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ABSTRACT

Neural network architectures have made considerable advances in their ability
to solve reasoning problems, but many state-of-the-art methods fail at system-
atic compositional generalization. To address this, we propose a novel architec-
ture which uses a nonparametric latent space, information-theoretic regularization
of this space, and test-time gradient-based search to achieve strong performance
on OOD compositional meta-learning tasks such as ARC-like program induction,
Raven’s progressive matrices, and linguistic systematicity tasks. Our proposed
architecture, Abduction Transformer, uses nonparametric mixture distributions to
represent inferred hidden causes of few-shot meta-learning instances. These repre-
sentations are refined at test-time via gradient descent to better account for the ob-
served few-shot examples, a form of variational posterior inference which allows
Abduction Transformer to solve meta-learning tasks that require novel recombi-
nations of knowledge acquired during training. Our method outperforms standard
transformer architectures and previous test-time adaptive approaches, indicating
a promising new direction for neural networks capable of systematic generaliza-
tion.1

1 INTRODUCTION

The ability to solve novel tasks by recombining known primitives, often referred to as compositional
generalization, is commonly understood as a prerequisite for general intelligence (Fodor, 1975; Cat-
tell, 1963; Chomsky, 1965; Gick & Holyoak, 1980). In settings where exhaustive memorization of
the solutions to problem instances is impossible, the ability to learn and compose reusable concepts
is necessary for solving problems in general; any system which fails to do so will exhibit catastrophic
failure on problems which are out of distribution (Chollet, 2019). Historically, it has been debated
whether or not connectionist architectures such as neural networks possess the capacity to learn
representations and circuits which allow for this form of systematic recombination of knowledge to
infer new concepts (Rumelhart & McClelland, 1986; Smolensky, 1990; Fodor & Pylyshyn, 1988).
While some progress has been made to refute this claim (Lake & Baroni, 2023), and despite the rise
of LLMs which seemingly display some characteristics of general intelligence and compositional
reasoning (Bubeck et al., 2023; An et al., 2023; Hosseini et al., 2022), a plethora of negative results
suggest that current architectural paradigms are inadequate and so further investigation is warranted
(Dziri et al., 2023; Mirzadeh et al., 2025; Opedal et al., 2025; Shojaee et al., 2025).

In this work, we propose a novel architecture with strong compositional generalization ability. To
evaluate our approach, we study domains where novel inferences can be made by combining ex-
isting knowledge. We choose tasks which require compositional solution construction, as a testbed
for this type of reasoning ability. To demonstrate the presence of these abilities in our proposed
methods, we consider meta-learning abduction tasks which necessitate out-of-distribution (OOD)
adaptation to novel test instances, requiring some form of compositional generalization. In partic-
ular, we study program induction (Summers, 1977; Biermann, 1978) and grammar induction (Lake
& Baroni, 2023), abstract meta-learning tasks which standard transformer architectures perform
poorly on due to their compositional nature. While some combinations of compositional generaliza-
tion (Schug et al., 2025; Chen et al., 2020), test-time adaptation (Hübotter et al., 2025; Dong et al.,
2025; Gladstone et al., 2025; Mathur et al., 2025), meta-learning (Vettoruzzo et al., 2025; Yao et al.,

1Code for our models will be publicly released upon acceptance.
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2022), and abstract reasoning (Wang et al., 2025; Li et al., 2024) have each been studied in isolation,
we are, to our knowledge, the first to propose and evaluate a method covering all of these aspects.

Problems of this type require some form of search over hypotheses inferred from observations and
prior knowledge (Macfarlane & Bonnet, 2025; Chollet et al., 2025). In our case, these hypotheses
include possible combinations of concepts and abstractions learned during training. By representing
these hypotheses in some latent space, the problem of knowledge recombination (and by extension
compositional reasoning) becomes a matter of discovering some latent representation of the novel
input which allows it to be explained using the generative model acquired during training, giving
us a form of hypothesis testing. Inferring such a latent cause of the observed input is abductive
inference, so we call our proposed architecture Abduction Transformer. Abduction Transformer
is a deep variational Bayesian model, like Variational Autoencoders (Kingma et al., 2013) and La-
tent Program Networks (Macfarlane & Bonnet, 2025), but unlike these previous models it takes full
advantage of the power of the transformer architecture’s set-of-vector embeddings by encoding the
hidden causes as nonparametric latent representations (Henderson & Fehr, 2023). Nonparametric
representations have the advantage that they generalize well across situations of varying complexity,
such as generalizing from simple concepts learned during training to their more complex composi-
tions. Crucially, our method includes not only amortized inference but also test-time gradient-based
search over its latent space to find the most plausible hypotheses which account for problem in-
stances. We show that this test-time search procedure, combined with our information-theoretic
regularization over our latent space, enables discovery of minimal latent representations of inputs
and consequently allows our model to perform well on novel tasks.

Our main contributions are summarized below:

i) We find that set-of-vector representations with variable cardinality lead to better compo-
sitional generalization. We represent inputs as nonparametric (variable-sized) discrete mix-
ture distributions, as opposed to parametric (fixed-sized) vectors commonly used in previous
Bayesian methods.

ii) We show that test-time gradient search over latent representations leads to improved gen-
eralization in extreme OOD regimes. Test-time search enables our models to solve problems
containing a vast number of unseen concept combinations, which standard transformers with
the same training data are unable to solve.

iii) We demonstrate that stochastic sampling of representations at training-time leads to a
searchable latent space. By encoding inputs into parameters of Dirichlet processes from
which we sample discrete mixtures, our latent space can benefit from information-theoretic
regularization, resulting in a smooth and searchable space.

iv) Our models significantly outperform standard transformer architectures and previous
test-time adaptive methods on OOD abstract reasoning tasks. In addition, we nominally
outperform GPT-5 Thinking (OpenAI, 2025) (w/o fine-tuning) on Raven’s progressive matrices
(Raven, 1962) and perform comparatively on 1-D ARC problems (both in OOD settings), while
using only ∼1.2M parameters.

Overall, our contributions make significant progress towards developing test-time adaptive neural
networks which are capable of knowledge recombination in novel situations.

2 META-LEARNING AS INFERRING HIDDEN MAPPINGS

Problem definition. We consider few-shot meta-learning problems where the objective is to infer
some hidden mapping which explains the few-shot examples. The few-shot examples are defined as
a set of input/output pairs, which form a problem specification:

X = {(x1, y1), (x2, y2), ..., (xn, yn)}. (1)

A mapping H∗ is said to solve the problem if H∗(xi) = yi,∀i ∈ [1, n]. In practice, we test whether
the correct prediction of the ground truth test output y∗ on some test query xquery is made, namely
that y* = H∗(xquery).

Hypotheses and compositions. We refer to a candidate mapping H as a hypothesis coming from
some hypothesis space H. A problem specification X is considered function compositional if its
solution H∗ can be expressed as a composition of two mappings H1, H2 ∈ H such that H∗ =

2
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Figure 1: Overview of Abduction Transformer. Left: Few-shot example pairs are tokenized and
encoded into a set of vectors from which the parameters of a posterior Dirichlet process are inferred.
Right: A latent mixture distribution H is sampled from the DP and used to decode the inputs of
few-shot examples into predicted outputs, from which cross-entropy loss is computed against the
true outputs. We update our latent representation H w.r.t. this loss to refine our hypothesis to better
account for the few-shot examples. After repeating this process a fixed number of times, we use our
refined latent representation to decode the test query into the final prediction.

H1 ◦ H2. In addition, a problem specification with test query xquery and ground truth test output
y∗ of the same form as Eq. 1 is considered production compositional if there exist mappings
H1, H2 ∈ H such that:

yi = H1(xi) yj = H2(xj) y∗ = H1(H2(xquery)) i, j ∈ [1, n] (2)

We refer to the individual mappings constituting the compositions as constituent hypotheses. A
tuple (X,xquery, y

∗) is said to be function compositional relative to a set of mappings T if T contains
its constituent hypotheses, and the same can be said for production compositional problem instances.
If a system A which has been trained to recognize a set of hypotheses T ⊆ H \ {H∗} is able to
solve a problem X with solution H∗ which is function compositional or production compositional
relative to T , we say that system A exhibits compositional generalization.

3 ABDUCTION TRANSFORMER

Few-shot learning as variational inference. The objective of the few-shot meta-learning task
presented in the previous section can be viewed as posterior inference of the hypothesis H which
best accounts for the observations specified by X . In other words, the task amounts to inferring the
posterior distribution p(H | X).

Fig. 1 gives an overview of the Abduction Transformer architecture. Similarly to VAEs (Kingma
et al., 2013), we define parameterized neural networks which approximate the distributions qϕ(H |
X) (encoder) and pθ(X | H) (decoder), and train these networks to minimize variational free
energy, an upper bound on the KL-divergence between the true posterior p(H | X) and qϕ(H | X)2:

F(ϕ, θ) = KL(qϕ(H | X) ∥ p(H))− Eqϕ(H|X)[log pθ(X | H)] (3)

A nonparametric latent space. Our architecture uses a transformer encoder to infer qϕ(H | X),
which has the crucial property that the number of vectors in the transformer’s output grows propor-
tionally to the number of tokens in its input. This ability to model situations of variable complexity
is analogous to the way Bayesian nonparametrics is able to model mixture distributions of variable
complexity. We take advantage of this ability to model mappings H with variable complexity, so
that models trained on simple mappings generalize naturally to their more-complex compositions.

To do so, we use an approach proposed by Henderson & Fehr (2023) for general purpose transformer
VAEs. We project the transformer output into the parameters of a nonparametric distribution, namely

2In practice, this loss is implemented with modifications; the exact form of the training loss is given in Eq. 5.
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a Dirichlet Process (DP). Each vector in the set output by the transformer is projected to a pseudo-
observation for the DP with distribution N (µi,σ

2
i ) and pseudo-count αi. In particular, we define

qϕ(H | X) as a DP such that 3:

qϕ(H | X) := DP(N0(µ,σ
2),α0) N0(µ,σ

2) :=

n∑
i=1

αi

α0
N (µi,σ

2
i ) α0 :=

n∑
i=1

αi (4)

where µ ∈ Rn×p, σ2 ∈ Rn×p, α ∈ Rn are parameters linearly projected from the ϕ-parameterized
transformer output V ∈ Rn×p.

As a result, our latent representations are samples from DPs, i.e. mixture distributions whose ef-
fective number of components are unbounded and sensitive to input observations4. By treating our
latent space as a distribution over distributions, we hope to learn a space which is smooth and disen-
tangled, taking inspiration from VAE variants (Burgess et al., 2018). This approach can be viewed
as a natural generalization of VAEs from the vector space regime to the set-of-vector space regime,
which is appropriate for transformer architectures.

Abduction Transformer encoder. Our encoder transformer is trained to approximate qϕ(H |
xi, yi), where (xi, yi) is a pair contained in a problem specification. To give our transformer en-
coder this probabilistic interpretation, its output is stochastic. The encoder takes a pair from the
problem specification X , tokenizes it into a set of input vectors, and encodes it into the set of pa-
rameters of a DP: µ, σ2, and α. Then a discrete mixture is sampled from this inferred DP using
a factorized sampling method from Henderson & Fehr (2023). The mean of these samples across
pairs in X is taken as the encoder’s output hypothesis: H = 1

N

∑N
i=1Hi, Hi ∼ qϕ(H | xi, yi).

See App. A for an overview of the operations involved in inferring DP parameters.

Abduction Transformer decoder. The decoder specifies the distribution ŷ ∼ pθ(yi | xi, H). It
is implemented as a transformer decoder that autoregressively generates its prediction ŷ by cross-
attending to the latent representation H , and self-attending to the context xi. Since H is represented
as a mixture distribution, cross-attention to H involves the denoising-attention operation, which
Henderson & Fehr (2023) show theoretically subsumes regular attention.

Thus, because the decoder generates its prediction yi conditioned on xi and H , it can be viewed
as a mechanism which computes H(xi). In practice, the latent hypothesis H is often the inferred
average hypothesis H over the pairs in X , and xi is the input query xquery. Further details regarding
denoising-attention and its equivalence to regular attention can be found in App. B.

Gradient search over latent hypotheses. Similarly to Macfarlane & Bonnet (2025), our archi-
tecture allows for refinement of latent representations produced by the encoder to further improve
congruence with the few-shot examples given in the problem specification. Given some hypothesis
H , we allow its gradient-based refinement by minimizing −

∑n
i=1 log pθ(yi | xi, H) across few

shot examples {(xi, yi)}ni=1 with respect to H .

This process can be thought of as gradient search over latent space to find a hypothesis that better
accounts for potentially novel observations, where the search is initialized by a forward pass of
the encoder. By decoding each candidate hypothesis into its predictions over yi at each step, our
procedure can be viewed as a form of iterative hypothesis testing and solution verification against
few-shot examples. A refined hypothesis Ho is then used to decode some test query xquery in order
to predict the ground truth y∗, both of which are not seen during the gradient search process.

Training procedure. As mentioned in §3, the training loss for these networks is variational free
energy, a standard objective used by architectures such as VAEs. We assume a dataset of meta-
learning episodes, each containing a problem specification X , a test query xquery and ground truth
test output y∗. For each episode, we compute the loss:

L(ϕ, θ) = λKL
1

n

n∑
i=1

KL(qϕ(H | xi, yi) ∥ p(H))− log pθ(y
∗ | xquery, H) (5)

3Our implementation incudes an isotropic Gaussian prior component in the DP’s base distribution, which is
omitted from the expression given here for brevity.

4Samples from DPs are theoretically infinite. We truncate samples by only considering κ0 = n + 1 com-
ponents, where n is the number of input vectors with an added prior component.

4
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Figure 2: Illustration of compositional generalization tasks. A (1-D ARC) A set of 3 few-shot
examples are given in the form of input/output pairs, and the objective is to predict the correct
output on some test query. B (Composition in ARC) We train our model on problems containing
a subset of possible transformations. At test time, we evaluate on unseen transformations which
are compositions of transformations seen during training. C (Raven’s Progressive Matrices) Our
model is trained on problems containing some subset of possible combinations of rules for feature
progressions.5At test time, we evaluate on problems with unseen rule combinations. D (Linguistic
Systematicity Task) Our model trains on meta-learning episodes containing sentence/interpretation
pairs. At test-time, the model is evaluated on meta-learning episodes with unseen grammars govern-
ing the sentence/interpretation pairs.

and update our parameters ϕ and θ according to back-propagated gradients, where λKL is a scalar
hyperparameter.

The KL-divergence term acts as an information-theoretic regularizer on the posterior DP parameters,
encouraging sparsity in the mixture weights given to mixture components (the set of vectors accessi-
ble by cross-attention), and encouraging a smoother latent-space due to noisy training-time sampling
of component vectors. The prior we use in the KL-divergence term is a DP with an isotropic Gaus-
sian with unit variance as its base distribution, and concentration parameter set to one.

It is also possible to train Abduction Transformer while including intermediate gradient search ap-
plied to the average hypothesis H before decoding. In this case, the second term in Eq. 5 becomes
− log pθ(y

∗ | xquery, H
o
), where H

o
is the refined hypothesis after gradient search to optimize the

few-shot examples inX . Details and pseudo-code for the training procedure, as well as the particular
KL-divergence loss we use for DPs are given in App. C.

4 ARC-LIKE REASONING

For our first meta-learning task, we consider 1-D abstract spatial reasoning problems inspired by the
ARC-AGI benchmark (Chollet et al., 2025). The task consists of a problem specificationX contain-
ing input/ouput pairs of pixel sequences which are all governed by some common transformation
H∗, and the objective is to predict the ground truth output pixel sequence y∗ given xquery. The task
thus contains a perceptual component of discovering entities within a sequence of pixel values as
well as inferring the transformations being applied to them and is useful as a benchmark for abstract
reasoning ability (Chollet, 2019).

Problems of this nature are difficult for neural networks to solve, including architectures incorporat-
ing pre-trained LLMs (Xu et al., 2024; Dimitriadis & Samothrakis, 2025; Chollet et al., 2025). In

5
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this section, we seek to investigate the ability of Abduction Transformer to solve ARC-like problems
whose solutions are unseen during training, but consist of compositions of transformations seen dur-
ing training. In other words, we investigate whether Abduction Transformer exhibits compositional
generalization with respect to function composition according to the definition given in §2.

1-D ARC dataset. For these experiments, we utilize an open-source dataset arc-like (neurallambda,
2024) which allows us to procedurally generate 1-D ARC-like problems with composable combi-
nator functions. We train Abduction Transformer and other baseline architectures on a training set
of ARC-like problems with solutions H ∈ T with |T | = 36. The set of training hypotheses in-
cludes primitive transformations such as translation, color-shift, expansion, sorting, reflection, and
denoising, as well as a subset of possible compositions of these primitives. Training examples are
generated by sampling a random transformation H from T , generating a random input sequence
conditioned on H , and then computing the output sequence by applying the predefined combinator
functions associated with H .

Our training set can be expressed as a set of tuples Dtrain = {(X,xquery, y
∗)j}Nj=1 with problem

specifications taking the form X = {(xi, yi)}3i=1. We define xi, yi, xquery, y
∗ as sequences of pixel

values such that H∗(xi) = yi and H∗(xquery) = y∗.

Experimental setup. To test OOD compositional generalization, we evaluate our trained models on
a test set with solutions H ∈ V with |V| = 14 such that V only contains transformations which are
compositions of those found in T , but not themselves found in T . For example, if translate and
denoise are found in T , then V may contain translate◦denoise. In other words, we design
a test set of tuples representing meta-learning episodes Dtest = {(X,xquery, y

∗)i}ni=1 such that for
all (X,xquery, y

∗) ∈ Dtest, (X,xquery, y
∗) is function compositional relative to T . See Fig. 2B for a

visual illustration of the training and test sets. The test set contains 2000 such meta-learning episodes
which are each generated in the same way as those in the training set. See App. D.1 for a complete
enumeration of training and test set transformations.

Table 1: Performance on 1-D ARC OOD Composition Task. Zero-shot test set performance for
GPT-5 Thinking and GPT-4.1 (OpenAI, 2024) are provided to contextualize task difficulty (see
Appendix. G for details). We report standard error over 3 seeds.

Model Solve Rate (%) Gradient Search Steps
Train Eval

Abduction Transformer (Ours) 25.1 ± 2.6 1 100
Single Vector LPN (Macfarlane & Bonnet, 2025) 1.9 ± 1.0 1 100
Encoder-decoder Transformer Baseline 0.1 ± 0.0 1 100
Decoder-only Transformer Baseline 5.2 ± 1.3 None None
Ablations
Abduction Transformer (No KL-regularization) 16.7 1 100
Abduction Transformer (No gradient search) 0.1 None None
GPT-5 Thinking (w.o. fine-tuning) 29.0 N/A N/A
GPT-4.1 (w.o. fine-tuning) 11.0 N/A N/A

Results. Table 1 compares perfect solve rates across various architectures. We see that Abduction
Transformer performs significantly better than any of the baseline architectures, solving 25.1% of
problems perfectly. Our results show that gradient search is effective for solving ARC-like prob-
lems requiring compositional generalization. In addition, we find that using nonparametric latent
representations outperforms previous test-time gradient search approaches which utilize single vec-
tor latent representations, namely Latent Program Network (Macfarlane & Bonnet, 2025). We also
see that our information-theoretic regularization plays an important role, with our ablations on KL-
regularization performing worse.

5Although not illustrated, in order to drastically increase the size of the hypothesis space the feature vector
components are randomly permuted column-wise, meaning the row (1, 2), (1, 3), (1, 4) may be modified to
(1, 2), (3,1), (1, 4) (where feature vectors in the second column of other rows have their components permuted
in the same way).
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The baseline models with no test-time gradient search both show significantly diminished perfor-
mance, demonstrating that compositional generalization on ARC-like tasks is difficult without test-
time adaptation. The effect of scaling the number of gradient search steps is discussed in App. D.3.
Finally, we highlight that the deterministic encoder-decoder transformer baseline solves only 0.1%
of problems, even when trained with gradient search, indicating that without a stochastic treatment
of the encoder the training process does not lead to a searchable latent space. Model and hyperpa-
rameter details can be found in App. D.2. Further discussion on the geometry of our learned latent
space can be found in App. D.4.

5 RAVEN’S PROGRESSIVE MATRICES

Our second experiment considers a symbolic variation of Raven’s Progressive Matrices, an abstract
reasoning task commonly used as a measure of intelligence in humans (Raven, 1962). In its original
formulation, a problem instance takes the form of a matrix of panels whose contents evolve row-
wise according to some common set of rules, and the objective is to predict the contents of a query
panel usually placed on the last column of the last row. The task requires the discovery of a set
of rules which explain the progressions seen in the problem, and therefore requires search over
possible hypotheses (Carpenter et al., 1990). As such, we frame Raven’s Progressive Matrices as a
meta-learning problem similar to previous tasks considered, where we take each row of the problem
as a few-shot meta-learning example.

SRAVEN. We utilize the open source SRAVEN dataset, which is a symbolic variation of Raven’s
Progressive Matrices specifically developed to test compositional generalization in neural network
architectures Schug et al. (2025). Instead of the graphical format which Raven’s Progressive Matri-
ces are classically presented in, SRAVEN encodes each panel of a problem instance into a feature
vector with feature values from a fixed vocabulary. Unlike the previous ARC-like reasoning task
which contains a large perceptual component, SRAVEN is designed to test purely symbolic compo-
sitional reasoning, giving us fine-grained control over the rule combinations, i.e., compositions that
we evaluate.

Specifically, SRAVEN encodes each problem panel as a K-dimensional vector, where each feature
can take on one of F -many integer values. Each feature is governed by a progression rule which
takes as input two integers and outputs a single integer. Thus, the first two columns of each row in
combination with the set of K rules governing each feature determine the right-most panel of each
row. See App. E.1 for an overview of the list of progression rules contained in SRAVEN.

Problems are generated by first sampling a set of K rules (out of N total), and producing each row
by sampling random inputs to the rules. The final column of the final row is treated as the test query
and is hidden to the model. This leads to a 3× 3 matrix R of K-dimensional vectors, described as a
problem specification X = {(xi, yi)}2i=1 where xi = (Ri,1, Ri,2) and yi = Ri,3. In addition, xquery
is defined as (R3,1, R3,2) and y∗ asR3,3. To increase the difficulty of our problems, the components
of feature vectors are randomly permuted in the same way for each column in the problem across
few-shot examples. Identically to the previous experiments, training sets take the form of a set of
tuples Dtrain = {(X,xquery, y

∗)j}Nj=1 and the same format applies to our test sets.

Experimental setup. In order to evaluate OOD compositional generalization ability, we generate
two datasets with N = 8, K = 4 and F = 8 such that the rule combinations seen in problems
of each dataset are disjoint.6 For instance, if the training set contains a problem instance with
rule set {A,B}, then the test does not contain any problem with that rule set. See Fig. 2C for an
illustration of our dataset split. Out of all possible combinations of K rules, we randomly sample
a fraction of these for our training set; for this experiment, we train models on 1% of possible rule
combinations, as well as on 90% of possible rule combinations and evaluate on problems containing
the held out proportion of rule combinations. In our few-shot meta-learning framework, this amounts
to performing evaluations on test sets whose problems are function compositional relative to the
training set. Our test sets consist of 2000 generated OOD SRAVEN problems each.

6This gives
(
R+K−1

K

)
·(K!2−K) = 188, 760 many possible SRAVEN tasks (possible hypotheses) in total,

taking feature permutations into account.
7Reported standard error is computed over 3 seeds.
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Table 2: SRAVEN OOD Composition Task: Performance when training on 1% and 90% of possible
rule combinations.7For each training method, we evaluate on problems with rule combinations taken
from the remaining unseen proportion of combinations. We additionally present zero-shot perfor-
mance on the test set containing 99% of rule combinations for GPT-5 Thinking and GPT-4.1.

Model Train on 1% Train on 90%
Solve Rate (%) Gradient Steps Solve Rate (%) Gradient Steps

Train Eval Train Eval
Abduction Transformer (Ours) 46.1 ± 4.2 1 100 96.4± 0.4 1 10
Single Vector LPN (Macfarlane & Bonnet, 2025) 37.1 ± 2.0 1 100 93.5± 1.0 1 10
Encoder–decoder Transformer Baseline 10.8 ± 2.2 1 100 27.2± 3.0 1 10
Decoder-only Transformer Baseline 28.8 ± 1.3 None None 95.3 ± 1.1 None None
Ablations
Abduction Transformer (No KL-regularization) 16.8 1 100 33.7 1 10
Abduction Transformer (No gradient search) 20.9 None None 96.7 None None
GPT-5 Thinking (w.o. fine-tuning) 41.0 N/A N/A N/A N/A N/A
GPT-4.1 (w.o. fine-tuning) 34.0 N/A N/A N/A N/A N/A

Results. Our results are summarized in Table 2. We find that when trained on 90% of possible com-
positions, Abduction Transformer and the decoder-only transformer baseline perform comparably,
showing close to perfect performance on the OOD test set. When trained on 1% of possible com-
positions, we find that the Abduction Transformer significantly outperforms all other architectures
we tested. We observe that the decoder-only baseline which performed well in the previous setting
now degrades significantly in performance, indicating poor generalization in more extreme OOD
regimes. The single vector LPN similarly equipped with test time gradient search performs better
than the decoder-only baseline but not as well as Abduction Transformer, indicating the advantage
of using nonparametric latent representations.

Our ablations show that 1) KL-regularization during training is necessary for effective latent space
search, 2) gradient search is needed for more extreme OOD compositional generalization and 3)
gradient search fails when applied to a deterministic encoder-decoder architecture, indicating that
our probabilistic treatment is necessary. Model and hyperparamter details can be found in App. E.2.
We discuss the effect of scaling gradient search steps in App. D.3.

6 LINGUISTIC SYSTEMATICITY
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Figure 3: Performance on linguistic sys-
tematicity task when varying the num-
ber of few-shot examples given in meta-
learning episodes at test time.

Finally, we consider a grammar induction task proposed
by Lake & Baroni (2023) to test linguistic systematic-
ity and compositional generalization ability in neural net-
works. The task is a meta-learning task where each meta-
learning episode contains 14 few-shot examples of sen-
tence/interpretations pairs, namely pairs consisting of a
sequence of lexical symbols and a sequence of colored
circles. The objective of the task is to infer the underly-
ing interpretation grammar from these examples and as-
certain the correct interpretation of some query sentence.
See Fig. 2D for an illustration of the problem setup.

Experimental setup. We use the open source training
and test sets created by Lake & Baroni (2023) to train and
evaluate our models. The training set is a set of meta-
learning episodes Dtrain = {(X,xquery, y

∗)j}Nj=1 each
generated from a randomly sampled interpretation gram-
mar, withX = {(xi, yi)}14i=1 consisting of pairs containing a lexical symbol sequence xi and a color
sequence yi. The pairs in X are generated such that given the ground truth interpretation grammar
H∗, we have that H∗(xi) = yi. The test set is generated in the same way from interpretation gram-
mars that are guaranteed to be different from those used in the training set. Thus, in this experiment
we evaluate our models’ ability to perform production compositional generalization. See App. F for
details on the sampling process for interpretation grammars.
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We compare the performance of Abduction Transformer against the encoder-decoder transformer
architecture from Lake & Baroni (2023) as a baseline while decreasing the number of few-shot
examples in test problems. With this setup, we aim to evaluate OOD compositional generalization
ability as few-shot examples become scarce to the point where they may not be sufficient to imply a
unique interpretation grammar. In our experiments, we vary the number of few-shot examples given
at test-time in the range [1, 14] and evaluate how well our models generalize to these situations.

Results. As shown in Fig. 3, we find that compared to the encoder-decoder baseline, Abduction
Transformer exhibits near perfect accuracy down to 10 few-shot examples before degrading, main-
taining 50% accuracy at 5 few-shot examples. This is in contrast to the baseline architecture which
shows continuous degradation in performance as the number of few-shot examples decreases. This
indicates Abduction Transformer’s strong compositional generalization ability in the face of incom-
plete information, considering the fact that the ground truth interpretation grammars in the test set
contain exactly 7 rewrite rules and require the observation of at least 7 examples to uniquely identify.
Our results highlight Abduction Transformer’s robustness against OOD regimes, both in terms of
the meta-learning task itself and the scarcity of few-shot examples.

7 RELATED WORK

Test-time adaptation methods. Performing gradient updates at test-time has become a popular
approach in order to solve difficult inference problems. A common approach is Test-Time-Fine-
Tuning (TTFT), a method for improving inference performance by fine-tuning models on some
curated dataset conditioned on the test-input (Hübotter et al., 2025; Krause et al., 2018; Hardt &
Sun, 2024; Sun et al., 2020). Similar approaches have been used in successful architectures for
the ARC-AGI benchmark (Chollet et al., 2025; Akyürek et al., 2025; Franzen et al., 2025). Ap-
proaches utilizing updates over model activations enable test-time adaptive performance increases
while avoiding model parameter updates (Macfarlane & Bonnet, 2025; Li et al., 2025).

Compositional generalization. The ability for neural networks to solve OOD compositional rea-
soning problems has been well studied in the context of LLMs (Kudo et al., 2023; An et al., 2023;
Liu et al., 2023; Mészáros et al., 2024). Hosseini et al. (2022); Furrer et al. (2021) indicate the
presence of compositional generalization ability in LLMs for parsing tasks, and Schug et al. (2025)
investigate the mechanistic origins of compositional generalization in transformer architectures by
framing attention as a hypernetwork. Despite this, many studies have shown that LLMs, including
those trained specifically for reasoning, fail on OOD problems that require compositional recombi-
nation of learned knowledge and subroutines (Dziri et al., 2023; Mirzadeh et al., 2025; Opedal et al.,
2025; Shojaee et al., 2025). Thus, the problem of whether transformer architectures (and neural
networks in general) can learn to compositionally generalize remains open.

8 CONCLUSION

We introduced Abduction Transformer as a novel architecture capable of OOD compositional
generalization on reasoning tasks, using nonparametric mixture distribution latent representations,
information-theoretic regularization, and test-time gradient search. Our architecture learns to infer
initial distributions over mixture distributions in a smooth space of hypotheses which then supports
the iterative refinement of these hypotheses at test-time to better account for few-shot meta-learning
examples, thereby solving problems involving unseen compositions of knowledge obtained during
training.

Our experiments show that Abduction Transformer is capable of solving problems involving such
unseen compositions in ARC-like reasoning tasks, symbolic Raven’s Progressive Matrices, and
grammar induction tasks, even in extreme OOD settings, where standard transformer architectures
and previous test-time latent space search methods fail. We show that performance drops signif-
icantly without our test-time gradient search procedure, and that the search process becomes less
effective without information-theoretic regularization, nonparametric representations, or stochastic
training. Our method serves as a new direction in designing neural network architectures that are
capable of complex OOD generalization in reasoning domains.
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Ethics statement. This work is largely foundational, demonstrating the viability of a new architec-
tural paradigm. We foresee no harmful applications of our methods, nor potential for discrimination,
bias or fairness concerns. Absolutely no LLMs were used in the writing or proofreading of the main
text. See App. H for details on LLM use.

Reproducibility statement. We provide code for our models in the supplementary material. Full
code with instructions to reproduce our experiments will be made public upon acceptance. We
provide information to reproduce our experiments in App. D and App. E.
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Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and
Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning, 2025.
URL https://arxiv.org/abs/2411.07279.

Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou, and Dongmei
Zhang. How do in-context examples affect compositional generalization? In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 11027–11052, Toronto,
Canada, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.61.

Alan W. Biermann. The inference of regular lisp programs from examples. IEEE Transactions on
Systems, Man, and Cybernetics, 8(8):585–600, 1978. doi: 10.1109/TSMC.1978.4310035.
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A ABDUCTION TRANSFORMER ENCODER

Given transformer outputs V ∈ Rn×p, the encoder linearly projects these representations to pre-
activtion parameters µ ∈ Rn×p, log(σ2) ∈ Rn×p, α ∈ Rn. Following Henderson & Fehr (2023),
we apply an exponential activation function to our log-variance parameters and ReLU (Nair & Hin-
ton, 2010) to our concentration parameters. This gives a posterior mixture distribution containing
one component ⟨µi,σi, αi⟩ per transformer output, along with the prior component.

B DENOISING ATTENTION

In standard attention, a query vector accesses a set of vectors through a weighted sum parameterized
by its attention vector. In denoising attention (Henderson & Fehr, 2023), this interpretation is ex-
tended by generalizing sets of vectors to probability distributions over vectors, and treating attention
as a function of these probability distributions.

Scaled dot-product attention. We first consider standard cross-attention where some input query
is mapped so a single result vector. Here, the input u′ ∈ R1×p is projected to the query through
WQ ∈ Rp×d. We obtain keys and values by projecting the set of vectors Z ∈ Rn×p through
WK ,WV ∈ Rp×d respectively. We can regroup the standard expression of the attention function to
operate in the space of Z, that is:

Attention(u′, Z;WQ,WK ,WV ) = Attn(u′WQ(WK)⊤, Z)WV = Attn(u, Z)WV (6)

where u = u′WQ(WK)⊤, u ∈ R1×p. This new operation Attn(u, Z) can be characterized both
as a sum over vectors zi ∈ Z, or in terms of an integral over a distribution with support at zi. This
equivalence is restated below:
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Attn(u, Z) = softmax
(

1√
d
uZT

)
Z = DAttn(u;FZ) (7)

FZ =

n∑
i=1

exp
(

1
2
√
d
∥zi∥2

)
∑n

i=1 exp
(

1
2
√
d
∥zi∥2

) δzi (8)

DAttn(u;F ) =

∫
v
f(v) g(u; v,

√
dI) v dv∫

v
f(v) g(u; v,

√
dI) dv

(9)

Here, δzi is an impulse distribution (Dirac delta function) at zi, f(·) is the probability density func-
tion for distribution F , and g(u; , v,

√
dI) is a Gaussian distribution with diagonal covariance.

Interpretation as denoising. The operation DAttn(u;FZ) which we call denoising attention can
be thought of as the mean of the posterior distribution (over v) induced by making an observation u
of some true vector v corrupted by noise, where v is drawn from a prior distribution FZ specified
by Z. Denoising attention is a generalization of regular attention, where instead of restricting to sets
of vectors, it is defined for any distribution F over a vector space. When the input distribution F is
discrete, it can be implemented naturally by including a bias term in the cross-attention operation.

C TRAINING DETAILS: PSEUDO CODE AND KL-DIVERGENCE

Pseudo code. 1 shows our training procedure with gradient search enabled.

Algorithm 1: Abduction Transformer training procedure with gradient search
Input: Encoder parameters ϕ, decoder parameters θ

1 for t← 1 to num training steps do
2 Draw problem specification with n input–output pairs (xi, yi), test query xquery and ground

truth test output y∗
/* Sampling from DP */

3 for i← 1 to n do
4 Sample Hi ∼ qϕ(H | xi, yi)

/* Gradient search */

5 H ← 1

n

n∑
i=1

Hi

6 for k ← 1 to num gradient search steps do

7 H ← H + µ · ∇H

n∑
i=1

log pθ(yj | xj , H)

∣∣∣∣
H=H

// We ignore the second-order gradient w.r.t. θ

8 Ho ← H

9 L(ϕ, θ) = 1
n

∑n
i=1 λKLKL(qϕ(H | xi, yi) ∥ p(H))− log pθ(y

∗ | xquery, H
o)

10 Update ϕ and θ via gradient descent on L(ϕ, θ)

KL-divergence for Dirichlet processes. To compute the KL-divergence between DPs, we use an
approximation due to Henderson & Fehr (2023). Here, superscripts q and p denote that the particular
DP parameter belongs to the posterior and prior DP, respectively. Note that κ0 = n+ 1, where n is
the number of input vectors (the additional term accounts for the prior component). Γ and ψ refer to
the gamma function and digamma function, respectively.
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DKL

(
q(H | X) ∥ p(H)

)
≈ LD + LG (10)

LD = log Γ(αq
0)− log Γ(αp

0) + (αq
0 − α

p
0)

(
−ψ(αq

0) + ψ
(

αq
0

κ0

))
+ κ0

(
log Γ

(
αp

0

κ0

)
− log Γ

(
αq

0

κ0

))
(11)

LG = 1
2 κ0

n+1∑
i=1

αq
i

αq
0

d∑
h=1

[
(µq

ih − µ
p
h)

2

(σp
h)

2
+

(σq
ih)

2

(σp
h)

2
− 1− log

(σq
ih)

2

(σp
h)

2

]
(12)

D 1-D ARC

D.1 1-D ARC TRANSFORMATIONS

We show the transformations contained in the training set and test set in Figures 4 and 5, respectively.
Each pixel sequence is plotted as a horizontal array. We plot 3 randomly generated input/output pairs
for each transformation. The labels (’E.g.’) on the y-axis mark each input/output pair.

D.2 ARC-LIKE TASK MODEL DETAILS

Model hyperparamters are shown in Table 3. Training parameters used across all architectures are
shown in Table 4.

Transformer layers. All of the models we test utilize transformer layers that are structured in the
usual way:

xattn = MHA(LN(xin)) + xin

xout = FFN(LN(xattn)) + xattn

Our FFN is a standard MLP with a single hidden layer, using SiLU (Elfwing et al., 2018) acti-
vation. We use learned positional encodings and one-hot encode integer inputs corresponding to
pixel/symbol values. Both positional and token embeddings are accessed via a dense embedding
matrix.

Generation method. For all the models we test, we generate predictions autoregressively. For
Abduction Transformer, Single Vector LPN and the encoder-decoder baseline, a transformer decoder
autoregressively generates its predictions by self-attending to the test input and cross-attending to the
encoded context. For the decoder-only baseline, the test input is given as a prefix, and the prediction
is generated by direct autoregression conditioned on the prefix.

Table 3: Details for ARC models.

Abduction Transformer Single Vector LPN Encoder-decoder Baseline Decoder-only Baseline

Num. Parameters 1,255,393 1,273,152 1,255,393 1,389,120
Encoder Layers 4 4 4 0
Decoder Layers 5 7 5 12
Emb. Dim. 96 96 96 96
MLP Dim. 384 384 384 384
No. Heads 6 6 6 6
Dirichlet KL Coef. 0.1 N/A N/A N/A
Gaussian KL Coef. 0.001 0.001 N/A N/A
Gradient Search LR 0.1 0.1 N/A N/A

D.3 SCALING GRADIENT SEARCH STEPS

Fig. 6 shows the effect of scaling the number of gradient search steps we take during test-time
search. Both Abduction Transformer and single vector LPN benefit from an increased number of
search steps on both tasks.
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Table 4: Training hyperparameters. The decoder-only baseline differs only in the batch size used
for training (shown in parentheses). All models converged in training loss and validation accuracy
before reaching max. training steps.

Hyperparameter Value

Training Steps 30,000
Batch Size 1024 (32)
Optimizer AdamW
Gradient Clipping Norm 1.0
Learning Rate 0.001
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Figure 4: 1-D ARC Training set transformations

D.4 ABDUCTION TRANSFORMER LATENT SPACE

Visualizing latent space. We hypothesize that a latent space amenable to compositional general-
ization requires the representations of various hypotheses to be well organized in its geometry ac-
cording to their semantics. To understand Abduction Transformer’s latent space, we sample 15,360
randomly generated 1-D ARC problems from our training and test distributions and plot their repre-
sentations8. Our mixture distribution representations are first flattened into single vectors by taking
their expectation, then projected into 2D using t-SNE; the results are presented in Fig. 7. Our plots
demonstrate that Abduction Transformer’s latent space is remarkably well separated across different
primitive transformations seen during training. Furthermore, the representations of unseen compo-
sitions map onto sensible locations near their constituent transformations.

8We encode problem specifications using an Abduction Transformer instance trained with 1 step of gradient
search on the training set. The reported representations are taken from the initial encoding before test-time
gradient search is applied.
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Figure 5: 1-D ARC Test set transformations
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Figure 6: Accuracy against number of gradient search steps at test-time. Left: Performance
of Abduction Transformer and single vector LPN on the 1-D ARC OOD composition task. Right:
Performance of the same models on SRAVEN OOD composition task where we train on 1% of rule
combinations.

E SRAVEN

E.1 SRAVEN PROGRESSION RULES

List of SRAVEN progression rules, taken from Schug et al. (2025). F refers to the size of the feature
vocabulary.

1. Constant: Each row consists of a random but fixed integer from {1, . . . , F}.
2. Progression (+1): The first element of each row is sampled uniformly at random and

incremented by 1 modulo F for each successive column.

3. Progression (+2): The first element of each row is sampled uniformly at random and
incremented by 2 modulo F for each successive column.

4. Progression (−1): The first entry is sampled randomly, and each following entry is decre-
mented by 1 modulo F .

5. Progression (−2): The first element of each row is sampled uniformly at random and
decremented by 2 modulo F for each successive column.

6. Addition: Two elements are sampled uniformly at random for each row and added modulo
F to obtain the last column.
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A B

C

Figure 7: Visualization of latent space A (Primitive Transformations) t-SNE plot showing the
structure of Abduction Transformer’s latent space. Each color corresponds to a particular primi-
tive 1-D ARC transformation. Our mixture distribution representations are flattened by taking their
expectation. B, C (Unseen Compositions) Latent representations of unseen 1-D ARC problem spec-
ifications projected to the same space. B shows the representations for colorshift in blue,
endpoints in orange and the unseen composition colorshift ◦ endpoints in magenta.
C shows translate in black, denoise in purple, and the unseen composition translate ◦
denoise in green.

7. Subtraction: Two elements are sampled uniformly at random for each row and subtracted
modulo F to obtain the last column.

8. Distribute three: Three elements are sampled uniformly at random and presented in three
independently sampled random permutations for each row.

E.2 SRAVEN MODEL DETAILS

Model hyperparamters are shown in Table 5. Training parameters are identical to those shown in
Table 4. Details regarding the transformer layers and generation method used in all models are
identical to those found in §D.2.

Table 5: Details for SRAVEN models.

Abduction Transformer Single Vector LPN Encoder-decoder Baseline Decoder-only Baseline

Num. Parameters 1,093,441 1,148,640 1,093,441 1,131,840
Encoder Layers 4 4 4 0
Decoder Layers 4 6 4 10
Emb. Dim. 96 96 96 96
MLP Dim. 384 384 384 384
No. Heads 6 6 6 6
Dirichlet KL Coef. 0.1 N/A N/A N/A
Gaussian KL Coef. 0.001 0.001 N/A N/A
Gradient Search LR 0.1 0.1 N/A N/A

F INTERPRETATION GRAMMAR AND META-LEARNING INSTANCE SAMPLING

An example interpretation grammar, taken from Lake & Baroni (2023) is shown in Fig. 8. Inter-
pretation grammars (which each correspond to individual meta-learning instances) are randomly
generated from a simple meta-grammar.

Rewrite rules for primitives (the first 4 rules in Fig. 8) are generated by randomly sampling input
and output symbol pairs without replacement. Rewrite rules for functions are generated by first
sampling the LHS, followed by the RHS. The LHS is generated by sampling (without replacement)
an input symbol at random, then sampling whether the function is unary/binary, then sampling either
primitve or non-primitive variables as its arguments (u and x respectively in Fig. 8). The RHS is
generated by sampling a random string of length ≤ 8 consisting of any of the function arguments
defined in the LHS.
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JdaxK →

JwifK →

JlugK →

JzupK →

Ju1 fepK → Ju1KJu1KJu1K

Ju1 blicket u2K → Ju1KJu2KJu1K

Jx1 kiki x2K → Jx2KJx1K

Figure 8: Example interpretation grammar. Double brackets J·K denote the interpretation func-
tion. Variables xi apply to arbitrary non-empty strings, while ui apply only to dax, wif, lug, and zup.

G EXPERIMENTS ON GPT MODELS

We use prompts shown in Fig. 9, and Fig. 10 for our 1-D ARC and SRAVEN experiments on GPT-
5 Thinking and GPT-4.1. We allow a maximum of 10, 000 reasoning tokens for GPT-5 Thinking
(which corresponds to ‘effort’ set to ‘low’ for our tasks), and a maximum of 10, 000 output tokens
for GPT-4.1. We evaluate on 400 randomly selected problems from the test set for 1-D ARC, and
200 for SRAVEN.

H USE OF LARGE LANGUAGE MODELS

Absolutely no LLMs were used in the writing or proofreading of the main text. We use LLM assisted
tools for writing code used in models and experiments. We use LLM assistance for formatting LaTex
figures.
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1-D ARC Prompt

You are solving a 1D pattern recognition puzzle. Each puzzle
consists of sequences of pixel values from 0-9, where 0 represents
empty/background.

You will be shown several input-output examples that demonstrate a
transformation rule. Your task is to identify the pattern and apply
it to a new test input.

EXAMPLES:
Example 1:
Input: <sequence>
Output: <sequence>

...

TEST:
Input: <sequence>
Output: ?

You may think through the problem in detail, but make sure to end
your response with the final answer in this exact format:

FINAL ANSWER: [your sequence here]

The sequence should be space-separated integers only.

Figure 9: Prompt used for 1-D ARC problems.
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SRAVEN Prompt

You are solving a SRAVEN (Symbolic RAven’s) puzzle. This is a
visual reasoning task adapted to sequences.

Each puzzle consists of a grid of visual panels, where each panel
is represented by a sequence of feature values (integers 0-7). Each
row in the grid follows a consistent rule or pattern across its
panels.

You will be shown several rows as examples, where each row contains:
- Input: The first few panels of the row (showing the pattern)
- Output: The final panel that completes the pattern

Your task is to identify the underlying rule and apply it to predict
the missing final panel in the test row.

EXAMPLES:

EXAMPLES:
Example 1:
Input: <sequence>
Output: <sequence>

...

TEST:
Input: <sequence>
Output: ?

Analyze the pattern across the example rows and apply the same rule
to complete the test row.

You may think through the problem step by step, but make sure to end
your response with the final answer in this exact format:

FINAL ANSWER: [your panel here]

The panel should be a comma-separated list of integers, e.g., [1, 2,
3, 4]

Figure 10: Prompt used for SRAVEN problems.
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