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ABSTRACT

In this paper, we propose an active-learning based framework, Active Learning
based Structural Inference (ALaSI), to infer the existence of directed connections
from observed agents’ states over a time period in a dynamical system. With the
help of deep active learning, ALaSI is competent in learning the representation of
connections with relatively small pool of prior knowledge. Moreover, based on in-
formation theory, we propose inter- and out-of-scope message learning pipelines,
which are remarkably beneficial to the structural inference for large dynamical
systems. We evaluate ALaSI on various large datasets including simulated sys-
tems and real-world networks, to demonstrate that ALaSI is able to precisely infer
the existence of connections in these systems under either supervised learning or
unsupervised learning, with better performance than baseline methods.

1 INTRODUCTION

Dynamical systems are commonly observed in real-world, including physical systems (Kwapień &
Drożdż, 2012; Ha & Jeong, 2021), biological systems (Tsubaki et al., 2019; Pratapa et al., 2020),
and multi-agent systems (Brasó & Leal-Taixé, 2020; Li et al., 2022). A dynamical system can be
described as a set of three core elements: (a) the state of the system in a time period, including state
of the individual agents; (b) the state-space of the system; and (c) the state-transition function (Irwin
& Wang, 2017). Knowing these core elements, we can describe and predict how a dynamical system
behaves. Yet the three elements are not independent of each other, for example, the evolution of the
state is affected by the state-transition function, which suggests that we may predict the future state
based on its current state and the entities which affect the agents (i.e. connectivity). Moreover,
the state-transition function is often deterministic (Katok & Hasselblatt, 1995), which simplifies the
derivation of the future state as a Markovian transition function.

However, in most cases, we hardly have access to the connectivity within a given system, or only
have limited knowledge about the connectivity. Is it possible to infer the connectivity from observed
states of the agents over a time period? We formulate it as the problem of structural inference,
and several machine learning frameworks have been proposed to address it (Kipf et al., 2018; Webb
et al., 2019; Alet et al., 2019; Chen et al., 2021; Löwe et al., 2022; Wang & Pang, 2022). Although
these frameworks can accurately infer the connectivity, as they perform representation learning on a
fully connected graph, these methods can only work for small systems (up to dozens of agents), and
cannot scale well to real-world dynamical systems, for example, with hundreds of agents. Besides
that, as we show in the experiment and appendix sections in this work, the integration of prior
knowledge about partial connectivity of the system is quite problematic among these methods.

On the other hand, deep active learning (DeepAL) is an emerging branch of research that is used to
reduce the cost of annotation while retaining the powerful learning capabilities of deep learning (Ren
et al., 2022). This motivates us to explore DeepAL to solve the problem of structural inference. In
order to perform structural inference on large dynamical systems, instead of building pools based on
batches, we build pools based on agents, and expect the learning framework can consequently infer
the existence of directed connections with a little prior knowledge of the connections. Therefore, in
this work, based on DeepAL, we propose a novel structural inference framework, namely, Active
Learning based Structural Inference (ALaSI), which is designed for the structural inference of large
dynamical systems, and is suitable for the integration of prior knowledge.

ALaSI leverages query strategy with dynamics for agent-wise selection to update the pool with the
most informative partial system, which encourages ALaSI to infer the connections efficiently and
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accurately with partial prior knowledge on the connectivity (named as ‘scope’). Furthermore, based
on information theory, ALaSI learns both inter-scope and out-of-scope (OOS) messages from the
current scope to distinguish the information which represents connections from agents within the
scope and from agents out of the scope, which reserves redundancy when new agents come into
scope. Moreover, with oracle such as partial information decomposition (PID) (Williams & Beer,
2010), ALaSI can infer the connectivity even without prior knowledge and be trained in an unsuper-
vised way. We show with extensive experiments that ALaSI can infer the directed connections of
dynamical systems with up to 1.5K agents with either supervised learning or unsupervised learning.

2 RELATED WORK

Deep Active learning. Our framework ALaSI follows the strategy of DeepAL (Ren et al., 2022),
which attempts to combine the strong learning capability of deep learning in the context of high-
dimensional data processing, as well as the significant potential of active learning (AL) in effec-
tively reducing labeling costs. Within the field of DeepAL, several methods (Gal et al., 2017; Pop
& Fulop, 2018; Kirsch et al., 2019; Tran et al., 2019) applied Bayesian deep learning to deal with
high-dimensional mini-batch samples with fewer queries in the AL context. To solve the problem
of insufficient labeled sample data, Tran et al. (2019) leveraged generative networks for data aug-
mentation, and Wang et al. (2016) assigned pseudo-labels to high-confidence samples to expand
the labeled training set. Moreover, Hossain & Roy (2019) and Siméoni et al. (2020) used labeled
and unlabeled datasets to combine supervised and semisupervised training with AL methods. There
also exist a number of works on how to improve the batch sample query strategy (Shi & Yu, 2019;
Kirsch et al., 2019; Zhdanov, 2019; Ash et al., 2020). As we will show, by leveraging the advan-
tages of DeepAL, ALaSI is competent in efficient and accurate inferring the existence of directed
connections with a smaller labeled pool of prior knowledge.

Structural inference. The aim of structural inference is to accurately reconstruct the connections
between the agents in a dynamical system with observational agents’ states. Among the wide variety
of methods, neural relational inference (NRI) (Kipf et al., 2018) was the first to address the problem
of structural inference based on observational agents’ states with the help of a VAE operating on a
fixed fully connected graph structure. Based on NRI, Webb et al. (2019) proposed factorized neural
relational inference (fNRI), extending NRI to multi-interaction systems. Chen et al. (2021) proposed
a method with efficient message passing mechanisms (MPM), to increase the accuracy of structural
inference for complex systems. Moreover, Alet et al. (2019) proposed a modular meta-learning-
based framework that jointly infers the connectivity with higher data efficiency. From the aspect
of Granger-causality, amortized causality discovery (ACD) (Löwe et al., 2022) attempted to infer a
latent posterior graph from temporal conditional dependence.

In addition to the work mentioned above, several frameworks can also infer the connectivity, but with
different problem settings. Various methods (Ivanovic & Pavone, 2019; Graber & Schwing, 2020; Li
et al., 2022) were specially designed to infer the connections of dynamic graphs. ARNI (Casadiego
et al., 2017) inferred the latent structure based on regression analysis and a careful choice of basis
functions. Mutual information was also utilized to determine the existence of causal links and thus
could infer the connectivity of dynamical systems (Schreiber, 2000; Wu et al., 2020). Some ap-
proaches fitted a dynamics model and then produced a causal graph estimate of the model by using
recurrent models (Tank et al., 2021; Khanna & Tan, 2020), or inferred the connections by generating
edges sequentially (Johnson, 2017; Li et al., 2018) and others independently pruned the generated
edges from an over-complete graph (Selvan et al., 2018).

It is worth mentioning that there exists another branch of research called graph structure learning,
which aims to jointly learn an optimized graph structure and corresponding graph representations
for downstream tasks (Zhu et al., 2021; Fatemi et al., 2021; Jin et al., 2020). Besides that, there is
another series of work to reconstruct the structure of directed acyclic graphs (Zheng et al., 2018; Yu
et al., 2019; Saeed et al., 2020; Yu et al., 2021). However, because of various reasons, such as the
fixed latent space of VAE, or exponential computational efficiency, most of the methods mentioned
above are incapable of structural inference on large dynamical systems and have difficulties in the
efficient utilization of prior knowledge.
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3 PROBLEM DEFINITION

In this section, we formally define the problem of active learning based structural inference with
dynamics. We view a dynamical system S as S = {V, E}, in which V represents the set of n agents
in the system: V = {vi, 1 ≤ i ≤ n}, and E denotes the directed connections between the agents:
(vi, vj) ∈ E ⊆ V ×V . We focus on the cases where we have recordings of trajectories of the agents’
states: V = {V t, 0 ≤ t ≤ T}, where T is the total number of time steps, and V t is the set of features
of all the n agents at time step t: V t = {vt1, vt2, . . . , vtn}. Based on the trajectories, we aim to infer
the existence of directed connections between any agent-pair in the system. The connections are
represented as E = {eij ∈ {0, 1}}, where eij = 1 (or = 0) denotes the existence of connection
from agent i to j (or not). We sample a total number of K trajectories of states. With the notations
above, we can summarize the dynamics for agents within the system as:

vt+1
i = vti +∆ ·

∑
j∈Ui

f
(
||vi, vj ||α

)
, (1)

where ∆ denotes a time interval, Ui represents the set of agents connected with agent i, and f(·) is
the state-transition function deriving to dynamics caused by the edge from agent j to i, and ||·, ·||α
denotes a distance between the states of two agents.

We state the problem of structural inference as searching for a combinatorial distribution to describe
the existence of a directed connection between any agent-pair in the dynamical system. Assume we
have two sets of trajectories, the set of trajectories without knowing connectivityDpool = {Vpool, E∅},
and the set of trajectories for training Dtrain = {Vtrain, Etrain}, where E∅ denotes the empty set of
connectivity. In this paper, we consider two scenarios: the first scenario is where we have access
to the ground-truth of connections E in the system, and we perform a supervised-learning-based
DeepAL with ALaSI, where ALaSI can be defined as:

min
sL:|sL|<K

Ee∼PEtrain ,v∼PVtrain
[L(e, v;As0∪sL)], (2)

where s0 is the initial pool of m agents chosen fromDtrain, as well as the connectivity between them,
sL is the extra pool with budget K, A represents the algorithm of ALaSI, L denotes the learning
objective and we denote Px as the sampling space of variable x. The second scenario is where the
ground-truth connectivity is inaccessible during training, and we show that ALaSI is competent to
infer the connections in an unsupervised setting with the help of any oracle. In this paper, we choose
PID (Williams & Beer, 2010; Lizier et al., 2013) to instantiate the oracle. Thus, instead of having
Etrain available in Dtrain, we leverage PID to calculate the connectivity between the agents in the pool
at every round of sampling. In this case, ALaSI can be defined as:

min
sk:|sk|<K

Ee∼PEPID ,v∼PVtrain
[L(e, v;As0∪sk)], (3)

where sk = {Vtrain, EPID} denotes the pool, in which EPID denotes the connections generated by PID
operating on the agents in the pool, and the number of agents in sk has a budget K. The initial set
s0 is also set up by PID as that of sk, but with a different size of agents m. As the first to perform
DeepAL for structural inference, we consider ALaSI with both supervised and unsupervised learning
and conduct experiments on both settings, to demonstrate its promising performance.

4 METHOD

In this section, we present ALaSI, a scalable structural inference framework based on agent-wise
DeepAL. We start by formulating such a learnable framework in Section 4.1. After that, we describe
the inter-scope and OOS operations in Section 4.2, which are of great significance to make the
framework scalable. Especially, we propose the hybrid loss and the query strategy with dynamics in
Sections 4.3 and 4.4, respectively. Last but not least, we discuss the integration of PID into ALaSI
in Section 4.5, which enables ALaSI to infer the connectivity with unsupervised learning.

4.1 ACTIVE STRUCTURAL INFERENCE WITH DYNAMICS

The basic idea behind ALaSI is to infer the existence of directed connection between two agents
with the help of dynamics. According to Equation 1, we may describe it as: the correct inference
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of the connectivity enables the algorithm to predict the future states of the agent with smaller error.
We formulate the statement as:

argmin
Ui⊆V

Eθ∼p(θ|{V,E})R
(
vt+1
i , P (v̂t+1

i |vti ,Ui, θ)
)
, (4)

where Ui represents the agents connected to agent i,R is the loss function to quantify the dynamics
prediction error between actual dynamics vt+1

i and predicted dynamics v̂t+1
i , and θ is the parameters

of the model. The problem setting in Equation 4 is also widely adopted (Kipf et al., 2018; Webb
et al., 2019; Löwe et al., 2022; Wang & Pang, 2022). For small dynamical systems, we can directly
follow this formulation and leverage generative models such as a VAE to work on a fully-connected
initial graph, in order to infer the connectivity of the whole system. However, for large dynamical
systems, it is impractical and unattainable to infer the connectivity in the same way, which is also a
common problem observed in the literature on structural inference.

In this work, we extend Equation 4 for large dynamical systems with the help of DeepAL. Unlike
previous DeepAL algorithms, which train models on batch-wise selections (Gal et al., 2017; Kirsch
et al., 2019; Pop & Fulop, 2018; Tran et al., 2019), we design ALaSI to train on agent-wise selec-
tions. The pool consists of features of different agents, and the directed connections between these
agents. By training ALaSI on the pool, we try to encourage the framework to capture the statistics
to describe the existence of connections between any agent-pair:

argmin
Ui⊆D

Eθ∼p(θ|D)R
(
vt+1
i , Q(v̂t+1

i |vti ,Ui, θ)
)
. (5)

Different from Equation 4, we have a limited scope D on the available agents and their features,
and we can only learn the representation of connections based on current samplings D. However,
there possibly simultaneously exit connections between the OOS agents and the agents inside the
scope, and discarding the influences of these OOS connections would lead to inaccurate inference
results. As a consequence, we need to design the model Q so that it can distinguish the portion of
information related to OOS connections and the portion of information coming from connections in
the scope, in order to learn the representation of connection precisely and also reserve redundancy
for new agents to be added into the pool. We describe the pipeline of ALaSI in Algorithm 1 and
Figure 4 in the appendix, and elaborate more details in the following sections.

4.2 INTER- / OUT-OF-SCOPE OPERATIONS

Previous works leveraged a fixed scope on the entire set of agents of the dynamical system, and
thus struggled with the curse of scalability (Kipf et al., 2018; Webb et al., 2019; Löwe et al., 2022;
Wang & Pang, 2022). To address this issue, we propose a set of inter-/out-of-scope operations in
order to make ALaSI scalable. Suppose we have a partial view of np agents in the dynamical system
(np < n), and we call the partial view as a scope. For any agent i in the scope, it is possible that it has
connections within the scope and also has connections from agents out of the scope simultaneously.
We denote Vtinter as the set of inter-scope agents’ states and Ztoos as the summary of out-of-scope
(OOS) agents’ states for an ego agent i at time-step t. Vtinter and Ztoos share many characteristics:
(1) Since both of them represent the features within the same system, the connections between
either inter-scope agents or OOS agents and agent i have the same dynamic function as shown in
Equation 4; (2) From the perspective of information theory (Kraskov et al., 2004; Belghazi et al.,
2018), we may easily reach the statement that: I(vti ;Vtinter) ̸= 0 and I(vti ;Z

t
oos) ̸= 0, where vti

represents the features of agent i at time step t, and I(· ; ·) denotes the mutual information (MI)
between two entities. Based on these common characteristics, we reformulate Equation 5 as:

argmin
Ui⊆D

Eθ∼p(θ|D)R
(
vt+1
i , Q(v̂t+1

i |vti ,Vtinter, Z
t
oos, θ)

)
. (6)

Yet the calculation of Ztoos is agnostic, it is necessary to have another set of derivations.

Proposition 1 If we assume Ztoos only captures the information that affects vti and is different from
Vtinter, we can have the following statements:

I(Vtinter;Z
t
oos) < I(vt+1

i ;Ztoos), and I(Vtinter;Z
t
oos) < I(vt+1

i ;Vtinter). (7)

Proposition 1 infers that the MI between Vtinter and Ztoos is the smallest among the MI between any
pair from Vtinter, Z

t
oos and vt+1

i . It also suggests that we may infer information about Ztoos from vt+1
i .
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We prove the proposition in Section A in the appendix. Based on the MI of time series between two
sources and its own past state (Lizier et al., 2013), and the Markovian assumption, we have:

I(vt+1
i ; vti ,Vtinter, Z

t
oos) = I(vt+1

i ; vti) + I(vt+1
i ;Vtinter| vti) + I(vt+1

i ;Ztoos| vti ,Vtinter). (8)
Since MI terms are non-negative by design, the last term on the right of Equation 8 suggests that
given vt+1

i , we can derive the information about Ztoos conditional on vti and Vtinter.

Therefore, we implement the inter-/out-of-scope representation learner with neural networks and the
pipeline of which is shown in the following equations:

einter = finter2([Zi ⊙ Vtinter, v
t
i ]), where Zi = finter1([v

t
i ,Vtinter]), (9)

eoos = foos2([foos1(v
t
i), einter]), (10)

eout = foutput(fdynamics(einter, eoos), v
t
i), (11)

where einter and eoos are learned inter-/out-of-scope representations (Vtinter / Ztoos), respectively, [·, ·]
is the concatenation operation, finter1 is the neural network to learn the existence of connections
between agent i and the agents inside the current scope, Zi represents the connectivity inside the
scope with regards to agent i, and⊙ is the operation to select agents based on connectivity. Suppose
we have K agents in the scope, then Zi ∈ [0, 1]K. So for any agent i, j in the scope, we have
zij ∈ [0, 1], representing the connectivity from agent i to agent j. In practice, we reparametrize
zij with Gumbel-Softmax (Jang et al., 2017) to enable backpropagation (see Section B.5 in the ap-
pendix for implementation). Besides that, finter2, foos1, and foos2 are the neural networks to learn
representations of inter-scope messages, OOS embeddings, and OOS messages, respectively. Fi-
nally, in Equation 11, we learn the representations for dynamics with fdynamics, and output the future
state of agent i (eout) with foutput. In addition to the operations mentioned above, we leverage loss
functions (in Section 4.3) to encourage ALaSI to extract OOS messages from vti and Vtinter.

4.3 HYBRID LOSS

The loss function of ALaSI has three roles: (a) encouraging the model to learn OOS representations;
(b) calculating dynamics error; and (c) estimating the connectivity prediction error.

As mentioned in Section 4.2, we can derive the OOS message Ztoos from vt+1
i , vti and Vtinter. Based

on the triplet loss (Schultz & Joachims, 2003; Schroff et al., 2015) and Proposition 1, we derive the
following loss function to learn the OOS message:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
− I(Ztoos; v

t+1
i )

]
, (12)

where T represents the total count of time-steps, D represents the current scope, |D| denotes the
number of agents in the scope. (We discuss the derivation in Section A.2 in the appendix.) We
implement the calculation and maximization of mutual information with the help of DeepInfo-
Max (Hjelm et al., 2019). However, we have to introduce a regularization term to encourage the
learned representations of Ztoos and Vtinter to be independent of each other, and we leverage distance
correlation (Székely et al., 2007). As already proved (Székely & Rizzo, 2009; 2012; 2014), the
distance correlation between two variables is zero only when two variables are independent of each
other. Therefore, we calculate and minimize the distance correlation between Ztoos and Vtinter:

Ldc =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

dCov2(Ztoos,Vtinter)√
dVar(Ztoos)dVar(Vtinter)

, (13)

where dCov and dVar are the squared sample distance covariance and the distance variance, respec-
tively, and we describe the procedures for calculating these terms in Section B.4.2 in the appendix.
Besides that, we also need the loss function for dynamics:

LD = − 1

(T − 1) · |D|

T−1∑
t

∑
i∈D

||vt+1
i − v̂t+1

i ||2

2σ2
+ const, (14)

where vt+1 and v̂t+1 are the ground-truth dynamics and predicted dynamics, respectively, and σ is
the variance. Moreover, we have the loss function for connectivity:

Lcon = − 1

|D|2
∑
i,j∈D

zij log
(
f(ẑij)

)
, (15)
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Trained ALaSI Model agents

Select Update

Figure 1: Query strategy with dynamics in ALaSI.

where f(·) denotes the softmax function, zi and ẑi represent the ground-truth connectivity and
predicted connectivity in the scope, respectively. With the proposed terms above, we can summarize
the hybrid loss functionR as:

R = α · LD + β · Lcon + γ · Loos + η · Ldc, (16)

where α, β, γ and η are the weights for the loss terms, trying to match the scales of the last three loss
terms with the dynamic loss LD. We state the details of loss terms in Section B.4 in the appendix.

4.4 QUERY WITH DYNAMICS

Interestingly, active learning is also called “query learning” in the statistics literature (Settles, 2009),
which indicates the importance of query strategies in the algorithms of active learning. Query strate-
gies are leveraged to decide which instances are most informative and aim to maximize different
performance metrics (Settles, 2009; Konyushkova et al., 2017). Query strategies select queries from
the pool and update the training set accordingly.

In this work, we propose a novel pool-based strategy: Query with Dynamics, which selects queries
of K agents with the largest dynamics prediction error LD from the pool Dpool, and then we update
training set D with the features and connectivity of K agents from Dtrain. If we have no access to the
connectivity as in unsupervised learning, we run PID to align directed connections to the agents in
pool D with additional K agents (as shown in lines 27-30 in Algorithm 1). We describe the query
strategy in Figure 1 and Algorithm 2 in the appendix. It is notable that despite we have labels on
the existence of connections, we do not query agents on it. The reason is that we firstly follow the
characteristic of dynamical systems (Equation 4), where the wrong alignment of connections leads
to large dynamics error LD. We secondly try to reserve redundancy for unsupervised learning cases,
where ALaSI has no access to ground-truth connections. In this case, we ought to use alternative
algorithms as an oracle, such as PID, to estimate the existence of connections and build Dtrain.
However, it may be risky that the oracle has a strong bias on the set for training D, and thus errors
in this set are unavoidable. As a result, we query agents from the entire poolDpool according to their
dynamics error LD, thus wrong connections would be recognized by our query strategy.

4.5 STRUCTURAL INFERENCE WITH PID

As mentioned above, it is possible that we have no access to the ground-truth connectivity of the
dynamical system. ALaSI manages to infer the connections with the help of an oracle: Partial
Information Decomposition (PID) (Williams & Beer, 2010; Lizier et al., 2013). The PID framework
decomposes the information that a source of variables provides about a destination variable (Lizier
et al., 2013). In our cases to infer the existence of directed connections between a pair of agents i
and j, we follow (Pratapa et al., 2020) with temporal ordering to infer the direction of connections,
and we summarize them in Algorithm 3 in the appendix.

With the help of PID, ALaSI can now infer the existence of directed connections even without
any prior knowledge about the connectivity, which broadens the application scenarios of ALaSI.
We argue that it is possible to use other methods as an oracle for ALaSI, such as pure mutual-
information-based methods, SCODE (Matsumoto et al., 2017) or even classic VAE-based structural
inference methods (Kipf et al., 2018; Webb et al., 2019; Alet et al., 2019; Löwe et al., 2022), which
shows a high ability of adaption and wide application scenario of ALaSI.

5 EXPERIMENTS

We test ALaSI on seven different dynamical systems, including simulated networks and real-world
gene regulatory networks (GRNs). We also present the ablation study on ALaSI, to show the perfor-
mance gain with OOS operation and the importance of query of dynamics. Implementation details
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can be found in Section B in the appendix. Besides that, we include additional experiments on the
integration of prior knowledge with unsupervised learning in Section C in the appendix.

Datasets. We firstly test our framework on physical simulations of spring systems, which is also
mentioned in (Kipf et al., 2018). Different from that in (Kipf et al., 2018), we sample the trajecto-
ries of balls in the system with fixed connectivity, but with different initial conditions. We sample
the trajectories by varying the number of balls: {50, 100, 200, 500}, and we name the correspond-
ing datasets as: “Springs50”, “Springs100”, “Springs200”, and “Springs500”. Moreover, we collect
three real-world GRNs from literature, namely single cell dataset of embryonic stem cells (ESC) (Bi-
ase et al., 2014), a cutoff of Escherichia coli microarray data (E. coli) (Jozefczuk et al., 2010), and
a cutoff of Staphylococcus aureus microarray data (S. aureus) (Marbach et al., 2012). And the three
GRNs have 96, 1505 and 1084 agents, respectively.

Baselines and metrics. We compare ALaSI with the state-of-the-art models:

• NRI (Kipf et al., 2018): a variational-auto-encoder model for relational inference.
• fNRI (Webb et al., 2019): an NRI-based model which factorizes the inferred latent interaction

graph into a multiplex graph, allowing each layer to encode for a different connection-type.
• MPM (Chen et al., 2021): an NRI-based method with a relation interaction mechanism and a

spatio-temporal message passing mechanism.
• ACD (Löwe et al., 2022): a variational model that leverages shared dynamics to infer causal

relations across samples with different underlying causal graphs.
• MPIR (Wu et al., 2020): a model based on minimum predictive information regularization.
• PID (Williams & Beer, 2010): computes the ratio between unique mutual information between

any agent-pair in the system, and aligns connections according to the ranking.

Despite NRI, fNRI, MPM and ACD being originally designed to infer the connectivity with unsu-
pervised learning, we follow the description in their paper and only train the encoders to show their
results of supervised learning. We describe the implementation details of the baseline methods in
Section B.6. We demonstrate our evaluation results with the area under the receiver operating char-
acteristic (AUROC), which demonstrates the model’s ability to discriminate between cases (positive
examples) and non-cases (negative examples), and in this paper, it is used to make clear the method’s
ability to distinguish actual connections and non-connections.

5.1 EXPERIMENTAL RESULTS OF SUPERVISED LEARNING
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Figure 2: Averaged AUROC results of ALaSI and baseline methods as a function of the proportion
of labeled connections. Baseline methods are modified to be trained in a supervised way.

We firstly train ALaSI and baseline methods with supervised learning. It is worth mentioning that
despite our efforts, we did not find an approach to train MPIR and PID in a supervised way without
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violating their inference mechanisms. For the rest of the baseline methods, we follow the description
in their paper and only train the encoders on the partial knowledge of connections. The experimental
results of ALaSI and baseline methods are shown in Figure 2. We report the results as the averaged
AUROC values of ten runs and as a function of the proportion of labeled connections. And the
number of labeled connections is calculated as the square of the number of agents in the scope,
where we mark both connections and non-connections as labeled. We subtract the number of labeled
connections with the square of the total number of agents in the system to obtain the proportion of
labeled connections. Each sub-figure corresponds to the experimental results on a specific dataset.

As shown in Figure 2, the results of baseline methods are positively affected by the proportion of
labeled connections during training, and only MPM is marginally better than the other baseline
methods on most of the datasets. The rest of the baselines perform almost equally. The averaged
AUROC values of ALaSI are also positively correlated with the proportion of labeled connections,
but the results are much better than any of the baselines. Although ALaSI is only marginally better
than any of the baselines on the datasets of “Springs50” and “Springs100” when the proportion
of labeled connections is relatively small (smaller than 0.1), ALaSI outperforms baselines greatly
when the proportion of labeled connections is greater than 0.2 on these datasets. ALaSI also infers
connectivity with remarkably higher accuracy than baseline methods on the rest of the datasets.

Moreover, we also observe that ALaSI learns the connectivity of the dynamical systems more effi-
ciently than baselines. For example, as shown in the experimental results on all of the datasets except
“Springs200”, with only 60% of the prior knowledge, ALaSI reaches higher inference accuracy than
any baseline methods operating with 80% of the prior knowledge. And this phenomenon is more
remarkable in “Springs100”, “Springs500” and “E. coli”, where ALaSI outperforms baselines with
only 50% of the prior knowledge. Thanks to DeepAL and query with dynamics, ALaSI can update
the labeling pool with the most informative addition of agents. Besides that, the inter-scope and OOS
operations encourage the model to learn connections within the scope and meanwhile also reserve
redundancy for possible OOS connections. Consequently, ALaSI is able to learn the connectivity of
dynamical systems with less prior knowledge under supervised learning.

5.2 EXPERIMENTAL RESULTS OF UNSUPERVISED LEARNING

We report the final averaged AUROC values of ALaSI and baseline methods under unsupervised
learning from ten runs in Table 1, and the averaged training time in Table 2. We can observe from
Table 1 that all of the methods unsurprisingly perform worse than themselves in supervised learning,
which is also stated in (Kipf et al., 2018; Chen et al., 2021). ALaSI performs better than any of the
baseline methods on all of the datasets with large margins (up to 0.171), which certainly verifies the
inference accuracy of ALaSI on the unsupervised structural inference of large dynamical systems.

Table 1: Averaged AUROC results of baseline methods and ALaSI with unsupervised learning.

Method Springs50 Springs100 Springs200 Springs500 ESC E. coli S. aureus
NRI 0.617 0.552 0.537 0.511 0.392 0.156 0.351
fNRI 0.621 0.567 0.540 0.516 0.398 0.154 0.351
MPM 0.631 0.590 0.544 0.518 0.402 0.170 0.375
ACD 0.620 0.589 0.539 0.515 0.387 0.162 0.369
MPIR 0.497 0.444 0.420 0.411 0.306 0.151 0.331
PID 0.678 0.630 0.592 0.547 0.451 0.195 0.378
ALaSI 0.735 0.698 0.661 0.632 0.573 0.234 0.392

Moreover, averaged training time of ALaSI and baseline methods is shown in Table 2. It is worth
mentioning that most of the baseline methods are trained on multiple GPU cards when the dataset
has more than 100 agents, while ALaSI is trained on a single GPU card. Experimental settings with
details may refer to Section B.1. The averaged training time of ALaSI is only longer than MPIR
across all of the datasets, while much more accurate than MPIR.Although the AUROC values of
PID are the highest among baseline methods, its operation time is much longer than the rest, and
it is nevertheless less accurate than ALaSI. Compared with the rest of the baselines, thanks to the
query strategy with dynamics and the OOS operation, ALaSI manages to infer the connections for
large dynamical systems with higher efficiency even with unsupervised learning.
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Table 2: Averaged training time (in H) of baseline methods and ALaSI with unsupervised learning.

Method Springs50 Springs100 Springs200 Springs500 ESC E. coli S. aureus
NRI 29.2 40.6 57.1 85.1 39.4 118.6 101.7
fNRI 31.0 49.0 58.0 86.8 42.0 121.4 105.3
MPM 35.9 51.6 57.4 85.6 44.1 124.0 105.9
ACD 49.0 82.4 63.9 90.0 80.4 130.9 113.5
MPIR 12.6 20.7 42.0 51.5 19.5 65.1 47.6
PID 51.6 100.2 151.0 183.4 89.3 267.1 230.8
ALaSI 25.5 33.8 46.1 60.3 37.2 87.0 72.9

5.3 ABLATION STUDY

We conduct ablation studies on the effectiveness of query with dynamics, as well as OOS operation.
We modify ALaSI into: (a) ALaSI-ran: where we replace the query with dynamics strategy with
a random sampling strategy on agents; and (b) ALaSI-no OOS: where we remove the pipeline for
OOS representation learning and the corresponding terms in the loss function. We report the results
of unsupervised learning, which we believe is closer to real-world scenarios, and report the averaged
AUROC results of these variants as a function of the proportion of labeled connections by PID.
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Figure 3: Averaged AUROC results of ALaSI, ALaSI-ran and ALaSI-no OOS as a function of the
proportion of labeled connections under unsupervised learning.

As shown in Figure 3, ALaSI with query strategy with dynamics and OOS operation outperforms its
variants, ALaSI-random and ALaSI-no OOS. Despite the inference accuracy of all these methods
increasing when a large portion of agents are labeled, we observe that ALaSI converges much faster
than the other two methods. Besides that, OOS operation is of great importance to the design of a
scalable structural inference method. It is commonly observed among the subplots that ALaSI-no
OOS can only learn about the representations of connections within the scope and cannot extrap-
olate onto OOS connections, which results in an almost linear dependence between AUROC and
the proportion of labeled connections. Therefore, the query strategy with dynamics and the OOS
operation of ALaSI effectively encourage faster convergence under unsupervised settings.

6 CONCLUSION

This paper has introduced ALaSI, a scalable structural inference framework based on DeepAL. The
query with dynamics encourages the framework to select the most informative agents to be labeled
based on dynamics error, and thus leads to faster convergence. The OOS operation enables the
framework to distinguish inter-scope messages and OOS messages based on the current view of the
partial system, which on the other hand promotes the scalability of ALaSI. The experimental results
on the seven datasets have validated the scalability and inference accuracy of ALaSI. The experi-
ments under supervised settings suggest the possibility of leveraging ALaSI to infer the connectivity
of dynamical systems with less prior knowledge. Moreover, the experiments under unsupervised
settings demonstrate the broad application scenarios of ALaSI to infer the connectivity even without
prior knowledge. Future research includes the structural inference based on causality and structural
inference for systems with changing agents and connections.
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Oriane Siméoni, Mateusz Budnik, Yannis Avrithis, and Guillaume Gravier. Rethinking deep ac-
tive learning: Using unlabeled data at model training. In Proceedings of the 25th International
Conference on Pattern Recognition (ICPR), pp. 1220–1227. IEEE, 2020.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

We prove Proposition 1 in this section. Since we assume the independence between Vtinter and Ztoos,
based on the definition of mutual information between two independent variables, we can easily get
to the first statement:

I(Vtinter;Z
t
oos) ≈ 0. (17)

Moreover, from the proposed PI-diagram of information in a target decomposed from three source
variables (Lizier et al., 2013), we have the following statement:

I(vt+1
i ; vti ,Vtinter, Z

t
oos) > 0. (18)

We refer to Figure 3 in (Lizier et al., 2013) and search for the terms related to Xt
inter and Ztoos:

I(vt+1
i ;Vtinter) ={Vtinter}+ {Vtinter}{vti , Ztoos}+ {vti}{Vtinter}{Ztoos}+ {Vtinter}{Ztoos}+

{vti}{Vtinter} ≫ 0,
(19)

I(vt+1
i ;Ztoos) ={Ztoos}+ {Ztoos}{vti ,Vtinter}+ {vti}{Vtinter}{Ztoos}+ {Vtinter}{Ztoos}+

{vti}{Ztoos} ≫ 0,
(20)

where {·}{·} denotes the redundant information in the two sources, {·}{·}{·} denotes the redundant
information in the three sources, {·} represents the unique information in the single source, and
{· , ·} is the synergistic information from the sources. We summarize the results from Equation 17
to 20, and can derive to:

I(Vtinter;Z
t
oos) < I(vt+1

i ;Ztoos), and I(Vtinter;Z
t
oos) < I(vt+1

i ;Vtinter), (21)
which is Proposition 1.

A.2 DERIVATION OF OOS LOSS FUNCTION

We describe the derivation procedure for Equation 12 in this section. As mentioned in Section 4.2,
we can derive the OOS message Ztoos from vt+1

i , vti and Vtinter. Based on the triplet loss (Schroff
et al., 2015; Schultz & Joachims, 2003) and Proposition 1, we derive the following loss function to
learn OOS message:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
I(Vtinter;Z

t
oos)− I(vt+1

i ;Ztoos) + α1+

I(Vtinter;Z
t
oos)− I(vt+1

i ;Vtinter) + α2

]
,

(22)

where T represents the total count of time-steps, D represents the current scope, |D| denotes the
number of agents in the scope, and α1 and α2 are margins to regulate the distance between two
pairs of mutual information, respectively, in order to encourage larger values of I(vt+1

i ;Ztoos) and
I(vt+1

i ;Vtinter) compared to I(Vtinter;Z
t
oos). It is notable that Ztoos and Vtinter are calculated according

to every agent in the scope, respectively. We omit the subscript of Ztoos and Vtinter for agent i in
Equation 22 for concise. Then we can derive:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
I(Vtinter;Z

t
oos)− I(vt+1

i ;Ztoos) + α1 + I(Vtinter;Z
t
oos)−

I(vt+1
i ;Vtinter) + α2

]
=

1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
H(Ztoos)−H(Ztoos|Vtinter)−

(
H(Ztoos)−H(Ztoos|vt+1

i )
)
+ α1+

H(Vtinter)−H(Vtinter|Ztoos)−
(
H(Vtinter)−H(Vtinter|vt+1

i )
)
+ α2

]
=

1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
H(Ztoos|vt+1

i )−H(Ztoos|Vtinter) + α1 +H(Vtinter|vt+1
i )−

H(Vtinter|Ztoos) + α2

]
.
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We assume Ztoos and Vtinter are independent of each other, and we can reformulate the equation as:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
H(Ztoos|vt+1

i )−H(Ztoos) + α1 +H(Vtinter|vt+1
i )−

H(Vtinter) + α2

]
=

1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
− I(Ztoos; v

t+1
i ) + α1 +−I(Vtinter; v

t+1
i ) + α2

]
.

Since the mutual information between two fixed variables are certain, we omit the second term in
the above derivation. Besides that, since the target is the minimization, the constant term has no
effect on the formulation. As a result, we can obtain:

Loos =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

[
− I(Ztoos; v

t+1
i )

]
,

which is the formulation in Equation 12. As a result, we only need to minimize −I(Zoos; v
t+1
i ), and

we can implement it with DeepInfoMax (Hjelm et al., 2019) algorithm. DeepInfoMax maximizes
the mutual information between input data and learned high-level representations with the help of
global and local information.

B IMPLEMENTATION

B.1 GENERAL SETTINGS

We implement ALaSI in PyTorch Paszke et al. (2019) with the help of Scikit-Learn Pedregosa et al.
(2011) to calculate various metrics. We run experiments of ALaSI on a single NVIDIA Tesla V100
SXM2 graphic card, which has 32 GB graphic memory and 5120 NVIDIA CUDA Cores. We attach
our pseudocode and implementation as the supplementary document to this paper. During training,
we set batch size as 64 for datasets which have less than 100 agents, for those equal or more than
100 agents, we set batch size as 16. We train our ALaSI model with 500 epochs for each updated
label pool on every dataset.

As for baseline methods, since the training under supervised settings only requires the encoder of
the model, which demands moderate space, we managed to run the methods on a single NVIDIA
Tesla V100 SXM2 graphic card, and the batch sizes are the same as ALaSI. However, when it came
to unsupervised learning, the computational requirement of variational auto-encoder-based methods
increased significantly. As a result, in order to run these methods on scalable datasets with more
than 100 agents, we use “DistributedDataParallel” of PyTorch to enable the parallel training of these
models. And we ran these methods on four NVIDIA Tesla V100 SXM2 graphic cards, with a batch
size of 128. For the experiments on datasets with less than 100 agents, we just ran the baselines
on a single NVIDIA Tesla V100 SXM2 graphic card with a batch size of 64. For MPIR, since the
model is super small and the computational requirement is the smallest among all of the baselines,
we ran it on a single NVIDIA Tesla V100 SXM2 graphic card with a batch size of 64. For all of the
experiments, we train ALaSI with a learning rate of 0.0005.

B.2 HYPER-PARAMETERS

We have the following hyper-parameters: initial sample size m, query size K, number of epochs E,
number of selection rounds N , variance σ of Ldc, weights α, β, γ, ξ in hybrid loss, and proportion
of rank in PID η. We utilized grid search for the rough values of these hyper-parameters, and show
them in Table 3.

B.3 DETAILS OF PIPELINES

In this section, we firstly demonstrate the general pipeline of ALaSI in Algorithm 1 and Figure 4.
Then we show the implementation in Algorithm 4, which is followed by the description of PID
algorithm in ALaSI in Algorithm 3.
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Table 3: Hyper parameter choices for every dataset.

DATASET m K E N σ α β γ ξ η
Springs50 5 0.10 500 12 0.0008 0.05 0.8 20 2 0.3
Springs100 5 0.05 500 15 0.0008 0.02 0.8 30 2 0.3
Springs200 10 0.04 500 20 0.0008 0.02 0.5 20 3 0.2
Springs500 20 0.02 600 30 0.0008 0.02 0.6 40 3 0.2
ESC 5 0.05 500 20 0.0008 0.02 0.5 50 2 0.2
E. coli 20 0.02 600 50 0.0008 0.01 0.4 40 3 0.3
S. aureus 20 0.02 600 50 0.0008 0.01 0.4 20 3 0.3

ALaSI 

Select
Train Query with

Dynamics

Query

 agents

Update

PID

If unsupervised learning, leverage PID as oracle.

Figure 4: General pipeline of ALaSI.

B.4 DETAILS OF LOSS FUNCTION

In this section, we discuss and state the details of loss terms and the implementation details of the
proposed loss terms in hybrid loss 16.

B.4.1 OOS LOSS

In this section, we describe the implementation of OOS loss function (Equation 12). As shown
in Section A.2, the loss function is simplified as the maximization of mutual information be-
tween Ztoos and vt+1

i for all 0 ≤ t ≤ T − 1, and for all agent i in the current scope. As men-
tioned in Section 4.3, we leverage DeepInfoMax (Hjelm et al., 2019) to maximize I(Ztoos, v

t+1
i ).

We follow the implementation of DeepInfoMax at: https://github.com/DuaneNielsen/
DeepInfomaxPytorch, which is a pytorch version of official implementation at https:
//github.com/rdevon/DIM. Interestingly, DeepInfoMax requires output variables, input
variables and also the negative samples of input variables. As a result, besides Ztoos and vt+1

i , we
also feed Vtinter to DeepInfoMax, as the negative samples.

B.4.2 DISTANCE CORRELATION

In this section, we firstly describe the procedures to calculate distance correlationLdc in Equation 13,
then we describe the implementation of distance correlation in our work.

Procedures. We firstly pair the K samples of Ztoos and Vtinter as pairs: (zp, xp)p∈K . Then we
calculate the distance matrices A,B ∈ RK×K as:

Apq = ||zp − zq||F , and Bpq = ||xp − xq||F , p, q = 1, ...,K.

After that, we double center the distance matrices to get Ãpq , B̃pq:

Ãpq = Apq − Āp. − Ā.q + Ā..,

where Āi. denoted the mean of row i, Ā.j denotes the mean of column j, Ā.. denotes the overall
mean of A. So this centers both the rows and columns of A,B. All rows and columns of Ã and B̃
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Algorithm 1 Pipeline of ALaSI.
1: Input: Dtrain = a pool of labeled trajectories {Vtrain, E},
2: Input: Dpool = a pool of test trajectories {Vpool},
3: Parameters: initial sample size m, query size K, number of epochs E, number of selection

rounds N ,
4: Model Weights: θ, Hybrid Loss: R, Query with Dynamics: Q,
5: Output: Trained Active Structural Inference ModelM,
6: if Supervised learning then
7: Set of data points D ← Select m agents with features Vm and connectivity Vm from Dtrain,
8: else
9: Select m agents with features Vm from Dtrain,

10: Run PID on Vm and obtain connections between m nodes: EPID0,
11: Set of data points D ← {Vm, EPID0},
12: end if
13: Train modelM E epochs with lossR on Dtrain and obtain parameters θ0,
14: Query K agents with the strategy of query with dynamics Q(θ0, {Vpool}, E),
15: if Supervised learning then
16: Update D with K agents with features VK and connectivity VK from Dtrain,
17: else
18: Select m agents with features Vm from Dtrain,
19: Run PID on features VK and obtain connections between K nodes: EPIDK ,
20: Update D ← {VK, EPIDK},
21: end if
22: while Round i < N do
23: Train modelM E epochs with lossR on Dtrain and obtain parameters θi,
24: Query agent features with Q(θi, {Vpool}, E) and choose K agents,
25: if Supervised learning then
26: Update D with K agents with features VK and connectivity VK from Dtrain,
27: else
28: Select m agents with features Vm from Dtrain,
29: Run PID on features VK and obtain connections between K nodes: EPIDK ,
30: Update D ← {VK, EPIDK},
31: end if
32: end while
33: Return trained modelM and parameters θ.

Algorithm 2 Query with Dynamics Q.
1: Input: Dtrain = a pool of labeled trajectories {Vtrain, E},
2: Input: Dpool = a pool of test trajectories {Vpool},
3: Input: D = a pool of agents we have for training,
4: Parameters: Query Size: K,
5: Model Weights: θ, Dynamic Loss: LD,
6: Output: Query of K agents,
7: Calculate dynamics loss LD on all of the agents in Dpool with only one other agent in scope,
8: Select K agents with largest dynamics prediction error,
9: Return K agents and update D = D ∪ Vi, i ∈ {K} with features and connectivity from Dtrain.

sum to 0. In short notation:

Ãqm = (I −M)A(I −M), and B̃qm = (I −M)A(I −M),

where M = 1
K11T .

The distance covariance of Ztoos and Vtinter is defined as the square root of:

dcov2(Ztoos,Vtinter) =
1

K2

K∑
p,q=1

ÃpqB̃pq.
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Algorithm 3 PID Algorithm in ALaSI.
1: Input: {Vpool} = a pool of trajectories of p agents,
2: Parameters: Rank or proportion of rank: ξ, Total number of time steps of features: T ,
3: Output: Dtrain = a pool of labeled trajectories {Vpool, E},
4: for agent i in total p agents do
5: for agent j in p− 1 agents do
6: for agent r in p− 2 agents do
7: Compute the unique component IUni between X1:T−1

i and X2:T
j given X2:T

r ,
8: Compute the mutual information I between X1:T−1

i and X2:T
j given X2:T

r ,
9: Compute the ratio qr between the IUni and I ,

10: end for
11: Calculate the sum of qr over all agents r as qij ,
12: end for
13: end for
14: Rank all qij , and select ξ (or ξ · p) agent-pairs with highest qij ,
15: Mark the connections from i to j in these pairs as exist, the rest as non-exist,
16: Return the connectivity between p agents.

And the distance variance is defined as: dvar2(x) = dcov2(x, x). Thus we can calculate the distance
correlation with:

Ldc =
1

(T − 1) · |D|

T−1∑
t

∑
i∈D

dCov2(Ztoos,Vtinter)√
dVar(Ztoos)dVar(Vtinter)

.

Implementation. As for implementation of distance correlation, we originally follow the the
official implementation of distance correlation implementation of Zhen et al. (2022) at https:
//github.com/zhenxingjian/Partial_Distance_Correlation. We then extend
the implementation to suit the batch-wise calculation and the GPU acceleration.

B.5 IMPLEMENTATION OF PIPELINES

We firstly briefly describe the pipeline of learning of ALaSI in Algorithm 4.

Algorithm 4 Pipeline of learning in ALaSI.
1: Input: V = set of agent features of current scope,
2: Input: n = number of agents in the current scope,
3: Input: Zgt = ground truth connectivity in the current scope,
4: Connection Learning Network: finter1, Inter-scope Message Network: finter2, OOS Embedding

Network: foos1, OOS Message Network: foos2, Dynamics Learning Network: fdynamics, Output
Function: foutput, DeepInfoMax: fDIM

5: Split agent features according to time steps: Vτ = V0:T−1 for training, Vψ = V1:T for loss
calculation, where T represents the total time steps,

6: Learn representation of connections: Z = finter1(Vτ , n),
7: Summarize connectivity inside the scope: Ẑ = GumbelSoftmax(Z),
8: Learn inter scope messages: einter = finter2(Vτ , Ẑ),
9: Learn OOS messages: eoos = foos2(foos1(Vτ , einter)),

10: Learn dynamics: eout = foutput(fdynamics(einter, eoos),Vτ ),
11: Calculate OOS loss with DeepInfoMax: LOOS = fDIM(einter, eoos,Vτ ),
12: Calculate distance correlations: Ldc from eoos and Vτ for each agent in the scope,
13: Calculate dynamics prediction loss: LD ← {eout,Vψ},
14: Calculate connectivity loss: Lcon ← {Ẑ, Zgt},
15: Summarize as the hybrid loss: R ← {LD,Lcon,LOOS,Ldc},
16: Update parameters with back-propagation,
17: Return trained model.
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We then describe the components of several networks mentioned in Algorithm 4. The design of
finter1, finter2, foos1, foos2 and fdynamics follows modular-design practice and are based on a multi-
layer-perceptron, and the multi-layer-perceptron is shown in Algorithm 5. The exact settings of the
dimension of these layers may refer to our code in the supplementary document.

Algorithm 5 The Multi-layer-perceptron.
1: Input: features input
2: x = elu(Linear1(input))
3: x = dropout(x)
4: x = elu(Linear2(x))
5: out = batch norm(x)
6: Return: out

We name the functional pipeline shown in Algorithm 5 as MLP , and we can represent the net-
works in Algorithm 4 as: finter1 = MLP (MLP (·)), finter2 = MLP (·), foos1 = MLP (·),
foos2 = MLP (·) and fdynamics = MLP (·). We briefly report the dimension of the layers of each
networks in Table 4, where f ,inter1 represents the second MLP (·) of finter1, f ,inter1 represents the first
MLP (·) of finter1, xdim is the number of dimensions of an agent at a time step, and |T | represents
the total time steps of the trajectory.

Table 4: Dimension of the layers and dropout rates.

Parameters f ,,
inter1 f ,

inter1 finter2 foos1 foos2 fdynamics

Linear1 2 · xdim · |T | 256 2 · xdim (xdim + 256) ∗ (|T | − 1) 2 · xdim 256
Dropout 0.0 0.0 0.0 0.5 0.0 0.0
Linear2 256 2 256 xdim ∗ (|T | − 1) 256 256

B.6 IMPLEMENTATION OF BASELINES

NRI. We use the official implementation code by the author from https://github.com/
ethanfetaya/NRI with customized data loader for our chosen datasets. We add our metric-
evaluation in “test” function, after the calculation of accuracy in the original code.

fNRI. We use the official implementation code by the author from https://github.com/
ekwebb/fNRI with customized data loader for our chosen datasets. We add our metric-evaluation
in “test” function, after the calculation of accuracy and the selection of correct order for the repre-
sentations in latent spaces in the original code.

MPM. We use the official implementation code by the author from https://github.com/
hilbert9221/NRI-MPM with customized data loader for our chosen datasets. We add our
metric-evaluation for AUROC in “evaluate()” function of class “XNRIDECIns” in the original code.

ACD. We follow the official implementation code by the author as the framework for ACD
(https://github.com/loeweX/AmortizedCausalDiscovery). We run the code with
customized data loader for the chosen three datasets. We implement the metric-calculation pipeline
in the “forward pass and eval()” function.

MPIR. We follow the official implementation from https://github.com/tailintalent/
causal as the model for MPIR. We run the model with customized data loader for the chosen
datasets. After the obtain of the results, we run another script to calculate the metrics.

PID. Based on the Julia implementation of PID in https://github.com/Tchanders/
InformationMeasures.jl, we implement PID in Python. Then we implement the mutual
information calculation of PID with KDTree (see https://github.com/paulbrodersen/
entropy_estimators), in order to enable PID to operate on continuous high-dimensional data.
Different from other methods, we run PID on all of the dataset we have in experiments. For instance,
when running experiments on “Springs50”, PID infer the connections of the entire dynamical system
based on a union set of the trajectories for training, validation and testing.
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Figure 5: Averaged AUROC results of ALaSI-sup, ALaSI-unsup, ALaSI-p20, ALaSI-p50, and
ALaSI-p80 as a function of the proportion of labeled connections on “Springs50”, “Springs100”,
“Springs200”, “Springs500”, ESC, E. coli and S. aureus datasets.

B.7 FURTHER DETAILS ABOUT DATASETS

Spring Datasets To generate these springs datasets (“Springs50”, “Springs100”, “Springs200”,
and “Springs500”), we follow the description of the data in Kipf et al. (2018) but with fixed connec-
tions. To be specific, at the beginning of the data generation for each springs dataset, we randomly
generate a ground truth graph and then simulate 12000 trajectories on the same ground truth graph,
but with different initial conditions. The rest settings are the same as that mentioned in Kipf et al.
(2018). We collect the trajectories and randomly group them into three sets for training, validation
and testing with the ratio of 8: 2: 2, respectively.

GRN Datasets Different from springs datasets, GRN datasets (ESC, E. coli, and S. aureus) are
sampled from publicly available data sources. We download the datasets from the links mentioned
in the corresponding literature, sample the trajectories with the same amount of time steps as of
springs datasets, and randomly group the trajectories of gene expressions into three sets for training,
validation and testing with the ratio of 8: 2: 2, respectively.

C FURTHER EXPERIMENTAL RESULTS

In this section, we demonstrate additional experimental results as the supplement to Section 5.

C.1 INTEGRATION OF PRIOR KNOWLEDGE WITH UNSUPERVISED LEARNING

We conduct the integration of prior knowledge with unsupervised learning with ALaSI. At the be-
ginning of every experiment, we randomly assign a portion of agents with true connectivity, and
keep the remaining settings the same in Section 5.2. During a query, if the agents with true con-
nectivity are selected and the connections of these agents assigned by PID are contrary to the true
label, we set the connectivity the same as the label and maintain the connections of the rest agents.
We summarize the results and plot them in Figure 5, where we plot the AUROC results of fully su-
pervised ALaSI (ALaSI-sup), fully unsupervised ALaSI (ALaSI-unsup), and unsupervised ALaSI
with 20%, 50% and 80% of prior knowledge on agents (ALaSI-p20, ALaSI-p50 and ALaSI-p80).
As we can observe from the plots, ALaSI is capable of being integrated with prior knowledge, and
the AUROC value is positively correlated with the proportion of integrated prior knowledge. Inter-
estingly, ALaSI-p80 moves generally closer to the fully supervised ALaSI, which on the other hand
verifies the data efficiency of ALaSI. ALaSI has the capability of inferring accurate connectivity of
dynamical systems with less prior knowledge. In comparison, we also tested the integration of prior
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knowledge with baseline methods that uses VAE under unsupervised settings, but surprisingly we
observed performance drops in terms of AUROC. We think the reason might be the integration of
prior knowledge happened in the latent space, violating the generation process of these methods.
We leave the study of these performance drops to future work.

C.2 ROBUSTNESS TESTS OF ALASI

Although ALaSI is tested on several real-world datasets and the results are reported in Sections 5.1
and 5.2, it is interesting to carry out more experiments to further test the robustness of ALaSI. We
generate a series of “Springs50” datasets with different level of Gaussian noise. The Gaussian noise
is added to the features of the agents and the levels ∆ amplify the noise as follows:

ṽti = vti + ζ · 0.02 ·∆, where ζ ∼ N (0, 1), (23)

where vti represents raw feature vector of agent i at time t. And we plot the experimental results of
ALaSI on these datasets in Figure 6. As shown in Figure 6, noises in the agents’ features have an
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Figure 6: Averaged AUROC results of ALaSI as a function of the proportion of labeled connections
on “Springs50” dataset with different levels of noise under supervised or unsupervised setting.

effect on the performance of ALaSI. The effect is minor when ALaSI is trained under supervised
setting. But under unsupervised setting, especially when the proportion of labeled connections in
the pool is smaller than 0.4, ALaSI faces bigger challenge to infer the connections compared with
under supervised setting. When the proportion of labeled connections increases, the effect of noises
become smaller and smaller. So in summary, although noises have negative impact on the perfor-
mance, ALaSI still can infer the connections with moderate to high accuracy. Besides that, we also
test the baseline methods on the dataset of “Springs50” with different levels of Gaussian noise, and
plot the results in Figure 7. Each subplot in Figure 7 reports the performance of ALaSI and baseline
methods on the “Springs50” dataset with a certain noise level, respectively. As we can learn from
the figure, although the baseline methods are trained under supervised settings, compared to ALaSI,
they are more sensitive to the noises. The margin between the AUROC results of ALaSI and the best
baseline methods becomes larger when the noise level increases. We think the reason may come
from that the baseline methods utilize a full-sized computational graph, so during training, all of the
connections within the system are learned simultaneously. Therefore, high level of noise leads to
an enormous uncertainty in the loss functions of these methods (their loss functions are summations
of errors of all the connections in the system). Different from baseline methods, ALaSI learns the
connections agent-wise, which ease the uncertainty in the loss function. Besides that, the query with
dynamics can correctly select the most informative agent to be added to the scope, regardless of the
noise level. We think a combination of these two functioning mechanism helps ALaSI to reduce the
uncertainty created by noisy data.

C.3 LIMITATION OF ALASI

Besides the datasets mentioned in this work, we also test ALaSI on the physic simulation datasets
mentioned in NRI (Kipf et al., 2018). Most of the physic simulation datasets have no more than 10
agents in the system, which are much smaller than the ones used in this work. Based the experiments
on these datasets, ALaSI cannot outperform baseline methods when the size of the dynamical system
is small. Since ALaSI works on agent-wise selection to build the pool for training, when the total
count of agents is small, ALaSI cannot be beneficial from the mechanism of active learning.
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Figure 7: Averaged AUROC results of ALaSI and baseline methods as a function of the proportion
of labeled connections on “Springs50” dataset with different levels of noise under supervised setting.

D ETHICS STATEMENT

ALaSI is a framework for structural inference of dynamical systems. No matter how effective it is
at this task, there may still be failure-modes ALaSI will not catch. So far in this work we haven’t
seen any issue with ethics.

E REPRODUCIBILITY

We attach a link to our anonymous repository in the supplementary document. We include the codes
of ALaSI, and the procedures for accessing the dataset we used in this work. Please refer to it as the
implementation of ALaSI.
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