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ABSTRACT
This paper explores the dynamics of human-robot collaboration
through a comparative study of human-assisted and system-assisted
approaches in a search and rescue application. Leveraging virtual
environments and mixed-reality interfaces, the study evaluates task
performance, workload, usability, and subjective experiences of
participants. Results indicate that the system-assisted approach
significantly improves task completion time and accuracy in identi-
fying critical elements, and reduces perceived workload compared
to human-assisted methods. Subjective assessments reveal valuable
insights into user preferences and challenges, informing recommen-
dations for system refinement and protocol development. Findings
highlight the potential of human collaboration in enhancing opera-
tional effectiveness and promoting seamless collaboration between
humans and robots in cluttered and high-risk environments. In-
teractions aimed at synchronizing goals, task states, and actions
can be facilitated through virtual, augmented, and mixed-reality
environments providing an intuitive platform for understanding
interaction dynamics.
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1 INTRODUCTION
In a time marked by rapid technological advancements, robotics
continues to evolve and permeate various facets of society ranging
from manufacturing and healthcare to disaster response and space
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exploration. The synergy between humans and robots holds im-
mense promise across these diverse domains as this paradigm shift
transcends the traditional notion of robotics where there was little
to no interaction between humans and robots. With the increased
integration of robots into social settings, collaborative robots are
becoming active participants in our everyday lives forging new
frontiers in Human-Robot Interaction (HRI) that have the potential
to change the way we interact with the world around us. As we
navigate this era of increased collaboration between humans and
machines, exploring the dynamics, challenges, and opportunities
inherent in this symbiotic relationship becomes important.

While collaborative robots (cobots) are designed to assist humans,
they still operate within highly predefined parameters that are con-
straining. For example, a robot will mostly stop or slow down when
working in the periphery of humans, thus, limiting the impact of
such collaboration [8]. In various sectors, fully autonomous cobots
function within rigid frameworks, carrying out tasks alongside hu-
mans rather than engaging in genuine teamwork. As a result, while
they enhance certain aspects of productivity and efficiency, their
potential for seamless human-robot collaboration remains largely
untapped [8]. In the case of human-human collaboration, communi-
cation is a crucial aspect that leads to successful teamwork and goal
completion. Similarly, in human-robot teams, it is essential to have
information sharing based on the human supervisory role and the
robot’s autonomy level. This can be achieved through interactions
to synchronize goals, task states, and actions [6].

Virtual environments and simulations offer a valuable tool for
comprehending the dynamics of interaction. They provide an intu-
itive platform for understanding the mechanics of how interactions
would unfold. By leveraging virtual environments, adaptability can
be significantly enhanced to cater to the specific requirements of
the task space, the user involved, and the capabilities of the robot.
These tools also provide the opportunity to evaluate interactions
with virtual robots that are restricted by monetary and/or safety
concerns in the real world [15].

Building upon our previous work [5], this paper presents a user
study to compare human-assisted and system-assisted methods for
human-robot collaboration. Figure 1 gives an overall understanding
of the steps involved. The study investigates two collaboration
frameworks: one where humans act as teleoperators and scene
inspectors for robots (human-assisted, HA), and another where
systems suggestions are taken as inputs, with robot teleoperation
while humans make final decisions on areas of interest (system-
assisted, SA). Objective and subjective measures are analyzed to
elucidate factors influencing the development of intelligent and
collaborative robots.

Two research questions guide this investigation:
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Figure 1: An image of the different aspects of mixed-reality based human-in-the-loop robot control system. Here, a) the human
operator’s gaze and gesture modalities are taken as input using image recognition and tracking, b) the tracked modalities are
mapped within the virtual control interface which in turn controls and monitors the agent in the system in human-assisted
and system-assisted scenarios respectively, and c) search and rescue scene designed for assessing humans’ intuition while
performing different tasks.

• "What level of human-robot collaboration is better at per-
forming search operations in an unknown environment?"

• "How does a limited field of view affect goal execution?"
These questions aim to shed light on the effectiveness of human

guidance in various tasks and the impact of cognitive load on goal
execution within limited visual contexts.

2 RELATEDWORK
2.1 Human-Robot Interaction (HRI)

Frameworks and Communication
Modalities

Human-robot interaction (HRI) encompasses a spectrum of interac-
tion stages, as categorized by Onnasch et al. [9], including bounded
autonomy, teleoperation, supervised autonomy, adaptive autonomy,
and virtual symbiosis. However, the practical application of these
stages often involves smooth transitions based on human roles and
task demands, highlighting the importance of effective commu-
nication channels between humans and robots throughout these
interactions. Researchers have investigated diverse communication

modalities within HRI, surrounding two-way dialogue, natural lan-
guage, multi-modal communication, and visual messages. While
these modalities present rich interaction potentials, they often ele-
vate cognitive workload and present hurdles to situational aware-
ness. In response, discrete and sparse communication channels
aimed at preserving human interpretability while strengthening
decision-making precision have been suggested [8]. Gaze, identi-
fied as a natural means of interaction, has been leveraged in HRI,
either as a primary input signal or in conjunction with other modal-
ities [10]. However, gaze-only interfaces encounter challenges like
the "Midas touch problem," where deciding when to select input
becomes intricate due to the constant nature of gaze [14]. Con-
sequently, separate confirmation mechanisms are necessitated to
address these issues [11]. Techniques such as Eye & Head Dwell,
Eye & Head Convergence, and Eye & Head Pointer have been
investigated to enhance stability and efficacy in gaze-based interac-
tions [11]. Moreover, head-supported gaze offers greater stability
compared to gaze-only approaches [11]. Considering that humans
utilize their bodies to attend to their environment or convey their
attention to others, nonverbal cues like pointing or directing their
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Figure 2: Mapping of head pose and tactile confirmation

head and eyes toward objects of interest emerge as natural candi-
dates for further exploration in target selection and manipulation
tasks within Extended Reality (XR) contexts [10].

Figure 3: Start (green box), goal (red box), and interaction
target points (yellow box) of the robot during experiment in
SA scenario

2.2 Teleoperation Interfaces and Multi-modal
Interaction Techniques

Teleoperation offers a bridge between human instinct and robotic
capabilities [17]. Gesture-based teleoperation systems, utilizing de-
vices like joysticks or motion-tracking devices, enable intuitive
control methods for operators [17]. Immersive VR teleoperation in-
terfaces replicate natural human motions, although they introduce
complexities such as the need for specialized equipment [12]. This,
when combined with head-supported gaze, can generate mapped
motions in the interface [5]. Multi-modal interfaces play a crucial
role in reducing cognitive workload and improving task perfor-
mance in teleoperation scenarios [13]. These interfaces synchro-
nize multiple modalities to enhance user immersion and awareness,
contributing to more effective human-robot collaboration [13]. In
the context of this work where humans need to perform faster
searches, foveation methods also offer an interesting way to facil-
itate search mechanisms in cluttered and cognitively demanding
environments [1].

In summary, research in the field has explored various communi-
cation modalities, teleoperation interfaces, multi-modal interaction

Figure 4: FOVs of the participant in both the scenarios - HA
scenario (top) and SA scenario (bottom).

techniques, and foveation technologies to enhance human-robot
collaboration across different interaction frameworks. These stud-
ies provide valuable insights for comparing the effectiveness of HA
and SA approaches in HRI scenarios, as investigated in our current
research.

3 EXPERIMENT
3.1 Aim. In this study, we aim to investigate the effectiveness and
efficiency of a mixed reality-based system for improved human-
robot collaboration, along with the underlying methods for user
support in search and rescue situations involving otherwise au-
tonomous systems.
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3.2 Test-bed environment. To test in a search and rescue scenario
we used an already existing 3D map [16] as the virtual environment
and made modifications to create a simulated post-disaster scenario.
Based on the interface design, similar 3D maps could be integrated
at any stage to test other applications.

3.3 Experimental Design andWorkflow Steps. Participants engaged
in two sequential scenarios presented in random order. The two
scenarios were designed with varying degrees of human interven-
tion and decision-making. In the HA scenario, participants directed
a simulated robot using eye gaze (left, right, up, down) and corre-
sponding keyboard inputs (J, L, I, K) to traverse a search-and-rescue
scene (figure 2), aiming to reach the end of a parking lot. This mode
granted participants heightened control over task execution. This
can be seen from the top part of figure 4.

In contrast, the SA scenario employed a Wizard-of-Oz technique
to cluster identified areas of interest (AOIs) according to assigned
importance levels (Low, Medium, High) for objects and humans in
the scene. These AOIs could be seen as yellow point marks in figure
3, while green and red indicate start and end locations respectively.
The robot autonomously navigated to these AOIs using foveation
techniques, thus, reducing the cognitive load. Participants acted as
final decision-makers, specifying their priority levels through the
interface, utilizing similar importance categories (Low, Medium,
High). This can be seen from the bottom part of figure 4.

3.4 Task. The overall goal of the task was to assess the scene and
provide information regarding AOIs in a post-disaster scenario.
The task for the participants was to count the points of interest
they encountered and put corresponding priority markers for each
of them. Participants were also provided with a small reference
sheet before the experiment started to give a general idea of the
importance of various objects in the scene.

3.5 Participant Data, Recorded Information and Ethics. Ethical con-
siderations were taken into account before the experiment. As per
the guidelines mentioned in [7] the experiment did not require an
ethical review process from a committee. Participant demographics
and recorded data, including log files, are anonymized, stored, and
processed in line with the regulations of the university.

3.6 After Experiment: Analysis. We evaluated task completion time,
task accuracy, and the number of identified humans to compare
priorities between scenarios. These evaluationswere complemented
by workload analysis using NASA Task Load Index [4], system
usability through the System Usability Scale [3], and subjective
questionnaires to draw conclusive insights.

4 RESULTS
4.1 Participants
The total sample recruited for the user study consisted of 18 partici-
pants. There were 13 males, 4 females, and 1 Other with a mean age
of 31.29 years (SD = 9.78) excluding 1 Other participant who refused
to report their age. Out of the 18 participants, 7 had some level of
vision impairment mostly corrected with eyeglasses. Since the task
involved a search and rescue scenario, the use of multiple interfaces,
and virtual scenarios, we were also concerned about the experience

of the participants in those aspects. Only 4 participants had experi-
ence in providing disaster relief. Participants also reported varying
levels of experience across different domains: with robots (M = 2.72,
SD = 1.7), with any form of virtual, augmented, or mixed reality
system (M = 1.83, SD = 1.79), and with using controllers (M = 3.83,
SD = 1.2). To eliminate any order and learning effects, half of the
participants (N = 9) started the study with the HA scenario while
the other half started with the SA scenario.

4.2 Task Timing
This is the first objective performancemetric that we use to measure
the performance of the participants in the two scenarios. Partici-
pants took an average time of 11m 17s (SD = 4m 34s) to complete the
HA scenario and an average time of 3m 54s (SD = 53s) to complete
the SA scenario. A paired two-sample t-test for two-tail significance
of means shows that participants performed significantly better in
the SA scenario (p < 0.001). This can be seen in figure 5.

Figure 5: Average completion time in seconds of participants
in HA and SA scenarios

4.3 Task Performance
The participants provided different priorities at different locations
in the scenarios. Based on these, important locations and total in-
stances were calculated for the identification of correct instances
of the number of trapped humans present in the scene. There were
3 trapped humans in each scenario for the participants to locate
during the task. In case of the HA scenario, out of N = 54 total in-
stances, 20 (M = 1.11, SD = 0.76) were successfully identified. In case
of the SA scenario, 47 (M = 2.6, SD = 0.7) instances were successfully
identified. A paired two-sample t-test for two-tail significance of
means shows that participants performed significantly better in the
SA scenario (p < 0.001).

4.4 Workload
The participants answered the NASA TLX questionnaire after each
scenario which helped measure the perceived workload for each
scenario. The results show a high mean workload of 53.85 (SD =
18.07) in case of the HA scenario as compared to a meanworkload of
33.41 (SD = 15.24) in the SA scenario with a paired two-sample t-test
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for two-tail significance of means showing statistical significance
(p < 0.001). This can be seen in figure 6.

Figure 6: Average workload experienced by participants in
HA and SA scenarios

4.5 System Usability
The system usability scale is a quick way to ascertain the usability
of systems under scrutiny. Similar to the TLX questionnaire earlier,
the participants answered 10 questions from the system usability
questionnaire using a Likert scale (1 to 5) to indicate strong disagree-
ment on the leftmost end (1) to strong agreement on the rightmost
end (5). After calculating a single value from the responses to all
10 questions, the scores of the participants were averaged to ar-
rive at the presented results. The participants reported an average
usability of 58.61 (SD = 14.8) for the HA scenario and an average
usability of 80.14 (SD = 16.3) for the SA scenario. Since the system
usability score by itself does not represent a percentage, it needs
to be normalized and converted to percentile to be interpreted cor-
rectly. According to [2], a system usability score of 68 marks the
50th percentile. A paired two-sample t-test for two-tail significance
of means shows that participants preferred the SA scenario (p <
0.001). This can be seen in figure 7.

Figure 7: Average system usability score reported by partici-
pants in HA and SA scenarios

4.6 Subjective Assessment
The subjective assessment in the form of a questionnaire was pre-
sented to participants after the completion of each scenario followed
by an end-of-experiment questionnaire. These questionnaires con-
tained both long-answer form and five-point Likert scale-based
questions. In the case of HA, the Likert scale-based questions were
-

Q1 The non-verbal interactive interface helped me to provide
assistance to the robot.

Q2 The non-verbal interface was intuitive and easy to use.
Q3 The robot accurately followed my guidance.
Q4 I am satisfied with the overall outcome of the search task.
Q5 My assistance contributed to the successful completion of

the task.
Q6 Human assistance is beneficial for the robot in a search task

in a cluttered environment.
The findings based on the responses are presented in the graph

shown in figure 8.

Figure 8: Subjective Likert responses to HA scenario inter-
view questions

Similarly, in the case of SA, the Likert-based questions were -
Q1 I had a good experience with System assisted search for

providing assistance to the robot
Q2 The foveated view field improved my experience in finding

points of interest and importance in the scene
Q3 I trust the system’s understanding of the scene to guide me

to particular locations in the scene
Q4 I had a good experience with System assisted search and

foveation for providing assistance to the robot in this case
Q5 I am satisfied with the overall outcome of the search task.
Q6 My assistance contributed to the successful completion of

the task.
Q7 I am confident in the robot’s ability to find the important

locations.
Q8 Human assistance is beneficial for the robot in a search task

in a cluttered environment.
The findings based on the responses are presented in the graph

shown in the figure 9.

5 DISCUSSION
The results presented offer a comprehensive evaluation of the per-
formance, workload, and usability of participants in two different
scenarios: HA and SA. These scenarios were designed to assess the
effectiveness and efficiency of systems in aiding users in identifying
and locating trapped humans within a simulated environment. The
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Figure 9: Subjective Likert responses to SA scenario interview
questions

analysis and discussion below provide insights into the implications
of these findings.

5.1 Task Timing
Participants completed the tasks significantly faster in the SA sce-
nario compared to the HA scenario. The average time to complete
the SA scenario was approximately one-third of the time taken
to complete the HA scenario. This substantial reduction in task
completion time suggests that the SA approach provides a more
efficient means of accomplishing the task at hand.

5.2 Task Performance
In terms of task performance, participants demonstrated a higher
success rate in identifying instances of trapped humans in the SA
scenario compared to the HA scenario. The increased accuracy
in identifying trapped humans indicates that the system provides
valuable assistance to users, enhancing their ability to detect critical
elements within the simulated environment.

5.3 Workload
The perceived workload reported by participants was significantly
lower in the SA scenario compared to the HA scenario. This finding
suggests that participants experienced reduced mental and physi-
cal demands when utilizing the SA approach. A lower perceived
workload is desirable as it can lead to improved user satisfaction
and overall performance.

5.4 System Usability
Participants rated the SA scenario as significantly more usable
compared to the HA scenario. The higher system usability score
indicates that participants found the system to be more intuitive,
efficient, and satisfactory in assisting them with the task. The pref-
erence for the SA scenario underscores the importance of designing
systems that are intuitive to use and supportive of user needs.

5.5 Subjective Assessment
The subjective assessment of teaming scenarios revealed valuable
insights into the strengths and areas for improvement in both HA
and SA scenarios. Participants shared detailed experiences and
provided constructive feedback that can inform the refinement of
systems for various human-robot collaborative tasks, particularly
in scenarios involving emergency response and reconnaissance.

In the HA mode, participants demonstrated a preference for
intuitive decision-making (ex - moving forward, looking around,
size relates to danger), leveraging factors such as the likelihood of
finding objects and the immediacy of danger to and around humans.
However, challenges such as slow turning and limited peripheral
vision were noted, highlighting the importance of improving phys-
ical interfaces and enhancing situational awareness. This can be
also seen in the case of the Likert scale response, where participants
generally had neutral or positive feedback about the non-verbal
interface intuitiveness but there were mixed responses regarding
the effectiveness of their assistance in guiding the robot accurately.
Suggestions for improvement included implementing graphical
interfaces for prioritizing items and enhancing navigation capa-
bilities through features like independent perception control with
depth feedback, joystick control, and sound cues. Participants also
suggested to be provided with real-time feedback.

Conversely, in the SA mode, participants acknowledged the po-
tential of automation in streamlining tasks and providing immediate
feedback, particularly through features like foveation and object
detection. However, concerns regarding the system’s inability to
highlight critical elements consistently and challenges related to
foveation-induced loss of information were raised. Participants
emphasized the importance of refining algorithms for scene per-
ception and enhancing camera feeds to improve overall system
performance.

We notice that although participants feel they can help the robot
effectively, they don’t fully trust the system’s understanding of
the environment. This suggests they’re confident in their ability
to assist practically but are unsure about how well the system
comprehends the surroundings. This highlights the importance
of aligning participants’ perceptions of the robot’s intent with its
actual capabilities to foster trust and collaboration.

Furthermore, discussions surrounding the handover of control
between human operators and the robot highlighted the necessity
of clear protocols and established cooperation practices. While
participants expressed willingness to delegate control under certain
conditions, such as when the operator possesses superior situational
awareness or familiarity with the task, concerns regarding potential
conflicts and the need for a hierarchical command structure were
evident.

6 CONCLUSION AND FUTURE DIRECTION
In this study, we set out to investigate the effectiveness and effi-
ciency of mixed-reality-based systems in assisting operators during
human-robot collaboration scenarios. Experiments with partici-
pants in a virtual search and rescue environment helped us ex-
plore this using multimodal interaction techniques. Participants
demonstrated improved task performance, reduced workload, and
higher usability ratings when utilizing SA methods compared to
HA ones. In both cases, the results emphasize the complex interplay
between human intuition and automated assistance in collabora-
tion scenarios. Subjective assessments highlighted the importance
of intuitive interfaces, real-time feedback, and clear protocols for
effective collaboration between human operators and robotic sys-
tems. By addressing the identified challenges and incorporating
user feedback, future developments in human-robot teaming can
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enhance operational effectiveness and promote seamless collabo-
ration between human operators and robotic systems, ultimately
advancing capabilities in domains such as emergency response and
reconnaissance.
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