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Abstract

Extreme events are potentially catastrophic events that occur infrequently within
an observation time frame, and it is necessary to understand the distribution of
these events to properly plan for them. Extreme value theory provides a theo-
retical framework for extrapolating to the tails of a distribution using limited ob-
servations. However, for high-dimensional data such as images, covariates are
generally not extreme but perhaps the features are extreme. In this work, we pro-
pose a framework for learning representations according to properties of extreme
value theory. Specifically, we use the max-stability property of extreme value dis-
tributions to inform the representations of the model such that they extrapolate
to the rare data observations. We theoretically characterize the properties of the
model and provide an identifiability result for the parameters of the latent distribu-
tion. Our preliminary results suggest the promise of the method for extrapolating
to regions of the distribution with little density.

1 Introduction

In this paper, we are primarily interested in describing regions of a data distribution with low density.
This has particular importance in the setting of estimating risks or the behavior of data within the
tail of a distribution. At first, this task may appear to be misguided — it seems impossible to
describe regions of a distribution where there is little data by virtue of the lack of data. However,
if we consider a factorization of the observations in terms of a latent variable that has a known
extrapolation behavior, then we may be able to study the behavior in the tails based on the data we
have observed. This structure is given by extreme value theory (EVT) which dictates that, for certain
distributions, the maximum of n realizations converges to distributions with known form referred to
as extreme value distributions. The EVT framework has historically been useful for representing a
distribution in the tails. Thus, EVT tries to answer the question: “How will the data look in cases
that the data are very large (or small)?"

For high-dimensional data, all components growing very large simultaneously does not often happen
nor is it a useful description of the corresponding "tail" of the data. In the case of image data, for
example, it may not be the case that all pixel values are large for data in the tails – rather, the
appearance of a particular structure corresponds to data in the tails. Instead, it can be indicative that
some (possibly latent) variable is extreme that generates the high risk observation. In other words,
some hidden factor is large and results in the rare or high risk observation rather than the values of
the observation itself. We use this idea to guide our framework by describing a factorization of the
observation in terms of a latent variable distributed according to an extreme value distribution.

Concretely, consider the example of characterizing the distribution of abnormal pathologies in med-
ical imaging. One can suppose that these abnormalities are generated through some underlying
physiological process where components of the process representation are in the tail. Then, the
question becomes "can we write the observations as a function of a latent variable whose extremes
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correspond to the (semantic) extremes of the observations?" For this case, we need not observe ex-
treme values (i.e. values that are physically large) but we represent the data in terms of variables
that grow very large.

Building on these thoughts, we will study representations of extreme data using two properties that
we want our model to have:

(P1: Consistency) Extrapolation in the latent space leads to extrapolation in the observed
space.
(P2: Identifiability) Dependence structure of the latent variable can be identified from the
observations.

The first property (P1) requests we specify a model that has latent factors corresponding to tail data
while maintaining consistency with the observation data. Intuitively, this means rare or extreme
observations should correspond to representations deeper within the tails of the feature space. The
second idea (P2) involves characterizing under which conditions of the mapping the parameters can
correspond to a unique parameterization of an extreme value distribution. By studying the properties
of this parameter, we are able to make more informed decisions about the behavior of the risky data.

To explicitly define how the model extrapolates, we introduce a type of stability, where certain
operations on iid samples preserve the shape of the distribution. While well known examples such
as α-stability or max-stability exist, we are interested in a characterization that is appropriate for
high-dimensional data.
Definition 1.1 (Max-Stable Distribution). Let X1, X2, . . . , Xn ∼ P be iid samples from P . If
anMn + bn = an max{X1, X2, . . . , Xn}+ bn ∼ P , where the maximum is taken component-wise
for X ∈ Rd, then we say that P is max-stable. That is, if the maximum of iid samples from P is
also distributed according to P up to a scale and shift, then P is max-stable.

Max-stability is a useful property since it says that as long as we know the shape of a distribution, the
tails of the distribution have the same shape but differ in location and scale. We refer the interested
reader to Haan and Ferreira [7] for additional background on EVT. Analogously, consider n iid
samples from a distribution {Xi}ni=1 and an operation φ that acts on {Xi}ni=1 such that φ({Xi}ni=1)
has the same distribution up to a shift and scale of parameters dependent on n. We then define this
distribution to be φ-stable.

Related work A variety of work exists that considers factorizations of extremes, but these gener-
ally consider the case where all data are in the tail of the distribution. For example, hidden regular
variation considers how different components of a vector become extreme simultaneously and the
underlying dependencies between components [11]. Clustered Archimax copulas [3] attempts to
achieve a similar goal in the sense that the framework models different components with different
dependencies. A number of machine learning techniques have been developed that combine some
of the properties of EVT with neural networks, e.g. in [8]. Some other examples include [5] where
the authors consider techniques for sampling from tail events but do not consider the latent structure
of the distribution. In [1] the authors consider a max-linear framework where dependencies between
different variables are given by a graphical model. In all cases the methods are concerned with the
cases of extreme observations and not the case of observations corresponding to an underlying ex-
treme event. In the present work, our goal is to extend the factorization of extremes in the ambient
space to representations of extremes in the latent space.

2 Latent factorization

Having motivated the problem, we are now in the position to describe the latent factorization of the
generative model. As previously noted, we want to consider the joint distribution of the observations
X and latent variables z such that:

(a) The latent variable z is max-stable so that the shape of the distribution is known even in regions
that we have no data;

(b) The ambient variable is consistent with the max-stability of z in terms of φ, which is a general-
ization of the usual max operator from the latent space to the ambient space.
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{X1, . . . , Xn} data z ∼ MEV(ℓ)

max-stable factors
X(n) = φ{X1, . . . , Xn}

zi = f−1(Xi) X̂(n) = f(
∨n

i=1 zi)

extrapolationembedding

Figure 1: An overview of the method presented; prostate cell pathology slides are transformed to
underlying max-stable variables which allows extrapolation according to φ. The embedded images
are low Gleason grade images whereas the extrapolated image is a high Gleason grade. Pathology
images from Bulten et al. [2].

To do this, we propose a latent variable model where the latent space is governed by a multivari-
ate extreme value (MEV) distribution. This provides the max-stability property where taking the
maximum of a series of realizations results only to changes in the scale and shift parameters of
the distribution and not a change in the shape of the distribution. An overview of this concept is
illustrated in Figure 1 with an example using pathology slides of prostate cancer cells for Gleason
grading from Bulten et al. [2]. Images of all Gleason grades, where low Gleason grades correspond
to images with healthy, well-differentiated cells, are embedded to the max-stable latent space. There,
extrapolation to a higher grade is performed by taking the maximum over the latent variables. The
maximum over the latent variables is then decoded according to f to obtain the high Gleason grade
image corresponding to unhealthy, poorly-differentiated cells. We seek a correspondence between
the decoded maximum and the observed maximum where the grading of the observed pathology
slides is assumed to follow φ.

We consider the case where labels that correspond to the level of extremeness in the ambient space
are given. In this case, we may train the ambient variable to be consistent with the max-stability
of the latent variable. If labels are not given, we need to examine and constrain the relationship
between the ambient and latent variables. For example, in the case of max-stable observations, we
can constrain the decoder to be monotonic.

With these in mind, we proceed to describe the main components of the modeling technique.

2.1 Joint distribution

Denote MEV(ℓ, ξ) as an MEV distribution with stable tail dependence function (stdf) ℓ and extremal
index ξ. When ξ is not explicitly denoted, the extremal index is assumed to be 1. Suppose we are
given iid data observations {X}n := {Xi}ni=1 with each observation in Rd and assume that each Xi

is generated as some function f : Rk → Rd of a latent variable z ∈ Rk, i.e. X̂ = f(z) where X̂ are
the noiseless decoded values, plus observation noise ε with distribution pε. Additionally, we suppose
there exists a convex function φ : Rn → R that operates on the set {X}n. Let mn = maxi=1...n zi
where the max is taken component-wise over all k components of z. Then, we suppose that X̂(n) =
f(mn) = φ({X}n) = X(n). Putting this together, we can write a generative model that is given by

P
(
X(n)

)
=

∫
pε

(
f(mn)−X(n)

)
p(mn)dmn

=

∫
pε

(
f(anz + bn)−X(n)

)
pan,bn(z)dz (1)

where pan,bn describes the density of z scaled by an ∈ Rk and shifted by bn ∈ Rk. As noted above,
since p(z) is MEV, its parameters are given by an stdf ℓ when margins are appropriately normalized.
This leaves us with the parameters we must estimate: (f, ℓ).

A point process viewpoint of p(z) The correspondence between EVT and point processes is well
known (see, e.g., in Coles et al. [4, Chapter 7]). Samples of an MEV are known to follow an
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φ =

Figure 2: Example of φ operating on a batch of prostate cell images. Samples from the low Gleason
grade images are combined according to φ to form the high Gleason grade images. Cell images
from Bulten et al. [2].

inhomogenous Poisson point process N with intensity:

E[N(C)] = µ(C) :=
∫
C
r−2drH(dw)

for a Borel subset C of [0,∞) × Rd
+ where r corresponds to the radial component, w corresponds

to the spectral component, and H is known as the spectral measure. It can be shown that this
expectation corresponds to ℓ, with the details described in Coles et al. [4, Theorem 9.2].

In the case of the model (1), we can instead consider the latent distribution corresponding to the Pois-
son process related to the MEV distribution conditioned on the lack of observations in a particular
region. This is then given by

P
(
X(n)

)
=

∫
pε

(
f (anNz + bn)−X(n)

)
p
(
Nz

(
Can,bn

)
= 0

)
dNz. (2)

Working with the point process perspective, we can write p
(
Nz

(
Can,bn

)
= 0

)
= exp{−ℓ(anz −

bn)} in terms of the stdf, which will become useful when proving the identifiability of ℓ.

2.2 Inference procedure

Recall that a major goal is to enforce a consistency between the max-stable latent variable and the
observed variable. We can construct a new dataset by considering {φ({X}n)}, n ∈ P({1, . . . , N}),
where the dataset is first partitioned into blocks of size n, then the max-stable latent variable cor-
respond to the (semantic) max observation X̂(n) = f(mn) = φ({X}n) = X(n). Note that φ
can remain unknown and only labels corresponding to n are needed (i.e. we only need (n,X(n)))
assuming that X(n) was generated according to the model above. The goal is to infer the tuple of
parameters (ℓϕ, fθ) corresponding to the dependence of z and ambient mapping f . This results in a
minimization problem given by

min
ϕ,θ

En∼P({1...N})Ez∼MEVϕ(f−1({X}n)) [L (φ({X}n), fθ(Mn))] . (3)

In the case of unknown φ and known labels, the minimization problem is simply reduced to

min
ϕ,θ

E(n,X(n))∼PEz∼MEVϕ(f−1({X}n))

[
L
(
X(n), fθ(Mn)

)]
.

2.3 Interpretation of φ

φ can be interpreted as a generalization of the max operator that extrapolates in the ambient space.
As noted in the motivation, max in the ambient space may not be appropriate in many domains
such as imaging, so other functions may be necessary. To provide intuition, we consider a few
examples. The first is the case where φ({X}n) = maxni=1 Xi, where the max operator is taken
component-wise. This implies that the distribution of x is also max-stable. The second is the case
where φ({X}n) =

∑n
i=1 wif

−1(Xi) + bi with
∑

wi = 1 which can be thought of as the output of
a single layer neural network acting upon the empirical measure induced by {X}n. More abstractly,
suppose that Xi is an image sample of the manifestation of a disease and φ chooses the image
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with the greatest severity out of n samples. Then, the consistency between the max-stable latent
variable z and the ambient observation X is measured by the disease severity. This can be done by
including labels ξ that correspond to disease severity (X, ξ), such that φ({X}n) = Xargmax(ξn) and
optimizing (3) accordingly. Thus φ generalizes max in the ambient space to max in the latent space.
Figure 2 shows how φ could possibly act on a batch of data such that the rare sample is generated.

2.4 Choosing L

The distance metric L used in (3) plays a particular role in the optimization procedure. We will
discuss two cases: one where φ leads to extreme realizations (i.e. when φ({X}n) = maxni=1{Xi})
and the other where φ leads to normal observations.

Extreme observations Assuming that φ( · ) = max{ · }, X is distributed according to an MEV.
We then propose using the interpretation of the MEV in terms of a Poisson point process. Specif-
ically, consider an event denoted by A given as a Borel subset of Rd

+ and let U denote the
mapping to polar coordinates U(X) = (R,W ) = (∥X∥1, X/∥X∥1). We use the notion that
the arrivals of the extreme events are distributed according to a Poisson point process with rate
µ(A) =

∫
U(A)

r−2drH(dw) where H is the spectral measure denoting the dependence between
the dimensions in the observations [6]. The cost function L can correspond to the agreement
between the intensities given by the data and generated by the model over a set of events, i.e.
L = EA[µ(A)− µθ(A)].

Normal observations In the case of normal observations, we can use pε to be the Gaussian like-
lihood. The resulting likelihood is an objective that minimizes the mean squared error between the
reconstructions and the original data. The extrapolation property is still enforced since the consis-
tency between f(mn) and φ({X}n) is applied.

3 Identifiability

0.00 0.25 0.50 0.75 1.00
w

0.5
0.6
0.7
0.8
0.9
1.0

(w
)

0.00 0.25 0.50 0.75 1.00
w

0.5
0.6
0.7
0.8
0.9
1.0

(w
)

Figure 3: Estimated dependence functions for
symmetric logistic distribution, complete depen-
dence (left) and complete independence (right).
Red is estimated and blue is ground truth. Con-
fidence bands from 50 trials.

We will now discuss identifiability of the ex-
tremal index and of the dependence function. In
general, identifiability of the extremal index is
difficult to obtain since f can map Z to multi-
ple random variables with varying extremal in-
dices. Instead, we focus on a class of f that
preserves the extremal index to circumvent the
issues with identifiability. For an MEV with
unit Frechét margins given by Z, we can trans-
form the distribution to one with extremal index
ξ by Zξ/ξ. Since ξ controls the tail decay of
the distribution, it is natural to understand un-
der which conditions this parameter is identifi-
able. We assume that the decoder is a function
that is regularly varying with tail index 1. In the following proposition, we describe a particular type
of ReLU decoder architecture retains the latent extremal index.
Proposition 3.1 (Regularly Varying Decoder). Let f be parameterized with a ReLU neural network
with positive weights and let z be given by MEV(ℓ, ξ). Then X = f(z) is regularly varying with
index ξ.

Now we consider identifiability of the dependence function. We can show that, based on the result
in Khemakhem et al. [10], the stdf is identifiable up to a translation.
Proposition 3.2. Consider the model of X in (2) motivated by the point process viewpoint:

L(·; f, ℓ) :=
∫

pε

(
f (anNz + bn)−X(n)

)
exp{−ℓ(anNz − bn)}dNz

Then, for any pairs of solutions (f, ℓ), (f̂ , ℓ̂) where L(·; f, ℓ) = L(·; f̂ , ℓ̂), we have ℓ = ℓ̂+ a where
a is a constant under the following conditions: i.f, f̂ are injective; ii.p(z; ℓ) ≪ p(ẑ; ℓ̂). Specifically,
ℓ is identifiable up to a translation.
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Figure 4: Example of extrapolation. Each image represents successive component-wise maxima in
the latent domain. In this case, the latents are independent and the fourth image shows independence
between the learned height and width.

Figure 5: Held out reconstruction for prostate cancer data, each image is 256 x 256 pixels. Top two
rows: model reconstruction. Bottom two rows: original data.

The proposition allows us to probe the behavior of the latent distribution according to the traditional
tools of EVT. For example, we can characterize the stdf, which describes the clustering behavior of
the extremes. This allows for proper planning and mitigation of extreme events.

4 Experiments

We consider a series of experiments to learn the support of the latent distribution and illustrate the
extrapolation capabilities of the method. Descriptions of the different datasets are available in Ap-
pendix C. The first result is illustrated in Figure 3 where we find the dependence function associated
with the data generating distribution of the symmetric logistic distribution. In this experiment, we
simulate observations of ellipses where the semi-major and semi-minor axes are generated accord-
ing to a symmetric logistic distribution with varying dependence parameter. In Figure 4, we consider
how well the method is able to extrapolate to new images in the case of independent latents. We
sample within the latent space to generate new images and we see that the generated images follow
the predicted distribution according to the extrapolation.

In the second experiment, we consider the distribution of prostate cancer images where the extreme
data corresponds to the high grade cancer. In Figure 5, we illustrate the reconstruction capabilities
on held out data. The results suggest that the method is able to faithfully reconstruct held out data
samples.

5 Discussion

In this paper, we proposed an extension of the usual use cases of EVT to scenarios where the obser-
vation data can be factorized into a function of extreme data. Specifically, we represent the data in
terms of max-stable latent variables. The max-stability of the latent variables is then used to extrapo-
late outside the support of the training set. We illustrated the promise of the proposed method on both
synthetic and real data. As future work, we will consider properties of f that allows extrapolation in
the ambient space. Using the monotonic behavior of the latent distribution when extrapolating, we
can develop a specific neural artchitecture that exploits this property to guarantee extrapolation in
the observation space.
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A Proofs

Proposition A.1. Consider the model of X given by the following factorization

L(·; f, ℓ) :=
∫

pε

(
f (anNz + bn)−X(n)

)
exp{−ℓ(anNz − bn)}dNz

Then, for any pairs of solutions (f, ℓ), (f̂ , ℓ̂) where L(·; f, ℓ) = L(·; f̂ , ℓ̂), then ℓ = ℓ̂+ a where a is
a constant under the following conditions:

1. f, f̂ are injective;

2. p(z; ℓ) ≪ p(ẑ; ℓ̂).

Specifically, ℓ is identifiable up to a translation.

Proof. The proof first follows Step I from Khemakhem et al. [10, Appendix B.2.2] where the ob-
servation noise distribution is removed and all that is left is the distribution of the latent space. We
follow the steps to arrive at the following equivalence:

exp(−ℓ(ξf−1(X)))volJf−11X∈X = exp(−ℓ̂(ξf̂−1(X)))volJf̂−11X∈X .

where we decompose the max-stable latent variable in terms of a radial component indicated by ξ,
re-using the notation for extremal index, and a spectral component indicated by f−1(X). We take
logarithms and compute the difference evaluated at ξ0 to obtain

−ℓ
(
ξf−1(X)

)
+ ℓ

(
ξ0f

−1(X)
)
= −ℓ̂

(
ξf̂−1(X)

)
+ ℓ̂

(
ξ0f̂

−1(X)
)

on the set of X ∈ X . By Condition 2, we assumed that p(f−1(X)) ≪ p(f̂−1(X)), and thus we
can write the Radon-Nikodym derivative dp̂

dp . Our strategy to deriving an equivalence between ℓ and

ℓ̂ uses the spectral decomposition of ℓ as an expectation with respect to the spectral component

ℓ(z) =

∫ k∨
i=1

zisiΛ(ds)

and the key idea that p(f−1(X)) → Λ to apply the change of measure to Λ and write the equations
on the same latent basis:

−
∫ k∨

i=1

siξif
−1
i (X)Λ(ds) +

∫ k∨
i=1

siξi,0f
−1
i (X)Λ(ds)

= −
∫ k∨

i=1

siξif̂
−1
i (X)Λ̂(ds) +

∫ k∨
i=1

siξi,0f̂
−1
i (X)Λ̂(ds)

= −
∫ k∨

i=1

siξif
−1
i (X)

dp̂

dp
Λ̂(ds) +

∫ k∨
i=1

siξi,0f
−1
i (X)

dp̂

dp
Λ̂(ds)

= −
∫ k∨

i=1

siξif
−1
i (X)Λ̃(ds) +

∫ k∨
i=1

siξi,0f
−1
i (X)Λ̃(ds)

with Λ̃ = dp̂
dp Λ̂ and letting ℓ̃( · ) =

∫ ∨k
i=1 si · Λ̃(ds), we get

−ℓ
(
ξf−1(X)

)
+ ℓ

(
ξ0f

−1(X)
)
= −ℓ̃

(
ξf−1(X)

)
+ ℓ̃

(
ξ0f

−1(X)
)
.

Now we have both ℓ, ℓ̃ in the same domain, we can establish a linear relationship by conditioning on
extrapolations (n) and on different points zj . Using the max-stability of z where z(n) = anz

(0)+bn
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Figure 6: Circle data using the symmetric logistic distribution with α = 0.

and the homogeneity of ℓ where ℓ(cx) = cℓ(x) for c > 0:−a1ℓ(z1 + b1) + d1 · · · −a1ℓ(zm + b1) + d1
...

. . .
...

−anℓ(z1 + bn) + dn · · · −anℓ(zm + bn) + dn


=

−a1ℓ̃(z1 + b1) + d̃1 · · · −a1ℓ̃(zm + b1) + d̃1
...

. . .
...

−anℓ̃(z1 + bn) + d̃n · · · −anℓ̃(zm + bn) + d̃n


which means ℓ(z) = ℓ̃(z) + d̃− d by continuity and taking m = n → ∞.

Proposition A.2 (Regularly Varying Decoder). Let f be parameterized with a ReLU neural network
with positive weights and let z be given by MEV(ℓ, ξ). Then X = f(z) is regularly varying with
index ξ.

Proof. We first follow [9, Lemma 4.6] with the setup that the weights of the network are sampled
from Dirac measures centered at the weight value. This provides finite expectation and concludes
that the output is regularly varying with index ξ. Nesting this structure and only considering the
positive component with the ReLU activation, we obtain the desired result.

B Implementation Details

All experiments are conducted with f, f−1 represented according to a convolutional autoencoder.
The latent representation is assumed to be a Gumbel distribution, where the reparameterization trick
is used to sample the rare event according to

z(n) = max
i≥1

z
(n)
i = max

i≥1

{
f−1

(
X(n)

)
− logA

(n)
i

}
where A

(n)
i =

∑n
j=1 ξi,j , ξi,j ∼ Exp(1), and the infinite max is truncated to a finite number, 100.

Both the encoder and decoder have 4 layers with width 8, 16, 32, 64 and use the ReLU activation
function. We use the AdamW optimizer with learning rate of 0.0005 for 200 epochs.

C Additional Details on Data

C.1 Synthetic Data

For the synthetic experiments, we first sample from a 2d symmetric logistic distribution with pa-
rameter α. α is the dependence parameter with α → 0 implying complete dependence and α → 1
implying complete independence. We then scale the values to be within (0, 1) by dividing by the
maximum. We then take the semi-major and semi-minor axes to have lengths given by this vector
and construct an image with the corresponding ellipse. Examples of samples are given in Figures 6
and 7. Image sizes are 80× 80 pixels.
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Figure 7: Circle data using the symmetric logistic distribution with α = 1.

Figure 8: Examples of different types of Gleason scores for prostate cancer data.

C.2 Real Data

For the real dataset, we consider the prostate cancer Gleason score dataset from Bulten et al. [2]. We
aim to characterize the extremeness of the data as it relates to the severity of the disease cancer. The
examples of the different types of scores are illustrated in Figure 8.
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