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Abstract

Building universal dialogue systems that001
can seamlessly operate across multiple do-002
mains/APIs and can generalize to new ones003
with minimal supervision and low mainte-004
nance is a critical challenge. Recent works005
have leveraged natural language descriptions006
for schema elements to build such systems.007
However, descriptions only provide indirect008
supervision for downstream tasks, while still009
requiring effort to construct. In this work, we010
propose Show, Don’t Tell, which uses a short011
labeled example dialogue to show the seman-012
tics of a schema rather than telling the model013
about the schema elements via descriptions.014
While requiring similar effort from service015
developers, we show that using short exam-016
ples as schema representations with large lan-017
guage models results in stronger performance018
and better generalization on two popular dia-019
logue state tracking benchmarks: the Schema-020
Guided Dialogue (SGD) dataset and the Multi-021
WoZ leave-one-out benchmark.022

1 Introduction023

With the widespread adoption of task-oriented dia-024

logue (TOD) systems, these need to support an ever-025

increasing variety of services/APIs. Since many026

service developers lack the resources to collect la-027

beled data or the requisite ML expertise, zero/few-028

shot transfer to unseen services becomes critical to029

the democratization of dialogue agents.030

New approaches to TOD that can generalize to031

new services mainly rely on combining two tech-032

niques: large language models like BERT (De-033

vlin et al., 2019) and T5 (Raffel et al., 2020), and034

schema-guided modeling i.e. using natural lan-035

guage descriptions of schema elements (intents and036

slots) as model inputs to enable inference on unseen037

services (Rastogi et al., 2020a,b). Models combin-038

ing the two currently show state-of-the-art results039

on dialogue state tracking (DST) (Heck et al., 2020;040

Lee et al., 2021a; Anon, 2021).041

However, description-based schema representa- 042

tions have drawbacks: precise natural language de- 043

scriptions still take manual effort and can be tricky 044

to write, while only constituting indirect supervi- 045

sion for unseen services compared to an example 046

dialogue. Furthermore, Lee et al. (2021b) showed 047

that state-of-the-art schema-guided DST models 048

may not be robust to variation in schema descrip- 049

tions, causing significant accuracy drops. 050

Alternatively, we propose using a single dialogue 051

example (with final state annotations) in place of 052

the service schema representation, similar to one- 053

shot priming (Brown et al., 2020). Rather than 054

telling the model about schema element semantics 055

in natural language, we aim to show the schema 056

through a demonstration, as in Figure 1. Our ap- 057

proach, "Show, Don’t Tell (SDT)," when applied 058

to two SotA DST models, offers consistently supe- 059

rior accuracy and generalizes better to new APIs 060

across both the SGD (Rastogi et al., 2020b) and 061

MultiWoZ-Leave-One-Out (Budzianowski et al., 062

2018; Lin et al., 2021b) benchmarks, while being 063

more data-efficient and robust to schema variations. 064

2 Show, Don’t Tell 065

Following SoTA models, we pose DST as a seq2seq 066

task (Wu et al., 2019; Zhao et al., 2021a), where the 067

input language model (in our case, T5) is finetuned 068

on the training set for a DST dataset. During fine- 069

tuning and evaluation, the model input consists of a 070

prompt and context, and the target contains ground 071

truth belief states. We consider two models/prompt 072

formats as our baselines: 073

• T5-ind (Lee et al., 2021a): Model input com- 074

prises of the dialogue history as context concate- 075

nated with one slot description as the prompt. 076

The target is the value of that slot in the dialogue 077

state. Inference must be done per slot i.e. values 078

for different slots are independently decoded. 079

• T5-seq (Anon, 2021): Model input comprises 080
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T5-ind SDT-ind
amount: The amount of money to send or
request

[ex] [user] I need to transfer 125 dollars [slot] amount=125
dollars

receiver: Name of the contact or account to
make the transaction with

[ex] [user] Make the transfer to Victoria. [slot]
receiver=Victoria

. . .

T5-seq SDT-seq
0: The amount of money to send or request 1:
Name of the contact or account to make the
transaction with 2: Whether the transaction is
private or not a) True b) False 3: The source
of money used for making the payment a)
credit card b) debit card c) app balance

[ex] [user] I want to make a payment to Jerry for $82 from my
mastercard [system] Confirming you want to pay Jerry $82
with your credit card yes? [user] Yes that’s right, make the
transaction private too [slot] amount=$82 receiver=Jerry
private_visibility=a of a) True b) False payment_method=a of
a) credit card b) debit card c) app balance

Figure 1: Illustration of all prompt formats for a payment service for description-based as well as Show, Don’t
Tell models with a) independent (top) and b) sequential (bottom) decoding of dialogue state.

the descriptions of all slots as the prompt, fol-081

lowed by the dialogue history as the context. The082

target is the sequence of slot-value pairs in the083

dialogue state. In other words, the dialogue state084

is decoded sequentially in a single pass.085

We modify the above prompt formats to include086

demonstrations instead of descriptions as follows.087

The new example-based prompt formats are de-088

scribed below and illustrated in Figure 1.089

• SDT-ind: A prompt Pindi comprises a single la-090

beled slot value pair for slot i formatted as091

Pindi = [ex]; dindi ; [slot]; svi092

where dindi is a single user utterance indicating093

a value for slot i, and svi is the slot value pair.094

[ex], [slot] are special delimiter tokens.095

• SDT-seq: A prompt Pseq comprises a single la-096

beled dialogue turn formatted as:097

Pseq = [ex]; d1; ...; dn; [slot]; sv1; ...; svm098

i.e. the prompt is constructed by concatenating099

all utterances in the example dialogue followed100

by all slot-value pairs in the final dialogue state.101

For all prompt formats (T5-* and SDT-*), we for-102

mat the values for categorical slots (taking one of a103

fixed set of values) as a multiple-choice question.104

The context in both prompt formats is a con-105

catenation of the dialogue history for the current106

training example. The final model input is formed107

by concatenating the prompt and the context strings.108

The target string is unchanged, containing only the109

value for the specific slot for independent decoding110

and the turn belief state for sequential decoding. 111

More details on the prompt design and its impact 112

on performance are provided in Appendix C. 113

Formulating prompt examples: Given neither 114

SDT prompt format contains slot descriptions, it 115

is imperative that the prompt(s) contain enough se- 116

mantic information to infer values for all slots in 117

the schema. This is easy for SDT-ind, which uses a 118

separate prompt for each slot. However, for SDT- 119

seq, we ensure that the chosen example dialogue 120

contains annotations for all slots in that schema. 121

3 Experimental Setup 122

Datasets: We conduct experiments on two DST 123

benchmarks: Schema-guided Dialogue (SGD) 124

(Rastogi et al., 2020b) and MultiWOZ 2.1 125

(Budzianowski et al., 2018; Eric et al., 2019). For 126

MultiWOZ, we evaluate on the cross-domain trans- 127

fer setup from Wu et al. (2019); Lin et al. (2021a), 128

where models are trained on all domains but one 129

and evaluated on the holdout domain. For SGD, we 130

created prompt dialogues manually, with 5.9 turns 131

on average, compared to 15.3 average turns in the 132

SGD single-domain dataset. For MultiWoZ, we 133

selected a short dialogue containing all slots from 134

each holdout domain’s training set for the prompt. 135

Implementation: We train SDT models by fine- 136

tuning pretrained T5 1.1 checkpoints of various 137

sizes. For both datasets, we select one example 138

prompt per service schema (for SDT-seq) or slot 139

(for SDT-ind), and use the same prompt for all 140

examples for that service/slot across training and 141

evaluation. Unless otherwise noted, all T5-based 142

models (T5/SDT-seq/ind) are finetuned on T5-XXL 143

(11B parameters). Appendices A and B have more 144

details on training and baselines respectively. 145
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Model All Seen Unseen
MRC+WD-DST* 86.5 92.4 84.6
T5-seq 86.4 95.8 83.3
T5-ind 87.7 95.3 85.2
SDT-ind 87.5±0.6 95.1±0.5 85.0±0.9
SDT-seq 88.8±0.5 95.8±0.2 86.4±0.7

Table 1: SGD test set JGA for SDT versus other ap-
proaches. *Data augmentation/special rules applied.

Model Attraction Hotel Restaurant Taxi Train Avg
TRADE 20.1 14.2 12.6 59.2 22.4 25.7
SUMBT 22.6 19.8 16.5 59.5 22.5 28.2
TransferQA 31.3 22.7 26.3 61.9 36.7 35.8
T5-seq 76.4 26.1 74.9 85.9 64.6 65.6
SDT-seq 75.0 32.0 73.1 86.6 77.5 68.8

Table 2: Cross-domain (leave-one-out) JGA on Multi-
WOZ 2.1. Results for TRADE, SUMBT, and Trans-
ferQA from (Kumar et al., 2020), (Campagna et al.,
2020), and (Lin et al., 2021a), respectively.

4 Results146

4.1 Results on SGD147

Table 1 contains results on the SGD test set. Since148

SDT results may depend on the choice of example149

turn/dialogue provided in the prompt, 5 different150

versions of prompts are created for each service151

using different examples. The reported results are152

obtained by averaging the JGA across these ver-153

sions. SDT-seq achieves the highest JGA, showing154

major gains, particularly over unseen services, over155

its description-based counterpart T5-seq and the156

next-best model T5-ind. SDT-ind is comparable to157

its counterpart T5-ind, and better than T5-seq.158

Based on these results, a single dialogue exam-159

ple appears more effective than using natural lan-160

guage descriptions. By its construction, the SDT-161

ind prompt format is unable to model phenomena162

such as coreference, a limitation not faced by SDT-163

seq which can jointly model all slots in a service.164

Further finetuning T5-seq: To evaluate T5-seq165

in a scenario where it can access the dialogue ex-166

amples used for SDT-seq prompts, We try further167

finetuning T5-seq on this exact set of dialogue ex-168

amples. This model, therefore, gets slot descrip-169

tions as well as the demonstrations to finetune on.170

The model obtains a JGA of 87.7% on SGD, level171

with T5-ind but still lower than SDT-seq, indicat-172

ing dialogue examples are better used as prompts173

(Le Scao and Rush, 2021). Interestingly, finetuning174

on more than one dialogue example does not help.175

4.2 MultiWOZ Results 176

Table 2 summarizes results for the MultiWOZ 2.1 177

leave-one-out transfer setup. Comparing T5-seq 178

and SDT-seq, both finetuned over T5-XXL, the 179

latter achieves state-of-the-art results on 3 of 5 do- 180

mains and overall for this task, and the former per- 181

forms best for the remaining 2 domains. 182

4.3 Impact of Model Size 183

T5-XXL may be too large/slow for a number of 184

settings, so we look SDT’s performance on SGD 185

across more T5 model sizes in Table 3. For the 186

base and large model sizes, SDT variants offer con- 187

sistently higher JGA than their description-based 188

counterparts. SDT-ind fares better than SDT-seq, 189

possibly due to smaller T5 models being less capa- 190

ble of inferring unseen slots with just a description. 191

Model Base (250M) Large (800M) XXL (11B)
T5-seq 72.9 80.0 86.4
T5-ind 72.6 82.2 87.7
SDT-ind 78.2±0.4 83.7±0.6 87.5±0.6
SDT-seq 76.3±1.1 83.2±0.4 88.8±0.5

Table 3: SGD test JGA across T5 model sizes.

4.4 Data Efficiency 192

To examine the data efficiency of SDT models, we 193

train SDT-seq in a low-resource setting with 0.16% 194

(10-shot), 1%, and 10% of the SGD training data 195

and evaluating on the entire test set. For 10-shot, 196

we randomly sample 10 dialogues from every ser- 197

vice; for 1% and 10%, we sample uniformly from 198

the full dataset. Results from Table 4 demonstrate 199

far higher training data efficiency for SDT-seq. 200

Model 10-shot 1% 10%
T5-seq 51.0 79.4 83.0
SDT-seq 70.7 84.5 87.4

Table 4: Data efficiency experiments on SGD test set.

4.5 Robustness 201

Large LMs are often sensitive to the choice of 202

prompt (Zhao et al., 2021b; Reynolds and Mc- 203

Donell, 2021). To this end, we evaluate SDT-seq 204

on the SGD-X (Lee et al., 2021b) dataset, which 205

includes 5 variant schemas with paraphrased slot 206

names and descriptions. Table 5 shows SDT-seq 207

achieves the highest average JGA (JGAv1−5) and 208

lowest schema sensitivity (SSJGA), indicating it 209

3



Example Dialogue Segment Error

1. T5-seq confused between similar slots T5-seq swaps values for slots from
and toI need to find train tickets to Anaheim, CA. When would you like to

travel, and where are you going to? Traveling to Sacramento on the 4th.
2. Slot values appearing as in context T5-seq misses slot

new_alarm_nameCan you please add an alarm called Grocery run.

3. Categorical values not seen in context SDT-seq misses event_type=theaterI like Broadway shows and want to see one on Tuesday next week.

Figure 2: Examples of common error patterns made by SDT-seq compared to T5-seq.

is the most robust of the compared models. Note,210

however, that the JGA drop indicates SDT-seq is211

still sensitive to slot name variations.212

Model JGAOrig JGAv1−5 Diffrel SSJGA

SGP-DST* 60.5 49.9 -17.6 51.9
T5-indbase* 72.6 64.0 -11.9 40.4
T5-seq 86.4 77.8 -8.6 27.0
SDT-seq 88.8 81.2 -7.6 24.1

Table 5: Robustness evaluation on the SGD-X test sets.
*Results from Lee et al. (2021b).

5 Discussion213

5.1 Writing descriptions vs. demonstrations214

We note that the information provided to SDT is215

not identical to what is provided to usual schema-216

guided models, as SDT trades out natural language217

descriptions in exchange for a demonstration of218

how to identify slots in a dialogue. However, we ar-219

gue that from a developer’s point of view, creating a220

single example is a similar amount of effort as writ-221

ing descriptions, so we consider the methods to be222

comparable. For creating the SDT-seq prompts for223

each service in SGD, an experienced annotator took224

∼2 hours, compared to ∼90 minutes for generating225

descriptions for all slots in all services. SDT-ind226

prompts are arguably even simpler to write.227

Descriptions, however, have their advantages:228

they are agnostic to the model architecture and writ-229

ing them does not require knowledge of dialogue230

systems, which SDT-seq prompts does. Given231

the performance gain, however, example-based232

prompts may be a better choice for many settings,233

especially for smaller model sizes.234

5.2 Error analysis235

Figure 2 contains some common error patterns in236

predictions from T5-seq and SDT-seq. These in-237

dicate that SDT benefits from having a better un-238

derstanding of the context around unseen slots, or 239

when slot descriptions are too similar to one an- 240

other (#1). However, SDT can be limited by its 241

prompt: for instance, in #3 it has only seen context 242

for the other categorical value for slot event_type . 243

6 Related Work 244

Prior approaches focused on framing DST as ques- 245

tion answering (Ruan et al., 2020; Ma et al., 2020; 246

Zhang et al., 2021). Many MultiWoZ cross-domain 247

models leverage slot names/descriptions (Wu et al., 248

2019; Lee et al., 2019; Lin et al., 2021a). 249

Pretrained generative LLMs (Raffel et al., 2020; 250

Brown et al., 2020) have enable framing NLP tasks 251

as seq2seq problems. Some DST papers (Zhao 252

et al., 2021a; Feng et al., 2021) look at settings with 253

no train-test discrepancy. Many studies explore 254

the efficacy of task-specific prompts (Jiang et al., 255

2020; Liu et al., 2021). Madotto et al. (2020) prime 256

LMs with examples for dialogue tasks, but without 257

finetuning. Wei et al. (2021) fine-tune language 258

models to understand prompts for a different task. 259

7 Conclusion 260

We study the use of demonstrations as LM prompts 261

to convey the semantics of APIs in lieu of natu- 262

ral language descriptions for TOD. Even though 263

they take similar effort to construct, they outper- 264

form description-based prompts in our experiments 265

across DST datasets (SGD and MultiWOZ), model 266

sizes, and training data sizes, while being more 267

robust to changes in schemata. This work provides 268

developers of TOD systems with more options for 269

API representations to enable transfer to unseen ser- 270

vices. In future work, we would like to explore this 271

representation for other TOD tasks (e.g. dialogue 272

management and response generation). 273
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8 Ethical Considerations274

We proposed a more efficient way of building TOD275

systems by leveraging demonstrations in place of276

descriptions, leading to increased accuracy with277

minimal/no data preparation overhead. We con-278

duct our experiments on publicly-available TOD279

datasets in English, covering domains which are280

popular for building conversational agents for. We281

are hopeful our work leads to building more accu-282

rate TOD systems with similar or less overhead,283

and encourages further research in the area.284
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A SDT Model Details 443

All T5 checkpoints used are available publicly1. 444

For all experiments, we use a sequence length of 445

2048, dropout of 10% and a batch size of 16. We 446

used a constant learning rate of 1e − 3 or 1e − 447

4. All models were trained for 50k steps or until 448

convergence, and each experiment was conducted 449

on either 64 or 128 TPU v3 chips (Jouppi et al., 450

2017). 451

B Baseline Models 452

For SGD, we compare against SGP-DST (Ruan 453

et al., 2020), MRC+WD-DST (Ma et al., 2020), T5- 454

seq (Anon, 2021) and T5-ind (Lee et al., 2021a). 455

For MultiWOZ, we compare against TRADE 456

(Wu et al., 2019), SUMBT (Lee et al., 2019), Trans- 457

ferQA (Lin et al., 2021a), and T5-seq. 458

Transfer QA is based on T5-large, and T5-ind 459

and T5-seq are based on T5-XXL in this paper 460

unless otherwise noted. 461

C Prompt Design 462

We experimented with various formats for the SDT 463

prompt before arriving at the final format. Below, 464

we list alternative designs that we tried and their 465

impact on JGA, as evaluated on the SGD test set. 466

C.1 Categorical value strings vs. multiple 467

choice answers 468

We found that JGA dropped -2% when we 469

tasked the model with decoding categorical val- 470

ues instead of multiple choice answers - e.g. 471

payment_method=debit card instead of 472

payment_method=b (where b is linked to the 473

value debit card in the prompt as described in 474

Section 2). We found that when tasking the model 475

to decode categorical values, it would often de- 476

code related yet invalid values, which we counted 477

as false in our evaluation. For example, instead 478

1https://github.com/google-research/
text-to-text-transfer-transformer/blob/
main/released_checkpoints.md
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of debit card, the model might decode bank479

balance.480

C.2 Slot IDs vs. slot names481

When we delexicalized slot names with slot IDs,482

JGA dropped -5%. One downside of this approach483

is that the model lost access to valuable semantic484

information conveyed by the slot name. Another485

downside is that the model could not distinguish486

two slots that had the same value in the prompt.487

For example, if the prompt was "I would like a pet-488

friendly hotel room with wifi" and the correspond-489

ing slots were 1=True (has_wifi) and 2=True490

(pets_allowed), it is ambiguous which ID refers to491

which slot.492

The potential upside of using slot IDs was to493

remove dependence on the choice of slot name, but494

this did not succeed for the reasons above.495

C.3 Decoding active slots vs. all slots496

We experimented with training the model to only497

decode active slots rather than all slots with none498

values when they were inactive. JGA dropped -499

0.4%, which we hypothesized could be a result of500

greater dissimilarity between the slot-value string501

in the prompt (which contained all slots by con-502

struction) and the target, which only contained a503

subset of slots.504

C.4 In-line annotations vs. dialogue+slots505

concatenated506

We hypothesized that bringing the slot annotation507

in the prompt closer to where it was mentioned508

in the dialogue might help the model better under-509

stand the slot’s semantic meaning. We changed the510

format as follows:511

• Original: [example] [user] I512

would like a pet-friendly513

hotel room with wifi514

[system] I found ... [slot]515

has_wifi=True516

• In-line: [example] [user] I would517

like a pet-friendly hotel518

room with wifi [has_wifi=True]519

[system] I found ...520

However, this decreased JGA by more than -521

20%. We hypothesized that this was likely due to522

a mismatch between the prompt’s annotations and523

the target string format, which remained the same.524
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