Universal Length Generalization with Turing Programs

Kaiying Hou'2 David Brandfonbrener®> Sham Kakade® Samy Jelassi“* Eran Malach 3

Abstract

Length generalization refers to the ability to ex-
trapolate from short training sequences to long
test sequences and is a challenge for current large
language models. While prior work has pro-
posed some architecture or data format changes
to achieve length generalization, these proposals
typically apply to a limited set of tasks. Building
on prior scratchpad and Chain-of-Thought (CoT)
techniques, we propose Turing Programs, a novel
CoT strategy that decomposes an algorithmic task
into steps mimicking the computation of a Tur-
ing Machine. This framework is both universal,
as it can accommodate any algorithmic task, and
simple, requiring only copying text from the con-
text with small modifications. We show that by
using Turing Programs, we obtain robust length
generalization on a range of algorithmic tasks:
addition, multiplication and in-context SGD. We
then demonstrate that transformers achieve length
generalization on random Turing Programs, sug-
gesting that length generalization is possible for
any algorithmic task. Finally, we theoretically
prove that transformers can implement Turing
Programs, constructing a simple RASP (Weiss
et al. (Weiss et al., 2021)) program that simulates
an arbitrary Turing machine.

1. Introduction

Transformer-based language models have shown impressive
abilities in natural language generation, reading comprehen-
sion, code-synthesis, instruction-following, commonsense
reasoning, and many other tasks (Brown et al., 2020; Chen

*Equal senior contribution. ' Department of Mathematics, Har-
vard University, Cambridge, MA, United States “Department of
Mathematics, UC Berkeley, Berkeley, CA, United States *Kempner
Institute, Harvard University, Cambridge, MA, United States
“Center of Mathematical Sciences and Applications, Harvard Uni-
versity, Cambridge, MA, United States. Correspondence to: Kaiy-
ing Hou <kaiying @berkeley.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Input:
9083
Target:
t = 1,state = <scratch>
@Lo[sTs] -~ o5 s

t = 2, state

ﬂmﬂ --->80 (B) 8 3

t = 3,state = B

[s]1]8]3]--->8 138 ® 3
,

t = T,state = H

.E.n S-->1234 (1)

</scratch>

Figure 1. Turing Program example for simulating a Turing Ma-
chine with scratchpad.

et al., 2021; Chowdhery et al., 2023; Lewkowycz et al.,
2022; Gunasekar et al., 2023; Touvron et al., 2023). De-
spite these impressive abilities, transformers struggle with
length generalization, which refers to the ability to gener-
alize to longer sequences than seen during training (Abbe
et al., 2023; Anil et al., 2022; Jelassi et al., 2023; Zhou
et al., 2023). This limitation raises a central question about
transformers: are they capable of actually learning an al-
gorithm or do they solve algorithmic tasks by resorting to
memorization or shortcuts (Liu et al., 2022)?

Recently, several works have reported poor length gener-
alization of transformers on a wide range of algorithmic
tasks (Anil et al., 2022; Delétang et al., 2022; Dziri et al.,
2024; Zhang et al., 2022). In parallel, a myriad of papers
(Jelassi et al., 2023; Kazemnejad et al., 2024; Shen et al.,
2023; Zhou et al., 2023; 2024) have optimized the data
formats choice (see section 3 for details) to improve the
length generalization of transformers when trained to per-
form multi-digit addition of two numbers. While the recent
progress is impressive—(Zhou et al., 2024) achieve almost
perfect accuracy on addition with 100-digit operands while
trained on 40-digit, all these “tricks” are specific to the
case of addition and may not generalize to other tasks. In
contrast, our goal is to develop a technique that is general
enough to enable length generalization on any algorithmic
task.

Universal Length Generalization with Turing Programs

Table 1. Length generalization results on various problems with
Turing Programs. We use « — y to denote training on n = and
generalizing ton = y.

Generalization Accuracy

50 — 100 (2 %) 98%
50 — 100 (2 %) 97%
50 — 100 (2 %) 97%
50 — 80 (1.6 X) 95%

Problem

Addition (n + n)
Multiplication (n x 1)
Multiplication (n x 3)
SGD (n examples)

To achieve this, we introduce Turing Programs, a novel
scratchpad technique that may be applied to general algo-
rithmic tasks. This technique is motivated by the operations
of a Turing Machine, a mathematical model of computation
that is capable of implementing any computable algorithm.
A Turing machine consists of a “tape” with symbols and a
“head” that, at each step, moves left or right on the tape, and
can read and write symbols in a single tape cell. Therefore,
when a Turing Machine processes an input, the tape at each
step is a copy of the previous one up to a few changes. Our
Turing Programs follow this philosophy by decomposing
an algorithmic task into a series of steps. At each step we
update a “tape” by copying the previous tape with a few
elementary changes. We refer the reader to Figure 1 for
the correspondence between Turing Machines and Turing
Programs and to Figures 2 and 13, for examples of Turing
Programs.

Using the Turing Programs technique, we show that trans-
formers enhanced with the Hard-ALiBi positional encoding
(Jelassi et al., 2024)—a recent encoding that achieves state-
of-the-art length generalization on copying—are capable of
length generalization on a wide range of algorithmic tasks.
Our method achieves non-trivial length generalization on
addition, multiplication and simulation of SGD steps (see
Table 1). Additionally, we show that transformers can be
trained to execute random Turing machines, extrapolating
from 50 to over 100 input tokens, suggesting that our method
can work for general algorithmic tasks. To our knowledge,
these are the first results showing non-trivial length gener-
alization on multiplication, and the first attempt to study
length generalization on complex algorithms like SGD. We
hope that this recipe will be further used to unlock novel
length generalization on other algorithmic tasks.

Our key contributions are summarized as follows:

* In section 3, we present length generalization results
on multi-digit addition using a Turing Program and
Hard-ALiBi positional encoding.

* In section 4, we present the Turing Program framework
in full generality and its connections to Turing ma-
chines. Additionally, we theoretically prove that trans-
formers can implement Turing Programs, constructing

a RASP program (Weiss et al., 2021) simulating Turing
machines.

¢ In section 5, we demonstrate that Turing Programs
are general and lead to novel length generalization
results in unexplored algorithmic tasks: multiplication
by 1 or 3-digit operand, SGD for linear regression,
performing sequences of arithmetic operations, and
Turing Machine simulation.

Related work

Length generalization remains an important challenge for
large language models as underlined in several works (Delé-
tang et al., 2022; Dziri et al., 2024; Hupkes et al., 2020;
Schwarzschild et al., 2021; Zhang et al., 2022). Despite
their advanced reasoning capabilities, Transformer-based
large language models struggle to process longer sequences
than they were trained on (Anil et al., 2022). The main
approaches for improving length generalization focus on
changing the positional encoding and optimizing the data
format.

Positional encodings for length generalization. Shaw et
al. (Shaw et al., 2018) were early to notice that the weak
length generalization of Transformers was due to the choice
of absolute positional encoding. Following this, many al-
ternatives were proposed to replace the absolute positional
encoding: relative positional encodings, which focus on the
relative distances between tokens (Dai et al., 2019); and
weighted attention mechanisms in place of position embed-
dings (Chi et al., 2022; Jelassi et al., 2023; Li et al., 2023;
Press et al., 2021; Raffel et al., 2020). These alternatives
showed substantial improvements in length generalization
on natural language processing tasks. On the other hand,
(Kazemnejad et al., 2024) found that a causal language
model with no positional encoding can length generalize
better than some of these specialized positional encodings
on algorithmic tasks. In this work, we apply the Hard-ALiBi
positional encoding (Jelassi et al., 2024), that achieved state-
of-the-art length generalization on the specific task of copy-
ing, to more general algorithmic tasks.

Data formatting for length generalization. A wide range
of data formatting methods have been introduced to achieve
length extrapolation in algorithmic tasks. Scratchpad and
Chain-of-Thought formats were proposed to learn arithmetic
either through finetuning or in-context learning (Anil et al.,
2022; Zhou et al., 2023). When training from scratch, some
other proposed techniques to improve length generalization
on addition include: reversed formatting and random space
augmentation (Shen et al., 2023), adding padding to the se-
quence (Jelassi et al., 2023), and setting index hints in front
of each digit (Zhou et al., 2023). Closer to our work, several

Universal Length Generalization with Turing Programs

works (Anil et al., 2022; Dziri et al., 2024; Hu et al., 2024;
Kazemnejad et al., 2024; Lanchantin et al., 2024) report
that training or finetuning a model on scratchpad data does
not yield any significant length generalization improvement.
In our work, we demonstrate that length generalization is
possible using a combination of a particular scratchpad vari-
ant and a favorable positional encoding. Additionally, we
develop Turing Programs, a novel scratchpad strategy that is
general and may be applied to achieve length generalization
on any algorithmic task.

Neural networks and Turing Machines. Many prior
works designed architectures inspired by Turing Machines
(Dehghani et al., 2018; Graves et al., 2014; Kaiser &
Sutskever, 2015). From a theoretical perspective, some
works proved the Turing completeness of RNNs (Chen et al.,
2017; Siegelmann & Sontag, 1992), transformers (Bhat-
tamishra et al., 2020; Chung & Siegelmann, 2021; Pérez
et al., 2019; Wei et al., 2022a; Merrill & Sabharwal, 2023)
and even linear next-token predictors (Malach, 2023) under
a wide range of assumptions. Lastly, another line of work
characterizes the computational model that Transformers
express: (Weiss et al., 2021) introduce RASP, a human-
readable programming language that can be implemented
by transformers, (Lindner et al., 2024) show how human-
readable programs are compiled into transformer models
and other works (Giannou et al., 2023; Jojic et al., 2023)
study how transformers can emulate computer programs.
Closer to our work, (Zhou et al., 2024) hypothesize that
Transformers can length generalization on any algorithmic
task that may written as a “simple” RASP program. In this
work, we construct a simple RASP program that generates
Turing Programs to simulate arbitrary Turing machines.

2. Setting

In this section, we present the length generalization problem
and some instances where it appears. Then, we discuss
scratchpad prompting (Nye et al., 2021), a technique that
lets the model generate solution steps before producing
the final answer. Finally, we introduce various positional
encoding methods and discuss their implications on length
generalization.

2.1. Length generalization

Many sequence modeling tasks have problem instances of
different lengths. Shorter instances are often easier to state,
process and handle, and require less compute to find the
answer. By contrast, longer instances are more challenging
to parse and require more compute to solve. Reasoning tasks
such as multi-hop reasoning, program execution, deductive
reasoning, and theorem proving fit in this category.

Algorithmic reasoning tasks consist of inputs that are se-

quences of tokens describing the task (e.g. addition, multi-
plication) and outputs that are the corresponding solutions.
We assume that the language model is allowed to generate
(many) intermediate tokens before outputting the answer.
Then formally, the length generalization problem consists
of training a language model on inputs of length < L and
solving problems of length > L at test time.

2.2. Scratchpad

It has been shown in prior work that the performance of
LLMs on algorithmic tasks can be greatly improved by
generating step-by-step solutions instead of immediately
outputting the final answer (Wei et al., 2022b). Among
the multiple methods described in the literature, we focus
on the scratchpad method (Nye et al., 2021). Given an
algorithmic task, this method encodes the intermediate steps
of the algorithm as text and trains the model to emit them to
a buffer that is referred to as the “scratchpad”.

Nye et al. (Nye et al., 2021) showed that scratchpad fine-
tuning can be used to achieve strong in-distribution perfor-
mance on execution based tasks such as code execution and
computing polynomials. They also report modest length
generalization results on integer arithmetic. The limitation
of scratchpad training for length generalization is further
highlighted in (Anil et al., 2022; Dziri et al., 2024; Hu et al.,
2024; Kazemnejad et al., 2024; Lanchantin et al., 2024).

In this paper, we revisit the use of scratchpad training to
achieve length generalization on algorithmic tasks. We be-
gin with the observation that the scratchpad technique can
be realized as an iterative sequence of copying operations,
where at each iteration the input is slightly modified. Build-
ing on previous works showing that with the right positional
encoding, transformers can achieve length generalization on
the copying operation (Jelassi et al., 2024) , we hypothesize
that combining the scratchpad technique with a favorable
positional encoding can unlock length generalization capa-
bilities. We verify this hypothesis in section 3 and section 5,
but first we review various choices of positional encoding.

2.3. Positional encodings

The inability of transformers to extrapolate to longer se-
quences has been primarily attributed to the positional en-
coding (Shaw et al., 2018; Shen et al., 2023). In this section,
we review the different positional encoding schemes and in
section 3, we report their length generalization performance.
We review here specific choices for positional encodings
that are known to perform well for length generalization,
and discuss additional encoding schemes (such as absolute
and relative positional encodings) in Appendix A.

No Positional Encoding (NoPE). Decoder-only models
with causal attention, as shown by (Haviv et al., 2022),

Universal Length Generalization with Turing Programs

acquire positional understanding, without explicit positional
encoding. (Kazemnejad et al., 2024) shows that a model
without positional encoding extrapolate better than those
with specialized positional encodings on some algorithmic
tasks.

ALiBi. (Press et al., 2021) introduces this additive posi-
tional encoding where the bias function follows b(i, j) =
—rli — j|, where » > 0 is some hyperparameter. This
scheme has led to state-of-the-art length generalization on
natural language tasks. However, (Jelassi et al., 2024) no-
tices that it struggles at length generalization on the copy
task and hypothesize that it is due to the slow decay of r.

Hard-ALiBi. (Jelassi et al., 2024) introduce Hard-ALiBi,
an additive positional encoding where the bias satisfies
b(i,j) = —oofor j <i—mandb(i,j) =0forj>i—m,
for some hyperparameter m > 0. Intuitively, with this hard
thresholding, tokens can only attend to the m closest tokens.
Different heads may have different values of m and some
heads use m = oo which corresponds to softmax attention
with no positional embedding at all (allowing for propa-
gation of global information). The authors demonstrate
empirically that models equipped with the Hard-ALiBi po-
sitional encoding achieve remarkable length generalization
on the copy task. In this work, we use the Hard-ALiBi posi-
tion encoding to enable length generalization on algorithmic
tasks as we show below.

3. Length generalization on addition

Input:
4324+139

Target:
<scratch>

4324+139
432e+13j (1,3)
43c+14d (0,63)
44 +b (0,463)

e + (0,4463)
4463

</scratch>

Figure 2. Turing Program for addition, text in comments is not part
of the input.

In this section, we address the length generalization problem
for addition. We first review prior results on this problem
and describe the techniques used in these works. We then
demonstrate that Transformers trained with Turing Program
scratchpads and Hard-ALiBi positional encoding achieve
good length generalization performance, extrapolating from
length-50 to length-100 addition. This is a remarkable im-
provement over previous length generalization results using
the “vanilla” scratchpad technique (e.g. (Nye et al., 2021)),

which showed weak length generalization performance. As
mentioned, there is a long list of works that focus on length
generalization on addition (see Appendix B for a complete
review). Notably, (Zhou et al., 2024) report somewhat better
length generalization results compared to our results. How-
ever, we note that these results rely on particular choices
for the formatting of the input and the output, which are
“tailored” for the task of multi-digit addition.

3.1. Length generalization on addition with Turing
Programs and Hard-ALiBi

In this section, we present our Turing Program scratchpad
strategy for addition and report length generalization results.

3.1.1. EXPERIMENTAL SETUP

Data. We adopt the scratchpad format and write all the
steps into one sequence, where steps are separated by a
separator token. Figure 2 shows our scratchpad strategy for
getting length generalization on addition If not specified
otherwise, our token space is of size 24 and made of V =
{0,...,9,4+,a,...,7,,<|BOS | >,<|EOS|>,<|SEP | >}.
All the digits are sampled uniformly as follows: we first
sample the length of each operand (between 2 and L = 50)
and then independently sample each digit. Finally, we
“pack the context” with i.i.d. sequences during training,
i.e. we fill the context with multiple independent samples
of the task (similarly to (Zhou et al., 2023)). We set the
training context length to 500. At test time, we evaluate
our models using a sliding window: we generate tokens
until the training context length (500) is filled, and then
each additional token is generated by feeding the context
of the most recent 500 tokens, effectively dropping all
past tokens!. This way, we are able to generate very long
sequences of tokens without training or evaluating on long
context windows. To evaluate the accuracy at a given length,
we test the model’s output on 288 examples. We report the
accuracy of exactly matching the desired output.

Model and Training. Our base model is a 150M param-
eter Transformer with L = 12 layers, a D = 1024 hidden
size, feedforward layer with a hidden dimension of 4096
and H = 16 attention heads. The backbone of our model
is based on the GPT-NeoX architecture (Black et al., 2022).
We pick a context length of 500 tokens. We use the AdamW
optimizer (Loshchilov & Hutter, 2017) to train the model
with a weight decay value of 0.1 and no dropout, for 200,000
steps. The learning rate schedule incorporates an initial 100-
step linear warm-up, followed by a linear decay, starting at
7Te-5.

'For efficiency reasons, once we reach the context length we
advance the “window” by 20 tokens.

Universal Length Generalization with Turing Programs

Hard-ALiBi positional encoding. Similarly to (Jelassi
et al., 2024), we use M masked heads and (H — M)
NoPE heads. In the masked heads, we respectively set
the hyperparameter m to 1, 2,... and M. We swept over
{3,4,5,6,7,8} and found that M = 6 is the best choice.

100 2
80
S
S 60
e
=]
S 40
< "0 e e HAlibi + Direct
—— HAlibi + Turing Program
20 —— Alibi + Turing Program
—— NoPE + Turing Program
{ —— RoPE + Turing Program
20 40 60 80 100 120

Length of Number

Figure 3. Comparison of different positional encodings and data
formats for length generalization on addition. We see significant
extrapolation to longer sequence lengths with Hard-ALiBi and
scratchpad. The shade shows the 95% confidence intervals.

3.1.2. RESULTS

In Figure 3 we show the length generalization performance
of transformers trained to perform multi-digit addition us-
ing the scratchpad described above. We compare the per-
formance of different choices of positional encodings, as
well as comparing to the performance on addition without
scratchpad (directly outputting the answer).

We observe that by using Hard-ALiBi together with scratch-
pad, transformers are able to generalize well beyond the
length of the training examples. In particular, the Hard-
ALiBi model achieves a 98% accuracy at length 100. As
shown by Figure 11 in Appendix C, the model also length
generalizes well when the operands are of different lengths.
In, Figure 8 in Appendix C, we analyze the robustness of
length generalization performance to different choices of ini-
tialization seed. We observe that, while there is significant
variance in performance when testing on longer sequences,
our method is more robust compared to prior results (as
reported in (Zhou et al., 2024)). Finally, we plot the per-
formance of alternative data formats, such as the “index
hints" from (Zhou et al., 2023), with various positional en-
codings under the same experiment conditions in Figure 12
of Appendix C.

4. Turing Programs

In section 3, we showed that Transformers with Hard-ALiBi
trained on a specific choice of scratchpad format can length
generalize to sequences that are 2x longer. On closer in-
spection, each line in the scratchpad in Figure 2 is a slightly

modified copy of the previous one where a few elemen-
tary changes are applied, e.g. removing one digit for each
operand and updating the intermediate result/carry. Since
Hard-ALiBi yields robust length generalization on copying,
this may explain why we achieve better extrapolation than
previous works that trained their models with scratchpad.

In this section, we generalize this approach and claim that
every algorithmic task can be written as a sequence of mod-
ified copy operations: i.e. copy operations with small and
localized modifications. Such decomposition follows imme-
diately from the standard construction of a Turing Machine,
a universal model of computation. We therefore refer to this
scratchpad strategy as a Turing Program. We start this sec-
tion introducing the standard definition of a Turing Machine,
and then present Turing Programs, our scratchpad strategy
for achieving length generalization on any algorithmic task.
Lastly, we present our main theoretical result: Transformers
can implement Turing Programs over long sequences of
inputs.

4.1. Background: Turing Machines

A Turing Machine (Turing, 1950) is a computational model
that consists of an infinite tape2 with cells, a head that can
read from a cell, write to a cell and move left or right over
the tape, and a set of rules which direct the head based on
the symbol it reads and the current state of the machine.
More formally, a Turing Machine is defined as follows.

Definition 4.1. A Turing Machine is specified as a quadru-
ple T = (Q, %, s,0) where: 1) @ is a finite set of states, 2)
) is a finite set of symbols, 3) s € @ is the initial state and
f € Q is the final state, 4) § is a transition function deter-
mining the next move: §: (@ x X) — (X x {L, R} x Q).

At the first iteration, the machine is set to state s € (@,
the head is on the first (leftmost) cell of the tape, and the
input is written on the tape from left to right. At each
iteration, the head is on the ¢-th cell in the tape, is in state
q € @ and reads the i-th symbol on the tape «. Then, if
d(q,) = (¢, D, q'), the head writes the symbol o, moves
in the direction D € {L, R}, and the machine changes its
state to ¢’. If the machine reaches the state f, it stops, and
its “output” is written on the tape.

Turing Machines are a powerful model for solving algo-
rithmic tasks since (a) the framework is universal i.e. it is
possible to write any algorithmic task in the Turing Machine
formalism, (b) Turing Machines can solve a wide range of
algorithmic problems—ranging from simple arithmetic to

*We assume that the tape is unbounded from the right side, but
bounded from the left. Namely, there are infinitely many cells
to the right of the input, but no empty cells to the left. This is
computationally equivalent to a tape that is infinite from both
sides.

Universal Length Generalization with Turing Programs

determining whether a number is a prime (Agrawal et al.,
2004)—in a polynomial number of steps. In the next sec-
tion, we show how to use the Turing Machine formalism
to obtain a novel scratchpad strategy that unlocks length
generalization on any algorithmic task.

4.2. Turing Programs: a universal scratchpad strategy
for length generalization

The left panel of Figure 1 represents the simulation of a
Turing Machine and shows how the state, the head and the
tape evolves with time. Note that at each time step, the
state of the tape is a copy of the previous tape with a few
elementary changes such as a move of the head, an edit of a
single symbol and a change of state.

The steps in a Turing Machine simulation are similar to
a scratchpad strategy where each string is a copy of the
previous one with a few modifications. Therefore, we claim
that for any algorithmic task that can be solved by a Turing-
computable algorithm, there is a corresponding scratchpad
strategy for solving this problem (as demonstrated in the
right panel of Figure 1). We refer to this novel scratchpad
strategy as Turing Programs.

Turing Programs decompose an algorithmic task into a se-
ries of intermediate reasoning steps. Each step is a “tape”
that maintains the state of the machine, and the next step is
a copy of the previous tape with a few elementary changes,
such as trimming of digits and update of carry/intermedi-
ate result as in the case of addition and multiplication (see
Figures 2 and 13) or update of the parameters in the case of
SGD on linear regression (see subsection 5.2). In section 5,
we show how to use Turing Programs to unlock novel length
generalization results on challenging algorithmic tasks.

4.3. Theory: Turing Programs in RASP

To further motivate the use of Turing Programs to achieve
length generalization on arbitrary algorithms, we prove that
transformers can implement Turing Programs over long
sequences of inputs. In particular, we show that Turing
Programs can be implemented in RASP (Weiss et al., 2021),
a programming language that was suggested as an abstract
description of the operations of a transformer. Following
(Zhou et al., 2023), we use a restricted version of RASP that
does not allow direct index operations, as (Zhou et al., 2023)
hypothesized that RASP programs with index arithmetics
may not length generalize®. Therefore, our result should be
viewed as a length-generalization-friendly construction of a
transformer that can execute (most) Turing Programs (and
hence, can simulate most Turing machines).

30ur RASP program does not follow all the restrictions of the
RASP-L language suggested in (Zhou et al., 2023), as we do not
restrict the tokens to have int8 values.

To avoid index operations, we leverage the n-gram hashing
mechanism suggested by (Jelassi et al., 2023) as a basis for
the copying ability of transformers. In their construction,
copying a string from the input was achieved by storing a
sequence of n preceding tokens (n-gram) at each position,
and iteratively retrieving the next token after the uniquely
matched n-gram. Our Turing Program construction is very
similar, except that instead of copying a string from the
input, we copy the next state of the Turing machine as com-
puted from the previous string. As in the construction of
(Jelassi et al., 2023), our RASP program is limited to op-
erating on inputs that have no repeated n-grams (i.e., no
sequence of n tokens appears twice in the input), which can
be guaranteed with high probability for uniformly random
sequences of tokens of length < exp(n). Additionally, we
require that the Turing machine does not generate repeated
n-grams when processing the input, and that all the opera-
tions of the Turing machine are applied in-memory*. Under
these assumptions, we get the following result:

Theorem 4.2. Let T be a Turing Machine s.t. 1) T does not
generate repeated n-grams and 2) T operates in-memory.
Then, there exists a RASP program P of size (number of
lines) O(n) s.t. for every input x without repeated n-grams,
P correctly simulates T for exp(n) steps.

We give the full code for the construction of such RASP
programs in Appendix D.

5. Length generalization on other algorithmic
tasks

Building upon the encouraging length generalization results
on addition from section 3 and the Turing Programs frame-
work from section 4, we show that Transformers enhanced
with Hard-ALiBi may achieve robust length generalization
on complex algorithmic tasks. We show that our framework
achieves length generalization on multiplication by 1-digit
and 3-digit operands, on SGD applied to linear regression,
on performing sequences of arithmetic operations, and fi-
nally, on next-state prediction of a random Turing Machine.

5.1. Multiplication by a fixed-length operand

Prior work. Multiplication is known to be a challenging
task for length generalization and very few works report pos-
itive length generalization results on this task. On pretrained
models, (Zhou et al., 2023) shows that elaborate prompt-
ing techniques slightly improve the length generalization

“Namely, we assume that the head of the Turing machine does
not go beyond the input sequence. We believe that this restriction
may be removed at the cost of constructing a more complex RASP
program. While this may seem like a limiting restriction, we note
that this limitation can be easily mitigated by padding the input
with random tokens.

Universal Length Generalization with Turing Programs

of Codex on (n < 3)-multiplication. (Dziri et al., 2024)
show that even fine-tuned GPT-3 struggles with performing
3-digit multiplication. On randomly intialized networks,
(Lee et al., 2023) show that models can learn in-distribution
the 2-digit multiplication in a sample efficient way using
scratchpad. (Shen et al., 2023) shows that with padding
and reversed products it is possible to perfectly learn in-
distribution 12-digit multiplication. (Jelassi et al., 2023) fo-
cuses on 3-digit multiplication and shows that when training
on (5 x 3)-digit-multiplication and adding a few examples of
(35 x 3)-digit-multiplication, the model length generalizes
to (35 x 3)-digit-multiplication. In summary, prior work
mainly focused on in-distribution learning of multiplication
and did not manage to obtain length generalization results.

Data setup. Our experimental setup is similar to the one
in section 3. We focus on multiplication by a fixed-length
operand, i.e. (n X k)-digit-multiplication where the first
operand has variable length n and the second operand al-
ways has a fixed length k& € {1, 3} across all examples. We
adopt the scratchpad format and write all the steps into one
sequence, where steps are separated by a separator token.
The Turing Program for multiplication is described in Fig-
ure 13 of Appendix E. Our token space is similar to the
token space used in Section 3, using a * symbol instead of +
and using an additional separator token ~. All the digits are
sampled uniformly as follows: we first sample the length of
the first operand (between 2 and 50) and then independently
sample each digit. The remaining details of the training/test
protocols are similar to those in section 3.

100

80

60

Accuracy (%)

40 —— (n x 1) HAlibi + Turing Program
—— (n x 1) Alibi + Turing Program

—— (n x 1) NoPE + Turing Program
—— (n x 1) RoPE + Turing Program

= (n x 1) HAlibi + Direct

A —

20

.
.
0 — * * y * * '
40 50 60 70 80 90 100 110 120
Length of Number

Figure 4. Comparison of different positional encodings and data
formats for length generalization on (n x 1)-digit-multiplication
using the same hyperparameters. The shade shows the 95% confi-
dence intervals.

Results. Figure 4 reports our length generalization results
on (n x 1), while the plots for (n x 3) multiplications
are shown in Figure 9 of Appendix C. We obtain robust
length generalization by a factor X 2 (from 50 to 100-digit
numbers) on (nx 1) and (n x 3) multiplication. We note that,
up to length 100, (n x 1) and (n x 3) multiplication perform

roughly the same ((n X 1) has accuracy 97.1% and (n x 3)
has accuracy 96.8%), which demonstrates the generality of
our Turing Programs framework. Both results are achieved
with M = 7 masked heads and peak learning rate 0.0003.
The head numbers were again chosen by sweeping over
candidate numbers as before while the learning rates were
chosen from the candidate set {7e-5,e—-4,3e-4}.

5.2. SGD on Linear Regression

100

80

60

Accuracy (%)

40
a = = HAlibi + Direct Answer
LN A o= = ke ® _— HAlibi + Turing Program
20 —— Alibi + Turing Program

—— NoPE + Turing Program
—— RoOPE + Turing Program

0 t y y y
40 50 60 70 80 90
Size of Dataset

Figure 5. Length generalization on running the SGD algorithm,
varying the number of examples.

In this section, we train a model to perform SGD and demon-
strate its ability to length generalize. While in previous
examples we varied the number of digits in the operands,
here we instead vary the number of examples.

Problem Description. Let D = {(%;, y;) }i=o0,... n—1 With
Z; € R? and 3; € R be a dataset of size n. Given initial
weights Wy € R™, we can obtain the final weight ,,_1 by
performing gradient descent: ;11 = W; — AV, (y; — W; -
fi)z, where A is the learning rate. For our experiment, we
pick A = 0.5 and Wy = 0.

Tokenization and Data. We divide the interval [—1, 1]
into 200 discrete tokens {ag, @1, ..., @199 }. As an input, the
model receives a sequence of n examples, each encoded
as two input coordinate and one output (label) value. The
model then needs to compute the iterates of the SGD algo-
rithm when processing the data examples, starting from the
last data point, and output the resulting weight vector w,,_1.
A detailed description of the Turing Program for solving
SGD is detailed in Appendix E.2.

Results. Unlike previous experiments, where we report
accuracy w.r.t. exact string matching, here we allow the
network to err by two quantization unit, counting any output
that is within 2/100 from the ground-truth output (in £
norm) as correct. In other words, we disregard errors that
may occur to differences in quantization of the real-valued
iterates of SGD. As shown by the blue curve in Figure 5,

Universal Length Generalization with Turing Programs

training the transformer to perform SGD on dataset of sizes
n < 50 generalizes with accuracy > 95% to datasets of size
n = 80. Our Hard-ALiBi model has M = 7 masked heads,
a context length of 600, and was trained with peak learning
rate 7e-5 for 400, 000 steps with a batchsize of 16. For
comparison, we also trained a model to directly compute
the final answer as shown by the red curve in Figure 5. We
observe that training the model to immediately output the
answer significantly degrades its performance.

5.3. Sequences of Arithmetic Operations

In this seciton, we train a model to perform sequences of
Python arithmetic operations as shown below.

x1l = 17
x2 = 11
x3 = 17
x4 = 15
y = x4 - x3
y =y * X3
y =y - x1
print (y)

We vary the number of arithmetic operations before the final
print (y) and test whether the models can generalize to
programs with more number of operations than those seen
in training.

5.3.1. IMPLEMENTATION

In our implementation, we always assign values to 20 initial
variables x1,..., x20. Then we append n calculation steps,
where n is a random length sampled from {1, 2, ..., 50} dur-
ing training. The only operations involved are +, —, and *.
We also make sure all initial and intermediate values are
in the range of 0 to 20. For tokenization, our vocabulary
consists of variable names, digits O through 9, arithmetic
operators (+, —, and *), and various delimiters. We perform
one line of calculation for every step of the Turing Program,
while copying the initial value assignments and the unfin-
ished calculation steps to the next block. An example of this
Turing Program can be found in Appendix E.3.

5.3.2. RESULT

As seen in Figure 6, training the transformer on data with
number of calculation steps n < 50 generalizes with ac-
curacy > 97% to those with number of calculation steps
n = 80.

5.4. Turing simulations

In this section, we test the length generalization of transform-
ers trained to predict the next state of an arbitrary, randomly
generated, Turing machine. Our experimental setup is sim-
ilar to the one in section 3 except for the data as detailed
below.

100 =——|

80

60

Accuracy (%)

40

—— HAlibi
20 — Alibi
—— NoPE
—— RoPE

0
30 40 50 60 70 80
Number of Calculations

Figure 6. Length generalization performance on sequences of arith-
metic operations.

Data setup. We first sample a random Turing Machine T'
with 5 states, 15 input symbols and a random transition func-
tion (i.e., for every pair of state and symbol we randomly
draw a triplet of state, symbol and move-direction). During
training, each input example is generated as follows: we
randomly choose an input sequence length L between 2 and
50, then randomly choose L tokens, a random position for
the head and a random state for the machine. At each step of
training, we generate in an online manner a batch of size 16
of Turing simulations from 7" and focus on learning 1-step
prediction: given the input tape, the model has to generate
the output of the transition function followed by the next
state of the tape. At test time, we evaluate the model on
tapes of length L > 50. Further details are in Appendix F.

100 - = —

80

Turing Machine 0
Turing Machine 1
Turing Machine 2
Turing Machine 3
Turing Machine 4
Turing Machine 5
Turing Machine 6
Turing Machine 7
Turing Machine 8
—— Turing Machine 9

60

Accuracy (%)

40

20

0 T T T T T
40 60 80 100 120 140
Length of Tape

Figure 7. Length generalization performance on 10 different ran-
domly generated Turing machines.

Results. Figure 7 shows that transformers enhanced with
Hard-ALiBi predict almost perfectly the 1-step Turing Ma-
chine transition of tapes that are 2 X to 3 X longer than those
seen during training. Trained with a peak learning rate of
7e-5, the models have M = 8 masked heads and a context
length of 450. This experiment suggests that transformers
may length generalize on arbitrary Turing Programs>. How-
ever, this admittedly does not imply that transformers can

SWe note that, formally, the experiment demonstrates the ability
of transformers to learn in the “average case”, but does not rule

Universal Length Generalization with Turing Programs

successfully execute Turing Programs for multiple steps,
as accumulating errors might cause the programs to fail.
That said, we note that in many cases we get length gener-
alization with virtually zero error, suggesting that multiple
steps of the machine can be execute while still maintaining
accurate performance. The performance of different posi-
tional encodings and data formats for Turing simulation can
be found in Appendix C. We observed that both directly
outputting the answer and using alternative positional en-
codings significantly degraded the performance of length
generalization.

6. Discussion and Limitations

Studying and improving the length generalization abilities
of transformers on algorithmic tasks has been the focus of
various recent works. In parallel, it has been established
experimentally that the ability of language models to solve
algorithmic tasks is greatly enhanced when allowing them
to use scratchpad/CoT data. Additionally, recent theoretical
works demonstrate that transformers can use CoT to simu-
late arbitrary algorithms (Merrill & Sabharwal, 2023), es-
tablishing that they are computationally “universal”. These
results motivate us to study whether transformers are univer-
sal learners, able to learn from examples to execute arbitrary
algorithms. Since algorithms are typically defined over ar-
bitrary sequence lengths, we use length generalization as
a measure of whether the model has learned the frue algo-
rithm. To establish this, we use the key observation that
transformers can length generalize on the copying operation.
Since executing an algorithm can be implemented as a se-
quence of “smart” copy operations, the copying ability of
transformers can be leveraged to achieve non-trivial length
generalization performance on a wide range of algorithmic
tasks.

That said, we acknowledge that our work still falls short of
demonstrating that transformers can robustly length gener-
alize on any algorithmic task. In some of our results, the
extrapolation to longer sequence length is not robust, and
degradation in performance may appear shortly after mov-
ing out-of-distribution. Additionally, our results rely on
potentially very long and cumbersome CoT data, in a way
that is not necessarily useful for real-world applications of
language models. Thus, we view our results as theoretical
evidence that length generalization is possible, and leave
the development of more practical and robust methods for
real-world length generalization to future work.

out the possibility that some “worst case” Turing Programs have
much more restricted length generlization.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements

This work has been made possible in part by a gift from
the Chan Zuckerberg Initiative Foundation to establish the
Kempner Institute for the Study of Natural and Artificial
Intelligence. EM is supported by The William F. Milton
Fund from Harvard University.

References

Abbe, E., Bengio, S., Lotfi, A., and Rizk, K. Generalization
on the unseen, logic reasoning and degree curriculum.
In International Conference on Machine Learning, pp.
31-60. PMLR, 2023.

Agrawal, M., Kayal, N., and Saxena, N. Primes is in p.
Annals of mathematics, pp. 781-793, 2004.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,
V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E., and
Neyshabur, B. Exploring length generalization in large
language models. Advances in Neural Information Pro-
cessing Systems, 35:38546-38556, 2022.

Bhattamishra, S., Patel, A., and Goyal, N. On the com-
putational power of transformers and its implications in
sequence modeling. arXiv preprint arXiv:2006.09286,
2020.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao,
L., Golding, L., He, H., Leahy, C., McDonell, K., Phang,
J., et al. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877-1901, 2020.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, Y., Gilroy, S., Maletti, A., May, J., and Knight, K.
Recurrent neural networks as weighted language recog-
nizers. arXiv preprint arXiv:1711.05408, 2017.

Chi, T.-C., Fan, T.-H., Ramadge, P. J., and Rudnicky, A. Ker-
ple: Kernelized relative positional embedding for length

Universal Length Generalization with Turing Programs

extrapolation. Advances in Neural Information Process-
ing Systems, 35:8386-8399, 2022.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling

with pathways. Journal of Machine Learning Research,
24(240):1-113, 2023.

Chung, S. and Siegelmann, H. Turing completeness of
bounded-precision recurrent neural networks. Advances
in neural information processing systems, 34:28431—
28441, 2021.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, £.. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wen-
liang, L. K., Catt, E., Cundy, C., Hutter, M., Legg, S.,
Veness, J., et al. Neural networks and the chomsky hier-
archy. arXiv preprint arXiv:2207.02098, 2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y.,
Welleck, S., West, P, Bhagavatula, C., Le Bras, R., et al.
Faith and fate: Limits of transformers on compositionality.

Advances in Neural Information Processing Systems, 36,
2024.

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. In International Conference on
Machine Learning, pp. 11398-11442. PMLR, 2023.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T,
Del Giorno, A., Gopi, S., Javaheripi, M., Kauffmann,
P, de Rosa, G., Saarikivi, O., et al. Textbooks are all you
need. arXiv preprint arXiv:2306.11644, 2023.

Haviv, A., Ram, O., Press, O., Izsak, P.,, and Levy, O.
Transformer language models without positional encod-
ings still learn positional information. arXiv preprint
arXiv:2203.16634, 2022.

10

Hu, Y., Tang, X., Yang, H., and Zhang, M. Case-based or
rule-based: How do transformers do the math? arXiv
preprint arXiv:2402.17709, 2024.

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. Compo-
sitionality decomposed: How do neural networks gen-
eralise? Journal of Artificial Intelligence Research, 67:
757-795, 2020.

Jelassi, S., d’Ascoli, S., Domingo-Enrich, C., Wu, Y., Li,
Y., and Charton, F. Length generalization in arithmetic
transformers. arXiv preprint arXiv:2306.15400, 2023.

Jelassi, S., Brandfonbrener, D., Kakade, S. M., and
Malach, E. Repeat after me: Transformers are bet-
ter than state space models at copying. arXiv preprint
arXiv:2402.01032, 2024.

Jojic, A., Wang, Z., and Jojic, N. Gpt is becoming a tur-
ing machine: Here are some ways to program it. arXiv
preprint arXiv:2303.14310, 2023.

Kaiser, £. and Sutskever, I. Neural gpus learn algorithms.
arXiv preprint arXiv:1511.08228, 2015.

Kazemnejad, A., Padhi, 1., Natesan Ramamurthy, K., Das,
P, and Reddy, S. The impact of positional encoding on
length generalization in transformers. Advances in Neural
Information Processing Systems, 36, 2024.

Lanchantin, J., Toshniwal, S., Weston, J., Sukhbaatar, S.,
et al. Learning to reason and memorize with self-notes.

Advances in Neural Information Processing Systems, 36,
2024.

Lee, N., Sreenivasan, K., Lee, J. D., Lee, K., and Papail-
iopoulos, D. Teaching arithmetic to small transformers.
arXiv preprint arXiv:2307.03381, 2023.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, 1., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. Advances in
Neural Information Processing Systems, 35:3843-3857,
2022.

Li, S., You, C., Guruganesh, G., Ainslie, J., Ontanon, S.,
Zaheer, M., Sanghai, S., Yang, Y., Kumar, S., and Bho-
janapalli, S. Functional interpolation for relative posi-
tions improves long context transformers. arXiv preprint
arXiv:2310.04418, 2023.

Lindner, D., Kramdr, J., Farquhar, S., Rahtz, M., McGrath,
T., and Mikulik, V. Tracr: Compiled transformers as a
laboratory for interpretability. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Universal Length Generalization with Turing Programs

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. arXiv
preprint arXiv:2210.10749, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Malach, E. Auto-regressive next-token predictors are uni-
versal learners. arXiv preprint arXiv:2309.06979, 2023.

Merrill, W. and Sabharwal, A. The expresssive power
of transformers with chain of thought. arXiv preprint
arXiv:2310.07923, 2023.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Pérez, J., Marinkovi¢, J., and Barcel6, P. On the turing
completeness of modern neural network architectures.
arXiv preprint arXiv:1901.03429, 2019.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21

(140):1-67, 2020.

Ruoss, A., Delétang, G., Genewein, T., Grau-Moya, J., Csor-
das, R., Bennani, M., Legg, S., and Veness, J. Random-
ized positional encodings boost length generalization of
transformers. arXiv preprint arXiv:2305.16843, 2023.

Schwarzschild, A., Borgnia, E., Gupta, A., Huang, F,,
Vishkin, U., Goldblum, M., and Goldstein, T. Can you
learn an algorithm? generalizing from easy to hard prob-
lems with recurrent networks. Advances in Neural Infor-
mation Processing Systems, 34:6695-6706, 2021.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention
with relative position representations. arXiv preprint
arXiv:1803.02155, 2018.

Shen, R., Bubeck, S., Eldan, R., Lee, Y. T., Li, Y., and
Zhang, Y. Positional description matters for transformers
arithmetic. arXiv preprint arXiv:2311.14737, 2023.

11

Siegelmann, H. T. and Sontag, E. D. On the computational
power of neural nets. In Proceedings of the fifth annual
workshop on Computational learning theory, pp. 440—
449, 1992.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W.,, and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Turing, A. M. Computing machinery and intelli-
gence. Mind, 59(236):433-460, 1950. ISSN
00264423, 14602113. URL http://www. jstor.
org/stable/2251299.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wei, C., Chen, Y., and Ma, T. Statistically meaningful
approximation: a case study on approximating turing
machines with transformers. Advances in Neural Infor-
mation Processing Systems, 35:12071-12083, 2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837,
2022b.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like trans-
formers. In International Conference on Machine Learn-
ing, pp. 11080-11090. PMLR, 2021.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gu-
nasekar, S., and Wagner, T. Unveiling transformers
with lego: a synthetic reasoning task. arXiv preprint
arXiv:2206.04301, 2022.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length general-
ization. arXiv preprint arXiv:2310.16028, 2023.

Zhou, Y., Alon, U., Chen, X., Wang, X., Agarwal, R., and
Zhou, D. Transformers can achieve length generalization
but not robustly. arXiv preprint arXiv:2402.09371, 2024.

http://www.jstor.org/stable/2251299
http://www.jstor.org/stable/2251299

Universal Length Generalization with Turing Programs

A. Additional Positional Encodings Review

Absolute Positional Encoding (APE). APE consists in maintaining a positional vector p; for each position ¢. This vector
is either predefined via a sinusoidal function (Vaswani et al., 2017) or learned (Devlin et al., 2018). Then, p; is added to the
token embedding e; before being processed by the Transformer. Prior work observed that this positional encoding does not
generalize well to longer sequences in both natural language (Press et al., 2021) and algorithmic tasks (Jelassi et al., 2023;
Kazemnejad et al., 2024).

Additive Relative Positional Encoding (RPE). (Shaw et al., 2018) were the first to integrate positional encodings at the
level of each attention layer (instead of doing it at the input level). (Raffel et al., 2020) built upon this approach and added
scalar biases to pre-softmax logits as follows:

A=XWo(XWgk)" + B,)

where X, Wq, W are the input and query and key weight matrices. The bias matrix B € R™*" is induced by some
positional encoding function b: N *2 5 R. For instance, the T5 relative positional encoding (Raffel et al., 2020) set
b(i,j) = f(i — j), where f is some function. Most of the subsequent positional encodings such as ALiBi (Press et al.,
2021), Kerple (Chi et al., 2022), Randomized Positional Encoding (Ruoss et al., 2023) and Fire (Li et al., 2023) rely on
changing the pre-softmax logits and differ in their definition of b.

Rotary Positional Encoding (RoPE). RoPE (Su et al., 2024) encodes position information in attention logits by applying
a rotation transformation to the query and key vectors based on their relative positions. Despite being widely used, RoPE
exhibits limited length generalization (Press et al., 2021; Kazemnejad et al., 2024).

B. Prior results on multi-digit addition

In this section, we summarize the methods proposed by prior work to get length generalization on addition along with their
corresponding performance. In what follows, we indicate in red the positional encoding and in the data format used in
these works. We also take as a running example the addition 576+361=937.

— (Lee et al., 2023) from 7 to 7-digit (1.0X). APE + . They train their models by reversing each operand as

675+163=739. Therefore, the causal model that processes information from left to right can start with the least significant
digit and proceed to the most significant digit, which corresponds to the algorithm for addition. They do not achieve any
length generalization.

— (Kazemnejad et al., 2024) from 8 to 9-digit (1.125X%): NoPE + . They show that a model without
positional encoding trained on reversed additions like 675+163=739 outperforms those with specialized positional
encodings like T5’s relative positional (Raffel et al., 2020) or RoPE (Su et al., 2024).

— (Shen et al., 2023) from 10 to 11-digit (1.1X): NoPE + . They introduced
random spacing between digits, aiming to alleviate the model’s reliance on absolute positional information. Combining this
with the reversed format, the running example becomes 6 75+16 3=739. They show that NoPE Transformers length
generalize from 10 to 11 digit-addition.

— (Zhou et al., 2023) from 30 to 45 digits (1.5X): NoPE + . They define “index hints", a formatting that consists
in adding a letter in front of each digit in the addition to indicate their position. For instance, the running example becomes
a5b7c6+a3b6cl=a9b3c7. This change is applied during training and inference and enables transformers to execute
indexing via induction heads (Olsson et al., 2022).

— (Zhou et al., 2024) from 40 to 100 digits (2.5 X%): Fire (Li et al., 2023) + Randomized positional encoding (Ruoss et al.,
2023) + . They use a combination of two positional encodings: Fire (Li et al., 2023), a additive
relative positional encoding that has obtained strong length generalization on natural language benchmarks and Randomized
positional encoding (Ruoss et al., 2023): a technique that samples encodings from a range exceeding test-time lengths. The
goal is to ensure that Transformers can adapt to larger positional encodings during training and not encounter any OOD
encoding at test-time. With reversed format and index hints, the data format looks like a6b7c5+alb6c3=a7b3c9. By
using all these modifications, they reach state-of-the-art performance on length generalization for addition. However, these
choices seem to be specific to the addition case and hard to transfer to other algorithmic tasks.

12

Universal Length Generalization with Turing Programs

C. Additional experimental results

100

801

60 1

Accuracy (%)

401

20

0 T T : :
40 50 60 70 80 90 100
Length of Number

Figure 8. Hard-ALiBi with Turing Program, trained to do addition with 5 different initialization seeds. To clarify, the randomness used to
plot the 95% confidence intervals in Figure 3 comes from the samples we draw to calculate the accuracy once a seed is fixed, not from
different training seeds.

100 V N’__\

80 1 !

—_ 1

5 |

> 601

e

35

ot

< 401 —— (n x 3) HAlibi + Turing Program

—— (n x 3) Alibi + Turing Program

201 —— (n x 3) NoPE + Turing Program

(n x 3) RoPE + Turing Program
=== (nx 3) HAlibi + Direct

0 " Sy + + + * *
40 50 60 70 80 90 100 110 120
Length of Number

Figure 9. Comparison of different positional encodings and data formats for length generalization on (n x 3)-digit-multiplication using
the same hyperparameters. The shade shows the 95% confidence intervals.

To the best of our knowledge, (Zhou et al., 2024) achieved length generalization mainly for addition when the two
summands had the same length. Our method generalizes even when the two summands have different lengths. For
Ly, Ly € {17,32,47,62,77,92}, we sampled 96 addition examples where the first summand has length L, and the second
summand has length Ly. The accuracy for each combination is shown in Figure 11. We see that it generalizes well beyond
the trained distribution (L1, Lo < 50).
C.1. Comparison with Past Methods

In this section, we show the performance of some of the methods mentioned in Appendix B under our experimental
conditions. We consider three data formats:

¢ Reversed format in (Shen et al., 2023).
* Index hints in (Zhou et al., 2023)

¢ Index hints + Reversed format in (Zhou et al., 2023)

Moreover, we consider three positional encodings: ALiBi, NoPE, and RoPE. We performed the addition experiments under
the exact hyperparameter setting of Figure 3. The results are shown in Figure 12.

13

Universal Length Generalization with Turing Programs

100
|
801 1
z |
> 60y
E 1
3 i

< 401 — HAlibi

| — Alibi

20 —— NoPE

: —— RoPE

0+ , ; , ,

40 60 80 100 120 140

Lenath of Tape

Figure 10. Comparison of different positional encodings for length generalization on a randomly generated Turing machine using the
same hyperparameters (peak learning rate of 7e — 5, batch size of 16, trained for 200, 000 steps).

Accuracy (%)

-100.00
~_ 100 100 100 100 100
- 99.75
N - 100 100 100 100 100 100 99.50
(o]
% 99.25
£5 - 100 100 100 100 100 100
§ 99.00
w0
Y—
2N - 100 100 100
g © 98.75
()]
C
(O]
- 98.50
~ . 100 100 100 :
98.25
100 100
98.00
1 1
32 47 62 77 92

Length of Summand 1

Figure 11. Grid displaying the accuracy of our model on addition when changing the length of each operand. We observe that our model
is able to generalize on operands with different lengths.

14

Universal Length Generalization with Turing Programs

[
1
1 1
1 1
— | — |
8 i 8 i
> i > i
[€) [} [€) [}
I | I |
=1 ! =1 !
o | o 1
%}] O [}
< I < |
1 1
i i
1 NoPE + Direct 1 Alibi + Direct
1 NoPE + Index Hint 1 Alibi + Index Hint
! NOPE + Reverse ! Alibi + Reverse
1 NoPE + Reversed Index Hint 1 Alibi + Reversed Index Hint
0 | } v y + 0 | + > v v
40 50 60 70 80 90 40 50 60 70 80 90
Length of Number Length of Number
(a) (b)
100
i
|
80 1 t
1
1
— |
b i
> 601 !
9 |
© 1
5 I
15 1
9] |
< 40 !
i
1 RoPE + Direct
20 1 ROPE + Index Hint
! ROPE + Reverse
1 ROPE + Reversed Index Hint
0 | + + + y
40 50 60 70 80 90
Length of Number
©

Figure 12. Comparison of different positional encodings and data formats for addition. All hyperparameters were held fixed: learning rate
of 7e — 5, batch size of 16, and trained for 200k steps.

15

Universal Length Generalization with Turing Programs

D. RASP Turing Programs
D.1. RASP Python Definitions (from (Zhou et al., 2023))

import numpy as np

def full(x, const):
return np.full_ like(x, const, dtype=int)

def indices (x):
return np.arange (len(x), dtype=int)

def tok_map(x, func):
return np.array([func(xi) for xi in x]).astype (int)

def seg_map(x, y, func):
return np.array([func(xi, yi) for xi, yi in zip(x, y)]).astype(int)

def select(k, g, pred, causal=True):
s = len (k)
A = np.zeros((s, s), dtype=bool)
for gi in range(s):
for kj in range(gi+l if causal else s):
Algi, kj] = pred(k[kjl, qlqgil)
return A

def sel_width (A):
return np.dot (A, np.ones(len(A))) .astype (int)

def aggr_mean(A, v, default=0):
out = np.dot (A, wv)

norm = sel width (A)
out = np.divide (out, norm, out=np.full_ like (v, default, dtype=float), where=(norm
0))

return out.astype (int)

def aggr_max (A, v, default=0):
out = np.full_like (v, default)
for i, row in enumerate (A) :
idxs = np.flatnonzero (row)
if len(idxs) > O:
out[1] = np.max (v[idxs])
return out.astype (int)

def aggr_min (A, v, default=0):
return —aggr_max (A, -v, -—-default)

def aggr (A, v, default=0, reduction='mean’) :

if reduction == 'mean’:

return aggr_mean (A, v, default)
elif reduction == ’"max’:

return aggr_max (A, v, default)
elif reduction == 'min’:

return aggr_min (A, v, default)
def kqgv(k, g, v, pred, default=0, reduction='mean’):

return aggr (select(k, g, pred), v, default=default, reduction=reduction)

D.2. Additional Functions (from (Zhou et al., 2023))

import operator as op
import numpy as np

Define comparison operators
equals, leq, 1lt, geq, gt = op.eq, op.le, op.lt, op.ge, op.gt

16

1=

Universal Length Generalization with Turing Programs

def shift_right(x, n, default=0):
shifts sequence x to the right by n positions
return kgv(indices(x) + n, indices(x), x, equals, default=default)

def cumsum(bool_array) :
returns number of previous True elements in bool_array
return sel_width(select (bool_array, bool_array, lambda k, g: k))

def where(condition, x_if, y_else):
equivalent to np.where(condition, x_1if, y_else)
x_masked = seq map(x_if, condition, lambda x, m: x if m else 0)
y_masked = seq map(y_else, condition, lambda y, m: y if not m else 0)
return seq_map (x_masked, y_masked, lambda x, y: x if y == 0 else vy)

def mask (x, bool_mask, mask_val=0) :
equivalent to xxbool_mask + default* (~bool_mask)
return where (bool_mask, x, full(x, mask_val))

def maximum (x) :
return kgv(x, x, x, lambda k, g: True, reduction=’"max’)

def minimum (x) :
return —-maximum (—x)

def argmax(x) :
mm = maximum (x)
return kgv(mm, x, indices(x), reduction='max’)

def argmin (x) :
return argmax (—x)

def num_prev(x, queries):
output[i] = number of previous elements of x equal to queries[i], inclusive
return sel_width (select (x, queries, equals))

def has_seen(x, queries):
return kgv(x, queries, full(x, 1), equals, default=0)

def firsts(x, queries, default=-1):
find the index of the first occurrence of each query[i] in x
out[i] := np.flatnonzero(x[:1+1] == queries[i]) .min ()
return kqgv(x, queries, indices(x), equals, default=default, reduction="min’)

def lasts(x, queries, default=-1):
find the index of the last occurrence of each query[i] in x
out[i] := np.flatnonzero(x[:i+1] == queries[i]) .max ()
return kqgv(x, queries, indices(x), equals, default=default, reduction='max’)

def index_select (x, i1dx, default=0):
indexes into sequence x, via index sequence idx
i.e., return x[idx] if idx[i] <= 1 else default
return kqgv(indices(x), idx, x, equals, default=default)

def first_true(x, default=-1):
returns the index of the first true value in x
seen_true = kqgv(x, full(x, 1), full(x, 1), equals, default=0)
first_occ = seq _map(seen_true, shift_right (seen_true, 1), lambda curr, prev: curr and
not prev)
return kqgv(first_occ, full(x, 1), indices(x), equals, default=default)

def induct_kqgv(k, g, v, offset, default=0, null_val=-999):
get value of v at index of: first occurrence of g[i] found in k (if found) + offset.
(excludes the last OFFSET tokens of k from matching)
null val is a special token that cannot appear in k or g; used to prevent accidental

17

Universal Length Generalization with Turing Programs

matches

indices_to_copy = firsts(shift_right (k, offset, default=null_val), g, default=null_val
)

copied_values = index_select (v, indices_to_copy, default=default)

return copied_values

def induct(k, g, offset, default=0, null_val=-999):
return induct_kqgv(k, g, k, offset=offset, default=default, null_val=null_val)

def induct_prev(k, g, offset, default=0, null_val=-999):
A version of induct for negative offsets.
indices_to_copy = firsts(k, g, default=null_val) + offset
copied_values = index_select (k, indices_to_copy, default=default)
return copied_values

D.3. Utility Functions

def prefix_fill(x, n, value):
ones = full(x, 1)
no_fill = shift_right (ones, n)
return where(no_fill, x, full(x, value))

def where3(cond, x, y, 2z):

out = where(cond == 0, x, V)
return where(cond == 2, 2z, out)

D.4. Turing Machine Transition Function

sep = 0
bos =1
eos = 2
empt = 3

alphabet = list (range (4, 16))
state_space = list (range(l6, 32))

state_transition = {a: {s: np.random.choice(state_space) for s in state_space} for a in
alphabet + [bos, eos]}

symbol_transition = {a: {s: np.random.choice (alphabet) for s in state_space} for a in
alphabet}

move_direction = {a: {s: np.random.choice ([0, 1]) for s in state_space} for a in alphabet}

def next_state(state, token):
if token in state_transition.keys () and state in state_space:
return state_transition[token] [state]
else:
return 0

def next_symbol (state, token):
if token in alphabet and state in state_space:
return symbol_transition[token] [state]
elif token == bos:
return bos
elif token == eos:
return eos
else:
return 0

def move (state, token):
if token in alphabet and state in state_space:
return move_direction[token] [state]
elif token == bos:
return 1
else:
return 0

18

Universal Length Generalization with Turing Programs

D.5. Computation of Next Tape State

def get_next (x, x_left, x_right):
compute the next state of head and new symbol, without moving the head
x_state = seqg _map(x, x_left, next_state)
x_symbol = seq_map (x_right, x, next_symbol)
x_move_R = seq _map(x, x_left, move)
is_head = tok_map(x, lambda z: z in state_space)

is_head_right = tok_map (x_right, lambda z: z in state_space)
x_next = where(is_head, x_state, x)

x_next = where(is_head_right, x_symbol, x_next)

x_move_R = x_move_R & is_head

return is_head, x_next, x_move_R

def select_move_token (no_head_around, head_left_move_left, head left_move_right,
head_right_move_left, head_right_move_right, is_head_move_left, is_head_move_right) :
LEFT_TOKEN = full (no_head_around, 0)
CUR_TOKEN = full (no_head_around, 1)
RIGHT_TOKEN = full (no_head_around, 2)
out = CUR_TOKEN
out = where (head_left_move_right | is_head_move_left, LEFT_TOKEN, out)
out = where (head_right_move_left | is_head_move_right, RIGHT_TOKEN, out)

return out

def move_head (cur_state, right_state):
is_head, cur_next, move_R = cur_state
right_is_head, right_next, right_move_R = right_state
left_is_head, left_next, left_move_R = shift_right (is_head, 1), shift_right (cur_next,
1), shift_right (move_R, 1)

no_head_around = (~left_is_head & ~right_is_head & ~is_head)
head_left_move_left = left_is_head & ~left_move_R
head_left_move_right = left_is_head & left_move_R
head_right_move_left = right_is_head & ~right_move_R
head_right_move_right = right_is_head & right_move_R

is_head_move_left = is_head & ~move_R
is_head_move_right = is_head & move_R
x_sel_move = select_move_token (no_head_around, head_left_move_left,

head_left_move_right, head_right_move_left, head_right_move_right, is_head_move_left,
is_head_move_right)
return where3 (x_sel_move, left_next, cur_next, right_next)

def next_tape(x, shift):
compute the state of the head, after shifting by some n >= 2
x_ = shift_right (x, shift)
x_left = shift_right(x, shift+1l)
x_right = shift_right(x, shift-1)
x_right_right = shift_right (x, shift-2)

compute the next state (before moving the head) for current tape and right tape
cur_state = get_next(x_, x_left, x_right)
right_state = get_next (x_right, x_, x_right_right)

x_next = move_head (cur_state, right_state)

return x_next

D.6. Hashing Functions

19

Universal Length Generalization with Turing Programs

MAX_INT = 32
def hash_n_gram(x, n):
out = x
before_last_sep = tok_map(x, lambda z: z == 0)
shifted = shift_right (x, 1)
for i in range(n):
shifted_is_sep = tok_map(shifted, lambda z: z == 0)
before_last_sep = shifted_is_sep | before_last_sep
to_add = seq _map(shifted, before_last_sep, lambda a, b: ax(l-b))
add to hash
out = seqg_map (out, to_add, lambda a, b: b + MAX_INT *x a)
shifted = shift_right (shifted, 1)
return out

def hash_n_gram_iter(x, n):
is_sep = tok_map(x, lambda z: z == 0)
sep_cs = cumsum(is_sep)
x_hash = hash_n_gram(x, n)
return seqg_map (sep_cs, x_hash, lambda a, b: a + (MAX_INT=x=xn) *b)

D.7. Next-Token Prediction for Turing Programs

def next_token_turing(x):
x_next_tape_2 = next_tape(x, 2)
x_next_tape_3 = next_tape (x, 3)
x_next_tape_3 = prefix_ fill (x_next_tape_3, 2, empt)
k = hash_n_gram_iter (x_next_tape_3, 1)
g = hash_n_gram_iter(x, 1)
v = x_next_tape_2
out = kqgv(k, g, v, equals, reduction="max’)
return out[-1]

E. Turing Program Descriptions

E.1. Multiplication

Input:

4324%1365

Target:

<scratch>

4324x135

2e * 135 (0540~054,0)
1 3 5 (0270~032,40)
3 5 (0405~043,740)

5 (0540~058,3740)
5
5

2w w

4
4
4

(0]
*

(0000~005,83740)
(0000~000,583740)

*
=R e
w w W = ox

*

583740
</scratch>

Figure 13. Turing Program for 3-digit multiplication. At each step, we update three information: the head position, the result of the “local”
multiplication, the carry and the intermediate result of the “global” multiplication.

E.2. SGD

We briefly describe here the Turing Program we used in subsection 5.2. Beyond the numerical tokens “a0, al, a2,... al99",
we include tokens “$, d, yp, g, cur, |" to aid the calculation. A typical CoT for a gradient descent then looks like the

20

Universal Length Generalization with Turing Programs

following:

$dal79al66, a76 d a80 al45,al02d a77 al39, al03 |

dal79 al66,a76 d a80 al45,al02 d a77 al39, al03 yp al00 g al01 a99 cur a99 al01 |
dal79 al66,a76 d a80 al45 , al02 yp al01 g al00 a99 cur a99 al02 |

dal79 al66 ,a76 yp al00 g al20 all7 cur a79 a85 |

In the above example, the first line provides a dataset of size three where “d al79 al66 , a76" denotes the first example
(“al79"and “al66" are the coordinates of &, “a76" is the value of y, and “d" is a token that denotes the start of an example).
From the second line onward, we perform gradient descent starting from the last data point, working backward: On the
second line, the original dataset is copied, while the “al00" following “yp" is the predicted value of y given the initial weight
and the last feature vector “a77 a139", the “g al01 a99" says that AV, ||y; — @; - Z;|| has value “al01 a99", and “cur a99
al01" means that the current weight after update is “a99 al01". After a example’s gradient is calculated, we delete that
example.

E.3. Sequences of Arithmetic Operations

x1=16
x2=18
x3="7
x4=9
y=x1-x3
y=x4-y
y=y*xl

y=y*x1l
current y=9
x1=16

x2=18

x3=17

x4=9

y=9-9
y=y*x1l
current y=0
x1=16

x2=18

x3=17

x4=9

y=0%16
current y=0

F. Turing Programs for Simulating Turing Machines

We use the tokens space a1,az,...,b1,b2,...,81,82, L, R|, (,),~,<|BOS|>,<|EOS|>,<|SEP | >}, where the a;’s
are input symbols, the b;’s are symbols substituting the a;’s when the head is pointing to them and (,), |,~, L, R are
symbols used to encode the transitions. For instance, the transition (s1, ag, L) means that the Turing machines moves to
state s1, edits the tape by writing ag and moves the head to the left.

21

