
Agile Catching with Whole-Body MPC
and Blackbox Policy Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract: We address a benchmark task in agile robotics: catching objects thrown1

at high-speed. This is a challenging task that involves tracking, intercepting, and2

cradling a thrown object with access only to visual observations of the object and3

the proprioceptive state of the robot, all within a fraction of a second. We present4

the relative merits of two fundamentally different solution strategies: (i) Model5

Predictive Control using accelerated constrained trajectory optimization, and (ii)6

Reinforcement Learning using zeroth-order optimization. We provide insights7

into various performance trade-offs including sample efficiency, sim-to-real trans-8

fer, robustness to distribution shifts, and whole-body multimodality via extensive9

on-hardware experiments. We conclude with proposals on fusing “classical” and10

“learning-based” techniques for agile robot control.11

Figure 1: Mobile Manipulator with Lacrosse Head catching a ball within a second. (right) Automatic
ball thrower with controllable yaw angles and speed of around 5m/s.

1 Introduction12

Chasing a ball in flight and completing a dramatic diving catch is a memorable moment of athleti-13

cism - a benchmark of human agility - in several popular sports. In this paper, we consider the task14

of tracking, intercepting and catching balls moving at high speeds on a mobile manipulator platform15

(see Figure 1), whose end-effector is equipped with a Lacrosse head. Within a fraction of a second,16

the robot must start continuously translating visual observations of the ball into feasible whole body17

motions, controlling both the base and the arm in a coordinated fashion. In the final milliseconds, the18

control system must be robust to perceptual occlusions while also executing a cradling maneuver to19

stabilize the catch and prevent bounce-out. The physics of this task can be surprisingly complex: de-20

spite its geometric simplicity, a ball in flight can swing and curve in unpredictable ways due to drag21

and Magnus effects [1]; furthermore, the contact interaction between the ball and the deformable22

end-effector involves complex soft-body physics which is challenging to model accurately.23

In this paper, we study the relative merits of synthesizing high speed visual feedback controllers for24

this task from two ends of a design spectrum: Model Predictive Control (MPC) [2, 3] represent-25

ing a “pure control” strategy, and Blackbox policy optimization [4] representing a “pure learning”26

approach. MPC optimizes robot trajectories in real time in response to state uncertainty - it is27

nearly “zero-shot” in terms of data requirements and gracefully handles kinematics, dynamics and28

task-specific constraints, but can be computationally expensive and sensitive to errors in dynamics29

modeling. On the other hand, policy learning via blackbox or RL (Reinforcement Learning) meth-30

ods can be extremely data inefficient, but can adapt, in principle, to complex and unknown real31

world dynamics. Our primary contribution is to provide insights into subtle trade-offs in reaction32

time, sample efficiency, robustness to distribution shift, and versatility in terms of whole-body mul-33

timodal behaviors in a unified experimental evaluation of robot agility. We conclude the paper with34

proposals to combine the “best of both worlds” in future work.35

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

Related Work: Both classes of techniques have been previously applied to the robotic catching36

task. Examples of optimization-based control for ball catching include [5, 6, 7, 8, 9]; [10] and [11]37

present an unified approach subsuming catch point selection, catch configuration computation and38

path generation in a single, nonlinear optimization problem (also see, [12], [13]). Several papers39

utilize human demonstration and machine learning for parts of the control stack. [14] probabilis-40

tically predict various feasible catching configurations and develop controllers to guide hand–arm41

motion, which is learned from human demonstration. [15] also learn motion primitives from hu-42

man demonstration and generate new movements. [16] use bi-level motion planning plus a learning43

based tracking controller. Some papers aim for soft catching explicitly. [17] extend [14] further,44

offering a soft catching procedure that is more resilient to imprecisions in controlling the arm and45

desired time of catch. [18] extend [10] further for enabling soft landing. [8, 19] add heuristics for46

soft catching, moving the hand along the predicted path of the ball, while decreasing its velocity to47

allow the dissipation of the impact energy.48

2 Problem formulation and proposed solution49

We describe the trajectory of the object to be caught by a function Fo, which maps a query time50

t ∈ R≥0 to the object’s position and velocity at time t, i.e., (po(t), vo(t)) ∈ R3×3. Depending on the51

aerodynamic and inertial properties of the object, Fo may be highly non-trivial. Our knowledge of52

Fo is encoded via a known F̂o which maps a query time t ∈ R≥0 and a set of parameters θo ∈ Rd to a53

prediction for the object position and velocity at time t, i.e., (p̂o(t; θo), v̂o(t; θo)). For this work, we54

limit our scope to spherical, rigid balls and implement F̂o via classical Newtonian physics; catching55

objects with non-trivial aerodynamics and non-uniform shapes is left to future work. However, we56

only observe the ball position and velocity indirectly via two fixed cameras, and use θo to encode57

our vision system’s current position and velocity estimate.58

For the robot, we let q ∈ R7 denote the joint configuration vector, where q1 ∈ R corresponds to the59

translational base joint, and q2:7 ∈ R6 represent the arm joint angles.60

2.1 Catching via optimal control61

We assume that there exists a lower-level position and/or velocity controller that compensates for62

the arm’s nonlinear manipulator dynamics. Abstracting away the closed-loop behavior of this lower-63

level control system, we plan for the motion of the arm by assuming second-order integrator dynam-64

ics1 for q, i.e., q̈(t) = ua(t) ∈ R7.65

With this assumption, the optimal catching problem (OCP) can be formalized as a free-end-time66

constrained optimal control problem over the function ua(·) and catching time tf :67

minimize
ua(·),tf

J(ua, tf) :=

∫ tf

0

(
λ+ ‖ua(τ)‖2

)
dτ + Ψ(q(tf), q̇(tf), tf), (2.1)

where λ ∈ R>0 is a weighting constant and Ψ : R7 × R7 × R≥0 → 0 is a terminal cost; subject to68

the second-order integrator dynamics q̈(t) = ua(t), and the following constraints:69

∀τ ∈ [0, tf], ua(τ) ∈ [ua, ua], q(τ) ∈ [q, q], q̇(τ) ∈ [q̇, q̇], c(q(tf), tf) ≥ 0. (2.2)

The first three constraints capture limits on the control effort and the joint configurations and ve-70

locities. The terminal cost Ψ and endpoint constraint function c capture two desirable properties:71

(i) SE(3) pose alignment of the lacrosse head with the ball’s position and velocity direction at the72

catching instant, and (ii) minimizing any residual velocity of the lacrosse head perpendicular to the73

ball’s velocity vector. We provide details on these functions within the appendix.74

Conversion to Multi-Stage Trajectory Optimization: The OCP is a non-trivial problem which75

could be solved by leveraging the necessary conditions of optimality for free end-time problems76

and using boundary-value-problems solvers. However, this would entail optimizing over control,77

state, and co-state trajectories using dense discretization of the dynamics and inequality constraints78

(e.g., via collocation). Instead, we simplify the computational burden by optimizing over a restricted79

class of solutions – a sequence of acceleration and coasting phases, and in the process, convert the80

problem into a multi-stage discrete-time trajectory optimization problem that is subsequently solved81

1Note that the lower-level control system may have some non-trivial closed-loop response characteristics,
including delays. However, these can be pre-compensated for by adjusting the commanded (q, q̇) setpoints
from the planned (q, q̇) trajectory.

2

using a state of the art shooting-based Sequential Quadratic Programming (SQP) solver [20]. We82

describe this conversion in the appendix.83

Asynchronous Implementation: Running concurrently to the catching controller is an estimator84

that generates updates of the predictor parameters θo, necessitating online re-planning. We achieve85

this via an asynchronous implementation where the optimization problem is continually re-solved in86

a separate thread, using the latest estimate for θo and the current robot state (q, q̇). The commanded87

(q, q̇) for the robot’s lower-level PD controllers are computed by decoding the most recent stage-88

wise solution to a continuous-time trajectory, thereby guaranteeing a consistent control rate.89

Cradling: Following the intercept of the ball, we use a simple cradling motion primitive, modeled90

as 2nd-order ODE in q, to slow the lacrosse head and simultaneously rotate the net to point upwards.91

2.2 Blackbox Gradient Sensing Optimization92

The catching problem can also be formulated as a Partially-Observable Markov Decision Process93

(POMDP), and solved via Blackbox policy optimization [21, 22, 23]. In this setting, consider a94

POMDP (S,O,A,R, P) where S is the state space partially observed by O, the observation space,95

A is the action space, R : S × A 7→ R is the reward function and P : S × A 7→ S is the dynamics96

function. The optimization objective is to learn a parameterized policy πθ : O 7→ A that maximizes97

the expected total episode return, J(θ) = Eτ=(s0,a0,...,sT)

∑T
t=0 r(st, πθ(ot)).98

Reward function: The reward function is different for training in sim vs. real due to differences99

in quality of data from each. In both cases we reward the net getting close to the ball during the100

episode. In sim, we additionally reward orientation alignment before the catch + a stability reward101

for keeping the ball in the net; in real, we use a flat reward for successful catches (detected by a102

sensor). Finally, we discourage excessive motion via penalizing position/velocity/acceleration/jerk103

in sim, and hardware limit violation in real. See Appendix B for more details.104

Policy Network: We use a two-tower CNN neural network. The first tower process the histor-105

ical joint positions represented as an image of size (nhist, 7), where nhist is the number of past106

timesteps. The second CNN tower process the predicted ball trajectory represented as an image of107

size (npred, 6), where npred is the number of predicted timesteps. The output of the two towers is108

concatenated into a single tensor, which is fed into two fully-connected layers. The final output is109

then taken as the commanded joint velocities. In total, our policy network has 3255 parameters.110

Blackbox Gradient Sensing and Sim-to-Real Finetuning: We apply Blackbox Gradient Sens-111

ing (BGS) [24] for optimizing the policy neural network parameters θ. The algorithm opti-112

mizes a smoothened version Jσ(θ) of the original total-reward objective J(θ), given as: Jσ(θ) =113

Eδ∼N (0,Id)[J(θ + σδ)], where σ > 0 controls the precision of the smoothing, and δ is an isotropic114

random Gaussian vector. We first train in a simulation environment implemented in PyBullet [25].115

Once the policy performs well in simulation, we transfer the policy to the real robot and run further116

BGS finetuning steps using the mechanical thrower.117

3 Experiments118

We evaluate both our SQP and blackbox (BB) agents in simulation, on the real robot, and also ex-119

plore performance under various distribution shifts of the thrower. Our SQP agent uses a state of120

the art SQP solver [20] built on top of trajax [26], a JAX library for differentiable optimal con-121

trol. For our BB agent, we use a distributed BGS library [4] with policy networks implemented in122

Tensorflow Keras. The robot used is a combination of an ABB IRB 120T 6-DOF arm mounted on123

a one-dimensional Festo linear actuator, creating a 7-DOF system. The ball location is determined124

using a stereo pair of Ximea MQ013CG-ON cameras running with a trained recurrent tracker model.125

Error bars: We show catch success for the real robot with error bars which give at least 95%126

coverage, by using the Clopper–Pearson method to compute binomial confidence intervals.127

Inference speed and Reaction time: The BB agent computes a single policy action in time 7.253128

ms (std. 0.160 ms), whereas SQP takes 43.046 ms to solve (std. 21.255 ms). Recall that the SQP129

runs asynchronously, so this solve time does not block the agent; the synchronous part runs in 2.139130

ms (std. 0.212 ms). Vision/hardware joint data processing takes about 5 ms. Overall agents are set to131

synchronously run at 75Hz. The mechanical thrower is 3.9 meters away from the robot and imparts132

4.5 m/s horizontal velocity alone; including z-component the speed is ∼ 5.5 m/s at catch time.133

Simulation to Reality Transfer: Figure 2 highlights the real robot catch performance of both SQP134

and BB agents. First, we see that while BB performance in sim is mostly monotonically increasing135

3

(Figure 2, left), this does not necessary translate to monotonic improvement on the real hardware136

(Figure 2, middle). Secondly, we see that SQP suffers less performance degradation compared to137

BB when transferring to real. Finally, we see that it takes 40 iterations of fine-tuning on real (30138

ball throws per iteration) in order for the fine-tuned BB agent to match SQP’s real performance (and139

eventually exceed it). Both methods achieve about 80 to 85% success on mechanical ball throws.140

0 5000 10000 15000 20000 25000 30000 35000
Sim Iterations

0.2

0.4

0.6

0.8

Si
m

 C
at

ch
 S

uc
ce

ss

Sim Performance

BB
SQP

5000 10000 15000 20000 25000 30000
Sim Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
al

 C
at

ch
 S

uc
ce

ss

Sim2Real Across Checkpoints

BB
SQP

0 10 20 30 40 50 60 70 80
Fine-tuning Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Re
al

 C
at

ch
 S

uc
ce

ss

Fine-tuning Performance
BB
SQP

Figure 2: (Left) Performance of agents in sim. (Middle) Performance of agents on real without
fine-tuning. (Right) Performance of sim2real transfer after fine-tuning the BB agent starting from
the 30k iteration sim checkpoint. Note that each iteration corresponds to 30 mechanical ball throws.

Robustness to Distribution Shifts: Next, we look at the robustness of both agents to out-of-141

distribution throws. We consider three different distribution shifts: (i) varying the speed of the142

thrower, (ii) varying the yaw angle of the thrower, and (iii) throwing balls by hand instead of using143

the mechanical thrower. The first two distribution shifts are plotted in Figure 3. In Figure 3 (left), we144

see that while BB is reasonably robust to faster throws, its performance significantly degrades for145

slower throws. This is in contrast to the SQP agent, which moderately degrades in performance for146

faster throws (most likely due to computational bottlenecks), but is quite robust to slower throws. In147

Figure 3 (middle), we see that both agents have similar performance across the in-distribution yaw148

angles, but for out-of-distribution angles SQP maintains its performance better relative to BB.149

Faster (~4.7m/s) Train (~4.5m/s) Slower (~4.1m/s)
0.0

0.2

0.4

0.6

0.8

Ca
tc

h
Su

cc
es

s

BB vs SQP at Modified Thrower Speeds
BB
SQP

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Thrower Yaw (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
tc

h
Su

cc
es

s

Catch Success by Yaw Angle

BB
SQP

Ball Thrower Hand Throws
0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 S
QP

 C
at

ch
es

SQP Modality of Catches
Left Config
Right Config

Figure 3: (Left) Catch performance as thrower speed varies between faster (∼ 4.7 m/s), training
(∼ 4.5 m/s), and slower (∼ 4.1 m/s) throws. (Middle) Catch performance as the thrower yaw angle
varies from −9.5◦ to 8◦. Note that the training distribution varies between −6◦ and 6.3◦ (marked
by the dashed vertical black line). (Right) Distribution of left and right catches by the SQP agent on
both mechanical ball throws and hand throws. Note that the BB agent catches to the right 100% of
the time, likely due to the learning bias from the ball throw distribution.

Our last distribution shift involves hand throws (lobs) to the thrower instead of using the mechanical150

thrower. Using hand throws, the SQP agent has a 68.9% catch success (over 196 throws), whereas151

the BB agent catch performance degrades to 2.0% (over 150 throws).152

Multimodality: In Figure 3 (right), we demonstrate that the SQP agent is able to catch balls in both153

a left and right pose configuration at fairly even rates matching the bias of the thrower. On the other154

hand, the BB agent is only able to catch to the right, since the ball thrower distribution is biased155

(60/40%) towards throwing to the right.156

4 Conclusion and future work157

While the fine-tuned blackbox agent has the highest catching success performance, the SQP agent158

is much more robust to distribution shifts in the thrower. To obtain the “best of both”, we plan to159

investigate two different strategies: (i) use BGS to learn the various cost parameters of SQP which160

we currently tune by hand, and (ii) design a mixed policy which uses SQP to move the end-effector161

to the ball, and then hands over control to the blackbox agent for final cradling motion. Future162

extensions include handling multiple non-spherical objects with adaptive dynamics prediction.163

4

References164

[1] Aerodynamics of sports balls. Annual Review of Fluid Mechanics, 17(1):151–189, 1985.165

[2] F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid systems.166

Cambridge University Press, 2017.167

[3] J. B. Rawlings. Tutorial overview of model predictive control. IEEE control systems magazine,168

20(3):38–52, 2000.169

[4] K. Choromanski, M. Rowland, V. Sindhwani, R. Turner, and A. Weller. Structured evolution170

with compact architectures for scalable policy optimization. In International Conference on171

Machine Learning, pages 970–978. PMLR, 2018.172

[5] H. Yu, D. Guo, H. Yin, A. Chen, K. Xu, Y. Wang, and R. Xiong. Neural motion prediction for173

in-flight uneven object catching. ArXiv, abs/2103.08368, 2021.174

[6] U. Frese, B. Bäuml, S. Haidacher, G. Schreiber, I. Schäfer, M. Hähnle, and G. Hirzinger.175

Off-the-shelf vision for a robotic ball catcher. Proceedings 2001 IEEE/RSJ International Con-176

ference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the177

Next Millennium (Cat. No.01CH37180), 3:1623–1629 vol.3, 2001.178

[7] J. Kober, M. Glisson, and M. Mistry. Playing catch and juggling with a humanoid robot. 2012179

12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages 875–180

881, 2012.181

[8] W. Hong and J. Slotine. Experiments in hand-eye coordination using active vision. In ISER,182

1995.183

[9] B. Hove and J. Slotine. Experiments in robotic catching. 1991 American Control Conference,184

pages 380–386, 1991.185

[10] B. Bäuml, T. Wimböck, and G. Hirzinger. Kinematically optimal catching a flying ball with186

a hand-arm-system. 2010 IEEE/RSJ International Conference on Intelligent Robots and Sys-187

tems, pages 2592–2599, 2010.188

[11] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and J. Peters. Trajectory plan-189

ning for optimal robot catching in real-time. 2011 IEEE International Conference on Robotics190

and Automation, pages 3719–3726, 2011.191

[12] O. Koç, G. J. Maeda, and J. Peters. Online optimal trajectory generation for robot table tennis.192

Robotics Auton. Syst., 105:121–137, 2018.193

[13] Y. Jia, M. Gardner, and X. Mu. Batting an in-flight object to the target. The International194

Journal of Robotics Research, 38:451 – 485, 2019.195

[14] S. Kim, A. Shukla, and A. Billard. Catching objects in flight. IEEE Transactions on Robotics,196

30:1049–1065, 2014.197

[15] M. Riley and C. Atkeson. Robot catching: Towards engaging human-humanoid interaction.198

Autonomous Robots, 12:119–128, 2002.199

[16] K. Dong, K. Pereida, F. Shkurti, and A. P. Schoellig. Catch the ball: Accurate high-speed200

motions for mobile manipulators via inverse dynamics learning. 2020 IEEE/RSJ International201

Conference on Intelligent Robots and Systems (IROS), pages 6718–6725, 2020.202

[17] S. S. M. Salehian, M. Khoramshahi, and A. Billard. A dynamical system approach for softly203

catching a flying object: Theory and experiment. IEEE Transactions on Robotics, 32:462–471,204

2016.205

[18] B. Bäuml, O. Birbach, T. Wimböck, U. Frese, A. Dietrich, and G. Hirzinger. Catching flying206

balls with a mobile humanoid: System overview and design considerations. 2011 11th IEEE-207

RAS International Conference on Humanoid Robots, pages 513–520, 2011.208

[19] V. Lippiello and F. Ruggiero. 3d monocular robotic ball catching with an iterative trajectory209

estimation refinement. 2012 IEEE International Conference on Robotics and Automation,210

pages 3950–3955, 2012.211

5

[20] S. Singh, J.-J. Slotine, and V. Sindhwani. Optimizing trajectories with closed-loop dynamic212

SQP. In 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.213

[21] K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller. Structured Evolution214

with Compact Architectures for Scalable Policy Optimization. In Proceedings of the 35th215

International Conference on Machine Learning, pages 969–977. PMLR, 2018.216

[22] K. Choromanski, A. Pacchiano, J. Parker-Holder, Y. Tang, D. Jain, Y. Yang, A. Iscen, J. Hsu,217

and V. Sindhwani. Provably robust blackbox optimization for reinforcement learning. In L. P.218

Kaelbling, D. Kragic, and K. Sugiura, editors, 3rd Annual Conference on Robot Learning,219

CoRL 2019, Osaka, Japan, October 30 - November 1, 2019, Proceedings, volume 100 of220

Proceedings of Machine Learning Research, pages 683–696. PMLR, 2019. URL http://221

proceedings.mlr.press/v100/choromanski20a.html.222

[23] H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach to223

reinforcement learning. NeurIPS, 2018.224

[24] S. Abeyruwan, L. Graesser, D. B. D’Ambrosio, A. Singh, A. Shankar, A. Bewley, D. Jain,225

K. Choromanski, and P. R. Sanketi. i-sim2real: Reinforcement learning of robotic policies in226

tight human-robot interaction loops. arXiv preprint arXiv:2207.06572, 2022.227

[25] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics228

and machine learning. http://pybullet.org, 2016–2021.229

[26] R. Frostig, V. Sindhwani, S. Singh, and S. Tu. trajax: differentiable optimal control on accel-230

erators, 2021. URL http://github.com/google/trajax.231

[27] R. Sarkar, D. U. Patil, and I. N. Kar. Characterization of minimum time-fuel optimal control232

for lti systems. arXiv preprint arXiv:2102.10831, 2021.233

[28] B. Bäuml, T. Wimböck, and G. Hirzinger. Kinematically optimal catching a flying ball with234

a hand-arm-system. In 2010 IEEE/RSJ International Conference on Intelligent Robots and235

Systems. IEEE, 2010.236

6

http://proceedings.mlr.press/v100/choromanski20a.html
http://proceedings.mlr.press/v100/choromanski20a.html
http://proceedings.mlr.press/v100/choromanski20a.html
http://pybullet.org
http://github.com/google/trajax

A Catching via Optimal Control237

We provide some more details on the formulation of the Optimal Catching Problem. For what fol-238

lows, let FK : q ∈ R7 7→ FK(q) = (ph(q), Rh(q)) ∈ R3 × SO(3) denote the forward-kinematics239

transform that maps the joint configuration vector q to the lacrosse head’s SE(3) pose. This trans-240

form may be computed in a differentiable manner, e.g., by using a product-of-exponentials method.241

Desired Catching Properties. The endpoint catching constraints capture the requirement that the242

lacrosse head must be positioned and oriented correctly to accept the incoming projectile. In partic-243

ular, let (po(tf), vo(tf)) be the true 3D position and velocity of the object at the catching time tf .244

Then, we require:245

‖ph(q(tf))− po(tf)‖ ≤ εp, and (Rh(q(tf))e2)T
vo(tf)

‖vo(tf)‖
≥ cos εr, (A.1)

where εp, εr ∈ R>0 are prescribed tolerances on the position and angular errors, respectively, and246

e2 = (0, 1, 0)T . The second constraint above encourages the local ŷ−axis on the lacrosse head,247

which is orthogonal to the net’s catching plane, to be aligned with the ball’s velocity vector at tf .248

The constraint above is written assuming access to the ball’s true 3D position and velocity. However,249

since we only have access to a prediction of these quantities via the parametric predictor F̂o(·; θo),250

we enforce the above constraints w.r.t. the predicted quantities p̂o(tf ; θo), v̂o(tf ; θo), making the251

endpoint catching constraint function c(q(tf), tf ; θo) parametric in θo.252

In conjunction with the hard constraints above, the terminal cost Ψ takes the following form:253

Ψ(q(tf), q̇(tf), tf ; θo) := wpψp(q(tf), tf ; θo) + wvψv(q(tf), q̇(tf)) (A.2)

ψp(q(tf), tf ; θo) := ‖ph(q(tf))− p̂o(tf ; θo)‖2 +

(
1− (Rh(q(tf))e2)T

v̂o(tf ; θo)

‖v̂o(tf ; θo)‖

)
(A.3)

ψv(q(tf), q̇(tf)) :=

∥∥∥∥∥vh(q(tf), q̇(tf))−

[
0
vc
0

]∥∥∥∥∥
2

, (A.4)

where wp, wv ∈ R≥0 are constant weights, and vh(q(tf), q̇(tf)) ∈ R3 is the lacrosse head local254

body-frame translational velocity, computed via the Jacobian-vector product ∂qph(q)q̇. The constant255

vc ∈ R is a desired catching speed. Thus, the terminal cost Ψ penalizes the catching-time pose256

errors, as defined within (A.1), as well as the motion of the lacrosse head perpendicular to the ball’s257

velocity vector at the catching instant.258

The overall OCP is thus parametric in θo, the parameters of the ball’s 3D predictor function F̂o, and259

problem parameters {εp, εr, vc, wp, wv, λ}.260

A.1 Conversion to Multi-Stage Trajectory Optimization261

To begin, we assume that the acceleration limits are given by symmetric intervals [−q̈a, q̈a], where262

q̈a ∈ R7
>0 is a fixed vector. Then, we can define an N−stage discrete-time trajectory optimization263

problem, where each “stage” is composed of a constant acceleration phase followed by constant264

cruise phase. Formally, stage-k for k ∈ {0, . . . , N − 1} lasts for δt[k] seconds, where δt[k] ∈ R≥0.265

Then, within the acceleration phase of stage-k, joint i ∈ {1, . . . , 7} accelerates at ±q̈a starting at266

(qi, q̇i)[k] to achieve a net velocity change of δq̇i[k]. In the cruise phase, the joint moves at a constant267

rate of q̇i[k] + δq̇i[k] for δt[k]− (|δq̇i[k]|/q̈ai) seconds.268

We can summarize the stage transition above by defining a composite state x[k] :=269

(q[k], q̇[k], t[k]) ∈ R15, and control u[k] := (δq̇[k], δt[k]) ∈ R8. Then, the stage-“dynamics”270

are written as:271

x[k + 1] =

[
q[k + 1]
q̇[k + 1]
t[k]

]
=

q[k] + (q̇[k] + δq̇[k])δt[k]− (1/2)∆−1q̈a (δq̇[k] ◦ |δq̇[k]|)
q̇[k] + δq̇[k]
t[k] + δt[k]

 (A.5)

where ◦ denotes the Hadamard product, and ∆v is the diagonal matrix form of the vector v.272

Let u := (u[0], . . . , u[N − 1]). The stage-equivalent discrete-time objective is given as:273

J(u) =

N−1∑
k=0

(
λδt[k] + ‖δq̇[k]‖2

)
+ Ψ(x[N]). (A.6)

7

Remark A.1. Note that the exact conversion of the integral objective in (2.1) to the stage-wise274

discrete-time objective would result in a stage-cost of the form λδt[k] + q̈Ta |δq̇[k]|. However, this275

was found to be numerically less robust than the C2 smooth objective used above.276

The terminal cost and endpoint catching inequality constraints from (A.1) carry over directly, and are277

applied to x[N] = (q(tf), q̇(tf), tf), where tf =
∑N−1
k=0 δt[k]. We now tackle the limit constraints278

on (q, q̇, q̈). For acceleration, we require:279

|δq̇[k]| ≤ q̈aδt[k], k = 0, . . . , N − 1. (A.7)

Since q̇(t) linearly interpolates between the stage-values q̇[k], the velocity limit constraints need280

only be enforced at the stage values:281

q̇ ≤ q̇[k] ≤ q̇, k = 0, . . . , N. (A.8)

Finally, to handle the limit constraints on q(τ) for all τ ∈ [0, tf], we must account for both the282

parabolic (constant acceleration) and linear (cruise) profiles within each stage. There exist two283

cases:284

• Case 1: q̇i[k](q̇i[k]+δq̇i[k]) ≥ 0. In this case qi(τ) interpolates in-between {qi[k], qi[k+1]}285

for all τ ∈ [t[k], t[k + 1]]. Thus, we need only apply the limit constraints on the endpoints286

qi[k], qi[k + 1].287

• Case 2: q̇i[k](q̇i[k] + δq̇i[k]) < 0. In this case, there is a local max/min for qi(τ) within288

[t[k], t[k + 1]] where q̇i(τ) = 0. Denote this max/min as q̂i[k]. Then, in addition to289

enforcing the limit constraints at qi[k], qi[k + 1], we must also enforce the constraint on290

q̂i[k]. The expression for q̂i[k] is given by:291

q̂i[k] = qi[k] +

q̇i[k]

2

2q̈ai
if q̇i[k] > 0

− q̇i[k]
2

2q̈ai
if q̇i[k] < 0

.

Given the discrete-time “stage”-dynamics, optimization objective, and constraints, we can use any292

off-the-shelf constrained discrete-time trajectory optimization solver. In this work, we leverage293

Dynamic Shooting SQP, introduced in [20].294

Remark A.2. Note that the combination of max/min acceleration and cruise phases within each295

stage reflects the nature of mixed control-effort/minimum-time optimal control solutions, colloquially296

characterized as the ‘bang-off-bang’ strategy. Further, recent work [27] has shown that for LTI297

systems with a single control input, the optimal solution to a mixed control-effort/minimum-time298

problem with an endpoint reachability constraint is a sequence of “bang-off” stages. This justifies299

our use of such a stage-wise reduction of the original continuous-time OCP, and is similar in spirit300

to previous works on catching using trapezoidal velocity profiles [28].301

B Detailed Reward Functions302

We provide detailed descriptions of the reward functions used for training the Blackbox policy and303

how they are computed below.304

Object Position Reward. This reward is based on the closest distance the end-effector comes to305

the object during the episode. The closest distance is scaled on an exponential curve with a cutoff306

at 20cm scoring 1.0 for any episodes that get closer than this. This reward is used both in sim and307

real. This reward is useful for the Blackbox Policy to learn to get the net close to the ball.308

Object Orientation Reward. This reward is based on the orientation of the net right when the ball309

gets to within 20cm of the net. The score is computed as a dot product of the velocity vector of the310

object and the axis of the net, scaled between 0 to 1 as a reward. This reward is only used in sim and311

encourages the policy to point the net in the right direction for a catch.312

Object Stability Reward. This reward is based on how stable the object remains after it is close313

(defined as within 20cm of the net). Entering the close criteria and staying there through the end314

of the episode provides a flat 0.2 reward. The remaining 0.8 part of the stability reward is given315

by measuring the speed of the ball while it’s close for 0.25s. Each time-step during this duration316

contributes equally and is scored on an exponential curve based on object speed, capping out at317

speeds less than 0.2m/s scoring full for that timestep. A full score would be keeping the speed less318

than 0.2m/s for the full 0.25s. This reward is only used in SIM as the precision of ball tracking is319

difficult when the ball is in the net or obscured.320

8

Object Catch Reward. This reward is only used in real and is measured using a proximity sensor321

attached close to the net that can reliably detect whether a ball is in the net or not. The ball is322

declared as caught if the sensor detects a ball continuously in the net for greater than 0.25s. This323

provides a flat 0 or 1 reward.324

Penalties for exceeding Robot dynamic constraints. In Sim, there are multiple penalty rewards325

used to ensure the policy learns to operate within the robot constraints such as joint position, velocity,326

acceleration and jerk limits. The penalty rewards are implemented as a flat 1.0 if the agent actions327

stay within constraints and reduces to 0 depending on how much it violates them. The reward is328

reduced depending on how many timesteps and by how much it exceeds them. In Real the hardware329

produces a fault error code and freezes when movements exceed constraints. So in real the penalty330

is just scored based on whether or not the hardware encounters the fault code.331

9

	Introduction
	Problem formulation and proposed solution
	Catching via optimal control
	Blackbox Gradient Sensing Optimization

	Experiments
	Conclusion and future work
	Catching via Optimal Control
	Conversion to Multi-Stage Trajectory Optimization

	Detailed Reward Functions

