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Abstract

Large language models (LLMs) like ChatGPT
have demonstrated the ability to perform a vari-
ety of natural language processing (NLP) tasks.
However, it’s unclear whether ChatGPT can
serve as a task-oriented dialogue system. In
this paper, we evaluate the impact of ChatGPT
on task-oriented dialogue (TOD) systems and
perform a comprehensive analysis to learn its
benefits and challenges. We find that ChatGPT
performs well on relatively simple dialogue
understanding tasks such as intent detection
and slot filling, but fails to understand complex
multi-turn conversations and interact with KB
in dialogue state tracking and response gener-
ation. Future LLM-based TOD work should
pay more attention to (1) incorporating domain
knowledge (2) understanding complex instruc-
tions (3) modeling long-term memory (4) inter-
acting with external knowledge bases. !

1 Introduction

Large language models (LLMs) (Brown et al.,
2020a; Ouyang et al., 2022; Touvron et al., 2023)
have achieved significant performance on various
natural language process (NLP) tasks. Their supe-
rior zero-shot learning capability enables a new
paradigm of NLP research and applications by
prompting LLLMs without finetuning. Recently,
the ChatGPT? LLM released by OpenAl has at-
tracted much attention from the research commu-
nity. Through RLHF training (Ouyang et al., 2022),
ChatGPT has impressive capabilities in various as-
pects, including generating high-quality responses,
rejecting unsafe questions, and self-correcting pre-
vious errors based on subsequent conversations.
Despite its rapidly increasing worldwide atten-
tion, we need to figure out how to evaluate the
potential risks behind ChatGPT. Previous efforts
have studied various aspects of ChatGPT in law
'We will open-source our code and all the evaluation re-

sults after blind review to facilitate future explorations.
“https://openai.com/blog/ChatGPT

(Choi et al., 2023), ethics (Shen et al., 2023), rea-
soning (Bang et al., 2023), robustness (Wang et al.,
2023a) and arithmetic (Yuan et al., 2023). How-
ever, there is a lack of comprehensive research on
the impact of ChatGPT on task-oriented dialogue
(TOD) systems (Ni et al., 2021). Different from
the existing open-domain conversation scenarios of
ChatGPT, TOD aims to accomplish a specific task
or goal, such as making a reservation or booking a
flight by interacting with a knowledge base (KB).
It contains semantic understanding, long context
modeling, querying the KB and decision-making.
Applying ChatGPT to TOD is a nontrivial task that
requires both commonsense reasoning and expert
knowledge. Therefore, in this paper, we focus on
the impact of ChatGPT on task-oriented dialogue
systems and perform a comprehensive analysis to
learn its benefits and challenges.

Current task-oriented dialogue systems are com-
monly divided into two categories: pipeline-based
and end-to-end. The former build a TOD system
by designing multiple functional modules, includ-
ing Natural Language Understanding (Goo et al.,
2018b; He et al., 2020b; Xu et al., 2020; He et al.,
2020c), Dialogue State Tracking (Wu et al., 2019;
Gao et al., 2019), Policy Learning (Peng et al.,
2018; Liu et al., 2021), and Natural Language Gen-
eration (Peng et al., 2020). Although these mod-
ules can achieve good performance in their respec-
tive tasks using the state-of-the-art neural networks,
they can’t be jointly optimized and make it diffi-
cult to transfer modular TOD systems to another
domain. The latter (Peng et al., 2021; Su et al.,
2021; He et al., 2022a) use only one end-to-end
generative model to perform both knowledge base
retrieval and response generation in a multi-task
paradigm. In this paper, we follow the two stan-
dard settings to build LLM-based TOD systems.
We hope to provide new insights for the future de-
velopment of TOD in the era of large language
models.
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Figure 1: The overall structure of pipeline-based TOD framework.
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Figure 2: The overall structure of end-to-end TOD
framework.

In this work, we introduce an LLM-based TOD
framework and evaluate the performance with re-
spect to modular components and end-to-end met-
rics. Since finetuning these LLMs becomes more
expensive and unaffordable, we perform zero-shot
evaluation by inferring directly on the test dataset
3. For pipeline-based modules, we construct each
task prompt by combining the task description, the
current user query, dialogue history and response
format, as shown in Figure 1. Note that we combine
dialogue policy learning and natural language gen-
eration to a single response generation task similar
to He et al. (2022a). For the end-to-end model, we
introduce an LL.M-based architecture, which first
generates a belief state based on the dialogue his-
tory, then queries the KB with the generated belief
state, and finally generates natural responses. The
overall end-to-end architecture is shown in Figure 2.
We perform single-domain and multi-domain evalu-
ation using MultiwOZ (Budzianowski et al., 2018).

3We also validate the impact of more advanced prompt
strategies such as few-shot and CoT (in Appendix E), as well
as the bias of different zero-shot templates (in Appendix F).

We mainly compare ChatGPT and text-davince-003
to the existing state-of-the-art finetuning baselines.

Our findings:

* Generally, ChatGPT performs worse than the
state-of-the-art models that are fine-tuned on
a given TOD task.

* ChatGPT achieves good performance in the
single-domain intent detection task but fails
to recognize complex multi-domain dialogues.

* For the slot filling task, ChatGPT demon-
strates decent performance, and adding few-
shot examples can achieve consistent improve-

ments.
* For the dialogue state tracking task, ChatGPT

fails to track structured slot-value pairs. We
find that ChatGPT can’t follow the input in-
structions and output inappropriate answers.
* ChatGPT does not perform well in generating
responses. Although it has strong abilities to
understand user goals and generate fluent re-
sponses based on existing information, Chat-
GPT still has weak reasoning abilities and
lack long-term memory in multi-turn conver-

sations.
* ChatGPT achieves high fluency scores but

lower coherency scores in the end-to-end mod-
eling way. We argue that ChatGPT can not
effectively interact with external knowledge

bases or learn long dependency.
We believe that future improvements for LLM-

based TODs come from the following aspects: (1)
Incorporating domain knowledge (2) Understand-
ing complex instructions (3) Modeling long-term
memory (4) Interacting with external knowledge
bases.



2 LLM for Pipeline-based TOD

2.1 Intent Detection
2.1.1 Task Description

The intent detection task plays a critical role in nat-
ural language understanding and constitutes a vital
technology for the development of TOD systems
(Young et al., 2013). Its objective is to facilitate ac-
curate comprehension of user intents within the di-
alog system. It can be further classified into single-
intent detection and multi-intent detection. Multi-
intent detection pertains to scenarios where a user
query may encompass more then one intent (Kim
et al., 2017; Gangadharaiah and Narayanaswamy,
2019; Qin et al., 2020). In this paper, we evaluate
the multi-intent detection capability of ChatGPT.

2.1.2 Related Work

The state-of-the-art intent detection methods use
pre-trained models (Devlin et al., 2018; Cer et al.,
2018; Jiang et al., 2020). In addition, researchers
have explored techniques such as semi-supervised
pre-training, response selection tasks, and sentence
similarity matching to improve the performance of
intent detection (Wu et al., 2020; He et al., 2022b).
Zeng et al. (2022a) introduce Semi-Supervised
Knowledge-Grounded Pre-training. They use
Roberta as the backbone and utilize the dialog his-
tory as input. The hidden state of the [CLS] token
is used to predict the results, with the learning ob-
jective being binary cross entropy. We use it as our
finetuning baseline in this paper.

2.1.3 Experiment Setup

We utilize MultiWOZ2.1 for the evaluation 4. We
extract the user intent for each utterance from the di-
alog_act in the log of user turns. The intent consists
of three components: "Action," "Domain," and "En-
tity," in the format of ’ Action-Domain-Entity.” In
total, we have 64 intents, and we present the de-
tailed statistics in Appendix Table 8. We employ
three commonly used metrics in multi-label classi-
fication tasks: Precision, Recall, and F1 score.

2.14 Prompt Engineering

We design the prompt to guide ChatGPT in identi-
fying user intents. We provide an instruction that
includes a task description and the supported intent
labels. ChatGPT is provided with the instruction,

“Due to the cost of ChatGPT API calls, we limit the num-
ber of test samples for each task to around 100, consistent
with previous works such as Bang et al. (2023).

Domain Model Precision | Recall F1
baseline 91.49 93.48 | 89.58

Attraction | text-davinci-003 20.86 27.18 | 23.6
ChatGPT 69.57 66.67 | 68.08

baseline 78.02 79.78 | 76.34

Hotel text-davinci-003 12.27 21.51 | 15.62
ChatGPT 63.11 69.89 | 66.37

baseline 96.64 94.74 | 98.63

Restaurant | text-davinci-003 28.26 35.62 | 31.51
ChatGPT 73.68 76.71 | 75.17

baseline 95.74 97.83 | 93.75

Taxi text-davinci-003 32.81 4375 | 37.5
ChatGPT 63.33 79.17 | 70.37

baseline 90.16 90.16 | 90.16

Train text-davinci-003 35.23 50.82 | 41.61
ChatGPT 59.09 63.93 | 61.42

baseline 79.90 81.26 | 78.58

Multi text-davinci-003 20.86 27.18 | 23.6
ChatGPT 32.1 38.45 | 35.46

Table 1: Comparison of intent detection performance
between ChatGPT and baseline

the user’s current utterance, and the conversation
history. Our prompt takes the following format
<Task description><Utterance for text><Dialog his-
tory><Response Format>. The complete prompt is
presented in Appendix Figure 3.

2.1.5 Results

Table 1 represents the comparison of LLMs (Chat-
GPT and text-davinci-003) with the finetuning base-
line in three metrics. The results indicate a sig-
nificant gap between current LLLMs and the base-
line. This can be attributed to the conflict between
the general knowledge of LLM and the domain-
specific knowledge required for intent detection.
ChatGPT outperforms text-davinci-003 due to its
superior dialogue understanding capability.

We identify five types of errors made by Chat-
GPT, as shown in the Table 2. The most common
error is returning intent from the dialogue history.
We suspect that this may be due to ChatGPT’s
difficulty in understanding longer instructions or
mistaking the user’s intent from the history as the
potential intent for the current turn. ChatGPT also
tends to anticipate the user’s needs, which can be at-
tributed to the deviation from human understanding
of instructions. It struggles with understanding la-
bels and identifying real-world entities, which can
be attributed to its lack of specific domain knowl-
edge. Additionally, ChatGPT tends to miss key
information when the input is too long.

In terms of action, ChatGPT occasionally con-
fuses Inform and Request. As for domain, ChatGPT
achieves a relatively high recall rate, but errors can
still occur. For example, if a user informs the des-



Error Type Ratio

Return intents from the historical dialog. 27.9%

Make anticipatory judgments about the user’s intent. 19.7%
Inability to recognize the Name or Type in the user’s requests. | 16.4%

Miss the information in the utterance. 16.4%

Ambiguous label semantics 19.7%

Table 2: Error type and relevant ratio of intent detection
from ChatGPT.

tination of a taxi is a restaurant, ChatGPT may
recognize it as Inform-Restaurant-Name. However,
the entity is where more errors occur, such as miss-
ing information provided by the user, recognizing
information from the dialogue history, and antic-
ipating additional information that the user may
need. Based on this, we speculate that ChatGPT’s
performance would be good for coarse-grained in-
tent detection, but for the fine-grained labels we
set, its performance is limited by the lack of do-
main knowledge, overuse of general knowledge,
and the impact of input length on the results.
These three points are the directions for optimizing
ChatGPT’s performance in the TOD multi-intent
detection.

2.2 Slot Filling

2.2.1 Task Description

The slot filling (SF) task is a critical component
in the task-oriented dialog system which aims to
identify task-related slot types in certain domains
(Fujii et al., 1998). Given an input utterance
X = {x1,x9,...,xN}, where N represents the
length of X, we adopt a triple y; = {l,r,t} € Y to
represent the ¢ — th entity that appears in X, where
Y represents all the entity triplets in X , and [, r
denote the entity boundaries, while t denotes the
entity type.

2.2.2 Related Work

The slot filling model has undergone several stages
of improvement throughout its development, grad-
ually evolving from initial sequence labeling-based
methods to generation-based approaches.(Yao
et al., 2014; Liu and Lane, 2016; Goo et al., 2018a;
He et al., 2020a; Wang et al., 2021) Large-scale
language models (LLMs) (Brown et al., 2020a;
Chowdhery et al., 2022) have demonstrated im-
pressive in-context learning capabilities and have
achieved promising results across various NLP
tasks. Similarly, LLMs have been proven to be
effective in the slot filling task (Xu et al., 2022;
Wang et al., 2023b).

Error Type Ratio
Boundary Error 26.2%
Misclassification Error | 9.2%
Overprediction 50.8%
Underprediction 13.8%

Table 3: Error types of slot filling for ChatGPT.
2.2.3 Experiment Setup

In this experiment, we evaluate the performance of
Large Language Models (LLMs) on the slot filling
task using the MultiWwOZ 2.1 dataset. The specific
distribution of slots and labels in each domain in
the experiment is presented in Appendix Table 8.
We compare ChatGPT against the following mod-
els for slot filling: Text-davinci-003(Brown et al.,
2020b) the latest model in the Davinci series with
175B parameters and PSSAT (Dong et al., 2022)
a strong fine-tuned baseline using bert. To mea-
sure the performance of the model, we use precise,
recall and F1 score as our automatic evaluation
metric.

2.2.4 Prompt Engineering

We designed a prompt for LLM to guide ChatGPT
to identify the slots. We provide a task description,
predefined slot categories, examples and dialogue
history for ChatGPT as input and ChatGPT out-
puts slot : category pairs. The complete prompt is
presented in Appendix Figure 4.

2.2.5 Results

LLMs (Text-davinci-003, ChatGPT) exhibit rela-
tively poorer performance in the slot filling task
compared to the baseline model PSSAT. We at-
tribute this to the fact that LLMs are typically
pre-trained on large-scale, general-domain corpora,
which makes it challenging to perform well on
specific domain data in zero-shot scenarios. Specif-
ically, ChatGPT demonstrates significant differ-
ences in accuracy compared to the baseline model
PSSAT, indicating that it still faces challenges in
accurately identifying slots. In terms of bad cases,
this is manifested by ChatGPT tending to over-
predict slots (51.9%), labeling some non-slot words
as slots. Additionally, ChatGPT frequently mispre-
dicts slot boundaries (26.0%), resulting in lower ac-
curacy. We believe both issues arise due to knowl-
edge confusion caused by the mismatch between
the knowledge acquired through pre-training LLMs
and the specific problems being addressed.

To further enhance the contextual learning capa-
bilities of LLM, we incorporate five examples from



Model Domain | precise recall F1
PSSAT 91.67 95.65 93.62
text-davinci-003 Train 44.83  56.52 50.00
ChatGPT 67.86 82.61 74.51
ChatGPT +5example 71.43 86.96 78.43
PSSAT 9474 9474 94.74
text-davinci-003 Taxi 44,00 57.89 50.00
ChatGPT 66.67 84.21 74.42
ChatGPT +5example 68.00 89.47 77.27
PSSAT 94.44 100 94.14
text-davinci-003 | Restaurant | 47.62  58.82 52.63
ChatGPT 70.00 8235 75.67
ChatGPT +5example 75.00 88.21 81.07
PSSAT 96.00 97.96 96.97
text-davinci-003 Hotel 47.37  55.10 50.94
ChatGPT 67.74 8571 75.67
ChatGPT +5example 69.35 87.76 77.48
PSSAT 94.12 9697 95.52
text-davinci-003 | Attraction | 50.00 60.61 54.80
ChatGPT 69.05 87.88 77.34
ChatGPT +5example 71.43 90.91 80.00
PSSAT 95.14 97.16 96.14
text-davinci-003 Multi 39.08 48.23 43.18
ChatGPT 62.50 85.11 72.07
ChatGPT +5example 65.24 86.52 74.39

Table 4: Slot filling results on MultiWOZ.

the current task domain into the input of ChatGPT.
We observe a certain improvement in performance
compared to the zero-shot scenario, indicating that
LLM can leverage a few domain-specific examples
for learning and achieve enhanced effectiveness
through contextual learning.

In conclusion, ChatGPT can enhance its per-
formance by learning domain-specific knowledge
through the incorporation of domain examples in
the input. We believe that further improvements
for ChatGPT can be achieved by providing more
domain-specific knowledge or conducting domain
fine-tuning, which would facilitate better slot recog-
nition and matching between slots and labels.

2.3 Dialog State Tracking

2.3.1 Task Description

Dialogue State Tracking (DST) serves as a crucial
component within Task-Oriented Dialogue Sys-
tems. Its primary objective is to recognize user
intent and the corresponding dialogue attributes, in-
cluding slots and their respective values (Williams
et al., 2016; Eric et al., 2019). During each turn,
these attributes are identified, and their accumula-
tion constructs the dialogue state, which directs the
system’s response. Moreover, the dialogue state
plays a pivotal role in retrieving vital information
from external databases. This process is essential
for constructing efficient TOD Systems.

JOINT ACC
model

ave | multi | hotel | rst taxi | train | attraction

GALAXY 53.97 | 47.70 | 62.90 | 53.33 | 71.05 | 71.11 68.57

text-davinci-003 | 18.31 | 11.22 | 11.29 | 40.00 | 36.84 | 55.56 14.29

ChatGPT 23.33 | 14.03 | 17.74 | 53.33 | 52.63 | 53.33 28.57

Table 5: Dialog State Tracking results on MWOZ.
2.3.2 Related Work

DST models have progressed through various
stages, transitioning from classification-based (Ye
et al., 2021; Chen et al., 2020) to generation-based
approaches (Heck et al., 2020). Furthermore, re-
searchers have aimed to construct complete end-
to-end TOD systems that perform well in DST
tasks. For example, SimpleTOD (Hosseini-Asl
et al., 2020) cascades sub-tasks for dialogue gen-
eration based on pre-trained models and generates
belief states through a generation approach. With
the arrival of large-scale pre-trained neural lan-
guage models, generation-based DST models have
achieved excellent results without any dependence
on domain-specific modules.

2.3.3 Experiment Setup

We sampled 100 dialogues from various domains
in MultiwOZ 2.1 to evaluate the models’ perfor-
mance on DST task. Table 8 shows the number of
slots involved in each domain, the average belief
state length of each dialogue and other information.
Additionally, multi-domain dialogues generally in-
volve more slots, longer dialogue length, and a
longer belief state that needs to be maintained. This
challenge the models’ ability to reason in multi-
turn dialogues and maintain long-term memory.
We used "Joint ACC" (Joint Accuracy) to assess
the ability on the DST task. Specifically, for each
turn and each slot, the system’s predicted result
needs to match the true value exactly. Only when
all slot predictions match the true values entirely, it
is considered correct.

2.3.4 Prompt Engineering

We constructed a prompt for the ChatGPT to com-
plete the DST task. We take instructions, dialogue
history, and belief state templates as inputs, and
ChatGPT outputs the current turn’s belief state. For
multi-round conversations, they will be divided into
rounds, and each round will be evaluated once. The
whole template is shown in Appendix A.

2.3.5 Results

Main Results The performance of LLM and the
fine-tuned model was assessed in the DST task, and
the corresponding experimental results are illus-
trated in Table 5. LLM’s performance in the zero-



shot DST task is worse than the fine-tuned model.
Multi-domain settings present greater complexity,
leading to poorer performance for all models. Chat-
GPT performs better than text-davinci-003, likely
due to improved fine-tuning on chat-based instruc-
tions for better contextual understanding.

Case Study we sampled error examples and
categorized the types of errors, as presented in
Appendix Table 9. We argue that LLM’s subpar
performance can be attributed to three main rea-
sons. Firstly, there is a conflict between the gen-
eral knowledge and domain-specific knowledge of
LLM, resulting in errors such as "hallucination".
Secondly, The context being too long makes it chal-
lenging for LLLM to capture the key points, result-
ing in errors such as "modifications-error” and "fill-
less". Finally, the incorrect output format cannot be
ignored. It results in "can-but-wrong" type errors,
which account for a high proportion of 13.68%.
These issues hamper LLM’s comprehension, reten-
tion, and practical applicability.

Future Directions Based on the previous sum-
mary of the shortcomings of LLM, we believe that
improvements can be made in the following as-
pects: First, a new architecture that can better in-
corporate domain-specific knowledge into LLM
needs to be explored which improves its access to
external knowledge bases, addressing issues like
hallucinations. Secondly, we need a mechanism
to compress lengthy contexts, extract key informa-
tion, or guide LLM to focus on certain information.
Finally, accessing databases can not be limited to
traditional methods such as using SQL language.
Vectorizing the database or using fuzzy matching
methods can enhance the system’s fault tolerance
to model output formats.

2.4 Response Generation

2.4.1 Task Description

We evaluated the LLM’s ability to interact with
users using natural language in response generation
tasks. This task aims to predict dialogue responses
based on the given dialogue contexts. To conduct
this experiment, we used the policy optimization
setting introduced by Yang et al. (2021). The model
takes the dialogue history and the database search
results retrieved by the ground truth belief state as
input, and generates responses according to the sys-
tem act determined by the model itself. It should be
noted that our response generation setting implic-
itly includes the prediction of dialogue policy. So,

we did not evaluate LLMs’ performance in policy
learning separately during the pipeline evaluation.

2.4.2 Related Work

Pre-trained language models (PLMs) have been
used to generate fluent and relevant responses based
on dialogue history. One example is DialoGPT
(Zhang et al., 2019), which is pre-trained on nu-
merous conversation-like exchanges extracted from
Reddit. S2KG (Zeng et al., 2022b) enhances the
model’s ability to select knowledge for generat-
ing responses by introducing semi-supervised pre-
training based on task-oriented dialogues. Large
language models (LLMs) have also been intro-
duced to improve the quality of responses. For
instance, LaMDA (Thoppilan et al., 2022) suggests
that increasing the model’s scale can improve safety
and factual grounding. BlenderBot 3 (Shuster et al.,
2022) enables large models to store information in
long-term memory and search the internet for in-
formation. In this section, we will investigate the
effectiveness of LLMs in response generation tasks.

2.4.3 Experiment Setup

We tested how well models performed in gener-
ating responses by analyzing 100 dialogues from
different domains in MultiwOZ 2.1. Table 8 shows
clear differences in the average number of turns
and length of responses across various domains.
Multi-domain dialogues tend to have more domains
and longer turns than single-domain dialogues, like
Train and Attraction, which can challenge models’
ability to maintain long-term memory and reason
in multi-turn dialogues. We compared ChatGPT’s
zero-shot response generation with text-davinci-
003 and a strong fine-tuned baseline, Galaxy (He
et al., 2022c). We utilize automatic evaluation met-
rics, including BLEU (Papineni et al., 2002), In-
form, Success, and Comb, to measure task com-
pletion and response quality. For more information
about these metrics, refer to Appendix C.

2.4.4 Prompt Engineering

We designed a prompt for LLM to generate a sys-
tem response based on dialogue history and ground
truth database results. The prompt instructs LLM
to act as a task-oriented dialogue system and only
provide a system response without additional con-
tent. The complete template is in Appendix Figure
6. During the evaluation process, we fill in the
placeholders in the prompt with the dialogue his-
tory and database results and use LLM’s output as



Model Domain | BLEU Inform Success Comb
Galaxy 11.31 90.00 90.00 101.31
text-davinci-003 Train 3.41 90.00 40.00 68.41
ChatGPT 091 90.00 40.00 65.91
Galaxy 20.97 100.00 100.00 120.97
text-davinci-003 Taxi 2.99 100.00 0.00 52.99
ChatGPT 1.75 100.00 0.00 51.75
Galaxy 19.98  90.00 90.00  109.98
text-davinci-003 | Restaurant | 2.64 100.00 30.00 67.64
ChatGPT 4.20 90.00 20.00 59.20
Galaxy 11.31 90.00 90.00 101.31
text-davinci-003 Hotel 1.82 80.00 20.00 51.82
ChatGPT 2.54 90.00 20.00 57.54
Galaxy 18.66  100.00  90.00 113.66
text-davinci-003 | Attraction 6.38 80.00 70.00 81.38
ChatGPT 5.44 90.00 70.00 85.44
Galaxy 21.43  88.00 70.00  100.43
text-davinci-003 Multi 2.40 76.00 24.00 52.40
ChatGPT 2.29 78.00 16.00  49.29

Table 6: Response Generation results on MultiWOZ.
the system response.

2.4.5 Results

Table 6 displays the results of Response Generation
on MWOZ2.1. We observed that the performance
of LLM models was significantly worse than that
of the fine-tuned model Galaxy.

The LLM model did well on the Inform Rate,
similar to Galaxy, but poorly on the Success
Rate. For example, in the hotel domain, ChatGPT
and text-davinci-003 scored 90, 80 on the Inform
Rate respectively, but only 20, 20 on the Success
Rate. We explained that LL.Ms understood user
intent and integrated database results well, but due
to Al safety limitations, they avoided actions such
as booking and focused on providing information.

We found that LLM performance varies sig-
nificantly across domains. For example, ChatGPT
performs better in the Attraction domain with a
BLEU score of 5.44 and 70% success rate. How-
ever, in the Hotel domain, the BLEU score drops
to 2.54 and the success rate falls to 20%. We argue
that simpler domains like Attraction require only
simple information retrieval and integration, while
more complex domains such as trains and hotels
or multi-domains with complex scenarios require
the model to have strong reasoning and long-term
memory capabilities.

We found that ChatGPT did not perform
significantly better than text-davinci-003, espe-
cially in multi-turn conversations. In fact, Chat-
GPT scored slightly lower than text-davinci-003
in terms of BLEU, Inform Rate, and Success Rate.
Our analysis shows that ChatGPT’s ability to un-
derstand and reason in multi-turn conversations is
slightly inferior to that of text-davinci-003. For
example, text-davinci-003 can accurately infer the
departure and destination of a taxi based on the
dialogue history, while ChatGPT needed to ask fur-

ther questions to the user and was unable to extract
relevant information from the dialogue history.

Overall, LLMs pre-trained on general corpus
struggle to generate responses for task-oriented dia-
logues due to weak multi-turn conversation reason-
ing and long-term memory. Although LLMs are
excellent in generating fluent responses based on
existing information and understanding user goals,
they may sometimes reject dialogue actions like
booking due to Al safety concerns. To overcome
these limitations, we recommend pre-training them
on domain-specific data or using external models
to augment them.

3 LLM for End-to-End TOD

3.1 Task Description

We explored the ability of LLM as a task-oriented
dialogue system to interact with users in an end-to-
end manner. In this task, the model should generate
a belief state based on the dialogue history, query
database results with the generated belief state, and
finally generate responses.

3.2 Related Work

Most current work builds end-to-end systems
by fine-tuning pre-trained language models.
UBAR(Yang et al., 2021) trains the model on the
entire dialog session sequence, which consists of
the user’s utterance, belief state, database result,
system act, and system response. SPACE-3(He
et al., 2022b) proposes maintaining task flow in
TOD systems with a novel unified semi-supervised
pre-trained conversation model. Some work has
attempted to combine LLMs with end-to-end dia-
logue systems. Hudecek and Dusek (2023) intro-
duces a pipeline for LLM-based TOD conversa-
tions to evaluate LLM performance.

3.3 Experiment Setup

We performed end-to-end modeling experiments on
Zero-Shot LLM-based models, including ChatGPT
and text-davinci-003, as well as strong fine-tuned
models such as Galaxy. To evaluate the perfor-
mance of end-to-end TOD systems, we report both
automatic and human evaluation metrics. For au-
tomatic evaluation, we use the same metric as de-
scribed in Section 2.4.3. For human evaluation, the
details and results can be found in Appendix D.



Model Domain | BLEU Inform Success Comb
Galaxy 20.7 90 90 110.7
text-davinci-003 Train 1.22 100 40 71.22
ChatGPT 0.36 100 40 70.36
Galaxy 18.27 100 100 118.27
text-davinci-003 Taxi 2.01 100 0 52.01
ChatGPT 1.57 100 0 51.57
Galaxy 17.54 90 90 107.54
text-davinci-003 | Restaurant | 3.91 70 20 48.91
ChatGPT 2.7 70 20 47.7
Galaxy 14.6 100 100 114.6
text-davinci-003 Hotel 0.99 70 20 45.99
ChatGPT 1.45 70 20 46.45
Galaxy 16.47 100 80 106.47
text-davinci-003 | Attraction 3.79 90 70 83.79
ChatGPT 5.26 80 70 80.26
Galaxy 20.46 90 70 100.46
text-davinci-003 Multi 2.09 22 0 13.09
ChatGPT 2.32 68 10 41.32

Table 7: Automatic End2End results on MultiwOZ.
3.4 Prompt Engineering

Based on LLM, our pipeline includes two steps
for generating the system response: 1) belief state
generating and 2) system response generating.
Belief State Generating We created a prompt that
uses dialogue history and a Belief State Template
to generate belief states for LLM. The LLM is
required to act as a task-oriented dialogue sys-
tem using the provided dialogue history and be-
lief state template, and return only the updated
Belief State. The complete template is in Appendix
Figure 7. During evaluation, we replace the place-
holders in the prompt template with the dialogue
history and belief state templates. The LLM gener-
ates a belief state that retrieves and returns results
from the database. System Response Generating
We use the same prompt as in section 2.4.4 to in-
struct LL.Ms to generate a system response based
on dialogue history and retrieved database results.
However, in the evaluation process, we replace the
database result with the result retrieved by the gen-
erated belief states, rather than the ground truth
database result.

3.5 Automatic Evaluation Results

Table 7 shows that the zero-shot LLM performed
significantly worse than the fine-tuned model
across all domains. Our analysis highlights a
gap between LLMs’ general knowledge and the
domain-specific knowledge required by end-to-end
dialogue systems. Therefore, fine-tuned models are
still better at generating belief states for retrieval
databases and responses than LLMs.

We found it difficult to achieve the user’s goal
using the LL.M-based model. For example, in the
restaurant domain, the success rate of text-davinci-
003 and ChatGPT is only 20%. We identified two
main reasons for this. (1) LLMs may not be able

to actively use tools to acquire knowledge from
external sources to enhance their abilities., leading
to incorrect belief states and incorrect responses.
(2) LLMs struggle with long-term memory and
processing large amounts of information. In this
scenario, LLMs lost most of the information, re-
sulting in a decreased success rate.

We found that LLM-based models perform
worse in multi-domain dialogues than in single-
domain ones. For instance, ChatGPT scores 80.26
in the attraction domain but only 13.09 in the multi-
domain. This is because models require diverse
domain knowledge in multi-domain scenarios. For
example, while generating a belief state, the model
must master slot value information of all domains
to produce correct values - a significant challenge
for LLMs with only general knowledge.

We observed that ChatGPT performs simi-
larly to text-davinci-003 in a single domain, but
significantly outperforms it in multiple domains.
For example, while the text-davinci-003 model
only achieved a combined score of 13.09 in multi-
domain tasks, ChatGPT achieved a score of 41.32.
We argue that ChatGPT has a much stronger ability
to follow instructions in complex scenarios than
text-davinci-003.

Overall, there is still a significant gap between
LLM and practical end-to-end task-oriented dia-
logue systems in terms of acquiring knowledge
from external sources, handling long information,
lacking diverse domain-specific knowledge, and
weak reasoning abilities. Possible solutions include
reinforcement learning(Qin et al., 2023), using ex-
ternal models to summarize long information, fur-
ther tuning LLM on domain-specific dialogue, and
using a chain-of-thought approach to enhance com-
plex reasoning abilities(Wei et al., 2022).

4 Conclusion

We have empirically studied the effect of ChatGPT
on task-oriented dialogue systems. We find that
ChatGPT performs well on dialogue understand-
ing tasks such as intent detection and slot filling,
but fails to understand complex multi-turn con-
versations and interact with KB in dialogue state
tracking and response generation. Our experiments
show that there is still room for improvement to
ChatGPT on these TOD tasks. We hope that this
study can inspire future works, such as incorpo-
rating domain knowledge, understanding complex
instructions, modeling long-term memory and in-
teracting with external knowledge bases.



Limitations

This work is a preliminary empirical study on the
effect of ChatGPT on TOD, and it has several limi-
tations. (1) Considering that MultiWOZ is the most
classic task-oriented dialogue dataset and includes
labels for almost all the tasks we need to evaluate,
we primarily conduct experiments on this dataset.
In the future, we will evaluate additional datasets
to ensure more solid experimental settings. (2) Due
to the API cost, this work uses a small scale of
test samples and limited prompt templates, which
may result in biased results. We only conduct anal-
ysis on some tasks regarding the impact of more
advanced prompt strategies and different prompt
templates. (3) We conduct our experiments at the
beginning of March. This ChatGPT version is not
consistent with the current one. Therefore, new re-
sults are possibly higher than those in the paper. (4)
We select ChatGPT as a representative of LLMs but
there exist many other LLMs like Claude, PaLM
2, etc. Since these works are not publicly avail-
able until our paper, we leave more comparisons to
future work.
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A DST Prompt

We constructed a prompt for the ChatGPT to com-
plete the DST task. We take instructions, dialogue
history, and belief state templates as inputs, and
ChatGPT outputs the current turn’s belief state. For
multi-round conversations, they will be divided into

12

<Task description> | need you to help me to
detect the intent of user’s query in a dialog. So
I will give you a utterance and its dialog
history. You need to tell me the intent of this
utterance. The supported intents include
[intent1], [intent2] ,... [intentN]... You can only
classify the utterance using the above intents
and one utterance may include more than one
intent.

<User query> Please tell me the intent of this
text according its dialog history: [Here is the
text]

<Dialog history> [Here is the dialog history]
<Output format> Please respond to me with
the format of “Intent: xx”’

Figure 3: The ChatGPT prompt for the intent detection
task.

rounds, and each round will be evaluated once. The
whole template is shown in Figure 5. The Belief
State template standardizes the output format of
LLM for our subsequent parsing, while also pro-
viding slot information to LLM. For single-domain
dialogues, we only provide the corresponding do-
main’s slots, while for multi-domain dialogues, we
provide all slots. This is because we have found
that there is a high possibility of domain confusion
errors when providing slots for multiple domains,
which can obscure other errors. Therefore, when
testing the effectiveness of LLM on a single do-
main, we only provide slot information for a single
domain. We also add the following sentence ad-
ditionally in the prompt when testing on multiple
domains.

B DST Error Descriptions

We have summarized the error types of DST in
Table 9. The meaning of each error is as follows:
"'Slot Wrong" means that the correct value has
been extracted, but has been filled into the wrong
slot. ""Modifications Error'' means that if the user
modifies a certain slot value multiple times, Chat-
GPT may not be able to recognize the modified
slot value. "'Ignore Error'' means that when the
user can accept all the possible values for a cer-
tain slot, this slot should be filled with ignore, but
ChatGPT does not tend to do so. The meaning
of “Fill Less” is that some slot values have been
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Domain | Doma.num | Dial.Lnum | Turn.num | Intent.num | Slot.num | Slot-turn.num | Slot-label.num | Belief-State.len | Turn.len
Train 1.0 10 4.5 16 6 1.3 23 5.2 22.8
Taxi 1.0 10 3.8 10 4 1.3 19 52 22.8
Hotel 1.0 10 6.2 21 10 1.3 49 6.9 27.7

Restaurant 1.0 10 4.5 17 7 1.6 17 53 26.4

Attraction 1.0 10 35 12 3 1.3 33 1.9 27.0

Multi 2.3 50 7.8 64 30 1.5 141 10.1 27.1

Table 8: MultiWOZ Dataset statistics. "Doma.num" represents the number of involved domains. "Dial.num"
represents the number of dialogues per domain. We randomly select 10 dialogues for each domain from the original
test set. "Turn.num" represents the average number of turns per dialogue. "Intent.num" represents the number of
involved intents per domain. "Slot.num" represents the total slot number per domain. "Slot-turn.num" represents the
average slot number per turn. "Slot-label.num" represents the total values number per domain. "Belief-State.num"
represents the average slot number of the final belief state. "Turn.len" represents the average length each turn.

<Task description> | need you to identify the
slots of a user’s query in a dialog. | will give
you an utterance and its dialog history. The
categories of slots can only come from a
predefined set of categories. Note that each
sentence may have multiple slots. | will give
you a predefined set of slot categories.
Predefined slot categories include: [typel],

[type2] ... [typeN]

<User query> Please tell me the slots and
their categories in the following text: [Here is
the text]

<Dialog history> [Here is the dialog history]
<Output format> Please respond to me in the
format of “slot : category »

Figure 4: The ChatGPT prompt for the slot filling task.

missed. The meaning of “Hallucination” is that
ChatGPT will fill in some slot values that have not
appeared in the conversation history based on its
own world knowledge. "boundary-error" means
that ChatGPT tends to confuse two slots with the
same name but different domains. ""Unconfirmed
Error'" means that ChatGPT tends to fill in the slot
values that have been suggested by the system but
have not been confirmed by the user. The mean-
ing of "Over Inference'' is that ChatGPT is not
careful enough when filling in slot values. When
it sees that the user uses “I”, it likes to default the
number of people to 1. When the user wants to find
a restaurant with the word “curry” in its name, it
will assume that the user only wants to eat curry,
and it also likes to default the time to today. The
meaning of '""Can But Wrong" is that ChatGPT
has extracted some slot values that are correct but
have small errors compared to the ground truth,
such as missing an article or being too specific.
The meaning of ""Ground Truth Wrong" is that
we have checked some of the errors made by Chat-
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<Task description> Do the task of dialogue state
tracking! I'll give you a dialogue history and a
template that describes the belief state. Based on
your understanding of the slots, you need to
ccurately fill in the slot values. For slots that are
not mentioned in the dialogue history, leave them
as "". You must strictly follow the template utput,
without any extra words. The template will be
given to you in json format, so you also need to
output in json format.

<Additional prompt for multi>

<Belief State Template> [Here is belief state
template in json format]

<Dialogue History> [Here is the Dialogue
history]

Figure 5: The prompt we design to assist ChatGPT in
performing DST.

GPT and found that the generation of ChatGPT is
reasonable, while, in contrast, the data labeling is
wrong.

C Automatic Evaluation Metrics

To measure task completion and response quality,
we report the following automatic evaluation met-
rics: (1) BLEU(Papineni et al., 2002) measures the
quality of the generated response. (2) Inform mea-
sures whether the system has provided the correct
entity. (3) Success measures whether the system
has answered all the requested information. (4)
Comb(Mehri et al., 2019) measures the overall
quality of the system, computed as (Inform + Suc-
cess) x 0.5 + BLEU.



<Task description> You should act as a task-
oriented dialogue system. | will give your
dialogue history, database results. You should
give the response according to them. You
should only return the system response. Do not
provide other content!

<Dialogue History> [Here is dialogue history]
<DataBase Result> [Here is the database
result]

System Response:

Figure 6: The prompt we design to assist ChatGPT in
performing response generation.

<Task description> You should act as a task-
oriented dialogue system. | will give your
dialogue history and belief state template. You
should fill each of the states with slot value in
provided Belief State. You should only return
the Updated Belief State Template. Do not
provide other content!

<Dialogue History> [Here is dialogue history]
Belief State Template:

<DataBase Result> [Here is the belief state
template]

Update Belief State:

Figure 7: The prompt we design for ChatGPT to gener-
ate belief states.

D Human Evaluation

D.1 Human Evaluation Details

We manually evaluated the end-to-end modeling
performance of the model. To do this, we ran-
domly selected 100 dialogue samples from differ-
ent domains and collected the corresponding re-
sponses generated by ChatGPT, text-davinci-003,
and Galaxy. We asked five professional linguis-
tic evaluators to rate the quality of the generated
dialogue based on three metrics: (1) Success mea-
sures whether the system achieved the user’s goal
by interacting with them. (2) Coherency measures
whether the system’s response is logically coherent
with the dialogue context. (3) Fluency measures
the fluency of the system’s response. Each metric
was rated on a scale of 1 (worst) to 3 (best). The
inter-annotator agreement for Success, Coherency,
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Error Type Ratio
Unconfirmed Error | 34.74%
Fill Less 17.89%
Can But Wrong 13.68%
Slot Wrong 7.37%
Ignore Error 7.37%
Over Inference 6.32%
Hallucination 4.21%
Ground Truth Wrong | 4.21%
Modifications Error | 3.16%
Boundary Error 1.05%

Table 9: Error types of Dialog State Tracking for Chat-
GPT. For the explanation of each error type, please refer
to Appendix B.

Model Domain Success Coherency Fluency
Galaxy 2.7 2.6 2.7
text-davinci-003 Train 1.6 2 2.6
ChatGPT 1.7 2.3 3
Galaxy 3 2.6 3
text-davinci-003 Taxi 1.7 2.3 2.6
ChatGPT 1.3 2 3
Galaxy 2.7 24 3
text-davinci-003 | Restaurant 2.1 2 2.3
ChatGPT 2.7 2 2.6
Galaxy 2.7 3 2.7
text-davinci-003 Hotel 2.1 2.3 2.6
ChatGPT 2.3 2 2.7
Galaxy 3 3 2.6
text-davinci-003 | Attraction 1.9 2.6 2.7
ChatGPT 2.7 2.6 3
Galaxy 2.54 2.84 2.76
text-davinci-003 Multi 1 1.54 2.24
ChatGPT 2.24 242 2.78

Table 10: Human Evaluation End2End results on Multi-
WOZ.

and Fluency was 0.61, 0.63, and 0.60, respectively.
The final score for each metric was the average
score of the 5 annotators.

D.2 Human Evaluation Results

Table 10 presents the results of human evaluation
on the MWOZ2.1 dataset. We observe a relatively
consistent correlation between human evaluation
and automatic evaluation. According to the human
evaluation, LLMs score higher in fluency but
lower in coherency. Our analysis indicates that
LLM’s long dialogue comprehension and reason-
ing abilities are weak, while its ability to generate
fluent text is strong. In the cases examined, we
found that as the dialogue becomes longer, LLM
starts to repeat its generated responses and lacks a
proper understanding of new user queries.



Model Domain | BLEU Inform Success Comb Model Domain | BLEU Inform Success Comb
Zero-Shot 0.36 100 40 70.36 Origin 0.36 100 40 70.36
CoT Train 1.31 100 40 71.31 Template 1 Train 0.45 100 40 70.45
Few-Shot 1.15 100 40 71.15 Template 2 0.86 100 40 70.86
Zero-Shot 1.57 100 0 51.57 Origin 1.57 100 0 51.57
CoT Taxi 0.34 100 0 50.34 Template 1 Taxi 1.96 100 0 51.96
Few-Shot 1.51 100 0 51.51 Template 2 2.30 100 0 52.30
Zero-Shot 2.7 70 20 47.7 Origin 2.7 70 20 477
CoT Restaurant 1.67 80 20 51.67 Template 1 | Restaurant 1.32 80 20 51.32
Few-Shot 1.06 80 20 51.06 Template 2 1.15 80 20 51.15
Zero-Shot 1.45 70 20 46.45 Origin 1.45 70 20 46.45
CoT Hotel 2.10 80.0 20 52.10 Template 1 Hotel 2.06 70 20 47.06
Few-Shot 2.11 60 10 37.11 Template 2 1.85 80 20 51.85
Zero-Shot 5.26 80 70 80.26 Origin 5.26 80 70 80.26
Cot Attraction | 3.39 70 70 73.39 Template 1 | Attraction | 5.86 70 70 75.86
Few-Shot 6.11 70 70 76.11 Template 2 5.36 80 70 80.36
Zero-Shot 232 68 10 4132 Origin 2.32 68 10 41.32
CoT Multi 1.95 62.0 12.0 38.95 Template 1 Multi 1.27 50.0 10.0 31.27
Few-Shot 281 54 80 3381 Template 2 186 560 100  34.96
Table 11: Automatic End2End result of Different ~ Table 12: Automatic End2End result of Different

Prompt Strategies on MultiWOZ. Zero-Shot, CoT, and
Few-Shot represent the default setting we use, the Zero-
CoT setting, and the setting where Few-Shot examples
are added.

E Different Prompt Strategies

We typically evaluate most tasks using the zero-
shot setting. To investigate the impact of more
advanced prompt strategies on model performance,
we conducted tests using Zero-CoT (Kojima et al.,
2022) and Few-Shot approaches for end-to-end di-
alogue tasks. In the Zero-CoT approach, we added
the phrase "Let’s think step by step" after gener-
ating the belief state and response prompts. In
the Few-shot setting, we included examples in the
prompt for generating belief states and response
prompts. Table 11 results indicate that the Few-
Shot setting can slightly improve the BLEU score,
but there is no significant improvement in other
metrics such as inform rate and success rate. Fur-
thermore, CoT does not enhance the end-to-end
performance at all. These findings suggest that
there is still a considerable gap between current
LLMs and practical end-to-end task-oriented dia-
logue systems. Therefore, it is necessary to develop
more effective strategies to enhance the ability of
LLMs.

F Bias of the Prompt Template

To reduce the bias introduced by the Prompt Tem-
plate and improve the reliability of automatic eval-
uation, we develop several prompt templates (as
shown in Table 13) and evaluated their effective-
ness on end-to-end tasks. Table 12 indicates that
the biases resulting from different Prompt Tem-
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Prompt Templates on MultiWOZ. The origin represents
the default prompt that we use. Template 1 and Tem-
plate 2 are the other prompt templates that we design.

plates are relatively minor, which further validates
the relative reliability of our automatic evaluation
approach.



Method Belief State Response
Your role is to act as a task-oriented dialogue system. . . .
. . . . . Your role is to act as a task-oriented dialogue system.
I will provide you with a dialogue history and a template . . . .
P . . You will receive the dialogue history and database
Prompt | for your belief state. Your task is to fill each state with .
. . . results, and provide a response based on them. Your
Template 1 | the appropriate slot value from the provided Belief State. R
. . response should only be the system’s response and
Your output should only consist of an updated Belief State . .
. . . should not include any additional content.
Template. Please refrain from including any other content.
As a task-oriented dialogue system, your goal is to fill
in each state of the provided belief state template with As a task-oriented dialogue system, your role is to
Prompt the corresponding slot value based on the dialogue respond based on dialogue history and database results.
Template 2 | history. Your output should only consist of the updated Your responses should be limited to system responses

belief state template. Please refrain from including any
additional information.

and should not include any additional content.

Table 13: Different Prompt Templates.
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