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ABSTRACT

This paper proposes a new framework of algorithms that is extended from the
celebrated extragradient algorithm. The min-max problem has attracted increasing
attention because of its applications in machine learning tasks such as generative
adversarial networks (GANs) training. While there has been exhaustive research
on convex-concave setting, problem of nonconvex-nonconcave setting faces many
challenges, such as convergence to limit cycles. Given that general min-max op-
timization has been found to be intractable, recent research efforts have shifted
towards tackling structured problems. One of these follows the weak Minty vari-
ational inequality (weak MVI), which is motivated by relaxing Minty variational
inequality (MVI) without compromising convergence guarantee of extragradient
algorithm. Existing extragradient-type algorithms involve one exploration step and
one update step per iteration. We analyze the algorithms with multiple exploration
steps and show that current assumption can be further relaxed when more explo-
ration is introduced. Furthermore, we design an adaptive algorithm that explores
until the optimal improvement is achieved. This process exploits information from
the whole trajectory and effectively tackles cyclic behaviors.

1 INTRODUCTION

Min-max optimization has aroused recent interest due to its significant applications in machine
learning tasks, such as generative adversarial networks, adversarial training, robust learning and
sharpness-aware minimization (Goodfellow et al., 2014; Madry et al., 2018; Levy et al., 2020; Foret
et al., 2020).

Min-max optimization aims to find saddle point of a objective function. Theories and methods have
been extensively studied for decades, usually through the prospective of variational inequalities.
There has been a plethora of literature focusing on convex-concave (Tseng, 2008; Nesterov, 2007;
Nemirovski, 2004) or nonconvex-concave (Xu et al., 2023; Boţ & Böhm, 2023; Lin et al., 2020)
objectives. However, problem with nonconvex-nonconcave objective remains relatively obscure.
Finding local solution in general nonconvex-nonconcave problems has been proved intractable
(Daskalakis et al., 2021).

One powerful tool that has been revisited is the celebrated extragradient (Korpelevich, 1976), which
has been found effective in solving a class of nonconvex-nonconcave problems (Daskalakis et al.,
2020). Diakonikolas et al. (2021) first introduce this new structure as weak Minty variational
inequality, featuring a weaker assumption than monotonicity. They make a slight modification on
extragradient (named EG+) and establish convergence guarantee on this structure. Pethick et al.
(2022) elucidate the mechanism of EG+ and prove a tight parameter range of ρ > −1/2L, where ρ
represents the weak Minty parameter that describes the degree of non-monotonicity and L is the
Lipschitz constant, which is the known best range to have convergence guarantee for this class of
problems.

Our contributions Building on the works of Pethick et al. (2022) and Diakonikolas et al. (2021),
we generalize the extragradient algorithm to multi-step cases which adapt to a larger range of
problems. Furthermore, we propose a new algorithm that exploits more than local information by
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introducing adaptive exploration.

1. We analyze the algorithms with two and more exploration steps. We discover that the range of
ρ in weak MVI assumption can be relaxed when more exploration steps are introduced. Especially,
when the sum of exploration stepsizes in one iteration is still bounded by 1/L, a similar type of
convergence guarantee can be established. Under this restriction, the assumption parameter can be
relaxed to ρ > −(1−1/e)/L. Additionally, for n = 2, we establish the range of ρ where the stepsizes
are unrestricted by these constraints.

2. Building on the established convergence results, we introduce a novel algorithm that adaptively
increases the number of exploration steps. This is inspired by the idea of interpreting each update
as a projection onto a certain hyperplane, defined by the weak Minty inequality. Every exploration
point provides information and helps narrow down the target range. This algorithm effectively tackles
cyclic behaviors.

Related work Recent application in GAN training has motivated research on min-max optimization
and revisit to classic algorithms. A line of pioneering works introduces the traditional perspective of
variational inequality and resorts to optimistic methods (Daskalakis et al., 2018; Gidel et al., 2018;
Mertikopoulos et al., 2018). Simple algorithm such as gradient descent ascent is also examined under
the Polyak-Łojasiewicz condition (Yang et al., 2020). Hsieh et al. (2021) revisit a list of algorithms
including extragradient and demonstrate that current methods still have trouble avoiding limit cycles.

Weak Minty variational inequality, also known as star-negative comonotonicity, has received recent
attention from community and has become a common structure setting. Diakonikolas et al. (2021)
first introduced weak MVI as an important assumption, under which their EG+ algorithm enjoys
O(1/

√
k) convergence rate. Pethick et al. (2022) provide a full picture of the algorithm with an

adaptive stepsize selection technique. They also propose an algorithm with backtracking line search
incorporated, which effectively escape limit cycles and outperforms existing methods. Böhm (2022)
propose another variant of EG+ with adaptive stepsize, not requiring knowledge of problem parameter
ρ and L. While most literature provide best-iterate convergence results, last-iterate convergence of
EG+ under weak MVI has also been established (Gorbunov et al., 2023; Tran-Dinh, 2023), but under
more restrictive parameter ρ > −1/8L.

Another line of work resorts to anchoring techniques. Lee & Kim (2021) combine anchored ex-
tragradient with separate stepsizes and obtain a fast O(1/k) rate on gradient norm. Alcala et al.
(2023) introduce new moving anchor technique generalizing current algorithms and attain optimal
convergence rate. These works are under a more restrictive (unstarred) negative comonotonicity
assumption.

When it comes to stochastic methods, similar thought to EG+ can be found in Hsieh et al. (2020),
where they show that doubled exploration stepsize in stochastic extragradient is effective on avoiding
cycles. Diakonikolas et al. (2021) extend their deterministic result to stochastic setting with unbiased
oracle of gradient and bounded variance by increasing oracle queries. Pethick et al. (2023) establish
almost sure convergence with single query per iteration, involving one fixed and one diminishing
stepsize. Their method works under the same assumption of ρ > −1/2L. Aside from separate
stepsizes, other variants such as stochastic past extragradient (SPEG) have been shown effective
under weak MVI assumption, along with a new expected residual condition (Choudhury et al., 2023).

2 PRELIMINARIES

We consider two real vectors, x ∈ Rdx ,y ∈ Rdy and minimax problems of the form:

min
x∈Rdx

max
y∈Rdy

f(x,y) (2.1)

where f : Rdx × Rdy → R is a smooth (possibly nonconvex-nonconcave) function and dx + dy = d.

To study the stationary point, we consider the saddle gradient operator F : Rd → Rd defined via

Fz =

[
∇xf(x,y)
−∇yf(x,y)

]
, where z =

[
x
y

]
.
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We want to find zeros of this operator, the set of which denoted by zerF := {z ∈ Rd | Fz = 0}.
This is a first-order necessary condition of z being the saddle point satisfying (2.1).

In this paper, we study problems in which operator F satisfies the following assumptions.
Assumption 1. (L-Lipschitz continuity). Operator F is L-Lipschitz continuous. For any u,v ∈ Rd,

‖Fu− Fv‖ ≤ L‖u− v‖ (2.2)

Assumption 2. (Weak MVI). There exists z∗ ∈ zerF such that for any z ∈ Rd,
〈Fz, z − z∗〉 ≥ ρ‖Fz‖2 (2.3)

for some ρ ∈ (ρ0,∞).

In this paper, the proposed methods provide convergence guarantee for problems where ρ ∈
(−(1−1/e)/L,∞), where e is Euler’s number.

2.1 PRELIMINARY ALGORITHMS

EG (Korpelevich, 1976):

z̄k = zk − αkFzk

zk+1 = zk − αkF z̄k
(EG)

where γk is the stepsize.

Extragradient is a classical algorithm for saddle point problems. Often regarded as an explicit
approximation of the proximal point method, EG employs the same stepsize for both extrapolation
and update phases.

EG+ (Diakonikolas et al., 2021):

z̄k = zk − γkFzk

zk+1 = zk − αkF z̄k
(EG+)

where γk = 1/L and αk = 1/2L are the stepsizes.

EG+ is a generalization of EG, allowing an aggressive extrapolation step. This slight modification
makes it effective for weak MVI problems under ρ > −1/8L.

AdaptiveEG+ (Pethick et al., 2022):

z̄k = zk − γkFzk

αk = σk −
〈F z̄k, z̄k − zk〉
‖F z̄k‖2

zk+1 = zk − λkαkF z̄k, λk ∈ (0, 2)

(AdaptiveEG+)

where γk ∈ (b−2ρc+, 1/L], αk are the stepsizes and σk ∈ (−γk/2, ρ], λk ∈ (0, 2) are relaxation
parameters.

This algorithm provides a tight range of αk for convergence of (EG+). Diving into the conception
of projection, (AdaptiveEG+) broadens the problem range to ρ > −1/2L, which has been the best
known result for weak MVI problems.

2.2 PRELIMINARY DEFINITIONS

Definition 2.1. (Weak MVI halfspace). Given u ∈ Rd. Define weak MVI halfspace at u as the set
restricted by (2.3) at u,

D(u) := {w ∈ Rd | 〈Fu,u−w〉 ≥ ρ‖Fu‖2} (2.4)
The boundary of D(u) is a hyperplane with Fu as normal vector,

∂D(u) := {w ∈ Rd | 〈Fu,u−w〉 = ρ‖Fu‖2} (2.5)
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Under Assumption 2, we have ∀u ∈ Rd, z∗ ∈ D(u). As we access gradient at any point, we get the
information that zero z∗ must be inside the corresponding halfspace.
Definition 2.2. (Signed distance). Given u ∈ Rd and convex set S ⊂ Rd. The signed distance from
u to S is defined by

d(u,S) :=

{
d(u, ∂S), if u ∈ Sc
−d(u, ∂S), if u ∈ S (2.6)

where ∂S denotes the boundary of S and Sc denotes the complement of S. d(u, ∂S) is defined by
d(u, ∂S) := infv∈∂S d(u,v).

The signed distance d(u,S) is positive when u is out of S and negative when u is inside S.

In this paper, we focus on the signed distance between a point and a weak MVI halfspace, which
is linear and therefore convex. More specifically, the iteration point zk and weak MVI halfspace at
exploration point zki .
Lemma 2.3. Given u,v ∈ Rd, the signed distance from v to D(u) is

d(v,D(u)) =
ρ‖Fu‖2 − 〈Fu,u− v〉

‖Fu‖
(2.7)

3 GENERALIZED FRAMEWORK OF PROJECTION ALGORITHMS

Projection-type algorithms have been extensively utilized in variational inequality problems (Solodov
& Tseng, 1996; Solodov & Svaiter, 1999). Recent work of Pethick et al. (2022) employs projection
technique in generalizing extragradient algorithm.

Notice that in (AdaptiveEG+), the update stepsize αk = σk − 〈F z̄k,z̄k−zk〉
‖F z̄k‖2 ≤ d(zk,D(z̄k))

‖F z̄k‖ .

The main idea lies in perceiving each update as a projection onto the hyperplane ∂D(z̄k). Due to
Assumption 2, z∗ ∈ D(z̄k), while zk /∈ D(z̄k) since the algorithm is designed to make αk > 0. As
a result, the hyperplane naturally separates zk and z∗. The parameters of σk ≤ ρ and λ ∈ (0, 2) bear
no effect on convergence, given the fact that scaling the projection distance no more than twice still
takes you closer to the hyperplane.

It is interesting to notice that in this process, there is no restriction on the selection of z̄k. Literally
any z̄k generates a halfspace that z∗ ∈ D(z̄k). Therefore the same mechanism still applies as long
as z̄k is chosen such that zk /∈ D(z̄k), or equivalently d(zk,D(z̄k)) > 0. In other words, as long
as at every iteration point, we can find another point such that the iteration point is out of its weak
MVI halfspace. The border hyperplane consequently separates the iteration point zk and the desired
zero z∗. Therefore intuitively, a projection onto the hyperplane get closer to z∗. This point does not
necessarily have to be attained by a single forward operator evaluation z̄k = zk − γkFzk.

Given the foregoing discussion, it is straightforward to propose the following framework for solving
the weak MVI type saddle point problems.

z̄k = Gkz
k

αk = σk −
〈F z̄k, z̄k − zk〉
‖F z̄k‖2

> 0, σk ≤ ρ

zk+1 = z̄k − λkαkF z̄k, λk ∈ (0, 2)

(3.1)

where for all k, Gk : Rd → Rd is a map such that ∀z ∈ Rd, d(z,D(Gkz)) > 0 and σk ≤ ρ is
selected such that αk > 0.

In other words, if for every zk we are able to find z̄k so that zk /∈ D(z̄k), then the gradient F z̄k can
be used for extragradient update. Our objective is to find such maps that guarantee this property. One
example is Gk = id − γkF with b− ρ

1+ρLc+ < γk ≤ 1/L used in EG+, where id denotes identity
operator and bxc+ := max{0, x}.
Such algorithms enjoy similar convergence guarantee to (AdaptiveEG+)((Pethick et al., 2022), Thm.
3.1), with an O(1/

√
k) best-iterate convergence rate.
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Theorem 3.1. Let F be L-Lipschitz and satisfy weak Minty condition with ρ. Let λk ∈ (0, 2),
σk ≤ ρ. Assume that lim infk→∞ λk(2− λk) > 0 and lim infk→∞ αk > 0. Assume that for all k,
d(zk,D(z̄k)) > 0. Assume that σk is selected such that αk > 0. Consider the sequences (zk)k∈N
and (z̄k)k∈N generated by (3.1). Then,

min
k=0,1,...,m

‖F z̄k‖2 ≤ 1

κ(m+ 1)
‖z0 − z∗‖2 (3.2)

where κ = lim infk→∞ λk(2− λk)α2
k. Moreover, (z̄k)k∈N converges to z∗.

Note that no limitation on ρ is mentioned in this framework. Actually, the range of manageable ρ
depends on the selection of σk and the map Gk, which will be covered in the next section. More
specifically, ρ > supz̄k

〈F z̄k,z̄k−zk〉
‖F z̄k‖2 , where the right-hand side is related to the settings of Gk.

(a) GDA (b) AdaptiveEG+ (c) (Algorithm 1)

Figure 1: Intuition of projection algorithms

From another perspective, every operator evaluation Fz provides new information about z∗. z∗ ∈
D(z) rules out the possibility that z∗ is in another halfspace. This explains why increasing exploration
plays a crucial role. Gradient descent ascent fails in ρ < 0 weak MVI problems since both zk and z∗

is in D(zk) and the hyperplane cannot separate them. (AdaptiveEG+) manages to find suitable z̄k

with a larger extrapolation stepsize to separate them and update (project) with a smaller stepsize.

It is then natural to increase exploration by taking further steps in the subroutine Gk, pursuing a
larger projection distance. See Fig. 1 for intuition. This naturally leads to a question: what kind of
convergence guarantee can be provided for aforementioned multi-step algorithms? We address this
problem in Section 4 and introduce the “max distance” algorithm in Section 5.

4 MULTI-STEP EXTRAGRADIENT

We start from the (AdaptiveEG+) algorithm and generalize it to multi-step cases.

Pethick et al. (2022) obtained a range of ρ ∈ (− 1
2L ,∞) for the algorithm to converge and demon-

strated its tightness. Moreover, they restated the condition as ρ > −γk/2, where the stepsize satisfies
γk ≤ 1/L. We reexamine the claim and articulate our understanding.

The key is to assure a positive projection distance. Taking σk = ρ,

αk = ρ− 〈F z̄
k, z̄k − zk〉
‖F z̄k‖2

= ρ+
γk〈F z̄k, Fzk〉
‖F z̄k‖2

≥ ρ+
γk

1 + γkL
(4.1)

The inequality follows from rearranging ‖F z̄k − Fzk‖ ≤ γkL‖Fzk‖ into ‖Fzk − 1
1−γ2

kL
2F z̄

k‖ ≤
γkL

1−γ2
kL

2 ‖F z̄k‖ and applying Cauchy-Schwarz inequality on it.

Rather than the stated ρ > −γk/2 which only applies when γk ≤ 1/L, a more precise condition should
be ρ > − γk

1+γkL
. Increasing extrapolation stepsize γk does not extend the lower bound of ρ infinitely,
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but push it closer to −1/L. Actually, objective functions with ρ ≤ −1/L are knotty for first order
methods. For example, both Fz = Lz and Fz = −Lz falls into the structure. Particularly, when
β ≤ −1, β-cohypomonotone operator F may fail to have an at most single-valued resolvent JF ,
making it problematic in finding fixed points of JF (Table 1, (Bauschke et al., 2021)).

4.1 2-STEP EXTRAGRADIENT

Consider the n-step extragradient.

∀i ∈ [n], zki = zki−1 − γk,iFzki−1

z̄k = zkn

αk = σk −
〈F z̄k, z̄k − zk〉
‖F z̄k‖2

> 0, σk ≤ ρ

zk+1 = z̄k − λkαkF z̄k, λk ∈ (0, 2)

(n-step EG)

where zk0 = zk is the current point, zki , i ∈ [n] are intermediate steps, and zk+1 is the adopted update.
The extrapolation point z̄k is attained by n steps of gradient descent.

In this subsection we focus on the case where n = 2. Recall that selection of stepsizes and σk plays a
crucial rule in the algorithm and determines the range of problem parameter ρ that the algorithm can
address. We elaborate in the subsequent theorem how to choose parameters that ensures convergence.
Theorem 4.1. Let F be L-Lipschitz and satisfy weak Minty condition with ρ. Let n = 2. Assume that
for all k, γk,1 = δ1/L, γk,2 = δ2/L, and δ1, δ2 ∈ (0, 1). Assume that lim infk→∞ λk(2 − λk) > 0
and lim infk→∞ αk > 0. If for all k, σk ≤ ρ and

σk >

−
1
L

[
1− 1

(1+δ1)(1+δ2)

]
if δ1 + δ2 ≤ 1

− 1
L

[
δ1(1−δ21−δ

2
2)

2(1−δ21)(1−δ22)
+ δ2

1+δ2

]
if δ1 + δ2 > 1

(4.2)

Then the sequence (z̄k)k∈N generated by (n-step EG) satisfies mink=0,1,...,m‖F z̄k‖2 ≤
1

κ(m+1)‖z
0 − z∗‖2, where κ = lim infk→∞ λk(2− λk)α2

k.

Selecting the parameters according to (4.2) guarantees best-iterate convergence. In the following
theorem, we present the specific parameter selection that maximize the range of ρ in both cases.
Theorem 4.2. Let F be L-Lipschitz and satisfy weak Minty condition with ρ. Let n = 2. Assume that
for all k, γk,1 = δ1/L, γk,2 = δ2/L, and δ1, δ2 ∈ (0, 1). Assume that lim infk→∞ λk(2 − λk) > 0
and lim infk→∞ αk > 0. Let κ = lim infk→∞ λk(2− λk)α2

k.

(i) If for all k, δ1 = 1
2 , δ2 = 1

2 and σk = ρ > − 5
9L , then the sequence (z̄k)k∈N generated by

(n-step EG) satisfies mink=0,1,...,m‖F z̄k‖2 ≤ 1
κ(m+1)‖z

0 − z∗‖2.

(ii) If for all k, δ1 = δ̂1, δ2 = δ̂2 and σk = ρ > − ζ
L , where δ̂1 ≈ 0.52212, δ̂2 ≈ 0.644793 is

the unique solution of following equations,
δ2
2(1 + δ2

1) = (1− δ2
1)2

δ6
1 = (1 + δ2

1)(1− δ2)4

δ1 + δ2 > 1, δ1, δ2 < 1

(4.3)

and ζ =
δ̂1(1−δ̂21−δ̂

2
2)

2(1−δ̂21)(1−δ̂22)
+ δ̂2

1+δ̂2
≈ 0.5834, then the sequence (z̄k)k∈N generated by (n-step

EG) satisfies mink=0,1,...,m‖F z̄k‖2 ≤ 1
κ(m+1)‖z

0 − z∗‖2.

The theorem presents quite interesting results. When the sum of sub-iteration stepsizes is bounded
by 1/L, a familiar stepsize choice in preliminary algorithms, the optimal range is attained under a
succinct invariant stepsize setting. However in otherwise situation, suggested parameters are highly
complicated varying stepsizes. Note that invariant and varying both refer to sub-iteration stepsizes
γk,1, . . . , γk,n here and in the subsequent discussion. See Fig. 6 in Appendix C.1 for a contour of
(4.2) that incorporates the results in Theorem 4.1 and 4.2.
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4.2 n-STEP EXTRAGRADIENT

While the case of
∑n
i=1 γk,iL > 1 is convoluted even when n = 2, we are able to generalize the

results when
∑n
i=1 γk,iL ≤ 1 to n ≥ 3 cases:

Theorem 4.3. Let F be L-Lipschitz and satisfy weak Minty condition with ρ. Assume that for all k
and i ∈ [n], γk,i = δi/L, δi ∈ (0, 1) and

∑n
i=1 δi ≤ 1. Assume that lim infk→∞ λk(2 − λk) > 0

and lim infk→∞ αk > 0. If for all k, σk ≤ ρ and

σk > −
1

L

(
1−

n∏
i=1

1

1 + δi

)
(4.4)

Then the sequence (z̄k)k∈N generated by (n-step EG) satisfies mink=0,1,...,m‖F z̄k‖2 ≤
1

κ(m+1)‖z
0 − z∗‖2, where κ = lim infk→∞ λk(2− λk)α2

k.

Given the positive result extended, this next theorem expands our understanding of parameter selection
from point to line, thus broadening the algorithm’s adaptability.
Theorem 4.4. Let F be L-Lipschitz and satisfy weak Minty condition with ρ. Assume that for all k
and i ∈ [n], γk,i = γ = δ/L. Assume that lim infk→∞ λk(2− λk) > 0 and lim infk→∞ αk > 0.

(i) If δ ∈
(
b 1
n
√

1+ρL
− 1c+, 1

n

]
, σk ∈

(
−n
[
1− 1

(1+ 1
n )n

]
γ, ρ
]

and ρ > − 1
L

[
1− 1

(1+ 1
n )n

]
,

where bxc+ := max{0, x}, then the sequence (z̄k)k∈N generated by (n-step EG) satisfies
mink=0,1,...,m‖F z̄k‖2 ≤ 1

κ(m+1)‖z
0 − z∗‖2, where κ = lim infk→∞ λk(2− λk)α2

k.

(ii) Given any ρ > − 1
L (1− 1

e ), let n ≥ d 1
2+2 log (1+ρL)e, then ρ > − 1

L

[
1− 1

(1+ 1
n )n

]
.

Theorem 4.4 (i) provides the ranges for γ and σk under invariant stepsize. When n = 1, the algorithm
recovers the parameter range γ ∈

(
b− ρ

1+ρLc+, 1/L
]

and σk ∈ (−γ/2, ρ] from (AdaptiveEG+).
Selecting σk near its lower bound is the common practice when ρ is unknown. Theorem 4.4 (ii)
establishes the global range of ρ ∈ (−(1−1/e)/L,∞) in this paper.

We remark that the range of ρ in Theorem 4.4 (i) is not the global optimal result. It can be improved
if there are no restriction on

∑n
i=1 γk,iL, just as in the case of n = 2. Yet it is interesting to

figure out whether the global optimum of −ρ0L converges to 1 − 1/e as n → ∞. Our answer
is no. In numerical experiments, 3-step EG with δ1 ≈ 0.272899, δ2 ≈ 0.512753, δ3 ≈ 0.515522
demonstrates a range of −ρ0L ≈ 0.632242, which already exceeds 1− 1/e, and 4-step EG improves
it to at least −ρ0L ≈ 0.657724. Refer to Appendix C.4 for more details. This leaves room for further
enhancements.

5 ADAPTIVE EXPLORATION BY PURSUING MAX DISTANCE

It is discussed in Section 4 that increasing extrapolation stepsize push the lower bound of ρ towards
the threshold of −1/L. Inspired by this we propose an algorithm that explores aggressively. In the
following scheme, extrapolation process will not stop until projection distance stops increasing.

The algorithm aims to find a projection distance as large as possible. Thanks to the convergence
results in Section 4.2, choosing early stepsizes in accordance with (n-step EG) guarantees a positive
distance for problems with ρ > − 1

L

(
1− 1

e

)
and subsequent explorations will only increase it.

Note that the distances may converge and thus be monotonic, when the GDA sub-iteration of zki
directly converges. Therefore a very small tolerance ε1 > 0 is introduced to preclude the sub-
iterations from endless loop. The algorithm may have worse complexity in such scenarios when F
are more structured than monotone, reflecting a trade-off between complexity in easier problems and
convergence in a broader class. ε2 recovers GDA when the algorithm potentially stagnates due to
intractable local environment, thereby circumvents thorny areas (see Example 3 and Appendix D.3).

Parameter choice and knowledge of ρ By setting σk = ρ, Algorithm 1 exploit the information
of ρ to the largest extent. A smaller σk ≤ ρ still guarantees convergence as long as αk > 0, since
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Algorithm 1 Max Distance Extragradient

initialize:
z0 ∈ Rn, ρ, λk ∈ (0, 2), γk ∈ (0, 1/L], σk ≤ ρ and tolerance ε1, ε2 > 0

repeat for k = 0, 1, . . .
Let zk0 = zk, dk0 = −∞
repeat for i = 1, 2, . . .

Let zki = zki−1 − γkFzki−1
Compute estimated distance

dki =
σk‖Fzki ‖2 − 〈Fzki , zki − zk〉

‖Fzki ‖
until dki − dki−1 < ε1‖Fzki ‖
Let z̄k = zki−1, d̄k = dki−1
Compute stepsize

αk =
d̄k

‖F z̄k‖
= σk −

〈F z̄k, z̄k − zk〉
‖F z̄k‖2

Update
if αk ≥ ε2 then zk+1 = zk − λkαkF z̄k
else zk+1 = z̄k

until convergence
return zk+1

projection onto a larger halfspace still proceed toward the goal. A safe parameter range can be found
in Theorem 4.4 (i). More aggressive candidates such as σk = −1/L may apply to harder problems.

6 EXAMPLES AND EXPERIMENTS

We consider three classic examples corresponding to ρ > − 1− 1
e

L , ρ ∈ (− 1
L ,−

1− 1
e

L ), ρ < − 1
L

respectively.
Example 1. (bilinear)

min
x∈R

max
y∈R

f(x, y) := axy +
b

2
(x2 − y2) (Bilinear)

where a > 0, b < 0.
Example 2. ((Pethick et al., 2022), Example 3)

Fz = (ψ(x, y)− y, ψ(y, x)− x) (PolarGame)
where ψ(x, y) = 1

16ax(−1 + x2 + y2)(−9 + 16x2 + y2) and a = 1.
Example 3. ((Hsieh et al., 2021), Example 5.2)

min
x∈R

max
y∈R

f(x, y) := x(y − 0.45) + φ(x)− φ(y) (Forsaken)

where φ(z) = 1
4z

2 − 1
2z

4 + 1
6z

6.

Tested algorithms include (n-step EG), (MDEG) in this paper, (AdaptiveEG+), (CurvatureEG+) from
(Pethick et al., 2022) and (EG+ Adaptive) from (Böhm, 2022). All experiments are implemented
without the knowledge of ρ. In Example 1 we choose the parameters to make ρL ∈ (−0.6,−0.5) and
verify the convergence result of (n-step EG) in Theorem 4.4(i). Example 2 exhibits two limit cycles,
one attracting and one repellent. (Algorithm 1) excels at handling such cyclic problems and evades
the limit cycle in the first iteration. Example 3 further exceeds the manageable threshold of ρ > −1/L,
posing challenges for the algorithms. The basic version of (Algorithm 1) erroneously stagnates in
the problematic area, echoing the discussion on intractability. Introducing the tolerance ε2 prevents
the algorithms from incorrect convergence and helps to recover GDA when in a predicament. The
modified algorithm circumvents the thorny area, as shown in Fig. 4. Among all tested algorithms,
(Algorithm 1) and (CurvatureEG+) converge in Example 2 and 3, where our method relies solely on
global information.
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(a) ρL = −
√
7/5
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AdaptiveEG+ 2-step EG

(b) ρL = −
√

3/3
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-2
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0

1

2

x

y

AdaptiveEG+ 4-step EG

Figure 2: Example 1. ρ < −1/2L examples which are beyond the lower bound of (AdaptiveEG+) and
(n-step EG) converges with guarantee.
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Figure 3: Example 2 with ρL ≈ −0.885521 in the box ‖z‖∞ ≤ 3/2. (MDEG) break out of the limit
cycle and converges to the stationary point. The first 5 iterations of (MDEG) are attained after 30,
23, 23, 23, 23 exploration steps respectively.
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Figure 4: Example 3 has highly nonmonotonic regions with local ρL ≈ −3.04076 which go beyond
convergence guarantee of all shown algorithms. (MDEG) bypasses the thorny areas and converges
to the stationary point, outperforming counterparts on operator evaluations.

7 CONCLUSION

This paper opens up a new dimension for extragradient-type algorithms and demonstrates how
expanding extrapolation could help address more problems. We provide bound analysis on our
framework of multi-step extrapolation EG+ algorithms, relax the condition ρ > −1/2L to ρ >
−(1−1/e)/L and capture past algorithms as special cases. Furthermore, the adaptive method we
propose effectively resolves problems with limit cycles. While our method utilizes repeated GDA
steps in its subroutine, investigating alternative subroutines that offer better approximation of the
proximal point operator could represent a valuable research direction.
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A TECHNICAL LEMMAS

Lemma A.1. Let F be L-Lipschitz and satisfy weak Minty condition with ρ. Assume that for any zk ∈
Rd, there is z̄k ∈ Rd such that d(zk,D(z̄k)) > 0. Let σk ≤ ρ, λk > 0. Let αk = σk− 〈F z̄k,z̄k−zk〉

‖F z̄k‖2 ,
zk+1 = zk − λkαkF z̄k. Assume that for all k, αk > 0. Then,

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − λk(2− λk)α2
k‖F z̄k‖2 (A.1)

Proof. From the expression of αk we know that

〈F z̄k, z̄k − zk〉 = (σk − αk)‖F z̄k‖2 (A.2)

≤ (ρ− αk)‖F z̄k‖2 (A.3)

Together with Assumption 2

〈F z̄k, zk − z∗〉 ≥ αk‖F z̄k‖2 (A.4)

Therefore,

‖zk+1 − z∗‖2 = ‖zk − z∗ − λkαkF z̄k‖2 (A.5)

= ‖zk − z∗‖2 − 2λkαk〈F z̄k, zk − z∗〉+ λ2
kα

2
k‖F z̄k‖2 (A.6)

≤ ‖zk − z∗‖2 − 2λkα
2
k‖F z̄k‖2 + λ2

kα
2
k‖F z̄k‖2 (A.7)

= ‖zk − z∗‖2 − λk(2− λk)α2
k‖F z̄k‖2 (A.8)

Remark 1. It is worth mentioning that Lemma A.1 is highly related to (Solodov & Svaiter, 1999),
Lemma 2.1.

Notice that when λk = 1,

〈F z̄k, zk − z̄k + σkF z̄
k〉 = αk‖F z̄k‖2 > 0 (A.9)

〈F z̄k, z∗ − z̄k + σkF z̄
k〉 = (σk − ρ)‖F z̄k‖2 ≤ 0 (A.10)

and zk+1 = PH[zk] = zk − αkF z̄k where PH[zk] is the projection of zk onto the hyperplane
H = {w ∈ Rd | 〈F z̄k,w − z̄k + σkF z̄

k〉 = 0}, which is evident from (A.9).

According to (Solodov & Svaiter, 1999), Lemma 2.1,

‖zk − z∗‖2 ≥ ‖zk+1 − z∗‖2 + ‖zk+1 − zk‖2 (A.11)

= ‖zk+1 − z∗‖2 + α2
k‖F z̄k‖2 (A.12)

which is in accordance with Lemma A.1.

Lemma A.2. Let F be L-Lipschitz and satisfy weak Minty condition with ρ. Let n = 2. Assume that
for all k, γk,1 = δ1/L, γk,2 = δ2/L, and δ1, δ2 ∈ (0, 1). Define function g : (0, 1)× (0, 1)→ R as

g(δ1, δ2) :=

{
1

(1+δ1)(1+δ2) if δ1 + δ2 ≤ 1
1−δ21−δ

2
2

2(1−δ21)(1−δ22)
if δ1 + δ2 > 1

(A.13)

Initialize zk and generate the sequence (zki )i∈[n] by (n-step EG). The following inequality holds and
is tight:

〈Fzk2 , Fzk〉
‖Fzk2‖2

≥ g(δ1, δ2) (A.14)

Proof. In this proof we treat Fzk2 as an axis. Define following as coordinates with respect to Fzk2 ,

x :=
〈Fzk, Fzk2 〉
‖Fz2‖2

(A.15)
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x1 :=
〈Fzk1 , Fzk2 〉
‖Fz2‖2

(A.16)

From (n-step EG) and Lipschitz continuity (Assumption 1), it is clear that

‖Fzk − Fzk1‖ ≤ γk,1L‖Fzk‖ = δ1‖Fzk‖ (A.17)

‖Fzk1 − Fzk2‖ ≤ γk,2L‖Fzk1‖ = δ2‖Fzk1‖ (A.18)

Changing the perspective to fixed Fzk1 and Fzk2 we expand and recomplete the square

‖Fzk − 1

1− δ2
1

Fzk1‖ ≤
δ1

1− δ2
1

‖Fzk1‖ (A.19)

‖Fzk1 −
1

1− δ2
2

Fzk2‖ ≤
δ2

1− δ2
2

‖Fzk2‖ (A.20)

where Fzk1 is in a ball whose center and radius is proportional to Fzk2 , and Fzk is in a ball whose
center and radius is proportional to Fzk1 . The boundary of such area is called a Cartesian oval in two
dimension, or a Cartesian surface in three or more dimensions.

Apply Cauchy-Schwarz inequality on (A.20)

− δ2
1− δ2

2

‖Fzk2‖2 ≤ 〈Fzk1 −
1

1− δ2
2

Fzk2 , Fz
k
2 〉 ≤

δ2
1− δ2

2

‖Fzk2‖2 (A.21)

1

1 + δ2
‖Fzk2‖2 ≤ 〈Fzk1 , Fzk2 〉 ≤

1

1− δ2
‖Fzk2‖2 (A.22)

1

1 + δ2
≤ x1 ≤

1

1− δ2
(A.23)

Apply Cauchy-Schwarz inequality on (A.19)

〈Fzk − 1

1− δ2
1

Fzk1 , Fz
k
2 〉 ≥ −‖Fzk −

1

1− δ2
1

Fzk1‖‖Fzk2‖ (A.24)

≥ − δ1
1− δ2

1

‖Fzk1‖‖Fzk2‖ (A.25)

〈Fzk, Fzk2 〉 ≥
1

1− δ2
1

〈Fzk1 , Fzk2 〉 −
δ1

1− δ2
1

‖Fzk1‖‖Fzk2‖ (A.26)

Divide both sides with ‖Fzk2‖2 we have

x ≥ 1

1− δ2
1

x1 −
δ1

1− δ2
1

‖Fzk1‖
‖Fzk2‖

(A.27)

From ‖Fzk1 − Fzk2‖ ≤ δ2‖Fzk1‖ it is straightforward to see ‖Fzk1‖2 ≤ 2
1−δ22
〈Fzk1 , Fzk2 〉 −

1
1−δ22
‖Fzk2‖2, deriving that ‖Fzk1 ‖

‖Fzk2 ‖
≤
√

2x1−1
1−δ22

. Therefore,

x ≥ 1

1− δ2
1

(
x1 − δ1

√
2x1 − 1

1− δ2
2

)
(A.28)

Define function p : [ 1
1+δ2

, 1
1−δ2 ]→ R as p(x1) := 1

1−δ21

(
x1 − δ1

√
2x1−1
1−δ22

)

p′(x1) =
1

1− δ2
1

(
1− δ1√

(1− δ2
2)(2x1 − 1)

)
(A.29)

which is monotonically increasing. Let p′(x1) = 0, the solution is x1 =
1+δ21−δ

2
2

2(1−δ22)
. Whether this

extremum point fall into the domain hinge upon the relation between 1+δ21−δ
2
2

2(1−δ22)
and 1

1+δ2
, since it is

easy to examine that 1+δ21−δ
2
2

2(1−δ22)
< 1

1−δ2 .
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If 1+δ21−δ
2
2

2(1−δ22)
≤ 1

1+δ2
, equivalently δ2

1 ≤ (1− δ2)2, δ1 + δ2 ≤ 1

x ≥ p( 1

1 + δ2
) =

1

(1 + δ1)(1 + δ2)
(A.30)

If 1+δ21−δ
2
2

2(1−δ22)
> 1

1+δ2
, equivalently δ2

1 > (1− δ2)2, δ1 + δ2 > 1

x ≥ p(1 + δ2
1 − δ2

2

2(1− δ2
2)

) =
1− δ2

1 − δ2
2

2(1− δ2
1)(1− δ2

2)
(A.31)

establishing the lemma.

Lemma A.3. Let F be L-Lipschitz and satisfy weak Minty condition with ρ. Assume that for all
k, γk,i = δi/L, δi ∈ (0, 1), i=1,. . . ,n and

∑n
i=1 δi ≤ 1. Initialize zk and generate the sequence

(zki )i∈[n] by (n-step EG). The following inequality holds and is tight:

〈Fzkn, Fzk〉
‖Fzkn‖2

≥
n∏
i=1

1

1 + δi
(A.32)

Proof. Similar to Lemma A.2, what we want to prove is that the minimum value is attained when Fzk
is scalar multiple of Fzkn. We make the following key proposition and prove it using mathematical
induction:

‖Fzk − 1

(1−
n∑
i=1

δi)
n∏
i=1

(1 + δi)
Fzkn‖ ≤

n∑
i=1

δi

(1−
n∑
i=1

δi)
n∏
i=1

(1 + δi)
‖Fzkn‖ (A.33)

For n = 1, it is mentioned in (A.19) that ‖Fzk − 1
1−δ21

Fzk1‖ ≤ δ1
1−δ21
‖Fzk1‖.

Assume that the proposition holds for n = m− 1. Apply the result on the m− 1 extrapolations from
zk1 to zkm,

‖Fzk1 −
1

(1−
m∑
i=2

δi)
m∏
i=2

(1 + δi)
Fzkm‖ ≤

m∑
i=2

δi

(1−
m∑
i=2

δi)
m∏
i=2

(1 + δi)
‖Fzkm‖ (A.34)

Square both sides and rearrange the equation,

〈Fzk1 , Fzkm〉 ≥
(1−

m∑
i=2

δi)
m∏
i=2

(1 + δi)

2
‖Fzk1‖2 +

1 +
m∑
i=2

δi

2
m∏
i=2

(1 + δi)
‖Fzkm‖2 (A.35)

To prove the n = m occasion, we examine the correctness of following inequality.

‖ 1

1− δ2
1

Fzk1 −
1

(1−
m∑
i=1

δi)
m∏
i=1

(1 + δi)
Fzkm‖ ≤

m∑
i=1

δi

(1−
m∑
i=1

δi)
m∏
i=1

(1 + δi)
‖Fzkm‖ −

δ1
1− δ2

1

‖Fzk1‖

(A.36)
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‖ 1

1− δ2
1

Fzk1 −
1

(1−
m∑
i=1

δi)
m∏
i=1

(1 + δi)
Fzkm‖2 −


m∑
i=1

δi

(1−
m∑
i=1

δi)
m∏
i=1

(1 + δi)
‖Fzkm‖ −

δ1
1− δ2

1

‖Fzk1‖


2

=
1

1− δ2
1

‖Fzk1‖2 +

1 +
m∑
i=1

δi

(1−
m∑
i=1

δi)
m∏
i=1

(1 + δi)2

‖Fzkm‖2 +

2δ1
m∑
i=1

δi

(1− δ2
1)(1−

m∑
i=1

δi)
m∏
i=1

(1 + δi)
‖Fzk1‖‖Fzkm‖

− 2

(1− δ2
1)(1−

m∑
i=1

δi)
m∏
i=1

(1 + δi)
〈Fzk1 , Fzkm〉

≤ 1

1− δ2
1

‖Fzk1‖2 +

1 +
m∑
i=1

δi

(1−
m∑
i=1

δi)
m∏
i=1

(1 + δi)2

‖Fzkm‖2 +

2δ1
m∑
i=1

δi

(1− δ2
1)(1−

m∑
i=1

δi)
m∏
i=1

(1 + δi)
‖Fzk1‖‖Fzkm‖

−
1−

m∑
i=2

δi

(1− δ2
1)(1−

m∑
i=1

δi)(1 + δ1)
‖Fzk1‖2 −

1 +
m∑
i=2

δi

(1− δ2
1)(1−

m∑
i=1

δi)
m∏
i=1

(1 + δi)
m∏
i=2

(1 + δi)
‖Fzkm‖2

=−
δ1

m∑
i=1

δi

(1− δ2
1)(1−

m∑
i=1

δi)(1 + δ1)
‖Fzk1‖2 −

δ1(1 + δ1)
m∑
i=1

δi

(1− δ2
1)(1−

m∑
i=1

δi)
m∏
i=1

(1 + δi)2

‖Fzkm‖2

+

2δ1
m∑
i=1

δi

(1− δ2
1)(1−

m∑
i=1

δi)
m∏
i=1

(1 + δi)
‖Fzk1‖‖Fzkm‖

=−
δ1

m∑
i=1

δi

(1− δ2
1)(1−

m∑
i=1

δi)(1 + δ1)

‖Fzk1‖2 +
1

m∏
i=2

(1 + δi)2

‖Fzkm‖2 −
2

m∏
i=2

(1 + δi)
‖Fzk1‖‖Fzkm‖



=−
δ1

m∑
i=1

δi

(1− δ2
1)(1−

m∑
i=1

δi)(1 + δ1)

‖Fzk1‖ − 1
m∏
i=2

(1 + δi)
‖Fzkm‖


2

≤ 0

(A.37)

It is rather easy to examine the positiveness of the right-hand side
m∑
i=1

δi

(1−
m∑
i=1

δi)
m∏
i=1

(1 + δi)
‖Fzkm‖ ≥

m∑
i=1

δi

(1−
m∑
i=1

δi)
m−1∏
i=1

(1 + δi)

‖Fzkm−1‖

...

≥

m∑
i=1

δi

(1−
m∑
i=1

δi)(1 + δ1)
‖Fzk1‖

≥ δ1
(1− δ1)(1 + δ1)

‖Fzk1‖ =
δ1

1− δ2
1

‖Fzk1‖

(A.38)
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The above two formulae complete the proof of (A.36), and the n = m case follows from triangle
inequality and ‖Fzk − 1

1−δ21
Fzk1‖ ≤ δ1

1−δ21
‖Fzk1‖. The proposition (A.33) is then proved by

induction. Using Cauchy-Schwarz inequality we obtain

〈Fzkn, Fzk −
1

(1−
n∑
i=1

δi)
n∏
i=1

(1 + δi)
Fzkn〉 ≥ −

n∑
i=1

δi

(1−
n∑
i=1

δi)
n∏
i=1

(1 + δi)
‖Fzkn‖2 (A.39)

〈Fzkn, Fzk〉 ≥
1

n∏
i=1

(1 + δi)
‖Fzkn‖2 (A.40)

establishing the lemma.

B PROOFS

Proof of Lemma 2.3. Let w be any point on the hyperplane ∂D(u). According to the definition,

〈Fu,u−w〉 = ρ‖Fu‖2 (B.1)

Fu is perpendicular to the hyperplane, and the distance from v to ∂D(u) is equal to the length of
the orthogonal projection of v −w on Fu.

d(v, ∂D(u)) = ‖PFu(v −w)‖ (B.2)

=
|〈Fu,v −w〉|
‖Fu‖

(B.3)

=
|〈Fu,u−w〉 − 〈Fu,u− v〉|

‖Fu‖
(B.4)

=
|ρ‖Fu‖2 − 〈Fu,u− v〉|

‖Fu‖
(B.5)

To convert this into a signed distance, we remove the absolute value according to Definition 2. If
u ∈ S, d(v, ∂D(u)) ≤ 0; If u ∈ Sc, d(v, ∂D(u)) > 0. Thus,

d(v,D(u)) =
ρ‖Fu‖2 − 〈Fu,u− v〉

‖Fu‖
(B.6)

Proof of Theorem 3.1. Telescoping (A.1) from k = 0 to k = m,

‖z0 − z∗‖2 − ‖zm+1 − z∗‖2 ≥
m∑
k=1

λk(2− λk)α2
k‖F z̄k‖2 (B.7)

Let εk := λk(2− λk)α2
k and κ = lim infk→∞ εk

‖z0 − z∗‖2 ≥
m∑
k=1

εk‖F z̄k‖2 ≥ κ
m∑
k=1

‖F z̄k‖2 (B.8)

Therefore,

min
k=0,1,...,m

‖F z̄k‖2 ≤ 1

m+ 1

m∑
k=1

‖F z̄k‖2 ≤ 1

κ(m+ 1)
‖z0 − z∗‖2 (B.9)

Since κ = lim infk→∞ εk > 0, {‖F z̄k‖2}k∈N converges to zero. Combined with Lipschitzness,
{‖z̄k − z∗‖}k∈N converges to zero and {z̄k}k∈N converges to z∗.
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Proof of Theorem 4.1. Expand the formula for calculating the stepsize αk,

αk = σk −
〈Fzk2 , zk2 − zk〉
‖Fzk2‖2

= σk +
γk,1〈Fzk2 , Fzk〉
‖Fzk2‖2

+
γk,2〈Fzk2 , Fzk1 〉
‖Fzk2‖2

(B.10)

The lower bounds of the last two terms are established in Lemma A.2 and (A.22),

αk ≥ σk + γk,1g(δ1, δ2) +
γk,2

1 + δ2

= σk +
1

L

[
δ1g(δ1, δ2) +

δ2
1 + δ2

] (B.11)

Hence, if (4.2) holds, αk > 0. It is also straightforward that d(zk,D(z̄k)) > 0 since ρ ≥ σk. With
the assumptions met, we can refer to Theorem 3.1 for the convergence result.

Proof of Theorem 4.2. (i) When δ1 + δ2 ≤ 1,

ρ ≥ σk > −
1

L

[
1− 1

(1 + δ1)(1 + δ2)

]
(B.12)

≥ − 1

L

[
1− (

2

2 + δ1 + δ2
)2

]
(B.13)

= − 5

9L
(B.14)

The equality in (B.13) holds when δ1 = δ2 = 1/2.

(ii) Define function q : {(x, y) | x+ y > 1, x < 1, y < 1} → R as

q(δ1, δ2) :=
δ1(1− δ2

1 − δ2
2)

2(1− δ2
1)(1− δ2

2)
+

δ2
1 + δ2

(B.15)

Try to find its critical point,

∂q

∂δ1
=

(1− δ2
1)2 − δ2

2(1 + δ2
1)

2(1− δ2
1)2(1− δ2

2)
= 0 (B.16)

∂q

∂δ2
=

1

(1 + δ2)2
− δ3

1δ2
(1− δ2

1)(1− δ2
2)2

= 0 (B.17)

Equivalently,

δ2
2(1 + δ2

1) = (1− δ2
1)2 (B.18)

δ3
1δ2(1 + δ2)2 = (1− δ2

1)(1− δ2
2)2 (B.19)

(4.3) follows by rearranging the equations,

δ6
1δ

2
2(1 + δ2)4 = (1− δ2

1)2(1− δ2
2)4 (B.20)

= δ2
2(1 + δ2

1)(1− δ2
2)4 (B.21)

δ6
1(1 + δ2)4 = (1 + δ2

1)(1− δ2)4 (B.22)

We compute the solution in Mathematica,

δ2 =
(
z; 1− 13z + 24z2 − 20z3 + 16z4

)−1

2
(B.23)

δ1 =

√
−540δ3

2 + 432δ2
2 − 351δ2 + 243

189
(B.24)

where δ2 =
(
z; 1− 13z + 24z2 − 20z3 + 16z4

)−1

2
is the adopted notation for the second root of the

polynomial 1− 13z + 24z2 − 20z3 + 16z4 in Mathematica’s ordering, which is the larger one of its
2 real roots.
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The closed form solution of δ2 can be solved from the quadratic equation:

δ2 =
5

16
+

1

16

√
−39 +

8

3
2
3

(576 + 7
√

6771)
1
3 − 8

3(576 + 7
√

6771)
1
3

+
1

2

[
−39

32
− (576 + 7

√
6771)

1
3

8 · 3 2
3

+
1

8(3(576 + 7
√

6771))
1
3

+
61

32

√
−39 + 8

3
2
3

(576 + 7
√

6771)
1
3 − 8

3(576+7
√

6771)
1
3

] 1
2

(B.25)

Proof of Theorem 4.3. Notice that Lemma A.3 can be applied on parts of the steps,

〈Fzkn, Fzkn−1〉
‖Fzkn‖2

≥ 1

1 + δn
(B.26)

〈Fzkn, Fzkn−2〉
‖Fzkn‖2

≥ 1

(1 + δn−1)(1 + δn)
(B.27)

... (B.28)

〈Fzkn, Fzk〉
‖Fzkn‖2

≥ 1

(1 + δ1) . . . (1 + δi)
(B.29)

Expand αk,

αk = σk −
〈Fzkn, zkn − zk〉
‖Fzkn‖2

(B.30)

= σk +
γ1〈Fzkn, Fzk〉
‖Fzkn‖2

+
γ2〈Fzkn, Fzk1 〉
‖Fzkn‖2

+ · · ·+
γn〈Fzkn, Fzkn−1〉
‖Fzkn‖2

(B.31)

≥ σk +
1

L

[
δ1

(1 + δ1) . . . (1 + δn)
+ · · ·+ δn−1

(1 + δn−1)(1 + δn)
+

δn
1 + δn

]
(B.32)

= σk +
1

L

[
1− 1

(1 + δ1) . . . (1 + δn)

]
(B.33)

The inequality is tight since equality holds when Fzk = 1
1+δ1

Fzk1 = · · · = 1
(1+δ1)...(1+δn)Fz

k
n.

Thus, the sufficient and necessary condition of αk > 0 is:

σk > −
1

L

[
1− 1

(1 + δ1) . . . (1 + δn)

]
(B.34)

Similarly, the convergence result follows from Theorem 3.1.

Proof of Theorem 4.4. (i) According to AM-GM inequality,

(1 + δ1) . . . (1 + δn) ≤ (1 +
1

n

n∑
k=1

δk)n ≤ (1 +
1

n
)n (B.35)

The equality holds when δ1 = · · · = δn = 1
n . Therefore,

ρ > − 1

L

[
1− 1

(1 + δ1) . . . (1 + δn)

]
≥ − 1

L

[
1− 1

(1 + 1
n )n

]
(B.36)

δ ≤ 1
n and σk ≤ ρ directly come from the theorem assumption.
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δ > b 1
n
√

1+ρL
− 1c+ follows from ρ ≥ σk > − 1

L

[
1− 1

(1+δ)n

]
.

Moreover,

σk > −
1

L

[
1− 1

(1 + δ)n

]
≥ − 1

L

[
1− 1

(1 + 1
n )n

]
≥ −n

[
1− 1

(1 + 1
n )n

]
γ (B.37)

establishing the parameter ranges in Theorem 4.4 (i).

(ii) Given ρ > − 1
L (1− 1

e ), let n = d 1
2+2 log (1+ρL)e

n log (1 +
1

n
) > n(

1

n
− 1

2n2
) = 1− 1

2n
(B.38)

> 1− [1 + log (1 + ρL)] = − log (1 + ρL) (B.39)

(1 +
1

n
)n >

1

1 + ρL
(B.40)

ρ > − 1

L
[1− 1

(1 + 1
n )n

] (B.41)

establishing Theorem 4.4 (ii).

C FIGURES AND INTUITIONS

C.1 ADDITIONAL FIGURES

Figure 5: This figure illustrates the permissible range of the vector Fz under Assumption 2.1
and 2.2. Originating from the circle’s center z, the vector extends into the shaded area, which is
delineated by these assumptions. Notably, the extent of the allowable region is influenced by the
relationship between the weak Minty parameter ρ and the Lipschitz constant L. Enumerated are
several representative problem settings.

The presented problem settings in Fig. 5 appear in various classic algorithms. ρ = 0 recovers Minty
variational inequality, also known as star-monotonicity. The MVI ensures that the negative gradient
does not point outward from the solution z∗. (EG+) extends from (EG) and allows for a slight
extent of non-monotinicity with ρ > −1/8L. (AdaptiveEG+) further relaxes the problem parameter
to ρ > −1/2L. These efforts make it permissible for the direction of gradient descent to move away
from the solution to a limited extent.

Our methods introduced in the main paper provide new convergence guarantee for problems under
ρ > −(1−1/e)/L. Furthermore, ρ > −1/L marks the boundary of tractability. As discussed in Section
4, increasing the exploration stepsize could potentially solve more problems within this range.

Fig. 6 visually encapsulates the findings regarding 2-step EG in Section 4.1. The plot is a contour of
the following function, in the box [0, 0.8]× [0, 0.8].

h(δ1, δ2) :=

{
1− 1

(1+δ1)(1+δ2) if δ1 + δ2 ≤ 1
δ1(1−δ21−δ

2
2)

2(1−δ21)(1−δ22)
+ δ2

1+δ2
if δ1 + δ2 > 1

(C.1)
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Figure 6: This contour shows the relation between δ1, δ2 and the lower bound of −σkL presented in
(Section 4.1). The dashed line ( ) shows the border line of the two cases δ1 + δ2 = 1. ( ) denotes
(0.5, 0.5). ( ) denotes global optimum at (δ̂1, δ̂2) ≈ (0.52212, 0.644793).

The function is continuous on the dashed line δ1 + δ2 = 1. However, its properties change noticeably
across the dashed line. Notably, on the lower left side of the dashed line, the contour lines exhibit
symmetry, which vanishes on the upper right side. Moreover, when either δ1 or δ2 approaches 1, the
function value tends to plummet towards negative infinity.

C.2 WEAK MVI HALFSPACE AND (MDEG)

In Fig. 1 we give intuitive explanations for projection algorithms involved in this paper. The blue
regions represent the weak MVI halfspace generated from the latest iteration point. Fig. 1a explains
why GDA fails at star-negative conomonotonic problems, as the hyperplane cannot separate zk and
z∗. Fig. 1b shows the principle of (AdaptiveEG+). A larger extrapolation stepsize helps separating
zk and z∗, and a smaller update stepsize complete the projection. Fig. 1c demonstrates how (MDEG)
works. Instead of increasing stepsize, consecutive extrapolations exploit the structure efficiently.

The example used in the figures is Example 1 with a = 5, b = −1, and z0 = (0,−1), γ = −1/2L,
σk = 1.2 · ρ.

Figure 7: Projection onto a convex hull

We mention another perspective that the max distance projection in Algorithm 1 can be considered as
an approximation of the projection onto a convex hull. Consider δk = ρ for convenience. Instead
of computing dki = d(zk,D(zki )), construct a convex hull

⋂
iD(zki ) and compute the distance

dki = d(zk,
⋂i
j=1D(zkj )). On obtaining the maximum distance, similarly project onto this convex

hull, αk = P⋂
iD(zki ))(z

k). This approach, while computationally more expensive, utilizes all the
information available throughout the entire exploration process.

As shown in Fig. 7, hyperplane projection performs a good approximation of the convex hull scheme.
This idea could be helpful in exploring other subroutines. For example, it is feasible to choose zki
using Monte Carlo method. When employing such desultory and inconsecutive approach, the convex
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hull scheme brings considerable improvement over hyperplane projection. See Fig. 8 for an example
where the exploration points are randomly selected.

(a) Projection onto the farthest
separating hyperplane (b) Projection onto the convex hull

Figure 8: Comparison when randomly choosing exploration points. The orange arrow denotes the
adopted projection.

C.3 RELATION TO PAST EXTRAGRADIENT

Past Extragradient ((Popov, 1980)) is recently proved to converge for weak MVI problems with
ρ > −1/2L ((Choudhury et al., 2023; Gorbunov et al., 2023; Böhm, 2022)).

Past Extragradient has the following form:

z̄k = zk − γkF z̄k−1

zk+1 = zk − ωkF z̄k
(C.2)

Since the three points zk−1, zk, z̄k are collinear, it can be viewed as PEG derives z̄k directly from
zk−1 and retraces a step back to get zk. Despite the differences in extrapolation, both AdaptiveEG+
and PEG perform updates in the form of zk+1 = zk − ωkF z̄k, suggesting a projection from zk onto
a hyperplane perpendicular to F z̄k.

(a) AdaptiveEG+. The blue point
indicates zk and the livid point
indicates z̄k

.

(b) PEG. The green point indi-
cates zk−1. The blue point indi-
cates zk. The livid point indicates
z̄k.

Figure 9: Comparison of AdaptiveEG+ and PEG

Moreover, the underlying principles for convergence are similar:

In AdaptiveEG+, perform a extrapolation step from zk: z̄k = zk − γkFzk, and the weak MVI
hyperplane ∂D(z̄k) separates zk and z∗.

In PEG, perform an extrapolation step from zk−1: z̄k = zk−1 − (γk + ωk−1)F z̄k−1, and the weak
MVI hyperplane ∂D(z̄k) separates zk−1 and z∗.

21



Published as a conference paper at ICLR 2024

Note that in AdaptiveEG+ the extrapolation step follows the form of gradient descent, while it is not
the case with PEG.

C.4 n-STEP EG AND CARTESIAN OVALS

When we consider n-step extrapolation, we often perceive the last gradient Fzkn as benchmark and
measure anterior extrapolations with it. This perspective naturally results from the update rule of αk.

When there is 1 extrapolation step, Fzk is distributed over a circle (ball).

‖Fzk − 1

1− δ2
1

Fzk1‖ ≤
δ1

1− δ2
1

‖Fzk1‖ (C.3)

When there are 2 extrapolation steps, Fzk is distributed inside a Cartesian oval (surface).

‖Fzk − 1

1− δ2
1

Fzk1‖ ≤
δ1

1− δ2
1

‖Fzk1‖ (C.4)

‖Fzk1 −
1

1− δ2
2

Fzk2‖ ≤
δ2

1− δ2
2

‖Fzk2‖ (C.5)

Fz
k

2

Fz
k

1

Fz
k

(a) δ1 = δ2 = 0.3 (b) δ1 = δ2 = 0.5 (c) δ1 = δ2 = 0.65

Figure 10: Cartesian ovals.
√

(x− 1
1−δ21

)2 + y2 = δ1
1−δ21

+ δ2
√
x2 + y2, where Fzk2 = (1, 0).

When there are 3 extrapolation steps, Fzk is distributed inside the envelope of circles (balls) whose
center is inside a Cartesian oval (surface).

‖Fzk − 1

1− δ2
1

Fzk1‖ ≤
δ1

1− δ2
1

‖Fzk1‖ (C.6)

‖Fzk1 −
1

1− δ2
2

Fzk2‖ ≤
δ2

1− δ2
2

‖Fzk2‖ (C.7)

‖Fzk2 −
1

1− δ2
3

Fzk3‖ ≤
δ3

1− δ2
3

‖Fzk3‖ (C.8)

We have conducted numerical calculations on 3-step and 4-step cases. The results are presented
below along with n = 1, 2 cases.

n δ1 δ2 δ3 δ4 −ρ0L
1 1 0.5
2 0.52212 0.644793 0.583456
3 0.272899 0.512753 0.515522 0.632242
4 0.22 0.31 0.39 0.44 0.657724

The n = 3 result is (nearly) tight, obtained from numerical optimization method in Mathematica.
The n = 4 result is achieved by manual tests and serves as a lower bound. We anticipate that a larger
n will continue to yield an improved range for ρ.
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Fz
k

3

Fz
k

2

Fz
k

1

Fz
k

(a) δ1 = δ2 = δ3 = 0.2 (b) δ1 = δ2 = 0.3, δ3 = 0.4 (c) (δ1, δ2, δ3) = (0.27, 0.50, 0.53)

Figure 11: 3-step EG. Zero curvature is observed again when δ1 + δ2 + δ3 = 1.

D ADDITIONAL STATEMENTS

D.1 EXPERIMENT PARAMETERS

For Example 1, two experiments are conducted.
In the first experiment, a = 3

√
2, b = −

√
7. γk,i = 1

2L , σk = − 10
9 γi · 0.99 is used in 2-step EG.

In the second experiment, a =
√

2, b = −1. γk,i = 1
4L , σk = − 1476

625 γi · 0.99 is used in 4-step EG.

For Example 2 and Example 3, in both experiment γk,i = 1
L and σk = − 1

2L is used in (MDEG).

Recommended tolerance for (MDEG) is ε1 = 10−3, ε2 = 10−3.

D.2 PROPERTIES OF EXAMPLE 1

Lemma D.1. The saddle gradient operator F of f(x, y) := axy + b
2 (x2 − y2), where a > 0, b < 0,

satisfies Assumption 1 with L =
√
a2 + b2 and Assumption 2 with σ = b

a2+b2 .

Proof. The operator Fz =

[
∇xf(x, y)
−∇yf(x, y)

]
=

[
ay + bx
by − ax

]
= Az, where the matrix A :=

[
b a
−a b

]
.

‖Fu− Fv‖ = ‖Au−Av‖ ≥ ‖A‖2‖u− v‖ (D.1)

Therefore, the Lipschitz constant L = ‖A‖2 =
√
a2 + b2.

Recall the weak Minty condition, where f(x, y) has the only stationary point z∗ = (0, 0).

〈Fz, z − z∗〉 ≥ ρ‖Fz‖2 (D.2)

(Az)T (z − z∗) ≥ ρ(Az)TAz (D.3)

zTATz ≥ ρzTATAz (D.4)

b(x2 + y2) ≥ ρ(a2 + b2)(x2 + y2) (D.5)

Therefore, the weak Minty parameter ρ = b
a2+b2 .

We provide an interesting result that (Algorithm 1) converges on Example 1 for ρ > − 1
L , if the

stepsizes are selected infinitely small.
Theorem D.2. Consider Example 1, f(x, y) := axy + b

2 (x2 − y2), where a > 0, b < 0. Apply
(Algorithm 1) on Example 1 with infinitely small stepsize γk → 0. Assume that σk = ρ, λk = 1,
z0 = (x0, y0), then the algorithm converges to the the stationary point after one iteration, i.e.
z1 = z∗ = (0, 0).

Proof. Recall that Fz =

[
∇xf(x, y)
−∇yf(x, y)

]
=

[
ay + bx
by − ax

]
= Az, where the matrix A :=

[
b a
−a b

]
.

Try to normalize A:
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A =
1√

a2 + b2

[
b√

a2+b2
a√

a2+b2

− a√
a2+b2

b√
a2+b2

]
(D.6)

=
1

L

[
− cosϕ sinϕ
− sinϕ −c cosϕ

]
(D.7)

where ϕ := arctan−ab . cosϕ = − b√
a2+b2

, sinϕ = a√
a2+b2

.

When γk → 0, the discrete process of gradient descent zki = zki−1 − γkFz
k
i−1 evolves into a

continuous gradient flow

ż =
dz

dt
= −Fz (D.8)

which corresponds to a linear system ż = −Az. The solution to the ODEs is

z(t) = e−Atz(0) (D.9)

= e−bt
[
cos at − sin at
sin at cos at

]
z(0) (D.10)

where z(0) = z0 = (x0, y0) = r0(cos θ0, sin θ0).

Calculate the gradient vector Fz(t),

Fz(t) = Ae−Atz(0) (D.11)

= e−bt
[
b cos at+ a sin at a cos at− b sin at
−a cos at+ b sin at b cos at+ a sin at

]
z(0) (D.12)

= Le−bt
[
− cos (at+ ϕ) sin (at+ ϕ)
− sin (at+ ϕ) − cos (at+ ϕ)

]
z(0) (D.13)

Since the matrix is a rotation matrix,

‖Fz(t)‖ = Le−bt‖z(0)‖ = Lr0e
−bt (D.14)

Furthermore,

〈Fz(t), z(t)〉 = z(t)TFz(t) (D.15)

=− Le−2btz(0)T
[

cos at sin at
− sin at cos at

] [
cos (at+ ϕ) − sin (at+ ϕ)
sin (at+ ϕ) cos (at+ ϕ)

]
z(0) (D.16)

=− Le−2btz(0)T
[
cosϕ − sinϕ
sinϕ cosϕ

]
z(0) (D.17)

=− Le−2bt(x2
0 + y2

0) cosϕ (D.18)

=− Lr2
0e
−2bt cosϕ (D.19)

The matrix multiplication is straightforward since they are rotation matrices.

〈Fz(t), z(0)〉 = z(0)TFz(t) (D.20)

=− Le−btz(0)T
[
cos (at+ ϕ) − sin (at+ ϕ)
sin (at+ ϕ) cos (at+ ϕ)

]
z(0) (D.21)

=− Le−bt(x2
0 + y2

0) cos (at+ ϕ) (D.22)

=− Lr2
0e
−bt cos (at+ ϕ) (D.23)

Note that ρL = b√
a2+b2

= − cosϕ. Now we can calculate the projection distance,

d(z(0),D(z(t))) (D.24)
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=ρ‖Fz(t)‖ − 〈Fz(t), z(t)− z(0)〉
‖Fz(t)‖

(D.25)

=ρLr0e
−bt + r0e

−bt cosϕ− r0 cos (at+ ϕ) (D.26)

=− r0e
−bt cosϕ+ r0e

−bt cosϕ− r0 cos (at+ ϕ) (D.27)
=− r0 cos (at+ ϕ) (D.28)

Let us simplify the notation with d(t) := d(z(0),D(z(t))). The derivative d′(t) = ar0 sin (at+ ϕ).

At the starting point, d(0) = −r0 cosϕ < 0, d′(0) = ar0 sinϕ > 0. The signed distance is initially
negative and within a increasing interval.

Algorithm 1 adopts the projection when the distance function reaches its first local maximum
value. Given the nature of the cosine function, it becomes apparent that the final distance will be
d̄0 = d(π−ϕa ) = r0. Consequently,

F z̄0 = Fz(
π − ϕ
a

) (D.29)

= e−
b(π−ϕ)

a L

[
1 0
0 1

]
z(0) = e−

b(π−ϕ)
a Lz0 (D.30)

The stepsize α0 = d̄0

‖F z̄0‖ = e
b(π−ϕ)

a L−1. Therefore,

z1 = z0 − α0F z̄
0 = z0 − z0 = 0 = z∗ (D.31)

establishing the theorem.

D.3 PROPERTIES OF EXAMPLE 3
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Figure 12: Contour of local ρL in Example 3

It is introduced by Pethick et al. (2022) that in the box ‖z‖∞ ≤ 3/2, the object function has

Lipschitz constant L = 1
80

√
1
2 (1089

√
801761 + 993841) ≈ 12.4026. The critical point is z∗ =

(0.0780267, 0.411934). According to our calculation, global weak MVI parameter records −1.52057
at the point z′ = (−0.258079, 0.791652). Recall that − 1

L ≈ −0.0806285.

However, this astonishing value of ρL ≈ −18.8589 does not reflect much of its nature. Looking into
the local value of ρ and L in Fig. 12 we find that most areas remain tractable parameter of ρ > − 1

L ,
while a minimum value of ρL ≈ −3.04076 is recorded at the point (1.03889, 1.35309). Furthermore
in the outer areas colored in white, ρL rises dramatically to very large positive value. It is plausible
that these anomalies prevent convergence, and convergent algorithms actually circumvent such thorny
area and make progress in tractable area.
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(a) σk = 0 (b) σk = −1/L (c) σk = −5/L

(d) σk = −10/L (e) σk = −15/L

Figure 13: Parameter adaptability of (MDEG).

As shown in Fig. 13, a wide range of choice of σk leads to convergence. From σk = 0 to σk = − 10
L ,

(MDEG) withstands the limit cycles. Convergence to limit cycle is observed under the parameter of
σk = − 15

L . While the global L ≈ 12.4026 reflects a spike of local Lipschitz constant near the border,
even considering Ll ≈ 1.97703 in a smaller box of ‖z‖∞ ≤ 1, the algorithm makes a good coverage
of σk from − 1

Ll
to 0.
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