der the simplified POMDP is bounded, one can bound the original value function in terms of the
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simplified value function, thereby enabling accelerated decision making through the use of compu-
tationally cheaper models.

Formally, let X and Y in Theorem 5.3 correspond to the return distributions of the original POMDP
M and the simplified POMDP Ms, respectively. If the actual distributional discrepancy ϵ in The-
orem 5.3 is known, the problem of accelerating agent decision making is effectively resolved, as
existing results in the literature provide solutions for computing such bounds.

In the context of agent acceleration, the key application of this work is that, by providing bounds on
the original value function of an MDP or POMDP in terms of a simplified model through the paper’s
results, the problem reduces to estimating the distributional discrepancy between the corresponding
returns.

B PROOFS OF SECTION 4

Theorem B.1 (Theorem 4.1) Let X and Y be random variables and ϵ ∈ [0, 1].

1. Upper bound: assume that P (X ≤ bX) = 1, P (Y ≤ bY ) = 1 and ∀z ∈ R, FY (z) −
FX(z) ≤ ϵ, then

(a) If α > ϵ,

CV aRα(X) ≤ ϵ

α
max(bX , bY ) + (1− ϵ

α
)CV aRα−ϵ(Y ). (38)

(b) If α ≤ ϵ, then CV aRα(X) ≤ max(bX , bY ).

2. Lower Bound: If P (X ≥ aX) = 1, P (Y ≥ aY ) = 1 and ∀z ∈ R, FX(z) − FY (z) ≤ ϵ,
then

(a) If α+ ϵ ≤ 1,

CV aRα(X) ≥ (1 +
ϵ

α
)CV aRα+ϵ(Y )− ϵ

α
CV aRϵ(Y ) (39)

(b) If α+ ϵ > 1 and amin = min(aX , aY ),

CV aRα(X) ≥ E[Y ]− ϵCV aRϵ(Y ) + (α+ ϵ− 1)amin (40)

Proof. The strategy of the proof is to construct two distributions derived from FY , denoted FL
Y and

FU
Y , such that FX is stochastically bounded between them; that is, FL

Y ≤ FX ≤ FU
Y . Consequently,

since CVaR is a coherent risk measure, it follows that

CV aR
FL

Y
α ≤ CV aRFX

α ≤ CV aR
FU

Y
α , (41)

where CV aR
FL

Y
α , CV aRFX

α , and CV aR
FU

Y
α denote the CVaR at level α corresponding to the distri-

butions FL
Y , FX , and FU

Y , respectively.

Let amin = min(aX , aY ) and bmin = min(bX , bY ). Define the interval [bmin, bX) to be ∅ if bmin =
bX , and equal to [bY , bX) otherwise. Analogously, define [amin, aX) in the same manner. We then
define upper and lower bounds for FY as follows (see Figure 1a):

FU
Y (y) =


0 y < max(aX , qY1−ϵ)

min(FY (y)− ϵ, 1− ϵ) y ∈ [max(aX , qY1−ϵ), bmin)

1− ϵ y ∈ [bmin, bX)

1 y ≥ max(bX , bY ),

(42)

FL
Y (y) =


0 y < amin

ϵ y ∈ [amin, aY )

min(FY (y) + ϵ, 1) y ∈ [aY ,min(qYϵ , bX))

1 y ≥ min(qYϵ , bX).

(43)

As a first step, we verify that FL
Y and FU

Y are valid CDFs and that they satisfy FL
Y ≤ FX ≤ FU

Y . To
establish that F is a CDF, it suffices to verify the following properties:
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1. F is non-decreasing;
2. F : R → [0, 1] with limx→∞ F (x) = 1 and limx→−∞ F (x) = 0;
3. F is right-continuous.

Proof that FL
Y is a CDF:

1. On the interval [aY ,min(qY1−ϵ, bX)), the function FL
Y is monotone increasing, since FY is

monotone increasing by virtue of being a CDF. Outside this interval, FL
Y is constant and

consequently preserves monotonicity.
2. By definition, limy→∞FL

Y (y) = 1 and limy→−∞FL
Y (y) = 0. We need to show that FL

Y is
bounded between 0 and 1. By its definition, FL

Y is bounded between 0 and 1.

3. Within the interval [aY ,min(qYϵ , bX)), FL
Y is right-continuous since FY is right-

continuous as a CDF. Outside this interval, FL
Y is constant and hence also right-continuous.

Proof that FU
Y is a CDF:

1. On the interval [max(aX , qY1−ϵ), bmin), the function FU
Y is monotone increasing, since FY

is monotonically increasing by virtue of being a CDF. Outside this interval, FU
Y is constant

and consequently preserves monotonicity.
2. By definition, limy→∞FU

Y (y) = 1 and limy→−∞FU
Y (y) = 0. By its definition, FU

Y is
bounded between 0 and 1.

3. Within the interval [max(aX , qY1−ϵ), bmin), FU
Y is right-continuous since FY is right-

continuous as a CDF. Outside this interval, FU
Y is constant and hence also right-continuous.

Proof that FL
Y ≤ FX ≤ FU

Y : To establish that FL
Y ≤ FX ≤ FU

Y , we need to show that for all
z ∈ R, FL

Y (z) ≥ FX(z) ≥ FU
Y (z). Let z ∈ R.

• If z < amin then FL
Y (z) = 0 = FX(z).

• If z ∈ [amin, aY ) then FX(y) = FX(y)−FY (y)+FY (y) ≤ |FX(y)−FY (y)|+FY (y) ≤
ϵ+ FY (y) = ϵ = FL

Y (y).

• If z ∈ [aY ,min(qYϵ , bX)) we assume that FY (z) + ϵ ≤ 1 because otherwise FL
Y (z) = 1

and the inequality holds. FL
Y (z) = FY (z)+ ϵ = FY (z)−FX(z)+FX(z)+ ϵ ≥ FX(z)−

|FY (z)− FX(z)|+ ϵ ≥ FX(z).
• If z ≥ min(qYϵ , bX) then FL

Y (z) = 1 ≥ FX(z).

and therefore FL
Y ≤ FX . Note that the last proof holds when bX = ∞, making FL

Y a valid CDF
when the support of X is not bounded from above.

• If z < max(aX , qY1−ϵ) then FU
Y (z) = 0 ≤ FX(z).

• If z ∈ [max(aX , qY1−ϵ), bmin) then FU
Y (z) ≤ FY (z)−ϵ = FY (z)−FX(z)+FX(z)−ϵ ≤

|FY (z)− FX(z)|+ FX(z)− ϵ ≤ ϵ+ FX(z)− ϵ = FX(z).
• If z ∈ [bmin, bX) then FU

Y (z) = 1 − ϵ = FY (z) − ϵ = FY (z) − ϵ + FX(z) − FX(z) ≤
FX(z)− ϵ+ |FY (z)− FX(z)| ≤ FX(z)

and therefore FX ≤ FU
Y . Note that the last proof holds when aX = −∞, making FU

Y a valid CDF
when the support of X is not bounded from below.

Next, we derive bounds for the CVaR associated with FU
Y and FL

Y .

Upper bound for CV aR
FU

Y
α : From Acerbi & Tasche (2002), CVaR is equal to an integral of the

VaR

CV aR
FU

Y
α =

1

α

∫ 1

1−α

inf{y ∈ R : FU
Y (y) ≥ τ}dτ =

1

α

∫ 1+ϵ

1−α+ϵ

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ}dτ

(44)
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If α ≤ ϵ, then 1− α+ ϵ ≥ 1, rendering the bound in the preceding equation trivial, as it attains the
maximum value of the support of both X and Y .

1

α

∫ 1+ϵ

1−α+ϵ

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ} ≤ 1

α

∫ 1+ϵ

1−α+ϵ

max(bX , bY )dτ = max(bX , bY ). (45)

That is, CV aRα(X) ≤ max(bX , bY ).

If α > ϵ, then 1 − α + ϵ < 0, and the integral may be decomposed into one term that is trivially
bounded by the maximum of the support and another term that can be computed explicitly

CV aR
FU

Y
α =

1

α

∫ 1+ϵ

1−α+ϵ

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ}dτ

=
1

α
[

∫ 1+ϵ

1

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ}dτ︸ ︷︷ ︸

≜A1

+

∫ 1

1−α+ϵ

inf{y ∈ R : FU
Y (y) ≥ τ − ϵ}dτ︸ ︷︷ ︸

≜A2

]
(46)

The term A1 is bounded, in a manner analogous to equation 45, by ϵmax(bX , bY ), which is es-
sentially the tightest bound attainable given the definition of FU

Y . The term A2 can be expressed
in terms of the CVaR of Y , evaluated at a shifted confidence level. Specifically, the variable τ − ϵ
in A2 lies within the interval [1 − α, 1 − ϵ]. Over this range, for all y ∈ [max(aX , qY1−ϵ), bmin],
the inequality FU

Y (y) ≤ FY (y) − ϵ holds. This follows because if qY1−ϵ ≥ aX , then by definition
FU
Y (y) = min(FY (y)−ϵ, 1−ϵ), and if aX > qY1−ϵ, then FU

Y (y) = 0 ≤ FY (y)−ϵ for y ∈ [qY1−ϵ, aX ]

and again FU
Y (y) = min(FY (y)− ϵ, 1− ϵ) for y ∈ [aX , bmin].

A2 ≤
∫ 1

1−α+ϵ

inf{y ∈ R : FY (y)− ϵ ≥ τ − ϵ}dτ =

∫ 1

1−(α−ϵ)

inf{y ∈ R : FY (y) ≥ τ}dτ

= (α− ϵ)CV aRα−ϵ(Y ).

(47)

Note that the confidence level is valid, as α, ϵ ∈ (0, 1) and α > ϵ imply α−ϵ ∈ (0, 1). By combining
the previous two expressions, we obtain a single bound:

CV aR
FU

Y
α ≤ ϵ

max(bX , bY )

α
+ (1− ϵ

α
)CV aRϵ−α(Y ). (48)

In the case where aX = −∞, we have max(aX , qY1−ϵ) = qY1−ϵ, and the definition of FU
Y no longer

involves aX . Therefore, the inequality remains valid in the case of aX = −∞.

Lower bound for CV aR
FL

Y
α : From Acerbi & Tasche (2002), CVaR is equal to an integral of the

VaR

CV aR
FL

Y
α =

1

α

∫ 1

1−α

inf{y ∈ R : FL
Y (y) ≥ τ}dτ =

1

α

∫ 1−ϵ

1−(ϵ+α)

inf{y ∈ R : FL
Y (y) ≥ τ + ϵ}dτ.

(49)
It holds that FL

Y (y) ≤ FY (y) + ϵ and therefore

CV aR
FL

Y
α ≥ 1

α

∫ 1−ϵ

1−(ϵ+α)

inf{y ∈ R : FY (y) + ϵ ≥ τ + ϵ}dτ =
1

α

∫ 1−ϵ

1−(ϵ+α)

inf{y ∈ R : FY (y) ≥ τ}dτ

=
1

α
[

∫ 1

1−(ϵ+α)

inf{y ∈ R : FY (y) ≥ τ}dτ −
∫ 1

1−ϵ

inf{y ∈ R : FY (y) ≥ τ}dτ ]

=
1

α
[(α+ ϵ)CV aRα+ϵ(Y )− ϵCV aRϵ(Y )].

(50)
In the case where ϵ+ α > 1,

CV aR
FL

Y
α =

1

α

∫ 1−ϵ

1−(ϵ+α)

inf{y ∈ R : FL
Y (y) ≥ τ + ϵ}dτ

=
1

α
[

∫ 1−ϵ

0

inf{y ∈ R : FL
Y (y) ≥ τ + ϵ}dτ︸ ︷︷ ︸

≜A3

+

∫ 0

1−(ϵ+α)

inf{y ∈ R : FL
Y (y) ≥ τ + ϵ}dτ︸ ︷︷ ︸

≜A4

].
(51)
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A3 ≥
∫ 1−ϵ

0

inf{y ∈ R : FY (y) ≥ τ}dτ =

∫ 1

0

inf{y ∈ R : FY (y) ≥ τ}dτ

−
∫ 1

1−ϵ

inf{y ∈ R : FY (y) ≥ τ}dτ = E[Y ]− ϵCV aRϵ(Y )

(52)

In the case of A4, τ ranges from 1− α to ϵ, and therefore

A4 =

∫ ϵ

1−α

inf{y ∈ R : FL
Y (y) ≥ τ}dτ ≥ (α+ ϵ− 1)amin (53)

By combining the last equations to one bound we get

CV aRα(X) ≥ CV aR
FL

Y
α ≥ E[Y ]− ϵCV aRϵ(Y ) + (α+ ϵ− 1)amin. (54)

□

Theorem B.2 (Theorem 4.2) Given the definition of X,Y, ϵ and α as in Theorem 4.1, the lower and
upper bounds of Theorem 4.1 converge to CV aRα(X) as ϵ → 0.

Proof. Let f and g be continuous functions such that f(0) and g(0) are finite. Then
limx→0 f(x)g(x) =

(
limx→0 f(x)

)(
limx→0 g(x)

)
. This property will be used throughout the

proof.

Assume that FY (z) − FX(z) ≤ ϵ for all z ∈ R. Since we consider the limit as ϵ → 0, we further
assume that α > ϵ when computing the bound. Noting that CVaR is continuous with respect to the
confidence level, it follows that limϵ→0 CVaRα−ϵ(Y ) = CVaRα(Y ).

lim
ϵ→0

ϵ

α
max(bX , bY ) + (1− ϵ

α
)CV aRα−ϵ(Y ) = lim

ϵ→0
(1− ϵ

α
)CV aRα−ϵ(Y )

= lim
ϵ→0

1− ϵ

α
lim
ϵ→0

CV aRα−ϵ(Y ) = CV aRα(Y )
(55)

If FX(z) − FY (z) ≤ ϵ for all z ∈ R, then, since we consider the limit as ϵ → 0, we assume in the
derivation of the bound that α+ ϵ ≤ 1.

lim
ϵ→0

(1 +
ϵ

α
)CV aRα+ϵ(Y )− ϵ

α
CV aRϵ(Y ) = lim

ϵ→0
1 +

ϵ

α
lim
ϵ→0

CV aRα+ϵ(Y )

− lim
ϵ→0

ϵ

α
lim
ϵ→0

CV aRα+ϵ(Y ) = CV aRα(Y ).
(56)

□

Theorem B.3 (Theorem 4.3: Tighter CVaR Lower Bound) Let α ∈ (0, 1), X and Y be random
variables. Define the a random variable Y L such that FY L(y) ≜ min(1, FY (y) + g(y)) for g :
R → [0,∞). Assume limx→−∞g(x) = 0, g is continuous from the right and monotonic increasing.
If ∀x ∈ R, FX(x) ≤ FY (x) + g(x), then FY L is a CDF and CV aRα(Y

L) ≤ CV aRα(X).

Proof. In order to prove that FY L is a CDF we need to prove that FY L is:

1. Monotonic increasing

2. F : R :→ [0, 1], limx→∞ FY L(x) = 1, limx→−∞ FY L(x) = 0

3. Continuous from the right

Monotonic increasing: Note that for every fi : R → R, i = 1, 2 that are monotonic in-
creasing, f1(f2(x))) is also monotonic increasing in x. Denote f(x) := min(x, 1) and
f2(x) := FY (x) + g(x). FY (x) is a CDF and therefore monotonic increasing, so f2(x) is
monotonic increasing as a sum of monotonic increasing functions. f1 is also monotonic increasing,
and FY L(x) = f1(f2(x)). Therefore FY L(x) is monotonic increasing.
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Limits:
1 ≥ lim

x→∞
FY L(x) = lim

x→∞
min(1, FY (x) + g(x))

≥ lim
x→∞

min(1, FY (x)) = lim
x→∞

FY (x) = 1
(57)

and therefore limx→∞ FY L(x) = 1.

0 ≤ lim
x→−∞

FY L(x) = lim
x→−∞

min(1, FY (x) + g(x))

≤ lim
x→−∞

FY (x) + g(x) = lim
x→−∞

FY (x) + lim
x→−∞

g(x)

= 0

and therefore limx→−∞ FY L(x) = 0. By definition ∀x ∈ R, FY L(x) ≤ 1, and
∀x ∈ R, FY L(x) ≥ 0 because both g and FY L are non negative functions.

Continuity from the right: FY is continuous from the right because it is a CDF, and therefore
FY L is continuous from the right as a sum of continuous from the right functions.
Thus, FY L is a CDF.

Bound proof: If Y L ≤ X , then CV aRα(Y
L) ≤ CV aRα(X) because CVaR is a coherent risk

measure. Note that if FY (x) + g(x) < 1 then

FX(x) ≤ FY (x) + g(x) = FY L(x), (58)

and if FY (x) + g(x) ≥ 1, 1 = FY L(x) ≥ FX(x). Therefore Y L ≤ X . □

Theorem B.4 (Theorem 4.4) Let α ∈ (0, 1), X and Y random variables. Define h : R → [0,∞)
to be a continuous function, g(z) :=

∫ z

−∞ h(x)dx and Y L to be a random variable such that
FY L(y) := min(1, FY (y) + g(y)). If limz→−∞ g(z) = 0 and ∀x ∈ R, fx(x) ≤ fy(z) + h(x), then
FY L is a CDF and CV aRα(Y

L) ≤ CV aRα(X).

Proof. We will show the g satisfies the properties of Theorem 4.3, and therefore this theorem holds.
We need to prove that

1. limz→−∞ g(z) = 0

2. g is continuous from the right.
3. g is monotonic increasing.
4. FX(y) ≤ FY (y) + g(y)

It is given in the theorem’s assumptions that limz→−∞ g(z) = 0, so (1) holds. h is non negative
and therefore g is monotonic increasing, so (3) holds. g is continuous if its derivative exists for all
z ∈ R. Let z ∈ R and a < z.
d

dz
g(z) =

d

dz

∫ z

−∞
h(x)dx =

d

dz
[

∫ a

−∞
h(x)dx+

∫ z

a

h(x)dx] =
d

dz

∫ z

a

h(x)dx = h(z) (59)

where the third equality holds because
∫ a

−∞ h(x)dx = g(a) is a constant that does not depend on z.
The last equality holds from the fundamental theorem of calculus because h is continuous. Finally,
(4) holds because

FX(y) ≜
∫ y

−∞
fx(x)dx ≤

∫ y

−∞
fy(x) + h(x)dx ≜ FY (y) + g(y). (60)

□

C PROOFS OF SECTION 5

Theorem C.1 (Theorem 5.1) Let X a random variable, α ∈ (0, 1], δ ∈ (0, 1), ϵ =
√
ln(1/δ)/(2n).

Let X1, . . . , Xn
iid∼ FX be random variables that define the ECDF F̂X .
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1. Upper Bound: If P (X ≤ b) = 1, then

(a) If α > ϵ then P (CV aRα(X) ≤ (1− ϵ
α )C

F̂X
α−ϵ +

ϵ
αb) > 1− δ.

(b) If α ≤ ϵ then CV aRα(X) ≤ b

2. Lower Bound: If P (X ≥ a) = 1, then

(a) If α+ ϵ < 1, then P (CV aRα(X) ≥ (1 + ϵ
α )C

F̂X
α+ϵ − ϵ

αC
F̂X
ϵ ) > 1− δ.

(b) If α+ ϵ ≥ 1, then P (CV aRα(X) ≥ 1
α [(α+ ϵ− 1)a+ EF̂X

[X]− ϵCF̂X
ϵ ]) > 1− δ.

Proof. From DKW inequality the following inequalities can be derived Thomas & Learned-Miller
(2019)

Pr

(
sup
x∈R

(
F̂ (x)− F (x)

)
≤
√

ln(1/δ)

2n

)
≥ 1− δ, (61)

Pr

(
sup
x∈R

(
F̂ (x)− F (x)

)
≥
√

ln(1/δ)

2n

)
≥ 1− δ. (62)

Let ϵ =
√

ln(1/δ)
2n . By using Theorem 4.1 we get the following.

If α < ϵ then

P (CV aRα(X) ≤ α− ϵ

α
CF̂X

α−ϵ +
ϵ

α
b)

= P (Cα(X) ≤ α− ϵ

α
CF̂X

α−ϵ +
ϵ

α
b
∣∣∣ sup
z∈R

(F̂X − FX) ≤ ϵ)︸ ︷︷ ︸
=1

×P (sup
z∈R

(F̂X − FX) ≤ ϵ)︸ ︷︷ ︸
>1−δ

+ P (Cα(X) ≤ α− ϵ

α
CF̂X

α−ϵ +
ϵ

α
b
∣∣∣ sup
z∈R

(F̂X − FX) > ϵ)︸ ︷︷ ︸
≥0

×P (sup
z∈R

(F̂X − FX) > ϵ)︸ ︷︷ ︸
≥0

> 1− δ.

(63)

Observe that, conditional on the event supz∈R
(
F̂X(z) − FX(z)

)
≤ ϵ, the bound in Theorem 4.1

holds deterministically. Consequently, the probability that

Cα(X) ≤ α− ϵ

α
CF̂X

α−ϵ +
ϵ

α
b (64)

holds, given supz∈R
(
F̂X(z) − FX(z)

)
≤ ϵ, is equal to one. The same observation is necessary

through the rest of the proof in a similar manner. If α+ ϵ < 1, then

P (Cα(X) ≥ (1 +
ϵ

α
)CF̂X

α+ϵ −
ϵ

α
CF̂X

ϵ )

= P (Cα(X) ≥ (1 +
ϵ

α
)CF̂X

α+ϵ −
ϵ

α
CF̂X

ϵ

∣∣∣ sup
z∈R

(FX − F̂X) ≤ ϵ)︸ ︷︷ ︸
=1

P (sup
z∈R

(FX − F̂X) ≤ ϵ)︸ ︷︷ ︸
>1−δ

+ P (Cα(X) ≥ (1 +
ϵ

α
)CF̂X

α+ϵ −
ϵ

α
CF̂X

ϵ

∣∣∣ sup
z∈R

(FX − F̂X) > ϵ)︸ ︷︷ ︸
≥0

×P (sup
z∈R

(FX − F̂X) > ϵ)︸ ︷︷ ︸
≥0

> 1− δ

(65)
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If α+ ϵ ≥ 1, then

P (Cα(X) ≥ 1

α
[(α+ ϵ− 1)a+ EF̂X

[X]− ϵCF̂X
ϵ ])

= P (Cα(X) ≥ 1

α
[(α+ ϵ− 1)a+ EF̂X

[X]− ϵCF̂X
ϵ ]
∣∣∣ sup
z∈R

(FX − F̂X) ≤ ϵ)︸ ︷︷ ︸
=1

×P (sup
z∈R

(FX − F̂X) ≤ ϵ)︸ ︷︷ ︸
>1−δ

+ P (Cα(X) ≥ 1

α
[(α+ ϵ− 1)a+ EF̂X

[X]− ϵCF̂X
ϵ ]
∣∣∣ sup
z∈R

(FX − F̂X) > ϵ)︸ ︷︷ ︸
≥0

×P (sup
z∈R

(FX − F̂X) > ϵ)︸ ︷︷ ︸
≥0

> 1− δ
(66)
□

Corollary C.2 (Corollary 5.2) Let X be a random variable, α ∈ (0, 1], δ ∈ (0, 1), ϵ =√
ln(1/δ)/(2n), a ∈ R, b ∈ R, η > 0. Let X1, . . . , Xn

iid∼ FX be random variables that define
the ECDF F̂X . Denote by U(n) and L(n) the upper and lower bounds respectively from Theorem
5.1, where n is the number of samples, then

1. If P (X ≤ b) = 1, then limn→∞ U(n)
a.s
= CV aRα(X).

2. If P (X ≥ a) = 1, then limn→∞ L(n)
a.s
= CV aRα(X).

where a.s denotes almost sure convergence.

Proof.

lim
n→∞

U(n)
a.s
= lim

n→∞
(1− ϵ

α
)CF̂X

α−ϵ +
ϵ

α
b

a.s
= lim

n→∞
CF̂X

α−ϵ = lim
n→∞

CF̂X
α = CFX

α (67)

where the first and second equalities follow from the fact that ϵ → 0 as n → ∞; the third equality
holds by the continuity of CVaR with respect to α; and the fourth equality holds by the almost sure
convergence of the empirical CVaR of i.i.d. samples to the true CVaR. For the same reason,

lim
n→∞

L(n)
a.s
= lim

n→∞
(1 +

ϵ

α
)CF̂X

α+ϵ −
ϵ

α
CF̂X

ϵ
a.s
= lim

n→∞
CF̂X

α+ϵ
a.s
= lim

n→∞
CF̂X

α
a.s
= lim

n→∞
CFX

α . (68)

□

Theorem C.3 (Theorem 5.3) Let X and Y be random variables, ϵ ∈ [0, 1], and η =√
ln(1/δ)/(2n), ϵ′ = min(ϵ + η, 1). Let Y1, . . . , Yn be independent and identically distributed

samples from FY , and denote by F̂Y the associated empirical cumulative distribution function.

1. Upper Bound: If ∀z ∈ R, FY (z) − FX(z) ≤ ϵ and P (X ≤ bX) = 1, P (Y ≤ bY ) = 1,
then

(a) If α > ϵ′ then

P
(
CV aRα(X) ≤ ϵ′

α
max(bX , bY ) + (1− ϵ′

α
)CV aR

F̂L
Y

α−ϵ′

)
> 1− δ. (69)

(b) If α ≤ ϵ′, then CV aRα(X) ≤ max(bX , bY )

2. Lower Bound: If ∀z ∈ R, FX(z) − FY (z) ≤ ϵ and P (X ≥ aX) = 1, P (Y ≥ aY ) = 1,
then

(a) If α+ ϵ′ ≤ 1, then

P
(
CV aRα(X) ≥ (1 +

ϵ′

α
)CV aR

F̂L
Y

α+ϵ′ −
ϵ′

α
CV aR

F̂L
Y

ϵ′

)
> 1− δ. (70)
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(b) If α+ ϵ′ > 1, then

P
(
CV aRα(X) ≥ EF̂L

Y
[Y ]− ϵ′CV aRF̂Y

ϵ′ + (α+ ϵ′ − 1)amin

)
> 1− δ. (71)

Proof. We begin by establishing that ϵ′ bounds the distributional discrepancy between F̂L
Y and FX ,

under the assumption that supx
(
F̂L
Y (x)− FY (x)

)
≤ ϵ. Let x ∈ R,

F̂L
Y (x)− FX(x) = F̂L

Y (x)− FY (x) + FY (x)− FX(x)

≤ |F̂L
Y (x)− FY (x)|+ |FY (x)− FX(x)| ≤ ϵ+ η = ϵ′.

(72)

Assume that α > ϵ′. Note that, conditional on the event supz∈R
(
F̂Y (z) − FX(z)

)
≤ ϵ′, the upper

bound in Theorem 4.1 holds deterministically. Consequently, the probability that

CV aRα(X) ≤ ϵ′

α
max(bX , bY ) + (1− ϵ′

α
)CV aR

F̂L
Y

α−ϵ′ (73)

holds is equal to one. From the law of total probability,

P
(
CV aRα(X) ≤ ϵ′

α
max(bX , bY ) + (1− ϵ′

α
)CV aR

F̂L
Y

α−ϵ′

)
≥ P (sup

z∈R

(
F̂Y (z)− FX(z)

)
≤ ϵ′).

(74)
The full derivation is available in the Appendix.

P
(
CV aRα(X) ≤ ϵ′

α
max(bX , bY ) + (1− ϵ′

α
)CV aR

F̂L
Y

α−ϵ′

)
= P

(
CV aRα(X) ≤ ϵ′

α
max(bX , bY ) + (1− ϵ′

α
)CV aR

F̂L
Y

α−ϵ′∣∣∣ sup
z∈R

(
F̂Y (z)− FX(z)

)
≤ ϵ′

)
P (sup

z∈R

(
F̂Y (z)− FX(z)

)
≤ ϵ′)

+ P
(
CV aRα(X) ≤ ϵ′

α
max(bX , bY ) + (1− ϵ′

α
)CV aR

F̂L
Y

α−ϵ′∣∣∣ sup
z∈R

(
F̂Y (z)− FX(z)

)
> ϵ′

)
P (sup

z∈R

(
F̂Y (z)− FX(z)

)
> ϵ′)

= P (sup
z∈R

(
F̂Y (z)− FX(z)

)
≤ ϵ′)

+ P
(
CV aRα(X) ≤ ϵ′

α
max(bX , bY ) + (1− ϵ′

α
)CV aR

F̂L
Y

α−ϵ′∣∣∣ sup
z∈R

(
F̂Y (z)− FX(z)

)
> ϵ′

)
P (sup

z∈R

(
F̂Y (z)− FX(z)

)
> ϵ′)

≥ P (sup
z∈R

(
F̂Y (z)− FX(z)

)
≤ ϵ′)

(75)

From DKW Dvoretzky et al. (1956) inequality the following inequalities can be derived Thomas &
Learned-Miller (2019)

P

(
sup
x∈R

(
F̂ (x)− F (x)

)
≤
√

ln(1/δ)

2n

)
≥ 1−δ, P

(
sup
x∈R

(
F̂ (x)− F (x)

)
≥
√

ln(1/δ)

2n

)
≥ 1−δ.

(76)
P (sup

z∈R

(
F̂Y (z)− FX(z)

)
≤ ϵ′) ≥ P (sup

z∈R

(
F̂Y (z)− FY (z)

)
+ sup

z∈R

(
FY (z)− FX(z)

)
≤ ϵ′)

≥ P (sup
z∈R

(
F̂Y (z)− FY (z)

)
+ ϵ ≤ ϵ+ η) = P (sup

z∈R

(
F̂Y (z)− FY (z)

)
≤ η) > 1− δ.

(77)

The first inequality follows from the triangle inequality; the second holds since ϵ bounds the distri-
butional discrepancy between X and Y ; and the third follows from equation 76.

As with the preceding equations, all bounds in Theorem 4.1 hold deterministically for a given distri-
butional discrepancy, where the discrepancy between F̂Y and FX is ϵ′. Consequently, the remaining
probabilistic guarantees hold with probability at least 1− δ. □

D OUR CONCENTRATION BOUNDS VS THOMAS & LEARNED-MILLER (2019)
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Figure 4: Comparison of concentration inequalities for CVaR.
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