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ABSTRACT

Model-based reinforcement learning (MBRL) holds the promise of sample-efficient
learning by utilizing a world model, which models how the environment works and
typically encompasses components for two tasks: observation modeling and reward
modeling. In this paper, through a dedicated empirical investigation, we gain a
deeper understanding of the role each task plays in world models and uncover the
overlooked potential of more efficient MBRL by mitigating the domination of either
observation or reward modeling. Our key insight is that while prevalent approaches
of explicit MBRL attempt to restore abundant details of the environment through
observation models, it is difficult due to the environment’s complexity and limited
model capacity. On the other hand, reward models, while dominating implicit
MBRL and adept at learning task-centric dynamics, are inadequate for sample-
efficient learning without richer learning signals. Capitalizing on these insights and
discoveries, we propose a simple yet effective method, Harmony World Models
(HarmonyWM), that introduces a lightweight harmonizer to maintain a dynamic
equilibrium between the two tasks in world model learning. Our experiments on
three visual control domains show that the base MBRL method equipped with
HarmonyWM gains 10%−55% absolute performance boosts.

1 INTRODUCTION

Learning efficiently to operate in environments with complex observations requires generalizing from
past experiences. Model-based reinforcement learning (MBRL, Sutton (1990)) utilizing world models
(Ha & Schmidhuber, 2018; LeCun, 2022) offers a promising approach. In MBRL, the agent learns
behaviors by simulating trajectories based on predictions generated by the world model. Concurrently,
the world model itself is designed to learn two key components of dynamics (defined in Sec. 2.1):
how the environment transits and is observed (i.e. the observation modeling task) and how the
task has been progressed (i.e. the reward modeling task) (Kaiser et al., 2020; Hafner et al., 2020;
2021). As imaginary rollouts reduce the need for real environment interactions, world models enable
model-based RL agents to outperform their model-free counterparts in terms of sample efficiency.

While observation transitions and rewards in low-dimensional spaces can be classically learned by
separate models, for environments with high-dimensional and partial observations, it is favorable for
world models to learn both tasks from a shared representation, a form of multi-task learning, aiming
to improve learning efficiency and generalization performance (Jaderberg et al., 2017; Laskin et al.,
2020; Yarats et al., 2021). However, to best exploit the benefits of multi-task learning, it demands
careful designs to weigh the contribution of each task without allowing either one to dominate (Misra
et al., 2016; Kendall et al., 2018), which naturally leads to the following question:

Do existing MBRL methods properly exploit the multi-task benefits in world model learning?

In this work, we take a novel and unified multi-task perspective to revisit world model learning in
MBRL literature (Moerland et al., 2023): Prevalent approaches, named as explicit MBRL (Kaiser et al.,
2020; Hafner et al., 2021; Seo et al., 2022b), aim to learn an exact duplicate of the environment by
predicting each individual element (e.g., observations, rewards, and terminal signals), which gives the
agent access to accurately learned transitions. However, learning to predict future observations can be
difficult and inefficient since it encourages the world model to model everything in the environment,
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Figure 1: A multi-task perspective of world models. (Left) World models typically consist of
components for two tasks: observation modeling and reward modeling. (Right) A spectrum of
world model learning in MBRL. Explicit MBRL learns models dominated by observation modeling,
while implicit MBRL relies solely on reward modeling. Our Harmony World Models provide an
explicit-implicit solution that maintains a dynamic equilibrium between them to unleash the multi-task
benefits of world model learning, thus boosting the sample efficiency of MBRL.

including task-irrelevant nuances (Okada & Taniguchi, 2021; Deng et al., 2022). Consequently,
world model learning in explicit MBRL is typically dominated by observation modeling to capture
complex observations and their associated dynamics but still suffers from model inaccuracies and
compounding errors. Meanwhile, reward modeling, which only predicts an additional scalar, is
commonly overlooked. Another line of work, known as implicit MBRL, from a task-centric view,
learns world models solely from reward modeling (Oh et al., 2017; Schrittwieser et al., 2020; Hansen
et al., 2022) to realize the value equivalence principle, i.e., the predicted rewards along a trajectory of
the world model matches that of the real environment (Grimm et al., 2020). This approach builds
world models directly useful for MBRL to identify the optimal policy or value, and tends to perform
better in tasks where the complete dynamics related to observations are too complicated to be perfectly
modeled. Nevertheless, as the reward signals in RL are known to be sparser than signals in supervised
learning, potentially leading to representation learning challenges, it is more practical to incorporate
auxiliary tasks that provide richer learning signals beyond rewards (Jaderberg et al., 2017).

To support above insights, our dedicated empirical investigation reveals surprising deficiencies in
sample efficiency for the default practice of a state-of-the-art model-based method (Dreamer, Hafner
et al. (2020; 2021; 2023)), as increasing the coefficient of reward loss in world model learning leads
to dramatically boosted sample efficiency (see Sec. 2.3). We identify the root cause as the domination
of observation models in explicit world model learning: due to an overload of redundant observation
signals, the model may establish spurious correlations in observations without realizing incorrect
reward predictions, which ultimately hinders the learning process of the agent. On the other hand,
implicit MBRL, which learns world models solely exploiting reward modeling, is also proven to be
inefficient. In summary, while widely adopted in existing MBRL literature, domination of either task
cannot properly exploit the multi-task benefits in world model learning.

As shown in Fig. 1, we propose to address the problem with Harmony World Models (HarmonyWM),
a simple explicit-implicit approach for world model learning that exploits the advantages of both sides.
Concretely, HarmonyWM introduces a lightweight harmonizer to maintain a dynamic equilibrium
between reward and observation modeling during world model learning. We evaluate our approach
on various challenging visual control domains, including Meta-world (Yu et al., 2020b), RLBench
(James et al., 2020), and DMC Remastered (Grigsby & Qi, 2020), and demonstrate that HarmonyWM
consistently promotes sample efficiency and also owns generality to base MBRL approach.

Our contributions. In summary, we make the following key contributions:

• To the best of our knowledge, our work, for the first time, systematically identifies the multi-
task essence of world models and analyzes the deficiencies caused by the domination of a
particular task, which is unexpectedly overlooked by most previous works.

• We propose the Harmony World Model (HarmonyWM), a simple explicit-implicit world
model learning approach to mitigate the domination of either observation or reward modeling,
without the need for exhaustive hyperparameter tuning.

• Our experiments show that HarmonyWM can significantly boost the sample efficiency of
MBRL on various challenging domains. Measured in terms of policy success rates or returns,
Dreamer equipped with HarmonyWM achieves 10%−55% higher absolute performance
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across domains (up to 74% more success on the Meta-world Push task). We also demonstrate
the generality of HarmonyWM for other base MBRL methods (Deng et al., 2022).

2 A MULTI-TASK PERSPECTIVE OF WORLD MODELS

In this paper, we focus on vision-based RL tasks, which can be formulated as partially ob-
servable Markov decision processes (POMDP). A POMDP is defined as a tuple (O,A, p, r, γ),
where actions at ∼ π(at | o≤t, a<t) generated by the agent receive high-dimensional observations
ot ∼ p (ot | o<t, a<t) and scalar rewards rt = r(o≤t, a<t) generated by the unknown transition
dynamics p and reward function r of the environment. The goal of MBRL is to learn an agent that
maximizes the γ-discounted cumulative rewards Ep,π

[∑T
t=1 γ

t−1rt

]
, leveraging a learned world

model which approximates the underlying environment (p, r).

2.1 TWO TASKS IN WORLD MODELS

Two key tasks can be identified in world models, namely observation and reward modeling.
Definition 2.1. The observation modeling task in world models is to predict consequent observations
p(ot+1:T | o1:t, a1:T ) of a trajectory, given future actions. Similarly, the reward modeling task in
world models is to predict future rewards p(rt+1:T | o1:t, a1:T ).
As mentioned before, these two tasks provide a unified view of MBRL: while explicit MBRL learns
world models for both observations and rewards to mirror the complete dynamics of the environment,
implicit MBRL only learns from reward modeling to capture task-centric dynamics.

2.2 OVERVIEW OF WORLD MODEL LEARNING

We conduct detailed analysis and build our method primarily upon DreamerV2 (Hafner et al., 2021),
but we also demonstrate the generality of our method to various base MBRL algorithms, including
DreamerV3 (Hafner et al., 2023) and DreamerPro (Deng et al., 2022) (see Sec. 4.4).

The world model in Dreamer (left in Fig. 1) consists of the following four components:
Representation model: zt ∼ qθ(zt | zt−1, at−1, ot) Observation model: ôt ∼ pθ(ôt | zt)
Transition model: ẑt ∼ pθ(ẑt | zt−1, at−1) Reward model: r̂t ∼ pθ (r̂t | zt)

(1)

The latent representation zt is generated by the representation model using the previous latent
state zt−1, the current action at−1, and the current visual observation ot. The latent prediction ẑt,
meanwhile, is generated by the transition model using only the previous state and current action.
All model parameters θ are trained to jointly learn the observations, rewards, and transitions of the
environment by minimizing the following objectives:

Observation loss: Lo(θ) = − log pθ(ot | zt)
Reward loss: Lr(θ) = − log pθ(rt | zt)
Dynamics loss: Ld(θ) = KL [qθ(zt | zt−1, at−1, ot) ∥ pθ(ẑt | zt−1, at−1)] ,

(2)

where the dynamics loss simultaneously trains the latent predictions toward the representations, and
regularizes the representations to be predictable. In practice, the observation model and reward model
typically leverage Gaussian distributions, and both losses take the form of a simple L2 loss between
prediction ôt, r̂t and ground truth ot, rt respectively, excluding irrelevant constants.

Taking our multi-task perspective, the observation model and reward model with their associated
losses account for the aforementioned two tasks in the world model of Dreamer. However, they do not
operate in isolation, and instead interact with and regularize each other upon the shared representation
and transition model, in pursuit of either complete or task-centric latent dynamics, respectively.

The overall objective of world model learning can be formulated as follows:
L(θ) = woLo(θ) + wrLr(θ) + wdLd(θ). (3)

By default, wo, wr, and wd are typically set to approximately equal weights (namely, wo = wr =
wd = 1.0) (Hafner et al., 2020; 2021; Seo et al., 2022b; Wu et al., 2022), overlooking the potential
domination of a particular task. In contrast, we conduct a careful empirical investigation to understand
the role each task plays in world models and reveal the deficiency of the default weighting practice.
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Figure 2: Effects of different loss coefficients in world model learning for the DreamerV2 agent
on Meta-world tasks. Simply adjusting the coefficient of reward loss leads to dramatically boosted
sample efficiency, indicating the potential multi-task benefits yet to be properly exploited.
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Figure 3: Scales of the three losses in world
model learning. The reward loss is shown to be
two orders of magnitude smaller than the others.
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Figure 4: State regression loss measuring the
ability of world models’ representations to pre-
dict the ground truth environment states.

2.3 DIVE INTO WORLD MODEL LEARNING

We consider the tasks of pulling a lever up, pulling a handle up sideways, and hammering a screw on
the wall, from the Meta-world domain (Yu et al., 2020b), as our testbed to investigate world model
learning. The prominent improvements of the derived approach in our benchmark experiments (see
Sec. 4) prove that our discoveries can be generalized to various domains and tasks.

First of all, we experiment with simply adjusting the coefficient of the reward loss in Eq. (3). Results
in Fig. 2 reveal a surprising fact that by simply tuning the reward loss weights (wr ∈ {1, 10, 100}),
the agent can achieve considerable improvements in terms of sample efficiency.

Finding 1. Leveraging the reward loss by adjusting its coefficient in world model learning has a
great impact on the sample efficiency of model-based agents.

One obvious reason for this is that the reward loss only accounts for a tiny proportion of the learning
signals, actually a single scalar rt. As shown in Fig. 3, the scale of Lr is two orders of magnitude
smaller than that of Lo, which usually aggregates H ×W × C dimensions. As discussed before,
reward modeling is crucial for extracting task-relevant representations and driving behavior learning of
the agents. Dominated by the observation modeling task, the world model fails to learn a task-centric
latent space and predict accurate rewards, which hinders the learning process of the agent.

We then explore further to demonstrate how the observation modeling task dominating world models
can specifically hurt behavior learning. To isolate distracting factors, we consider an offline setting
(Levine et al., 2020). Concretely, we use a fixed replay buffer on the task of Lever Pull and offline train
DreamerV2 agents with different reward loss coefficients on it (see details in Appendix C.4). In Fig. 5,
we showcase a trajectory where the default Dreamer agent (wr = 1) fails to lift the lever. It is evident
that it learns a spurious correlation (Geirhos et al., 2020) between the actions of the robot and that of
the lever and predicts inaccurate transitions and rewards, which misleads the agents to unfavorable
behaviors. Properly balancing the reward loss (wr = 100) can emphasize task-relevant information,
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Figure 5: Analysis of world models learned with different reward loss coefficients. Rewards are
labeled at the bottom right corner, with predictions marked as correct or incorrect. Dominating
observation modeling in world models incurs spurious correlations between actions, observations,
and rewards, which can be dissolved by properly emphasizing reward modeling.

such as whether the lever is actually lifted, to correct hallucinations by world models. Quantitative
analysis in Fig. 4 measuring the ability of world models’ representations to predict the ground truth
states also suggests emphasizing reward modeling learns better task-centric representations.

Finding 2. Observation modeling as a dominating task can result in world models establishing
spurious correlations without realizing incorrect reward predictions.

Although we have shown above that exploiting reward modeling can bring benefits to world models
and MBRL, it might be over-demanding for a world model to learn solely by rewards, as implicit
MBRL. As we discussed before, learning world models depending fully on scarce reward signals has
limited capability to learn meaningful representations, and thus can encounter optimization challenges
and hinder sample-efficient learning (Yarats et al., 2021). Our experiment results in Fig. 2 show that
the disuse of the observation loss in DreamerV2 produces inferior results with a high variance.

Finding 3. Learning signal of world models from rewards alone without observations is
inadequate for sample-efficient learning.

Discussion. We are not the first to adjust loss coefficients in world model learning, but we dedicat-
edly investigate this. Here we discuss the differences between our findings and previous literature.
Our Finding 1 coincides with high reward loss weights manually tuned (typically 100 or 1000) in
decoder-free model-based RL (Nguyen et al., 2021; Deng et al., 2022). Our analysis differs from
theirs in two significant ways: 1) We focus on a decoder-based world model, where the observations
are learned from explicit reconstructions. 2) We discovered that emphasizing reward modeling is also
beneficial for visually simple tasks (e.g. Meta-world tasks), in addition to visually demanding tasks
with noisy backgrounds. Our Finding 3 is similar to the reward-only ablation in Dreamer (Hafner
et al., 2020), but we prove that even if given higher loss weights, learning a world model purely from
rewards is less sample-efficient than properly exploiting both observation and reward modeling.

3 HARMONY WORLD MODELS

In light of the discoveries and insights, we propose a simple yet effective method as the first step
towards exploiting the multi-task essence of world models. Instead of disharmonious domination,
we aim to build a harmonious interaction between the two tasks in world models: while observation
modeling facilitates representation learning and prevents information loss, reward modeling enhances
task-centric representations to correctly inform behavior learning of the agents.

As shown in Fig. 6, we build our method on Dreamer (Hafner et al., 2020; 2021), and brand it as
Harmony World Models (HarmonyWM), for it mitigates potential domination of a particular task
in world models. Specifically, to maintain a dynamic equilibrium and avoid task dominating, losses
associated with different tasks are scaled to the same constant. A straightforward way is to set each
loss weight to the reciprocal of the corresponding loss, i.e., wi = sg( 1

Li
), i ∈ {o, r,d}, where sg

is a stop gradient function. However, as the loss is only calculated from a mini-batch of data and
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Figure 6: Overview of Harmony World Models. (Left) Built upon Dreamer, we introduce lightweight
harmonizers to maintain a dynamic equilibrium between tasks. (Right) Comparison between the
original harmonious loss and the rectified one. The latter prevents extremely large loss weights.

fluctuates throughout training, these weights are sensitive to outlier values and thus may further
aggravate training instability. Instead, we adopt a variational method to learn the weights of different
losses by the following harmonious loss for world model learning:

L(θ, σo, σr, σd) =
∑

i∈{o,r,d}

H(Li(θ), σi) =
∑

i∈{o,r,d}

1

σi
Li(θ) + log σi. (4)

The variational formulation H(Li(θ), σi) = σ−1
i Li(θ)+log σi serves as harmonizers to dynamically

but smoothly rescale different losses, where the weight σ−1
i with a learnable parameter σi > 0

approximates a “global” reciprocal of the loss scale, as stated in the following proposition:
Proposition 3.1. The optimal solution σ∗ that minimizes the expected loss E[H(L, σ)], or equiva-
lently ∇σE[H(L, σ)] = 0, is σ∗ = E[L]. In other words, the harmonized loss scale is E[L/σ∗] = 1.

In practice, σi is parameterized as σi = exp(si) > 0, in order to optimize parameters si free of sign
constraint. More essentially, we propose a rectification on Eq. (4), as a loss L with small values, such
as the reward loss, can lead to extremely large coefficient 1/σ ≈ L−1 ≫ 1, which potentially hurt
training stability. Specifically, we simply add a constant in regularization terms:

L(θ, σo, σr, σd) =
∑

i∈{o,r,d}

Ĥ(Li, σi) =
∑

i∈{o,r,d}

1

σi
Li(θ) + log (1 + σi). (5)

The harmonized loss scale by the rectified harmonious loss is equal to 2

1+
√

1+4/E[L]
< 1 (derivations

in Appendix B), and we illustrate the corresponding loss weights learned with different loss scales in
the right of Fig. 6, showing that the rectified loss effectively mitigates extremely large loss weights.

Discussion. Our harmonious loss takes a similar form as uncertainty weighting (Kendall et al.,
2018) but has several key differences. Uncertainty weighting is derived from maximum likelihood
estimation, which parameterizes noises of Gaussian-distributed outputs of each task, known as
homoscedastic uncertainty. In contrast, our motivation is to harmonize loss scales among tasks. More
specifically, measuring the uncertainty of observations and rewards results in putting each observation
pixel on equal footing as the scalar reward, still overlooking the large disparity in dimension sizes.
However, we take high-dimensional observations as a whole and directly balance the two losses.
Furthermore, we do not make assumptions on the distributions behind losses, which makes it possible
for us to balance the KL loss, while uncertainty weighting has no theoretical basis for doing so.

4 EXPERIMENTS

We evaluate the ability of HarmonyWM to boost sample efficiency of base MBRL methods on
three visual control domains: Meta-world (Sec. 4.1, Yu et al. (2020b)), RLBench (Sec. 4.2, James
et al. (2020)), and DMC Remastered (Sec. 4.3, Grigsby & Qi (2020)). These benchmarks contain
diversified and challenging visual robotics manipulation and locomotion tasks. We conduct most of
our experiments for HarmonyWM based on DreamerV2 but also demonstrate its generality to other
base MBRL methods, including DreamerV3 (Hafner et al., 2023) and DreamerPro (Deng et al., 2022)
(Sec. 4.4). Following Agarwal et al. (2021) and Seo et al. (2022a), we report mean values with 95%
confidence intervals (CI) across 5 individual runs for each task. Experimental details and additional
results can be found in Appendix C and D, respectively.
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Figure 7: Learning curves on visual manipulation tasks from the (a) Meta-World and (b) RLBench
benchmarks, measured on the success rate. We report the mean and 95% CI across five runs.

4.1 META-WORLD EXPERIMENTS

Environment details. Meta-world is a benchmark consisting of 50 distinct robotic manipulation
tasks. Seo et al. (2022a) classify these tasks into four categories according to the task difficulty:
easy, medium, hard, and very hard. Due to our limited computational resources, we choose a set of
representative tasks: three from the easy category (Handle Pull Side, Lever Pull, and Plate Slide), two
from the medium category (Hammer and Sweep Into), and one from the hard category (Push). These
tasks are run over different numbers of environment steps: easy tasks and Hammer over 250K steps,
Sweep Into over 500K steps, and Push over 1M steps.

Results. In Fig. 7a, we report the performance of HarmonyWM on six Meta-world tasks, in
comparison with our base MBRL method DreamerV2. By simply adding harmonizers to the original
DreamerV2 method, our HarmonyWM demonstrates superior performance in terms of both sample
efficiency and final success rate. In particular, HarmonyWM achieves over 75% success rate on the
challenging Push task, while DreamerV2 fails to learn a meaningful policy. For the Plate Slide task,
where DreamerV2 is able to achieve a high success rate in 100K environment steps, we observe that
HarmonyWM does not harm the learning process and still provides benefits.

4.2 RLBENCH EXPERIMENTS

Environment details. To assess our method on more complex visual robotic manipulation tasks, we
perform further evaluation on the RLBench (James et al., 2020) domain. Most tasks in RLBench have
high intrinsic difficulty and only offer sparse rewards. Learning these tasks requires expert demon-
strations, dedicated network structure, and additional inputs (James & Davison, 2022; James et al.,
2022), which is overchallenging for DreamerV2, even equipped with our powerful HarmonyWM.
Therefore, following Seo et al. (2022a), we conduct experiments on two relatively easy tasks (Push
Button and Reach Target) with dense rewards.

Results. In Fig. 7b, we show the superiority of our approach on the RLBench domain. HarmonyWM
offers 28% of absolute final performance gain on the Push Button task and 50% on the more difficult
Reach Target tasks. The results presented above prove the ability of HarmonyWM to promote sample
efficiency of model-based RL on robotics manipulation domains for easy and difficult tasks alike.

4.3 DMC REMASTERED EXPERIMENTS

Environment details. DMC Remastered (DMCR, Grigsby & Qi (2020)) is a challenging extension
of the widely used robotics control benchmark, DeepMind Control Suite (Tassa et al., 2018) with
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Figure 8: Example observations (left) and learning curves (right) on three DMC Remastered visual
locomotion task. We report the mean and 95% CI across five runs, measured on the episode return.
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Figure 9: Performance of HarmonyWM generalized to DreamerV3 (left) and DreamerPro (right).

randomly generated graphics emphasizing visual diversity, as shown in the left of Fig. 8. We train
and evaluate our agents on three tasks: Cheetah Run, Walker Run, and Cartpole Balance.

Results. Fig. 8 demonstrates the effectiveness of HarmonyWM on three DMCR tasks. Our method
greatly enhances the base DreamerV2 method to unleash its potential. Fig. 10a shows different
learning curves of the dynamics loss between HarmonyWM and DreamerV2 on the DMCR domain.
It is worth noting that DMCR tasks contain distracting visual factors, such as background and robot
body color, which may hinder the learning process of observation modeling. By leveraging the
importance of reward modeling, the model bypasses distractors in observations and can learn task-
centric transitions with lower difficulty, indicated by converged dynamic loss. Through achieving
outstanding performance on the DMCR domain, we show that HarmonyWM consistently improves
the sample efficiency of model-based RL in the field of robotic locomotion.

4.4 ANALYSIS

Comparisons to implicit MBRL. As we have shown in Sec. 2.3, learning from reward modeling
alone lacks in capability for sample-efficient learning. However, as DreamerV2 is intentionally built
as an explicit MBRL method, one may argue that purposefully designed implicit MBRL methods
can be more effective. In Fig. 10b, we show comparisons with a prevalent implicit MBRL method,
TD-MPC (Hansen et al., 2022) on three tasks of Meta-world. We observe that TD-MPC has difficulty
in efficient learning as it lacks observation modeling to guide representation learning. In contrast, our
method dynamically balances reward modeling and observation modeling, as shown in Fig. 10c and
achieves superior performance, therefore proving the value of our explicit-implicit MBRL method.

Method generality. DreamerV3 (Hafner et al., 2023) builds upon DreamerV2 and is a general
algorithm that learns to master diverse domains while using fixed hyperparameters. Experiments with
DreamerV3 are done on the Meta-world and RLBench domains, where we choose a typical task from
each domain. DreamerPro (Deng et al., 2022) is a reconstruction-free model-based RL method that
“reconstructs” the cluster assignment of the observation instead of the observation itself. We conduct
DreamerPro experiments on the DMCR benchmark, given that DreamerPro has shown outstanding
performance in natural background DMC, a setting similar to DMCR. Implementation details are
listed in Appendix C.2. By default, DreamerPro uses a manually tuned reward loss weightwr = 1000.
We show in Fig. 9 that by generalizing HarmonyWM to other base MRBL methods, our method can
also achieve higher sample efficiency and, on average, outperform manually tuned weights that are
computationally costly. These results show the consistent effectiveness and excellent generality of
HarmonyWM on base MBRL methods. We provide more experimental results in Appendix D.
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Figure 10: Analysis of HarmonyWM and comparison to implicit MBRL method.

5 RELATED WORK

World models for visual RL. There exist several approaches to learning world models that
explicitly model observations, transitions, and rewards. They can be widely utilized to boost sample
efficiency in visual RL. In world models, visual representation can be learned via image reconstruction
(Ha & Schmidhuber, 2018; Kaiser et al., 2020; Zhang et al., 2019; Hafner et al., 2019; Seo et al.,
2022a;b; Robine et al., 2023), or reconstruction-free contrastive learning (Okada & Taniguchi, 2021;
Deng et al., 2022). Dreamer (Hafner et al., 2020; 2021; 2023) represents a series of methods that
learn latent dynamics models from observations and learn behaviors by latent imagination. These
methods have proven their effectiveness in tasks such as video games (Hafner et al., 2021) and visual
robot control (Wu et al., 2022). Regardless, the problem of task domination is general for world
models, and our findings and approach are not limited to the Dreamer architecture.

Implicit model-based RL. Implicit MBRL (Oh et al., 2017; Hansen et al., 2022; Moerland et al.,
2023) adopts a more abstract approach, viewing RL as a form of reward optimization, and aims to
learn value equivalence models (Grimm et al., 2020) that focuses on task-centric characteristics of
the environment. This approach mitigates the objective mismatch (Lambert et al., 2020) between
maximum likelihood estimation for world models and maximizing returns for policies. A typical
success is MuZero (Schrittwieser et al., 2020; Ye et al., 2021), which learns a world model by
predicting task-specific rewards, values, and policies, without explicit reconstruction of complex
observations. Our analysis shows that the potential efficiency of task-centric models can be better
released when properly balanced with richer information from observation models.

Multi-task learning. Multi-task learning (Caruana, 1997; Ruder, 2017) aims to improve the
performance of different tasks by jointly learning from a shared representation. The common
approach is to aggregate task losses, where the loss or gradient of each task is manipulated by criteria
such as uncertainty (Kendall et al., 2018), performance metrics (Guo et al., 2018), gradient norm
(Chen et al., 2018) or gradient direction (Yu et al., 2020a; Wang et al., 2021; Navon et al., 2022), to
avoid negative transfer (Jiang et al., 2023). Previous works on multi-task learning in RL typically
considered different tasks of policy learning defined by different reward functions or environment
dynamics (Rusu et al., 2016; Teh et al., 2017; Yu et al., 2020a). In contrast to all prior work, we
depict world model learning as multi-task learning, composed of reward and observation modeling,
and our HarmonyWM learns to maintain a delicate equilibrium between them to mitigate domination.

6 CONCLUSION

We adopt a multi-task perspective into world models, unifying explicit and implicit MBRL through
different task weighting. Our empirical study reveals an oversight in prior literature: domination of a
particular task can dramatically deteriorate the sample efficiency of MBRL. We thus introduce the
Harmony World Model, a simple approach designed to dynamically balance these tasks, substantially
improving sample efficiency. To improve our work, we aim to extend HarmonyWM to better
harmonize more complex objectives (Hafner et al., 2023) in world models beyond simply considering
loss scales. More intricate task hierarchies should also be investigated. For instance, sub-tasks exist
in observation modeling, including latent transitions and observation decoding, while the latter may
also involve multimodal signals (Wu et al., 2022). Overall, we hope our work can provide insights
and help pave the path ahead for exploring and exploiting the multi-task nature of world models.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility and completeness of this paper, we include the Appendix with four main
sections. Appendix A explains the process of actor-critic learning for our HarmonyWM. Derivations
of the mechanism behind our harmonious losses are shown in Appendix B. The experiments in the
paper are reproducible with additional implementation details provided in Appendix C. We also
include the hyperparameter settings for all results reported in Fig. 7 and 8. Appendix D contains
additional experiment results. Code will be made available upon publication.
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A BEHAVIOR LEARNING

Our HarmonyWM does not change the behavior learning procedure of its base MBRL methods
(Hafner et al., 2021; 2023; Deng et al., 2022), and we briefly describe the actor-critic learning scheme
shared by these base methods and HarmonyWM.

Specifically, we leverage a stochastic actor and a deterministic critic parameterized by ψ and ξ,
respectively, as shown below:

Actor: ât ∼ πψ (ât | ẑt) Critic: vξ (ẑt) ≈ Epθ,πψ

[∑
τ≥t

γτ−tr̂τ

]
, (6)

where pθ is the world model. The actor and critic are jointly trained on the same imagined trajectories
{ẑτ , âτ , r̂τ} with horizon H , generated by the transition model and reward model in Eq. (1) and the
actor in Eq. (6). The critic is trained to regress the λ-target:

Lcritic(ξ)
.
= Epθ,πψ

[
t+H∑
τ=t

1

2

(
vξ(ẑτ )− sg(V λτ )

)2]
, (7)

V λτ
.
= r̂τ + γ

{
(1− λ)vξ(ẑτ+1) + λV λτ+1 if τ < t+H

vξ(ẑτ+1) if τ = t+H.
(8)

The actor, meanwhile, is trained to output actions that maximize the critic output by backpropagating
value gradients through the learned world model. The actor loss is defined as follows:

Lactor(ψ)
.
= Epθ,πψ

[
t+H∑
τ=t

(
−V λτ − ηH [πψ(âτ |ẑτ )]

)]
, (9)

where H [πψ(âτ |ẑτ )] is an entropy regularization which encourages exploration, and η is the hy-
perparameter that adjusts the regularization strength. For more details, we refer to Hafner et al.
(2020).

B DERIVATIONS

Proof of Proposition 3.1. To minimize E[H(L, σ)], we force the the partial derivative w.r.t. σ to 0:

∇σE[H(L, σ)] = ∇σE
[
1

σ
L+ log σ

]
= E

[
∇σ

(
1

σ
L+ log σ

)]
(10)

= E
[
− 1

σ2
L+

1

σ

]
=

1

σ
− 1

σ2
E[L] = 0. (11)

This results in the solution σ∗ = E[L], and equivalently, the harmonized loss scale is E[L/σ∗] = 1.

Analytic solution of rectified loss. Similarly, minimizing E
[
Ĥ(L, σ)

]
yields

∇σE
[
Ĥ(L, σ)

]
= ∇σ

(
1

σ
E[L] + log (1 + σ)

)
= − 1

σ2
E[L] + 1

1 + σ
= 0

σ =
E[L] +

√
E[L]2 + 4E[L]
2

.

(12)

Therefore the learnable loss weight, in our rectified harmonious loss, approximates the analytic loss
weight:

1

σ
=

2

E[L] +
√
E[L]2 + 4E[L]

, (13)

corresponding to a loss scale E[L], which is less than the unrectified 1/E[L]. Adding a constant in

the regularization term log(1 + σ) results in the 4E[L] in the
√
E[L]2 + 4E[L] term, which prevents

the loss weight from getting extremely large when faced with a small E[L].
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C EXPERIMENTAL DETAILS

C.1 BENCHMARK ENVIRONMENTS

Meta-world. Meta-world (Yu et al., 2020b) is a benchmark of 50 distinct robotic manipulation
tasks. We choose six tasks in all according to the difficulty criterion (easy, medium, hard, and very
hard) proposed by Seo et al. (2022a). Specifically, we choose Handle Pull Side, Lever Pull, and Plate
Slide from the easy category, Hammer and Sweep Into from the medium category, and Push from
the hard category. We observe that although the Hammer task belongs to the medium category, it is
relatively easy for the DreamerV2 agent to learn, and our HarmonyWM can already achieve high
success by 250K environment steps. Therefore, we train our agents over 250K environment steps on
Hammer, along with the three easy tasks. For the Sweep Into and Push task, we train our agents over
500K and 1M environment steps, according to their various difficulties, respectively. In all tasks, the
episode length is 500 environment steps with no action repeat.

Figure 11: Example observations of Meta-world tasks. (From left to right: Lever Pull, Handle Pull
Side, Plate Slide, Hammer, Sweep Into, Push)

Figure 12: Example observations of RL-
Bench tasks: Push Button and Reach
Target.

RLBench. RLBench (James et al., 2020) is a challeng-
ing benchmark for robot learning. Most tasks in RLBench
are overchallenging for DreamerV2, even equipped with
HarmonyWM. Therefore, following Seo et al. (2022a),
we choose two relatively easy tasks (i.e. Push Button,
Reach Target) and use an action mode that specifies the
delta of joint positions. Because the original RLBench
benchmark does not provide dense rewards for the Push
Button task, we assign a dense reward following Seo et al.
(2022a), which is defined as the sum of the L2 distance of
the gripper to the button and the magnitude of the button
being pushed. In our experiments, We found that the original convolutional encoder and decoder of
DreamerV2 can be insufficient for learning the RLBench task. Therefore, in this domain, we adopt the
ResNet-style encoder and decoder from Wu et al. (2023) for both DreamerV2 and our HarmonyWM.
Note here that changes in the encoder and decoder architecture are completely orthogonal to our
method and contributions. For tasks in the RLBench domain, the maximum episode length is set to
400 environment steps with an action repeat of 2.

DMC Remastered. The DMC Remastered (DMCR) (Grigsby & Qi, 2020) benchmark is a chal-
lenging extension of the widely used robotic locomotion benchmark, DeepMind Control Suite (Tassa
et al., 2018), by expanding a complicated graphical variety. On initialization of each episode for both
training and evaluation, the DMCR environment randomly resets 7 factors affecting visual conditions,
including floor texture, background, robot body color, target color, reflectance, camera position,
and lighting. Our agents are trained and evaluated on three tasks: Cheetah Run, Walker Run, and
Cartpole Balance. We use all variation factors in all of our experiments and train our agents over 1M
environment steps. Following the common setup of DeepMind Control Suite (Hafner et al., 2020;
Yarats et al., 2022), we set the episode length to 1000 environment steps with an action repeat of 2.

C.2 BASE MBRL METHODS

DreamerV2. Our HarmonyWM is built upon DreamerV2 (Hafner et al., 2021), which has been
elaborated on in the main text, and we refer the readers to Sec. 2.2 and Hafner et al. (2020; 2021).
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DreamerV3. DreamerV3 (Hafner et al., 2023) is a general and scalable algorithm that builds upon
DreamerV2. In order to master a wide range of domains with fixed hyperparameters, DreamerV3
made many changes to DreamerV2, including using symlog predictions, utilizing world model
regularization by combining KL balancing and free bits, modifying the network architecture, and
so forth. A main modification relevant to our method is that DreamerV3 explicitly partitions the
dynamics loss in Eq. (2) into a dynamics loss and a representation loss as follows:

Dynamics loss: Ldyn(θ) = max(1,KL [sg(qθ(zt | zt−1, at−1, ot)) ∥ pθ(ẑt | zt−1, at−1)]),

Representation loss: Lrep(θ) = max(1,KL [qθ(zt | zt−1, at−1, ot) ∥ sg(pθ(ẑt | zt−1, at−1))]).
(14)

Since Ldyn(θ) and Lrep(θ) is of the same loss value, which will result in same learned coefficients, to
implement Harmony DreamerV3, we recombine the two losses into Ld(θ) as follows:

Ld(θ)
.
= Ldyn(θ) + Lrep(θ). (15)

In this way, we can use the same learning objective as Eq. (5) for Harmony DreamerV3.

DreamerPro. DreamerPro (Deng et al., 2022) is a reconstruction-free model-based RL method that
incorporates prototypical representations in the world model learning process. The overall learning
objective of the DreamerPro method is defined as follows:

LDreamerPro(θ) = LSwAV(θ) + LTemp(θ) + LR(θ) + LKL(θ). (16)

The LSwAV term stands for prototypical representation loss used in SwAV (Caron et al., 2021), which
improves prediction from an augmented view and induces useful features for static images. LTemp
stands for temporal loss that considers temporal structure and reconstructs the cluster assignment of
the observation instead of the visual observation itself. As LSwAV + LTemp replaces Lo in Eq. (2), we
build our Harmony DreamerPro by substituting the overall learning objective into the following:

LHarmony DreamerPro(θ) =
∑

i∈{SwAV,Temp,R,KL}

1

σi
Li(θ) + log (1 + σi). (17)

C.3 HYPERPARAMETERS

Our proposed HarmonyWM only involves adding lightweight harmonizers, each corresponding
to a single learnable parameter, and thus does not introduce any additional hyperparameters. For
Harmony DreamerV3 and Harmony DreamerPro, we use the default hyperparameters of DreamerV3
and DreamerPro, respectively. For our HarmonyWM, we use the same set of hyperparameters as
DreamerV2 (Hafner et al., 2021). Important hyperparameters for HarmonyWM are listed in Table 1.

C.4 ANALYSIS EXPERIMENT DETAILS (FIG. 4 AND 5)

For the analysis in Sec. 2.3, namely Fig. 4 and 5, we conduct our experiments on a fixed training
buffer to better ablate distracting factors. We first train a separate DreamerV2 agent and use training
trajectories collected during its whole training process as our fixed buffer. The fixed buffer comprises
250K environment steps and covers data from low-quality to high-quality trajectories (Levine et al.,
2020). We then offline train our DreamerV2 agents with different reward loss coefficients on this
buffer. All other hyperparameters, such as training frequency, training steps, and evaluation episodes,
are the same as in Table 1.

Details for Fig. 4 We denote the agent trained using wr = 1 as original weight and trained using
wr = 100 for Lever Pull, wr = 10 for Handle Pull Side and Hammer as balanced weight. To build
the state regression dataset, first, we gather 10,000 segments of trajectories, each with a length of 50,
from the evaluation episodes of both the agent trained using original weight and the agent trained
using balanced weight. These segments are then combined into a dataset comprising 20,000 segments.
This dataset is subsequently divided into a training set and a validation set at a ratio of 90% to 10%,
respectively. Each data point in the dataset consists of a ground truth state and a predicted state
representation, where the ground truth state is made up of the actual positions of task-relevant objects.
We use a 4-layer MLP with a hidden size of 400 and an MSE loss to regress the representation to the
ground-truth state. We report regression loss results on the validation set.
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Table 1: Hyperparameters in our experiments. We use the same hyperparameters as DreamerV2.

Hyperparameter Value

Observation size 64× 64× 3
Observation preprocess Linearly rescale from [0, 255] to [−0.5, 0.5]

Action Repeat 1 for Meta-world
2 for RLBench and DMCR

Max episode length 500 for Meta-world and DMCR, 200 for RLBench
Early episode termination True for RLBench, False otherwise

Trajectory segment length T 50
Random exploration 5000 environment steps for Meta-world and RLBench

1000 environment steps for DMCR
Replay buffer capacity 106

Training frequency Every 5 environment steps
Imagination horizon H 15

Discount γ 0.99
λ-target discount 0.95

Entropy regularization η 1× 10−4

Batch size 50 for Meta-world and RLBench
16 for DMCR

RSSM hidden size 1024
World model optimizer Adam

World model learning rate 3× 10−4

Actor optimizer Adam
Actor learning rate 8× 10−5

Critic optimizer Adam
Critic learning rate 8× 10−5

Evaluation episodes 10

Details for Fig. 5 In the Lever Pull task, the robot needs to reach the end of a lever (marked in
blue in the observation) and pull it to the designated position (marked in red in the observation). We
utilize a trajectory where the default DreamerV2 with wr = 1 fails to lift the lever to analyze the
reason behind its poor performance. Both agents use 15 frames for observation and reconstruction
and predict 35 frames open-loop. We plot each image with an interval of 5 frames in Fig. 5.

C.5 COMPUTATIONAL RESOURCES

We implement our HarmonyWM based on PyTorch (Paszke et al., 2019). Training is conducted with
automatic mixed precision (Micikevicius et al., 2018) on Meta-world and RLBench and full precision
on DMCR. In terms of training time, it takes ∼24 hours for each run of Meta-world experiments
over 250K environment steps, ∼24 hours for RLBench over 500K environment steps, and ∼23 hours
for DMCR over 1M environment steps, respectively. The lightweight harmonizers introduced by
HarmonyWM do not affect the training time. In terms of memory usage, Meta-world and RLBench
experiments require ∼10GB GPU memory, and DMCR requires ∼5GB GPU memory, thus, the
experiments can be done using typical 12GB GPUs.

D ADDITIONAL EXPERIMENT RESULTS

D.1 EXPERIMENTAL SUPPORT ON RECTIFIED HARMONIOUS LOSS

In Sec. 3, we have already presented a detailed explanation on the necessity of our rectified harmonious
loss, changing the regularization term from log σi in Eq. (4) to log(1 + σi) in Eq. (5). Here, we
present experimental results to support our claim. We use Unrectified HarmonyWM to note our
method trained using the objective in Eq. (4), and HarmonyWM (Ours) to note our method trained
using Eq. (5). As shown in Fig. 13 and Fig. 14, the excessively large reward coefficient (Fig. 13c)
for Unrectified HarmonyWM can lead to a divergence in the dynamics loss (Fig. 13b), which in turn
negatively impacts performance (Fig. 13a and Fig. 14).
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Figure 13: Training curves for Unrectified HarmonyWM using Eq. (4) on the DMC Quadruped Run
task, in comparison with HarmonyWM.
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Figure 14: Learning curves for Unrectified HarmonyWM using Eq. (4) on the DMCR domain, in
comparison with HarmonyWM.

D.2 ABLATION ON ADJUSTING wd

Manually tuning the dynamics loss coefficient wd (e.g. wd = 0.1) is common in MBRL methods
(Hafner et al., 2021; 2023; Seo et al., 2022a;b). We note that our HarmonyWM differs from these
previous approaches as we treat the different losses in a multi-task perspective and harmonize loss
scales between them, while previous approaches see wd simply as a hyperparameter. Fig. 15 shows a
comparison between fixing wd to 1 in HarmonyWM (denoted as HarmonyWM wd = 1) and using
σd to balance wd (denoted as HarmonyWM (Ours)), where our proposed HarmonyWM performs
slightly better than the one fixing wd, and both methods outperform DreamerV2 by a clear margin.
This result highlights the importance of harmonizing two different modeling tasks in world models,
instead of only tuning on the shared dynamics part of them.
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Figure 15: Ablation on adjusting wd in HarmonyWM.
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Figure 16: Learning curves of HarmonyWM compared to tuned weights on Meta-world and DMCR.

D.3 COMPARISON TO TUNED WEIGHTS

We present a direct comparison between our HarmonyWM and manually tuned weights for Dream-
erV2. For the Meta-world domain, we plot the tuned better results from wr ∈ {10, 100}, wo = 1.
For the DMCR domain, we plot tuned results using wr = 100, wo = 1. Results in Fig. 16 show that
our HarmonyWM outperforms manually tuned weights in most tasks, which adds to the value of our
method.

D.4 DEEPMIND CONTROL SUITE EXPERIMENTS

The DeepMind Control Suite (DMC, Tassa et al. (2018)) is a widely used benchmark for visual
locomotion. We have conducted additional experiments on four tasks: Cheetah Run, Quadruped Run,
Walker Run, and Finger Turn Hard. In Fig. 17, we present comparisons between our HarmonyWM
and the base DreamerV2. We note that the performance of relatively easy DMC tasks has been almost
saturated by recent literature (Yarats et al., 2021; Hafner et al., 2021), and we suppose that current
limitations of model-based methods are not rooted in the world model, but rather in behavior learning
(Hafner et al., 2023), which falls outside the scope of our method and contributions. Nevertheless, our
HarmonyWM is still able to obtain a noticeable gain in performance in the more difficult Quadruped
Run task.

D.5 ADDITIONAL RESULTS OF IMPLICIT MBRL METHODS

We observe that the performance of TD-MPC (Hansen et al., 2022) is fairly low compared to our
HarmonyWM. Due to our limited computational resources, we only conduct additional experiments
on the DMCR domain, apart from the Meta-world results presented in Fig. 10b. Full results in Fig. 18
show that TD-MPC is unable to learn a meaningful policy in some tasks, which further highlights the
value of our explicit-implicit method.

D.6 ADDITIONAL RESULTS OF HARMONYWM

In Fig. 19, we present an additional result of our HarmonyWM on the Assembly task of the Meta-
world domain. According to the difficulty criterion proposed by (Seo et al., 2022a), Assembly belongs
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Figure 17: Learning curves of HarmonyWM and DreamerV2 on the DMC domain.
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Figure 18: Learning curves of TD-MPC.
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to the hard category. We train our agents over 1M environment steps. This result further demonstrates
the superiority of our method on challenging tasks.
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Figure 19: Additional Results of HarmonyWM on Assembly.

D.7 ADDITIONAL RESULTS OF METHOD GENERALITY AND DISCUSSIONS

We present additional results of our HarmonyWM generalized to DreamerV3 in Fig. 20. We brand
this method as Harmony DreamerV3 in the figure. Our approach consistently improves the sample
efficiency of our base method, proving the excellent generality of our proposed harmonization.
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Figure 20: Additional results of Harmony DreamerV3 on Meta-world.

Discussion There are mainly two changes of DreamerV3 relevant to improving world model
learning: KL Balancing and Symlog Predictions. We have already shown in Appendix C.2 that KL
balancing is orthogonal to our method and that we can easily incorporate this modification into our
approach. Besides, Symlog Predictions also do not solve our problem of seeking a balance between
reward modeling and observation modeling. First of all, the Symlog transformation only shrinks
extremely large values but is unable to rescale various values into exactly the same magnitude, while
our harmonious loss properly addresses this by dynamically approximating the reciprocals of the
values. More importantly, the primary reason why Lr has a significantly smaller loss scale is the
difference in dimension: as we have stated in Sec 2.3, the observation loss Lo usually aggregates
H × W × C dimensions, while the reward loss Lr is derived from only a scalar. In summary,
using Symlog Predictions as DreamerV3 only mitigates the problem of differing per-dimension
scales (typically across environment domains) by a static transformation, while our method aims to
dynamically balance the overall loss scales across tasks in world model learning, considering together
per-dimension scales, dimensions, and training dynamics.

In practice, DreamerV3 uses twohot symlog predictions for the reward predictor to replace the MSE
loss in DreamerV2. This approach increases the scale of the reward loss, but is insufficient to mitigate
the domination of the image loss. We observe that the reward loss in DreamerV3 is still significantly
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Figure 21: Comparison of HarmonyWM with multi-task learning methods.

smaller than the observation loss, especially for visually demanding domains such as RLBench,
where the reward loss is still two orders of magnitude smaller.

D.8 COMPARISON WITH MULTI-TASK LEARNING METHODS AND DISCUSSIONS

Methods in the field of multi-task learning or multi-objective learning can be roughly categorized into
loss-based and gradient-based. Since gradient-based methods mainly address the problem of gradient
conflicts (Yu et al., 2020a; Liu et al., 2021), which is not the main case in world model learning, we
focus on loss-based methods, which assigns different weights to task losses by various criteria. We
choose the following as our baselines to discuss differences and conduct comparison experiments:

Uncertainty Weighting (UW, Kendall et al. (2018)) balances tasks with different scales of targets,
which is measured as uncertainty of outputs. As pointed out in Section 2.2, in world model learning,
observation loss Lo(θ) = − log pθ (ot | zt) = −

∑h
i=1

∑w
j=1 log pθ(o

(i,j)
t | zt) and reward loss

Lr(θ) = − log pθ (rt | zt) differs not only in scales but also in dimensions. A detailed explanation of
the differences between our harmonious loss and UW is provided in the discussion section in Sec 3.

Dynamics Weight Average (DWA, Liu et al. (2019)) balances tasks according to their learning
progress, illustrating the various task difficulties. However, in world model learning, since the data
in the replay buffer is growing and non-stationary, the relative descending rate of losses may not
accurately measure task difficulties and learning progress.

NashMTL (Navon et al., 2022) is the most similar to our method, whose optimization direction
has balanced projections of individual gradient directions. However, its implementation is far more
complex than our method, as it introduces an optimization procedure to determine loss weights on
each iteration. In our experiments, we also find this optimization is prone to deteriorate to produce
near-zero weights without careful tuning of optimization parameters.

In Fig 21, we compare to the multi-task methods we mentioned above. Experiments are conducted on
Lever Pull from Meta-world, Push Button from RLBench, and Cheetah Run from DMCR, respectively.
Our method is the most effective among multi-task methods and has the advantage of simplicity.
Although NashMTL produces similar results on the Lever Pull task, it outputs extreme task weights
on the other two tasks, which accounts for its low performance. Our HarmonyWM, on the other hand,
uses a rectified loss that effectively mitigates extremely large loss weights.

D.9 COMPARISON WITH DENOISED MDP

Our HarmonyWM shares a similar point with Denoised MDP (Wang et al., 2022) in enhancing
task-centric representations. However, the two approaches are entirely irrelevant. In Fig 22, we show
a comparison of our method to Denoised MDP. Denoised MDP performs information decomposition
by changing the MDP transition structure and utilizing the reward as a guide to separate task-relevant
information. However, since Denoised MDP does not modify the weight for the reward modeling
task, the observation modeling task can still dominate the learning process. Consequently, the training
signals from the reward modeling task may be inadequate to guide decomposition. It’s also worth
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Figure 22: Comparison of HarmonyWM with Denoised MDP.

noting that Denoised MDP only added noise distractors to task-irrelevant factors in their DMC
experiments. On the other hand, the benchmark adopted in our experiments, DMCR, adds visual
distractors to both task-irrelevant and task-relevant factors, such as the color of the body and floor,
which adds complexity to both factors and results in more challenging tasks. These two reasons
above can account for the low performance of Denoised MDP in our benchmarks.

D.10 ATARI100K EXPERIMENTS

In Fig 23, we present our result of Harmony DreamerV3 on the Atari100K benchmark. The visual
observation complexity in Atari games is less demanding compared to visual manipulation and
locomotion domains. As a result, the issue of observation modeling domination is not as pronounced.
However, our method can still enhance the base DreamerV3 performance on more intricate tasks,
such as Qbert.
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Figure 23: Performance of Harmony DreamerV3 on Atari100K.

D.11 QUANTITATIVE EVALUATION OF THE BENEFICIAL IMPACT OF OBSERVATION
MODELING ON REWARD MODELING

To explore the possible beneficial impact of observation modeling on reward modeling, we utilize the
offline experimental setup in Fig 4 and 5, whose details are described in Appendix C.4. We offline
train two DreamerV2 agents using task weights (wr = 100, wo = 1) and (wr = 100, wo = 0) and
evaluate the ability to accurately predict rewards on a validation set with the same distribution as the
offline training set. For this task, we gathered 20,000 segments of trajectories, each of length 50. We
utilized 35 frames for observation and predicted the reward for the remaining 15 frames. Results
are reported in the form of average MSE loss. We observe that the world model with observation
modeling predicts the reward better than the world model that only models the reward. The prediction
loss of (wr = 100, wo = 1) is 0.379, while the loss of (wr = 100, wo = 0) is 0.416. This result
indicates that observation modeling has a positive effect on reward modeling.
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