

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMPOSITIONAL GENERALIZATION THROUGH GRA- DIENT SEARCH IN NONPARAMETRIC LATENT SPACE

Anonymous authors

Paper under double-blind review

## ABSTRACT

Neural network architectures have made considerable advances in their ability to solve reasoning problems, but many state-of-the-art methods fail at systematic compositional generalization. To address this, we propose a novel architecture which uses a nonparametric latent space, information-theoretic regularization of this space, and test-time gradient-based search to achieve strong performance on OOD compositional meta-learning tasks such as ARC-like program induction, Raven’s progressive matrices, and linguistic systematicity tasks. Our proposed architecture, Abduction Transformer, uses nonparametric mixture distributions to represent inferred hidden causes of few-shot meta-learning instances. These representations are refined at test-time via gradient descent to better account for the observed few-shot examples, a form of variational posterior inference which allows Abduction Transformer to solve meta-learning tasks that require novel recombinations of knowledge acquired during training. Our method outperforms standard transformer architectures and previous test-time adaptive approaches, indicating a promising new direction for neural networks capable of systematic generalization.<sup>1</sup>

## 1 INTRODUCTION

The ability to solve novel tasks by recombining known primitives, often referred to as *compositional generalization*, is commonly understood as a prerequisite for general intelligence (Fodor, 1975; Catell, 1963; Chomsky, 1965; Gick & Holyoak, 1980). In settings where exhaustive memorization of the solutions to problem instances is impossible, the ability to learn and compose reusable concepts is necessary for solving problems in general; any system which fails to do so will exhibit catastrophic failure on problems which are out of distribution (Chollet, 2019). Historically, it has been debated whether or not connectionist architectures such as neural networks possess the capacity to learn representations and circuits which allow for this form of systematic recombination of knowledge to infer new concepts (Rumelhart & McClelland, 1986; Smolensky, 1990; Fodor & Pylyshyn, 1988). While some progress has been made to refute this claim (Lake & Baroni, 2023), and despite the rise of LLMs which seemingly display some characteristics of general intelligence and compositional reasoning (Bubeck et al., 2023; An et al., 2023; Hosseini et al., 2022), a plethora of negative results suggest that current architectural paradigms are inadequate and so further investigation is warranted (Dziri et al., 2023; Mirzadeh et al., 2025; Opedal et al., 2025; Shojaee et al., 2025).

In this work, we propose a novel architecture with strong compositional generalization ability. To evaluate our approach, we study domains where novel inferences can be made by combining existing knowledge. We choose tasks which require compositional solution construction, as a testbed for this type of reasoning ability. To demonstrate the presence of these abilities in our proposed methods, we consider meta-learning abduction tasks which necessitate out-of-distribution (OOD) adaptation to novel test instances, requiring some form of compositional generalization. In particular, we study program induction (Summers, 1977; Biermann, 1978) and grammar induction (Lake & Baroni, 2023), abstract meta-learning tasks which standard transformer architectures perform poorly on due to their compositional nature. While some combinations of compositional generalization (Schug et al., 2025; Chen et al., 2020), test-time adaptation (Hübotter et al., 2025; Dong et al., 2025; Gladstone et al., 2025; Mathur et al., 2025), meta-learning (Vettoruzzo et al., 2025; Yao et al.,

<sup>1</sup>Code for our models will be publicly released upon acceptance.

054 2022), and abstract reasoning (Wang et al., 2025; Li et al., 2024) have each been studied in isolation,  
 055 we are, to our knowledge, the first to propose and evaluate a method covering all of these aspects.  
 056

057 Problems of this type require some form of search over hypotheses inferred from observations and  
 058 prior knowledge (Macfarlane & Bonnet, 2025; Chollet et al., 2025). In our case, these hypotheses  
 059 include possible combinations of concepts and abstractions learned during training. By representing  
 060 these hypotheses in some latent space, the problem of knowledge recombination (and by extension  
 061 *compositional reasoning*) becomes a matter of discovering some latent representation of the novel  
 062 input which allows it to be explained using the generative model acquired during training, giving  
 063 us a form of hypothesis testing. Inferring such a latent cause of the observed input is abductive  
 064 inference, so we call our proposed architecture **Abduction Transformer**. Abduction Transformer  
 065 is a deep variational Bayesian model, like Variational Autoencoders (Kingma et al., 2013) and La-  
 066 tent Program Networks (Macfarlane & Bonnet, 2025), but unlike these previous models it takes full  
 067 advantage of the power of the transformer architecture’s set-of-vector embeddings by encoding the  
 068 hidden causes as *nonparametric* latent representations (Henderson & Fehr, 2023). Nonparametric  
 069 representations have the advantage that they generalize well across situations of varying complexity,  
 070 such as generalizing from simple concepts learned during training to their more complex com-  
 071 positions. Crucially, our method includes not only amortized inference but also test-time gradient-based  
 072 search over its latent space to find the most plausible hypotheses which account for problem in-  
 073 stances. We show that this test-time search procedure, combined with our information-theoretic  
 074 regularization over our latent space, enables discovery of minimal latent representations of inputs  
 075 and consequently allows our model to perform well on novel tasks.

076 Our main contributions are summarized below:  
 077

- 078 i) **We find that set-of-vector representations with variable cardinality lead to better compo-**  
**sitional generalization.** We represent inputs as nonparametric (variable-sized) discrete mix-  
 079 ture distributions, as opposed to parametric (fixed-sized) vectors commonly used in previous  
 Bayesian methods.
- 080 ii) **We show that test-time gradient search over latent representations leads to improved gen-**  
**eralization in extreme OOD regimes.** Test-time search enables our models to solve problems  
 081 containing a vast number of unseen concept combinations, which standard transformers with  
 082 the same training data are unable to solve.
- 083 iii) **We demonstrate that stochastic sampling of representations at training-time leads to a**  
**searchable latent space.** By encoding inputs into parameters of Dirichlet processes from  
 084 which we sample discrete mixtures, our latent space can benefit from information-theoretic  
 085 regularization, resulting in a smooth and *searchable* space.
- 086 iv) **Our models significantly outperform standard transformer architectures and previous**  
**test-time adaptive methods on OOD abstract reasoning tasks.** In addition, we nominally  
 087 outperform GPT-5 Thinking (OpenAI, 2025) (w/o fine-tuning) on Raven’s progressive matrices  
 088 (Raven, 1962) and perform comparatively on 1-D ARC problems (both in OOD settings), while  
 089 using only  $\sim 1.2M$  parameters.

090 Overall, our contributions make significant progress towards developing test-time adaptive neural  
 091 networks which are capable of knowledge recombination in novel situations.

## 092 2 META-LEARNING AS INFERRING HIDDEN MAPPINGS

093 **Problem definition.** We consider few-shot meta-learning problems where the objective is to infer  
 094 some hidden mapping which explains the few-shot examples. The few-shot examples are defined as  
 095 a set of input/output pairs, which form a problem specification:

$$101 X = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}. \quad (1)$$

102 A mapping  $H^*$  is said to solve the problem if  $H^*(x_i) = y_i, \forall i \in [1, n]$ . In practice, we test whether  
 103 the correct prediction of the ground truth test output  $y^*$  on some test query  $x_{\text{query}}$  is made, namely  
 104 that  $y^* = H^*(x_{\text{query}})$ .

105 **Hypotheses and compositions.** We refer to a candidate mapping  $H$  as a **hypothesis** coming from  
 106 some hypothesis space  $\mathcal{H}$ . A problem specification  $X$  is considered **function compositional** if its  
 107 solution  $H^*$  can be expressed as a composition of two mappings  $H_1, H_2 \in \mathcal{H}$  such that  $H^* =$

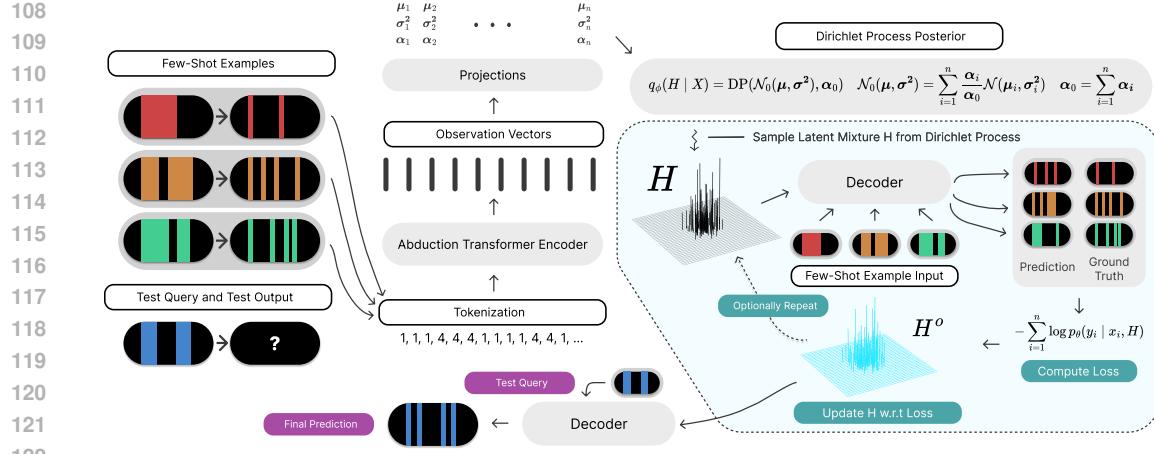


Figure 1: **Overview of Abduction Transformer.** **Left:** Few-shot example pairs are tokenized and encoded into a set of vectors from which the parameters of a posterior Dirichlet process are inferred. **Right:** A latent mixture distribution  $H$  is sampled from the DP and used to decode the inputs of few-shot examples into predicted outputs, from which cross-entropy loss is computed against the true outputs. We update our latent representation  $H$  w.r.t. this loss to refine our hypothesis to better account for the few-shot examples. After repeating this process a fixed number of times, we use our refined latent representation to decode the test query into the final prediction.

$H_1 \circ H_2$ . In addition, a problem specification with test query  $x_{\text{query}}$  and ground truth test output  $y^*$  of the same form as Eq. 1 is considered **production compositional** if there exist mappings  $H_1, H_2 \in \mathcal{H}$  such that:

$$y_i = H_1(x_i) \quad y_j = H_2(x_j) \quad y^* = H_1(H_2(x_{\text{query}})) \quad i, j \in [1, n] \quad (2)$$

We refer to the individual mappings constituting the compositions as **constituent hypotheses**. A tuple  $(X, x_{\text{query}}, y^*)$  is said to be function compositional *relative to* a set of mappings  $\mathcal{T}$  if  $\mathcal{T}$  contains its constituent hypotheses, and the same can be said for production compositional problem instances. If a system  $\mathcal{A}$  which has been trained to recognize a set of hypotheses  $\mathcal{T} \subseteq \mathcal{H} \setminus \{H^*\}$  is able to solve a problem  $X$  with solution  $H^*$  which is function compositional or production compositional relative to  $\mathcal{T}$ , we say that system  $\mathcal{A}$  exhibits **compositional generalization**.

### 3 ABDUCTION TRANSFORMER

**Few-shot learning as variational inference.** The objective of the few-shot meta-learning task presented in the previous section can be viewed as posterior inference of the hypothesis  $H$  which best accounts for the observations specified by  $X$ . In other words, the task amounts to inferring the posterior distribution  $p(H | X)$ .

Fig. 1 gives an overview of the Abduction Transformer architecture. Similarly to VAEs (Kingma et al., 2013), we define parameterized neural networks which approximate the distributions  $q_\phi(H | X)$  (encoder) and  $p_\theta(X | H)$  (decoder), and train these networks to minimize variational free energy, an upper bound on the KL-divergence between the true posterior  $p(H | X)$  and  $q_\phi(H | X)$ <sup>2</sup>:

$$\mathcal{F}(\phi, \theta) = \text{KL}(q_\phi(H | X) \| p(H)) - \mathbb{E}_{q_\phi(H | X)}[\log p_\theta(X | H)] \quad (3)$$

**A nonparametric latent space.** Our architecture uses a transformer encoder to infer  $q_\phi(H | X)$ , which has the crucial property that the number of vectors in the transformer’s output grows proportionally to the number of tokens in its input. This ability to model situations of variable complexity is analogous to the way Bayesian nonparametrics is able to model mixture distributions of variable complexity. We take advantage of this ability to model mappings  $H$  with variable complexity, so that models trained on simple mappings generalize naturally to their more-complex compositions.

To do so, we use an approach proposed by Henderson & Fehr (2023) for general purpose transformer VAEs. We project the transformer output into the parameters of a nonparametric distribution, namely

<sup>2</sup>In practice, this loss is implemented with modifications; the exact form of the training loss is given in Eq. 5.

162 a Dirichlet Process (DP). Each vector in the set output by the transformer is projected to a pseudo-  
 163 observation for the DP with distribution  $\mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\sigma}_i^2)$  and pseudo-count  $\alpha_i$ . In particular, we define  
 164  $q_\phi(H | X)$  as a DP such that <sup>3</sup>:

$$166 \quad q_\phi(H | X) := \text{DP}(\mathcal{N}_0(\boldsymbol{\mu}, \boldsymbol{\sigma}^2), \boldsymbol{\alpha}_0) \quad \mathcal{N}_0(\boldsymbol{\mu}, \boldsymbol{\sigma}^2) := \sum_{i=1}^n \frac{\alpha_i}{\alpha_0} \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\sigma}_i^2) \quad \boldsymbol{\alpha}_0 := \sum_{i=1}^n \boldsymbol{\alpha}_i \quad (4)$$

169 where  $\boldsymbol{\mu} \in \mathbb{R}^{n \times p}$ ,  $\boldsymbol{\sigma}^2 \in \mathbb{R}^{n \times p}$ ,  $\boldsymbol{\alpha} \in \mathbb{R}^n$  are parameters linearly projected from the  $\phi$ -parameterized  
 170 transformer output  $V \in \mathbb{R}^{n \times p}$ .

171 As a result, our latent representations are samples from DPs, i.e. mixture distributions whose ef-  
 172 fective number of components are unbounded and sensitive to input observations<sup>4</sup>. By treating our  
 173 latent space as a distribution over distributions, we hope to learn a space which is smooth and disen-  
 174 tangled, taking inspiration from VAE variants (Burgess et al., 2018). This approach can be viewed  
 175 as a natural generalization of VAEs from the vector space regime to the set-of-vector space regime,  
 176 which is appropriate for transformer architectures.

177 **Abduction Transformer encoder.** Our encoder transformer is trained to approximate  $q_\phi(H |$   
 178  $x_i, y_i)$ , where  $(x_i, y_i)$  is a pair contained in a problem specification. To give our transformer en-  
 179 coder this probabilistic interpretation, its output is stochastic. The encoder takes a pair from the  
 180 problem specification  $X$ , tokenizes it into a set of input vectors, and encodes it into the set of pa-  
 181 rameters of a DP:  $\boldsymbol{\mu}$ ,  $\boldsymbol{\sigma}^2$ , and  $\boldsymbol{\alpha}$ . Then a discrete mixture is sampled from this inferred DP using  
 182 a factorized sampling method from Henderson & Fehr (2023). The mean of these samples across  
 183 pairs in  $X$  is taken as the encoder’s output hypothesis:  $\bar{H} = \frac{1}{N} \sum_{i=1}^N H_i$ ,  $H_i \sim q_\phi(H | x_i, y_i)$ .  
 184 See App. A for an overview of the operations involved in inferring DP parameters.

185 **Abduction Transformer decoder.** The decoder specifies the distribution  $\hat{y} \sim p_\theta(y_i | x_i, H)$ . It  
 186 is implemented as a transformer decoder that autoregressively generates its prediction  $\hat{y}$  by cross-  
 187 attending to the latent representation  $H$ , and self-attending to the context  $x_i$ . Since  $H$  is represented  
 188 as a mixture distribution, cross-attention to  $H$  involves the denoising-attention operation, which  
 189 Henderson & Fehr (2023) show theoretically subsumes regular attention.

190 Thus, because the decoder generates its prediction  $y_i$  conditioned on  $x_i$  and  $H$ , it can be viewed  
 191 as a mechanism which computes  $H(x_i)$ . In practice, the latent hypothesis  $H$  is often the inferred  
 192 average hypothesis  $\bar{H}$  over the pairs in  $X$ , and  $x_i$  is the input query  $x_{\text{query}}$ . Further details regarding  
 193 denoising-attention and its equivalence to regular attention can be found in App. B.

195 **Gradient search over latent hypotheses.** Similarly to Macfarlane & Bonnet (2025), our archi-  
 196 tecture allows for refinement of latent representations produced by the encoder to further improve  
 197 congruence with the few-shot examples given in the problem specification. Given some hypothesis  
 198  $H$ , we allow its gradient-based refinement by minimizing  $-\sum_{i=1}^n \log p_\theta(y_i | x_i, H)$  across few  
 199 shot examples  $\{(x_i, y_i)\}_{i=1}^n$  with respect to  $H$ .

200 This process can be thought of as gradient search over latent space to find a hypothesis that better  
 201 accounts for potentially novel observations, where the search is initialized by a forward pass of  
 202 the encoder. By decoding each candidate hypothesis into its predictions over  $y_i$  at each step, our  
 203 procedure can be viewed as a form of iterative hypothesis testing and solution verification against  
 204 few-shot examples. A refined hypothesis  $H^o$  is then used to decode some test query  $x_{\text{query}}$  in order  
 205 to predict the ground truth  $y^*$ , both of which are not seen during the gradient search process.

206 **Training procedure.** As mentioned in §3, the training loss for these networks is variational free  
 207 energy, a standard objective used by architectures such as VAEs. We assume a dataset of meta-  
 208 learning episodes, each containing a problem specification  $X$ , a test query  $x_{\text{query}}$  and ground truth  
 209 test output  $y^*$ . For each episode, we compute the loss:

$$210 \quad \mathcal{L}(\phi, \theta) = \lambda_{\text{KL}} \frac{1}{n} \sum_{i=1}^n \text{KL}(q_\phi(H | x_i, y_i) \| p(H)) - \log p_\theta(y^* | x_{\text{query}}, \bar{H}) \quad (5)$$

213 <sup>3</sup>Our implementation includes an isotropic Gaussian prior component in the DP’s base distribution, which is  
 214 omitted from the expression given here for brevity.

215 <sup>4</sup>Samples from DPs are theoretically infinite. We truncate samples by only considering  $\kappa_0 = n + 1$  com-  
 216 ponents, where  $n$  is the number of input vectors with an added prior component.

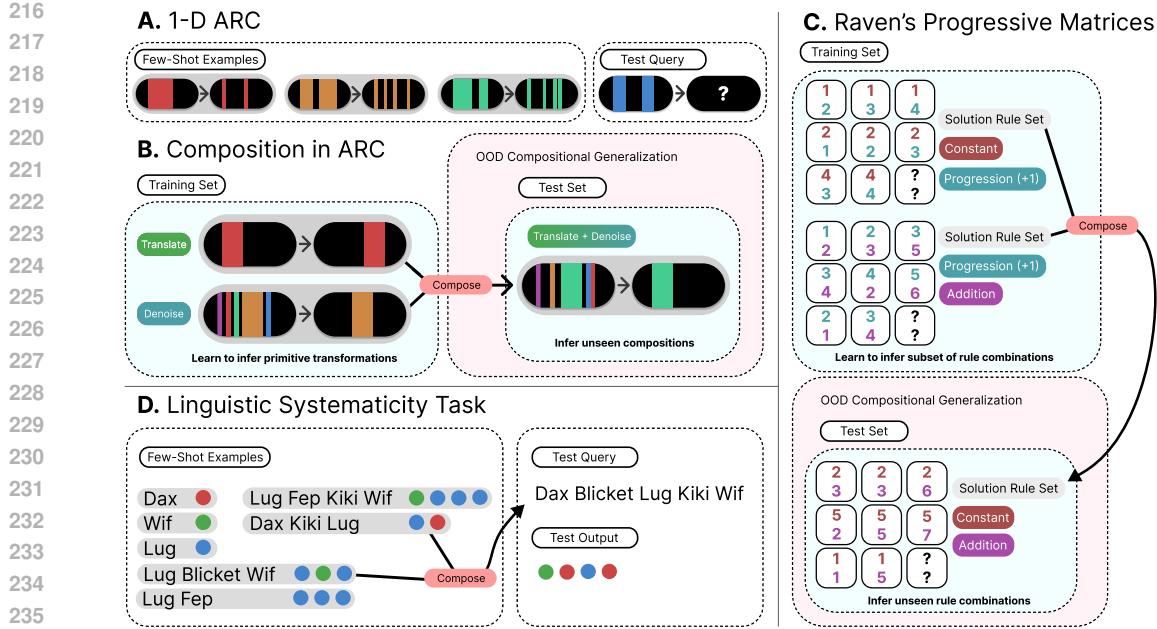


Figure 2: **Illustration of compositional generalization tasks.** **A** (1-D ARC) A set of 3 few-shot examples are given in the form of input/output pairs, and the objective is to predict the correct output on some test query. **B** (Composition in ARC) We train our model on problems containing a subset of possible transformations. At test time, we evaluate on unseen transformations which are compositions of transformations seen during training. **C** (Raven’s Progressive Matrices) Our model is trained on problems containing some subset of possible combinations of rules for feature progressions.<sup>5</sup> At test time, we evaluate on problems with unseen rule combinations. **D** (Linguistic Systematicity Task) Our model trains on meta-learning episodes containing sentence/interpretation pairs. At test-time, the model is evaluated on meta-learning episodes with unseen grammars governing the sentence/interpretation pairs.

and update our parameters  $\phi$  and  $\theta$  according to back-propagated gradients, where  $\lambda_{KL}$  is a scalar hyperparameter.

The KL-divergence term acts as an information-theoretic regularizer on the posterior DP parameters, encouraging sparsity in the mixture weights given to mixture components (the set of vectors accessible by cross-attention), and encouraging a smoother latent-space due to noisy training-time sampling of component vectors. The prior we use in the KL-divergence term is a DP with an isotropic Gaussian with unit variance as its base distribution, and concentration parameter set to one.

It is also possible to train Abduction Transformer while including intermediate gradient search applied to the average hypothesis  $\bar{H}$  before decoding. In this case, the second term in Eq. 5 becomes  $-\log p_\theta(y^* | x_{\text{query}}, \bar{H}^o)$ , where  $\bar{H}^o$  is the refined hypothesis after gradient search to optimize the few-shot examples in  $X$ . Details and pseudo-code for the training procedure, as well as the particular KL-divergence loss we use for DPs are given in App. C.

## 4 ARC-LIKE REASONING

For our first meta-learning task, we consider 1-D abstract spatial reasoning problems inspired by the ARC-AGI benchmark (Chollet et al., 2025). The task consists of a problem specification  $X$  containing input/output pairs of pixel sequences which are all governed by some common transformation  $H^*$ , and the objective is to predict the ground truth output pixel sequence  $y^*$  given  $x_{\text{query}}$ . The task thus contains a perceptual component of discovering entities within a sequence of pixel values as well as inferring the transformations being applied to them and is useful as a benchmark for abstract reasoning ability (Chollet, 2019).

Problems of this nature are difficult for neural networks to solve, including architectures incorporating pre-trained LLMs (Xu et al., 2024; Dimitriadis & Samothrakis, 2025; Chollet et al., 2025). In

270 this section, we seek to investigate the ability of Abduction Transformer to solve ARC-like problems  
 271 whose solutions are unseen during training, but consist of compositions of transformations seen during  
 272 training. In other words, we investigate whether Abduction Transformer exhibits compositional  
 273 generalization with respect to function composition according to the definition given in §2.

274 **1-D ARC dataset.** For these experiments, we utilize an open-source dataset arc-like (neurallambda,  
 275 2024) which allows us to procedurally generate 1-D ARC-like problems with composable combinator  
 276 functions. We train Abduction Transformer and other baseline architectures on a training set  
 277 of ARC-like problems with solutions  $H \in \mathcal{T}$  with  $|\mathcal{T}| = 36$ . The set of training hypotheses includes  
 278 primitive transformations such as translation, color-shift, expansion, sorting, reflection, and  
 279 denoising, as well as a subset of possible compositions of these primitives. Training examples are  
 280 generated by sampling a random transformation  $H$  from  $\mathcal{T}$ , generating a random input sequence  
 281 conditioned on  $H$ , and then computing the output sequence by applying the predefined combinator  
 282 functions associated with  $H$ .

283 Our training set can be expressed as a set of tuples  $D_{\text{train}} = \{(X, x_{\text{query}}, y^*)\}_{j=1}^N$  with problem  
 284 specifications taking the form  $X = \{(x_i, y_i)\}_{i=1}^3$ . We define  $x_i, y_i, x_{\text{query}}, y^*$  as sequences of pixel  
 285 values such that  $H^*(x_i) = y_i$  and  $H^*(x_{\text{query}}) = y^*$ .

286 **Experimental setup.** To test OOD compositional generalization, we evaluate our trained models on  
 287 a test set with solutions  $H \in \mathcal{V}$  with  $|\mathcal{V}| = 14$  such that  $\mathcal{V}$  only contains transformations which are  
 288 compositions of those found in  $\mathcal{T}$ , but not themselves found in  $\mathcal{T}$ . For example, if `translate` and  
 289 `denoise` are found in  $\mathcal{T}$ , then  $\mathcal{V}$  may contain `translate`  $\circ$  `denoise`. In other words, we design  
 290 a test set of tuples representing meta-learning episodes  $D_{\text{test}} = \{(X, x_{\text{query}}, y^*)\}_{i=1}^n$  such that for  
 291 all  $(X, x_{\text{query}}, y^*) \in D_{\text{test}}$ ,  $(X, x_{\text{query}}, y^*)$  is function compositional relative to  $\mathcal{T}$ . See Fig. 2B for a  
 292 visual illustration of the training and test sets. The test set contains 2000 such meta-learning episodes  
 293 which are each generated in the same way as those in the training set. See App. D.1 for a complete  
 294 enumeration of training and test set transformations.

295 Table 1: Performance on 1-D ARC OOD Composition Task. Zero-shot test set performance for  
 296 GPT-5 Thinking and GPT-4.1 (OpenAI, 2024) are provided to contextualize task difficulty (see  
 297 Appendix G for details). We report standard error over 3 seeds.

| Model                                         | Solve Rate (%)        | Gradient Search Steps |      |
|-----------------------------------------------|-----------------------|-----------------------|------|
|                                               |                       | Train                 | Eval |
| Abduction Transformer (Ours)                  | <b>25.1</b> $\pm$ 2.6 | 1                     | 100  |
| Single Vector LPN (Macfarlane & Bonnet, 2025) | 1.9 $\pm$ 1.0         | 1                     | 100  |
| Encoder-decoder Transformer Baseline          | 0.1 $\pm$ 0.0         | 1                     | 100  |
| Decoder-only Transformer Baseline             | 5.2 $\pm$ 1.3         | None                  | None |
| <i>Ablations</i>                              |                       |                       |      |
| Abduction Transformer (No KL-regularization)  | 16.7                  | 1                     | 100  |
| Abduction Transformer (No gradient search)    | 0.1                   | None                  | None |
| GPT-5 Thinking (w.o. fine-tuning)             | 29.0                  | N/A                   | N/A  |
| GPT-4.1 (w.o. fine-tuning)                    | 11.0                  | N/A                   | N/A  |

312 **Results.** Table 1 compares perfect solve rates across various architectures. We see that Abduction  
 313 Transformer performs significantly better than any of the baseline architectures, solving 25.1% of  
 314 problems perfectly. Our results show that gradient search is effective for solving ARC-like prob-  
 315 lems requiring compositional generalization. In addition, we find that using nonparametric latent  
 316 representations outperforms previous test-time gradient search approaches which utilize single vec-  
 317 tor latent representations, namely Latent Program Network (Macfarlane & Bonnet, 2025). We also  
 318 see that our information-theoretic regularization plays an important role, with our ablations on KL-  
 319 regularization performing worse.

320  
 321 <sup>5</sup> Although not illustrated, in order to drastically increase the size of the hypothesis space the feature vector  
 322 components are randomly permuted column-wise, meaning the row (1, 2), (1, 3), (1, 4) may be modified to  
 323 (1, 2), (3, 1), (1, 4) (where feature vectors in the second column of other rows have their components permuted  
 in the same way).

324 The baseline models with no test-time gradient search both show significantly diminished performance,  
 325 demonstrating that compositional generalization on ARC-like tasks is difficult without test-  
 326 time adaptation. The effect of scaling the number of gradient search steps is discussed in App. D.3.  
 327 Finally, we highlight that the deterministic encoder-decoder transformer baseline solves only 0.1%  
 328 of problems, even when trained with gradient search, indicating that without a stochastic treatment  
 329 of the encoder the training process does not lead to a searchable latent space. Model and hyper-  
 330 parameter details can be found in App. D.2. Further discussion on the geometry of our learned latent  
 331 space can be found in App. D.4.

332

333

## 5 RAVEN’S PROGRESSIVE MATRICES

334

335 Our second experiment considers a symbolic variation of Raven’s Progressive Matrices, an abstract  
 336 reasoning task commonly used as a measure of intelligence in humans (Raven, 1962). In its original  
 337 formulation, a problem instance takes the form of a matrix of panels whose contents evolve row-  
 338 wise according to some common set of rules, and the objective is to predict the contents of a query  
 339 panel usually placed on the last column of the last row. The task requires the discovery of a set  
 340 of rules which explain the progressions seen in the problem, and therefore requires search over  
 341 possible hypotheses (Carpenter et al., 1990). As such, we frame Raven’s Progressive Matrices as a  
 342 meta-learning problem similar to previous tasks considered, where we take each row of the problem  
 343 as a few-shot meta-learning example.

344

345 **SRAVEN.** We utilize the open source SRAVEN dataset, which is a symbolic variation of Raven’s  
 346 Progressive Matrices specifically developed to test compositional generalization in neural network  
 347 architectures Schug et al. (2025). Instead of the graphical format which Raven’s Progressive Matrices  
 348 are classically presented in, SRAVEN encodes each panel of a problem instance into a feature  
 349 vector with feature values from a fixed vocabulary. Unlike the previous ARC-like reasoning task  
 350 which contains a large perceptual component, SRAVEN is designed to test purely symbolic compo-  
 351 sitional reasoning, giving us fine-grained control over the rule combinations, i.e., compositions that  
 352 we evaluate.

353

354 Specifically, SRAVEN encodes each problem panel as a  $K$ -dimensional vector, where each feature  
 355 can take on one of  $F$ -many integer values. Each feature is governed by a progression rule which  
 356 takes as input two integers and outputs a single integer. Thus, the first two columns of each row in  
 357 combination with the set of  $K$  rules governing each feature determine the right-most panel of each  
 358 row. See App. E.1 for an overview of the list of progression rules contained in SRAVEN.

359

360 Problems are generated by first sampling a set of  $K$  rules (out of  $N$  total), and producing each row  
 361 by sampling random inputs to the rules. The final column of the final row is treated as the test query  
 362 and is hidden to the model. This leads to a  $3 \times 3$  matrix  $R$  of  $K$ -dimensional vectors, described as a  
 363 problem specification  $X = \{(x_i, y_i)\}_{i=1}^2$  where  $x_i = (R_{i,1}, R_{i,2})$  and  $y_i = R_{i,3}$ . In addition,  $x_{\text{query}}$   
 364 is defined as  $(R_{3,1}, R_{3,2})$  and  $y^*$  as  $R_{3,3}$ . To increase the difficulty of our problems, the components  
 365 of feature vectors are randomly permuted in the same way for each column in the problem across  
 366 few-shot examples. Identically to the previous experiments, training sets take the form of a set of  
 367 tuples  $D_{\text{train}} = \{(X, x_{\text{query}}, y^*)\}_{j=1}^N$  and the same format applies to our test sets.

368

369 **Experimental setup.** In order to evaluate OOD compositional generalization ability, we generate  
 370 two datasets with  $N = 8$ ,  $K = 4$  and  $F = 8$  such that the rule combinations seen in problems  
 371 of each dataset are disjoint.<sup>6</sup> For instance, if the training set contains a problem instance with  
 372 rule set  $\{A, B\}$ , then the test does not contain any problem with that rule set. See Fig. 2C for an  
 373 illustration of our dataset split. Out of all possible combinations of  $K$  rules, we randomly sample  
 374 a fraction of these for our training set; for this experiment, we train models on 1% of possible rule  
 375 combinations, as well as on 90% of possible rule combinations and evaluate on problems containing  
 376 the held out proportion of rule combinations. In our few-shot meta-learning framework, this amounts  
 377 to performing evaluations on test sets whose problems are function compositional relative to the  
 378 training set. Our test sets consist of 2000 generated OOD SRAVEN problems each.

379

380 <sup>6</sup>This gives  $\binom{R+K-1}{K} \cdot (K!^2 - K) = 188,760$  many possible SRAVEN tasks (possible hypotheses) in total,  
 381 taking feature permutations into account.

382 <sup>7</sup>Reported standard error is computed over 3 seeds.

378  
 379  
 380  
 381  
 382  
 383  
 384  
 385  
 386  
 387  
 388  
 389  
 390  
 391  
 392  
 393  
 394  
 395  
 396  
 397  
 398  
 399  
 400  
 401  
 402  
 403  
 404  
 405  
 406  
 407  
 408  
 409  
 410  
 411  
 412  
 413  
 414  
 415  
 416  
 417  
 418  
 419  
 420  
 421  
 422  
 423  
 424  
 425  
 426  
 427  
 428  
 429  
 430  
 431  
 Table 2: SRAVEN OOD Composition Task: Performance when training on 1% and 90% of possible rule combinations.<sup>7</sup> For each training method, we evaluate on problems with rule combinations taken from the remaining unseen proportion of combinations. We additionally present zero-shot performance on the test set containing 99% of rule combinations for GPT-5 Thinking and GPT-4.1.

| Model                                         | Train on 1%           |      | Train on 90%   |                |      |      |
|-----------------------------------------------|-----------------------|------|----------------|----------------|------|------|
|                                               | Solve Rate (%)        |      | Gradient Steps |                |      |      |
|                                               | Train                 | Eval | Train          | Eval           |      |      |
| Abduction Transformer ( <b>Ours</b> )         | <b>46.1</b> $\pm$ 4.2 | 1    | 100            | 96.4 $\pm$ 0.4 | 1    | 10   |
| Single Vector LPN (Macfarlane & Bonnet, 2025) | 37.1 $\pm$ 2.0        | 1    | 100            | 93.5 $\pm$ 1.0 | 1    | 10   |
| Encoder-decoder Transformer Baseline          | 10.8 $\pm$ 2.2        | 1    | 100            | 27.2 $\pm$ 3.0 | 1    | 10   |
| Decoder-only Transformer Baseline             | 28.8 $\pm$ 1.3        | None | None           | 95.3 $\pm$ 1.1 | None | None |
| <i>Ablations</i>                              |                       |      |                |                |      |      |
| Abduction Transformer (No KL-regularization)  | 16.8                  | 1    | 100            | 33.7           | 1    | 10   |
| Abduction Transformer (No gradient search)    | 20.9                  | None | None           | 96.7           | None | None |
| GPT-5 Thinking (w.o. fine-tuning)             | 41.0                  | N/A  | N/A            | N/A            | N/A  | N/A  |
| GPT-4.1 (w.o. fine-tuning)                    | 34.0                  | N/A  | N/A            | N/A            | N/A  | N/A  |

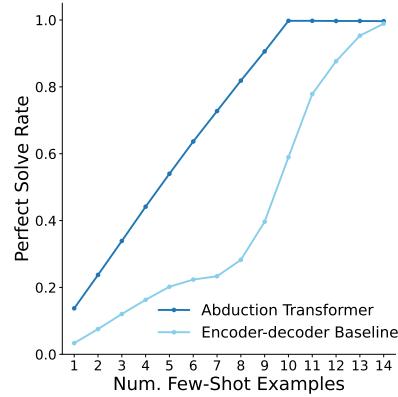
394  
 395  
 396  
 397  
 398  
 399  
 400  
 401  
 402  
 403  
 404  
 405  
 406  
 407  
 408  
 409  
 410  
 411  
 412  
 413  
 414  
 415  
 416  
 417  
 418  
 419  
 420  
 421  
 422  
 423  
 424  
 425  
 426  
 427  
 428  
 429  
 430  
 431  
**Results.** Our results are summarized in Table 2. We find that when trained on 90% of possible compositions, Abduction Transformer and the decoder-only transformer baseline perform comparably, showing close to perfect performance on the OOD test set. When trained on 1% of possible compositions, we find that the Abduction Transformer significantly outperforms all other architectures we tested. We observe that the decoder-only baseline which performed well in the previous setting now degrades significantly in performance, indicating poor generalization in more extreme OOD regimes. The single vector LPN similarly equipped with test time gradient search performs better than the decoder-only baseline but not as well as Abduction Transformer, indicating the advantage of using nonparametric latent representations.

403  
 404  
 405  
 406  
 407  
 408  
 409  
 410  
 411  
 412  
 413  
 414  
 415  
 416  
 417  
 418  
 419  
 420  
 421  
 422  
 423  
 424  
 425  
 426  
 427  
 428  
 429  
 430  
 431  
 Our ablations show that 1) KL-regularization during training is necessary for effective latent space search, 2) gradient search is needed for more extreme OOD compositional generalization and 3) gradient search fails when applied to a deterministic encoder-decoder architecture, indicating that our probabilistic treatment is necessary. Model and hyperparameter details can be found in App. E.2. We discuss the effect of scaling gradient search steps in App. D.3.

## 6 LINGUISTIC SYSTEMATICITY

412  
 413  
 414  
 415  
 416  
 417  
 418  
 419  
 420  
 421  
 422  
 423  
 424  
 425  
 426  
 427  
 428  
 429  
 430  
 431  
 Finally, we consider a grammar induction task proposed by Lake & Baroni (2023) to test linguistic systematicity and compositional generalization ability in neural networks. The task is a meta-learning task where each meta-learning episode contains 14 few-shot examples of sentence/interpretations pairs, namely pairs consisting of a sequence of lexical symbols and a sequence of colored circles. The objective of the task is to infer the underlying interpretation grammar from these examples and ascertain the correct interpretation of some query sentence. See Fig. 2D for an illustration of the problem setup.

423  
 424  
 425  
 426  
 427  
 428  
 429  
 430  
 431  
**Experimental setup.** We use the open source training and test sets created by Lake & Baroni (2023) to train and evaluate our models. The training set is a set of meta-learning episodes  $D_{\text{train}} = \{(X, x_{\text{query}}, y^*)_j\}_{j=1}^N$  each generated from a randomly sampled interpretation grammar, with  $X = \{(x_i, y_i)\}_{i=1}^{14}$  consisting of pairs containing a lexical symbol sequence  $x_i$  and a color sequence  $y_i$ . The pairs in  $X$  are generated such that given the ground truth interpretation grammar  $H^*$ , we have that  $H^*(x_i) = y_i$ . The test set is generated in the same way from interpretation grammars that are guaranteed to be different from those used in the training set. Thus, in this experiment we evaluate our models’ ability to perform production compositional generalization. See App. F for details on the sampling process for interpretation grammars.



423  
 424  
 425  
 426  
 427  
 428  
 429  
 430  
 431  
 Figure 3: Performance on linguistic systematicity task when varying the number of few-shot examples given in meta-learning episodes at test time.

432 We compare the performance of Abduction Transformer against the encoder-decoder transformer  
 433 architecture from Lake & Baroni (2023) as a baseline while decreasing the number of few-shot  
 434 examples in test problems. With this setup, we aim to evaluate OOD compositional generalization  
 435 ability as few-shot examples become scarce to the point where they may not be sufficient to imply a  
 436 unique interpretation grammar. In our experiments, we vary the number of few-shot examples given  
 437 at test-time in the range [1, 14] and evaluate how well our models generalize to these situations.

438 **Results.** As shown in Fig. 3, we find that compared to the encoder-decoder baseline, Abduction  
 439 Transformer exhibits near perfect accuracy down to 10 few-shot examples before degrading, main-  
 440 taining 50% accuracy at 5 few-shot examples. This is in contrast to the baseline architecture which  
 441 shows continuous degradation in performance as the number of few-shot examples decreases. This  
 442 indicates Abduction Transformer’s strong compositional generalization ability in the face of incom-  
 443 plete information, considering the fact that the ground truth interpretation grammars in the test set  
 444 contain exactly 7 rewrite rules and require the observation of at least 7 examples to uniquely identify.  
 445 Our results highlight Abduction Transformer’s robustness against OOD regimes, both in terms of  
 446 the meta-learning task itself and the scarcity of few-shot examples.

447

448

## 7 RELATED WORK

449

450

451 **Test-time adaptation methods.** Performing gradient updates at test-time has become a popular  
 452 approach in order to solve difficult inference problems. A common approach is Test-Time-Fine-  
 453 Tuning (TTFT), a method for improving inference performance by fine-tuning models on some  
 454 curated dataset conditioned on the test-input (Hübotter et al., 2025; Krause et al., 2018; Hardt &  
 455 Sun, 2024; Sun et al., 2020). Similar approaches have been used in successful architectures for  
 456 the ARC-AGI benchmark (Chollet et al., 2025; Akyürek et al., 2025; Franzen et al., 2025). Ap-  
 457 proaches utilizing updates over model activations enable test-time adaptive performance increases  
 458 while avoiding model parameter updates (Macfarlane & Bonnet, 2025; Li et al., 2025).

459

460

461 **Compositional generalization.** The ability for neural networks to solve OOD compositional rea-  
 462 soning problems has been well studied in the context of LLMs (Kudo et al., 2023; An et al., 2023;  
 463 Liu et al., 2023; Mészáros et al., 2024). Hosseini et al. (2022); Furrer et al. (2021) indicate the  
 464 presence of compositional generalization ability in LLMs for parsing tasks, and Schug et al. (2025)  
 465 investigate the mechanistic origins of compositional generalization in transformer architectures by  
 466 framing attention as a hypernetwork. Despite this, many studies have shown that LLMs, including  
 467 those trained specifically for reasoning, fail on OOD problems that require compositional recombi-  
 468 nation of learned knowledge and subroutines (Dziri et al., 2023; Mirzadeh et al., 2025; Opedal et al.,  
 469 2025; Shojaee et al., 2025). Thus, the problem of whether transformer architectures (and neural  
 470 networks in general) can learn to compositionally generalize remains open.

471

472

473 We introduced Abduction Transformer as a novel architecture capable of OOD compositional  
 474 generalization on reasoning tasks, using nonparametric mixture distribution latent representations,  
 475 information-theoretic regularization, and test-time gradient search. Our architecture learns to infer  
 476 initial distributions over mixture distributions in a smooth space of hypotheses which then supports  
 477 the iterative refinement of these hypotheses at test-time to better account for few-shot meta-learning  
 478 examples, thereby solving problems involving unseen compositions of knowledge obtained during  
 479 training.

480

481

482 Our experiments show that Abduction Transformer is capable of solving problems involving such  
 483 unseen compositions in ARC-like reasoning tasks, symbolic Raven’s Progressive Matrices, and  
 484 grammar induction tasks, even in extreme OOD settings, where standard transformer architectures  
 485 and previous test-time latent space search methods fail. We show that performance drops signif-  
 486 icantly without our test-time gradient search procedure, and that the search process becomes less  
 487 effective without information-theoretic regularization, nonparametric representations, or stochastic  
 488 training. Our method serves as a new direction in designing neural network architectures that are  
 489 capable of complex OOD generalization in reasoning domains.

486 **Ethics statement.** This work is largely foundational, demonstrating the viability of a new architec-  
 487 tural paradigm. We foresee no harmful applications of our methods, nor potential for discrimination,  
 488 bias or fairness concerns. Absolutely no LLMs were used in the writing or proofreading of the main  
 489 text. See App. H for details on LLM use.  
 490

491 **Reproducibility statement.** We provide code for our models in the supplementary material. Full  
 492 code with instructions to reproduce our experiments will be made public upon acceptance. We  
 493 provide information to reproduce our experiments in App. D and App. E.  
 494

## 495 REFERENCES

- 497 Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and  
 498 Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning, 2025.  
 499 URL <https://arxiv.org/abs/2411.07279>.
- 500 Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou, and Dongmei  
 501 Zhang. How do in-context examples affect compositional generalization? In Anna Rogers,  
 502 Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the*  
 503 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 11027–11052, Toronto,  
 504 Canada, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.61.
- 505 Alan W. Biermann. The inference of regular lisp programs from examples. *IEEE Transactions on*  
 506 *Systems, Man, and Cybernetics*, 8(8):585–600, 1978. doi: 10.1109/TSMC.1978.4310035.
- 508 Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece  
 509 Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,  
 510 Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments  
 511 with gpt-4, 2023. URL <https://arxiv.org/abs/2303.12712>.
- 512 Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,  
 513 and Alexander Lerchner. Understanding disentangling in  $\beta$ -vae. *arXiv e-prints*, pp. arXiv–1804,  
 514 2018.
- 516 Patricia Carpenter, Marcel Just, and Peter Shell. What one intelligence test measures: A theoretical  
 517 account of the processing in the raven progressive matrices test. *Psychological review*, 97:404–31,  
 518 07 1990. doi: 10.1037/0033-295X.97.3.404.
- 520 Raymond Cattell. Theory of fluid and crystallized intelligence: A critical experiment. *Journal of*  
 521 *Educational Psychology*, 54:1–22, 02 1963. doi: 10.1037/h0046743.
- 522 Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song, and Denny Zhou. Composi-  
 523 tional generalization via neural-symbolic stack machines. In H. Larochelle, M. Ran-  
 524 zato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information*  
 525 *Processing Systems*, volume 33, pp. 1690–1701. Curran Associates, Inc., 2020. URL  
 526 [https://proceedings.neurips.cc/paper\\_files/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf).
- 528 Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical  
 529 report, 2025. URL <https://arxiv.org/abs/2412.04604>.
- 531 François Chollet. On the measure of intelligence, 2019. URL <https://arxiv.org/abs/1911.01547>.
- 533 Noam Chomsky. *Aspects of the Theory of Syntax*. MIT Press, Cambridge, MA, USA, 1965.
- 535 George Dimitriadis and Spyridon Samothrakis. Out-of-distribution generalisation is hard: evidence  
 536 from arc-like tasks, 2025. URL <https://arxiv.org/abs/2505.09716>.
- 538 Hao Dong, Eleni Chatzi, and Olga Fink. Towards robust multimodal open-set test-time adaptation  
 539 via adaptive entropy-aware optimization. In *The Thirteenth International Conference on Learning*  
*Representations*, 2025. URL <https://openreview.net/forum?id=hj323oR3rw>.

- 540 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean  
 541 Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal,  
 542 Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of trans-  
 543 formers on compositionality. In *Thirty-seventh Conference on Neural Information Processing  
 544 Systems*, 2023. URL <https://openreview.net/forum?id=Fkckkr3ya8>.
- 545 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network  
 546 function approximation in reinforcement learning. *Neural networks*, 107:3–11, 2018.
- 547 Jerry Fodor. *The Language of Thought*. Harvard University Press, 1975.
- 548 Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical anal-  
 549 ysis. *Cognition*, 28(1-2):3–71, 1988. doi: 10.1016/0010-0277(88)90031-5.
- 550 Daniel Franzen, Jan Disselhoff, and David Hartmann. Product of experts with LLMs: Boosting  
 551 performance on ARC is a matter of perspective. In *Forty-second International Conference on  
 552 Machine Learning*, 2025. URL <https://openreview.net/forum?id=dsBjxI618W>.
- 553 Daniel Furrer, Marc van Zee, Nathan Scales, and Nathanael Schärli. Compositional generalization  
 554 in semantic parsing: Pre-training vs. specialized architectures, 2021. URL <https://arxiv.org/abs/2007.08970>.
- 555 Mary L. Gick and Keith J. Holyoak. Analogical problem solving. *Cognitive Psychology*, 12(3):306–  
 556 355, 1980. ISSN 0010-0285. doi: [https://doi.org/10.1016/0010-0285\(80\)90013-4](https://doi.org/10.1016/0010-0285(80)90013-4). URL <https://www.sciencedirect.com/science/article/pii/0010028580900134>.
- 557 Alexi Gladstone, Ganesh Nanduru, Md Mofijul Islam, Peixuan Han, Hyeonjeong Ha, Aman Chadha,  
 558 Yilun Du, Heng Ji, Jundong Li, and Tariq Iqbal. Energy-based transformers are scalable learners  
 559 and thinkers. *arXiv preprint arXiv:2507.02092*, 2025.
- 560 Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models.  
 561 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=CNL2bku4ra>.
- 562 James Henderson and Fabio James Fehr. A VAE for transformers with nonparametric variational  
 563 information bottleneck. In *The Eleventh International Conference on Learning Representations*,  
 564 2023. URL [https://openreview.net/forum?id=6QkjC\\_cs03X](https://openreview.net/forum?id=6QkjC_cs03X).
- 565 Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, and Aaron Courville. On  
 566 the Compositional Generalization Gap of In-Context Learning. In Jasmijn Bastings, Yonatan  
 567 Belinkov, Yanai Elazar, Dieuwke Hupkes, Naomi Saphra, and Sarah Wiegreffe (eds.), *Pro-  
 568 ceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks  
 569 for NLP*, pp. 272–280, Abu Dhabi, United Arab Emirates (Hybrid), December 2022. Associa-  
 570 tion for Computational Linguistics. doi: 10.18653/v1/2022.blackboxnlp-1.22. URL <https://aclanthology.org/2022.blackboxnlp-1.22>.
- 571 Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:  
 572 Active fine-tuning of LLMs. In *The Thirteenth International Conference on Learning Represen-  
 573 tations*, 2025. URL <https://openreview.net/forum?id=NS1G1Uhny3>.
- 574 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.
- 575 Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of neural  
 576 sequence models. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International  
 577 Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp.  
 578 2766–2775. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/krause18a.html>.
- 579 Keito Kudo, Yoichi Aoki, Tatsuki Kurabayashi, Ana Brassard, Masashi Yoshikawa, Keisuke Sak-  
 580 aguchi, and Kentaro Inui. Do deep neural networks capture compositionality in arithmetic rea-  
 581 soning? In Andreas Vlachos and Isabelle Augenstein (eds.), *Proceedings of the 17th Confer-  
 582 ence of the European Chapter of the Association for Computational Linguistics*, pp. 1351–1362,  
 583 Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/v1/  
 584 2023.eacl-main.98. URL <https://aclanthology.org/2023.eacl-main.98/>.

- 594 Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-learning  
 595 neural network. *Nature*, 623:115 – 121, 2023. URL <https://api.semanticscholar.org/CorpusID:264489248>.  
 596
- 597 Hengli Li, Chenxi Li, Tong Wu, Xuekai Zhu, Yuxuan Wang, Zhaoxin Yu, Eric Hanchen Jiang,  
 598 Song-Chun Zhu, Zixia Jia, Ying Nian Wu, and Zilong Zheng. Seek in the dark: Reasoning via  
 599 test-time instance-level policy gradient in latent space, 2025. URL <https://arxiv.org/abs/2505.13308>.  
 600
- 601 Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn,  
 602 Hao Tang, Wei-Long Zheng, Yewen Pu, et al. Combining induction and transduction for abstract  
 603 reasoning. In *The Thirteenth International Conference on Learning Representations*, 2024.  
 604
- 605 Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers  
 606 learn shortcuts to automata. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=De4FYqjFueZ>.  
 607
- 608 Matthew Macfarlane and Clément Bonnet. Searching latent program spaces. In *ICML 2025  
 609 Workshop on Programmatic Representations for Agent Learning*, 2025. URL <https://openreview.net/forum?id=Va937YZ9it>.  
 610
- 611 Mrinal Mathur, Barak A. Pearlmutter, and Sergey M. Plis. MIND over body: Adaptive thinking  
 612 using dynamic computation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=EjJGND0m1x>.  
 613
- 614 Anna Mészáros, Szilvia Ujváry, Wieland Brendel, Patrik Reizinger, and Ferenc Huszár. Rule ex-  
 615 trapulation in language models: A study of compositional generalization on OOD prompts. In  
 616 *NeurIPS 2024 Workshop on Compositional Learning: Perspectives, Methods, and Paths Forward*,  
 617 2024. URL <https://openreview.net/forum?id=F7Yt0iWjmM>.  
 618
- 619 Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and  
 620 Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in  
 621 large language models. In *The Thirteenth International Conference on Learning Representations*,  
 622 2025. URL <https://openreview.net/forum?id=AjXkRZIvjb>.  
 623
- 624 Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann ma-  
 625 chines. In *International Conference on Machine Learning*, 2010. URL <https://api.semanticscholar.org/CorpusID:15539264>.  
 626
- 627 neurallambda. Like arc, but code to generate visual puzzles., 2024. URL <https://github.com/neurallambda/arc-like>. Accessed: 2025-06-30.  
 628
- 629 Andreas Opedal, Haruki Shirakami, Bernhard Schölkopf, Abulhair Saparov, and Mrinmaya Sachan.  
 630 MathGAP: Out-of-distribution evaluation on problems with arbitrarily complex proofs. In  
 631 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=5ck9PIrTpH>.  
 632
- 633 OpenAI. Introducing gpt-4.1 in the api, 2024. URL <https://openai.com/index/gpt-4-1/>. Accessed: 2025-08-11.  
 634
- 635 OpenAI. Introducing GPT-5, 2025. URL <https://openai.com/index/introducing-gpt-5/>. Accessed: 2025-08-11.  
 636
- 637 John C. Raven. *Advanced Progressive Matrices, Set II*. H. K. Lewis, London, 1962.  
 638
- 639 D. E. Rumelhart and J. L. McClelland. On learning the past tenses of english verbs. In *Parallel Dis-  
 640 tributed Processing, Volume 2: Explorations in the Microstructure of Cognition: Psychological  
 641 and Biological Models*. The MIT Press, 07 1986. ISBN 9780262291262. doi: 10.7551/mitpress/  
 642 5237.003.0008. URL <https://doi.org/10.7551/mitpress/5237.003.0008>.  
 643
- 644 Simon Schug, Seijin Kobayashi, Yassir Akram, João Sacramento, and Razvan Pascanu. Atten-  
 645 tion as a hypernetwork. In *ICLR*, 2025. URL <https://openreview.net/forum?id=V4K9h1qNxE>.  
 646

- 648 Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad  
649 Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning  
650 models via the lens of problem complexity, 2025. URL <https://arxiv.org/abs/2506.06941>.
- 652 Paul Smolensky. Connectionism, constituency and the language of thought. In Barry M. Loewer  
653 (ed.), *Meaning in Mind: Fodor and His Critics*. Blackwell, 1990.
- 655 Phillip D. Summers. A methodology for lisp program construction from examples. *J. ACM*, 24  
656 (1):161–175, January 1977. ISSN 0004-5411. doi: 10.1145/321992.322002. URL <https://doi.org/10.1145/321992.322002>.
- 658 Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time  
659 training with self-supervision for generalization under distribution shifts. In Hal Daumé III and  
660 Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume  
661 119 of *Proceedings of Machine Learning Research*, pp. 9229–9248. PMLR, 13–18 Jul 2020.  
662 URL <https://proceedings.mlr.press/v119/sun20b.html>.
- 663 Anna Vettoruzzo, Lorenzo Bracciali, Joaquin Vanschoren, and Marlena Nowaczyk. Unsupervised  
664 meta-learning via in-context learning. In *The Thirteenth International Conference on Learning  
665 Representations*, 2025. URL <https://openreview.net/forum?id=Jprs1v2wPA>.
- 666 Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and  
667 Yasin Abbasi Yadkori. Hierarchical reasoning model. *arXiv preprint arXiv:2506.21734*, 2025.
- 668 Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias Boutros Khalil. LLMs and  
669 the abstraction and reasoning corpus: Successes, failures, and the importance of object-based  
670 representations. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL  
671 <https://openreview.net/forum?id=E8m8oySvPJ>.
- 672 Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-learning with fewer tasks through task in-  
673 terpolation. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=ajXWF7bVR8d>.

## 678 A ABDUCTION TRANSFORMER ENCODER

680 Given transformer outputs  $V \in \mathbb{R}^{n \times p}$ , the encoder linearly projects these representations to pre-  
681 activation parameters  $\mu \in \mathbb{R}^{n \times p}$ ,  $\log(\sigma^2) \in \mathbb{R}^{n \times p}$ ,  $\alpha \in \mathbb{R}^n$ . Following Henderson & Fehr (2023),  
682 we apply an exponential activation function to our log-variance parameters and ReLU (Nair & Hin-  
683 ton, 2010) to our concentration parameters. This gives a posterior mixture distribution containing  
684 one component  $\langle \mu_i, \sigma_i, \alpha_i \rangle$  per transformer output, along with the prior component.

## 686 B DENOISING ATTENTION

688 In standard attention, a query vector accesses a set of vectors through a weighted sum parameterized  
689 by its attention vector. In denoising attention (Henderson & Fehr, 2023), this interpretation is ex-  
690 tended by generalizing sets of vectors to probability distributions over vectors, and treating attention  
691 as a function of these probability distributions.

692 **Scaled dot-product attention.** We first consider standard cross-attention where some input query  
693 is mapped so a single result vector. Here, the input  $u' \in \mathbb{R}^{1 \times p}$  is projected to the query through  
694  $W^Q \in \mathbb{R}^{p \times d}$ . We obtain keys and values by projecting the set of vectors  $Z \in \mathbb{R}^{n \times p}$  through  
695  $W^K, W^V \in \mathbb{R}^{p \times d}$  respectively. We can regroup the standard expression of the attention function to  
696 operate in the space of  $Z$ , that is:

$$698 \text{Attention}(u', Z; W^Q, W^K, W^V) = \text{Attn}(u' W^Q (W^K)^\top, Z) W^V = \text{Attn}(u, Z) W^V \quad (6)$$

699 where  $u = u' W^Q (W^K)^\top$ ,  $u \in \mathbb{R}^{1 \times p}$ . This new operation  $\text{Attn}(u, Z)$  can be characterized both  
700 as a sum over vectors  $z_i \in Z$ , or in terms of an integral over a distribution with support at  $z_i$ . This  
701 equivalence is restated below:

702  
703  
704  
705  
706

$$\text{Attn}(u, Z) = \text{softmax}\left(\frac{1}{\sqrt{d}}uZ^T\right)Z = \text{DAttn}(u; F_Z) \quad (7)$$

707  
708  
709  
710

$$F_Z = \sum_{i=1}^n \frac{\exp\left(\frac{1}{2\sqrt{d}}\|z_i\|^2\right)}{\sum_{i=1}^n \exp\left(\frac{1}{2\sqrt{d}}\|z_i\|^2\right)} \delta_{z_i} \quad (8)$$

711  
712  
713

$$\text{DAttn}(u; F) = \frac{\int_v f(v) g(u; v, \sqrt{d}I) v dv}{\int_v f(v) g(u; v, \sqrt{d}I) dv} \quad (9)$$

714  
715

716 Here,  $\delta_{z_i}$  is an impulse distribution (Dirac delta function) at  $z_i$ ,  $f(\cdot)$  is the probability density function for distribution  $F$ , and  $g(u; v, \sqrt{d}I)$  is a Gaussian distribution with diagonal covariance.

717  
718  
719 **Interpretation as denoising.** The operation  $\text{DAttn}(u; F_Z)$  which we call *denoising attention* can  
720 be thought of as the mean of the posterior distribution (over  $v$ ) induced by making an observation  $u$   
721 of some true vector  $v$  corrupted by noise, where  $v$  is drawn from a prior distribution  $F_Z$  specified  
722 by  $Z$ . Denoising attention is a generalization of regular attention, where instead of restricting to sets  
723 of vectors, it is defined for any distribution  $F$  over a vector space. When the input distribution  $F$  is  
724 discrete, it can be implemented naturally by including a bias term in the cross-attention operation.

725  
726  
727 **C TRAINING DETAILS: PSEUDO CODE AND KL-DIVERGENCE**  
728

729  
730 **Pseudo code.** 1 shows our training procedure with gradient search enabled.

731  
732 **Algorithm 1:** Abduction Transformer training procedure with gradient search

733 **Input:** Encoder parameters  $\phi$ , decoder parameters  $\theta$

734 1 **for**  $t \leftarrow 1$  **to**  $\text{num\_training\_steps}$  **do**  
735 2   Draw problem specification with  $n$  input–output pairs  $(x_i, y_i)$ , test query  $x_{\text{query}}$  and ground  
736   truth test output  $y^*$   
737   /\* Sampling from DP \*/  
738 3   **for**  $i \leftarrow 1$  **to**  $n$  **do**  
739 4     Sample  $H_i \sim q_\phi(H \mid x_i, y_i)$   
740     /\* Gradient search \*/  
741 5      $\bar{H} \leftarrow \frac{1}{n} \sum_{i=1}^n H_i$   
742 6     **for**  $k \leftarrow 1$  **to**  $\text{num\_gradient\_search\_steps}$  **do**  
743 7        $\bar{H} \leftarrow \bar{H} + \mu \cdot \nabla_H \sum_{i=1}^n \log p_\theta(y_j \mid x_j, H) \Big|_{H=\bar{H}}$   
744 8       /\* We ignore the second-order gradient w.r.t.  $\theta$  \*/  
745 9        $H^o \leftarrow \bar{H}$   
746 10       $\mathcal{L}(\phi, \theta) = \frac{1}{n} \sum_{i=1}^n \lambda_{\text{KL}} \text{KL}(q_\phi(H \mid x_i, y_i) \parallel p(H)) - \log p_\theta(y^* \mid x_{\text{query}}, H^o)$   
11      Update  $\phi$  and  $\theta$  via gradient descent on  $\mathcal{L}(\phi, \theta)$

751  
752 **KL-divergence for Dirichlet processes.** To compute the KL-divergence between DPs, we use an  
753 approximation due to Henderson & Fehr (2023). Here, superscripts  $q$  and  $p$  denote that the particular  
754 DP parameter belongs to the posterior and prior DP, respectively. Note that  $\kappa_0 = n + 1$ , where  $n$  is  
755 the number of input vectors (the additional term accounts for the prior component).  $\Gamma$  and  $\psi$  refer to  
the gamma function and digamma function, respectively.

756

757  
758

$$D_{\text{KL}}(q(H | X) \| p(H)) \approx L_D + L_G \quad (10)$$

759

760

$$L_D = \log \Gamma(\alpha_0^q) - \log \Gamma(\alpha_0^p) + (\alpha_0^q - \alpha_0^p) \left( -\psi(\alpha_0^q) + \psi\left(\frac{\alpha_0^q}{\kappa_0}\right) \right) + \kappa_0 \left( \log \Gamma\left(\frac{\alpha_0^p}{\kappa_0}\right) - \log \Gamma\left(\frac{\alpha_0^q}{\kappa_0}\right) \right) \quad (11)$$

761

762

$$L_G = \frac{1}{2} \kappa_0 \sum_{i=1}^{n+1} \frac{\alpha_i^q}{\alpha_0^q} \sum_{h=1}^d \left[ \frac{(\mu_{ih}^q - \mu_h^p)^2}{(\sigma_h^p)^2} + \frac{(\sigma_{ih}^q)^2}{(\sigma_h^p)^2} - 1 - \log \frac{(\sigma_{ih}^q)^2}{(\sigma_h^p)^2} \right] \quad (12)$$

763

764

765

766

## D 1-D ARC

767

768

### D.1 1-D ARC TRANSFORMATIONS

769

770

771

We show the transformations contained in the training set and test set in Figures 4 and 5, respectively. Each pixel sequence is plotted as a horizontal array. We plot 3 randomly generated input/output pairs for each transformation. The labels ('E.g.') on the y-axis mark each input/output pair.

772

773

774

### D.2 ARC-LIKE TASK MODEL DETAILS

775

776

777

778

Model hyperparameters are shown in Table 3. Training parameters used across all architectures are shown in Table 4.

779

780

**Transformer layers.** All of the models we test utilize transformer layers that are structured in the usual way:

781

782

783

784

$$x_{\text{attn}} = \text{MHA}(\text{LN}(x_{\text{in}})) + x_{\text{in}} \\ x_{\text{out}} = \text{FFN}(\text{LN}(x_{\text{attn}})) + x_{\text{attn}}$$

785

786

787

788

Our FFN is a standard MLP with a single hidden layer, using SiLU (Elfwing et al., 2018) activation. We use learned positional encodings and one-hot encode integer inputs corresponding to pixel/symbol values. Both positional and token embeddings are accessed via a dense embedding matrix.

789

790

791

792

793

**Generation method.** For all the models we test, we generate predictions autoregressively. For Abduction Transformer, Single Vector LPN and the encoder-decoder baseline, a transformer decoder autoregressively generates its predictions by self-attending to the test input and cross-attending to the encoded context. For the decoder-only baseline, the test input is given as a prefix, and the prediction is generated by direct autoregression conditioned on the prefix.

794

795

Table 3: Details for ARC models.

796

797

|                    | Abduction Transformer | Single Vector LPN | Encoder-decoder Baseline | Decoder-only Baseline |
|--------------------|-----------------------|-------------------|--------------------------|-----------------------|
| Num. Parameters    | 1,255,393             | 1,273,152         | 1,255,393                | 1,389,120             |
| Encoder Layers     | 4                     | 4                 | 4                        | 0                     |
| Decoder Layers     | 5                     | 7                 | 5                        | 12                    |
| Emb. Dim.          | 96                    | 96                | 96                       | 96                    |
| MLP Dim.           | 384                   | 384               | 384                      | 384                   |
| No. Heads          | 6                     | 6                 | 6                        | 6                     |
| Dirichlet KL Coef. | 0.1                   | N/A               | N/A                      | N/A                   |
| Gaussian KL Coef.  | 0.001                 | 0.001             | N/A                      | N/A                   |
| Gradient Search LR | 0.1                   | 0.1               | N/A                      | N/A                   |

805

806

807

Fig. 6 shows the effect of scaling the number of gradient search steps we take during test-time search. Both Abduction Transformer and single vector LPN benefit from an increased number of search steps on both tasks.

Table 4: Training hyperparameters. The decoder-only baseline differs only in the batch size used for training (shown in parentheses). All models converged in training loss and validation accuracy before reaching max. training steps.

| Hyperparameter         | Value     |
|------------------------|-----------|
| Training Steps         | 30,000    |
| Batch Size             | 1024 (32) |
| Optimizer              | AdamW     |
| Gradient Clipping Norm | 1.0       |
| Learning Rate          | 0.001     |

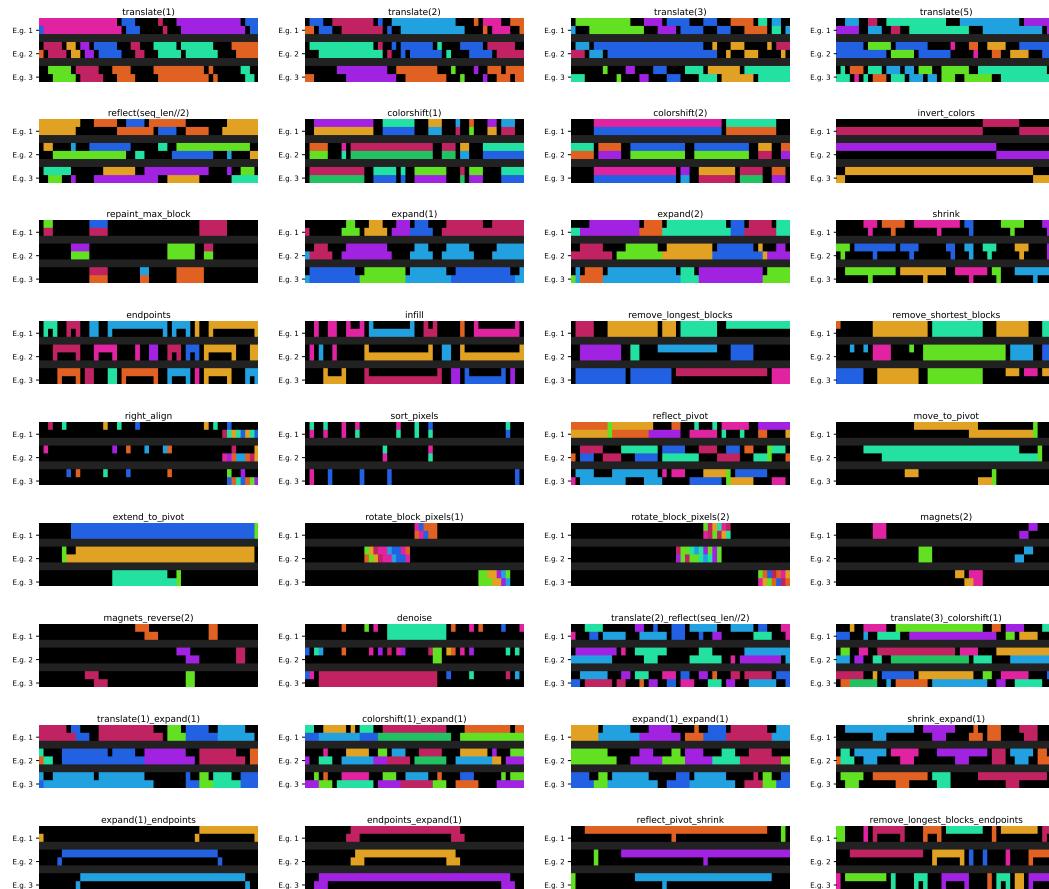


Figure 4: **1-D ARC Training set transformations**

#### D.4 ABDUCTION TRANSFORMER LATENT SPACE

**Visualizing latent space.** We hypothesize that a latent space amenable to compositional generalization requires the representations of various hypotheses to be well organized in its geometry according to their semantics. To understand Abduction Transformer’s latent space, we sample 15,360 randomly generated 1-D ARC problems from our training and test distributions and plot their representations<sup>8</sup>. Our mixture distribution representations are first flattened into single vectors by taking their expectation, then projected into 2D using t-SNE; the results are presented in Fig. 7. Our plots demonstrate that Abduction Transformer’s latent space is remarkably well separated across different primitive transformations seen during training. Furthermore, the representations of unseen compositions map onto sensible locations near their constituent transformations.

<sup>8</sup>We encode problem specifications using an Abduction Transformer instance trained with 1 step of gradient search on the training set. The reported representations are taken from the initial encoding before test-time gradient search is applied.

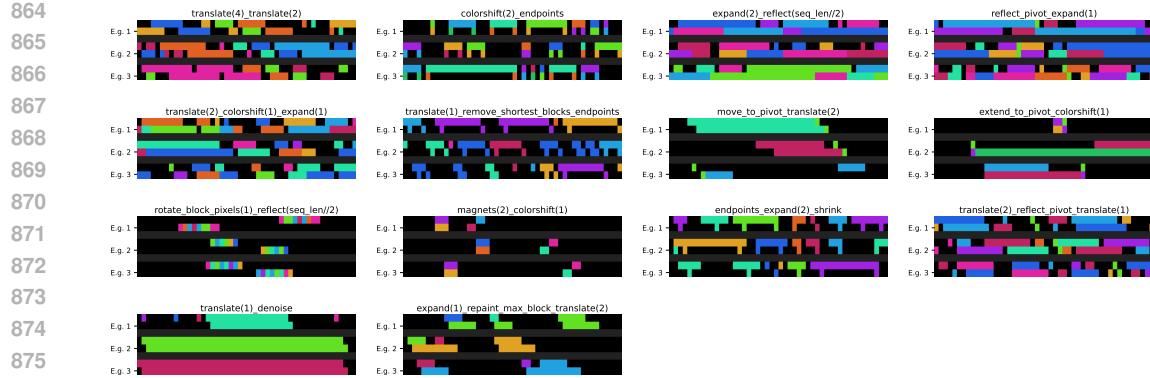


Figure 5: 1-D ARC Test set transformations

—●— Abduction Transformer    —●— Single Vector LPN

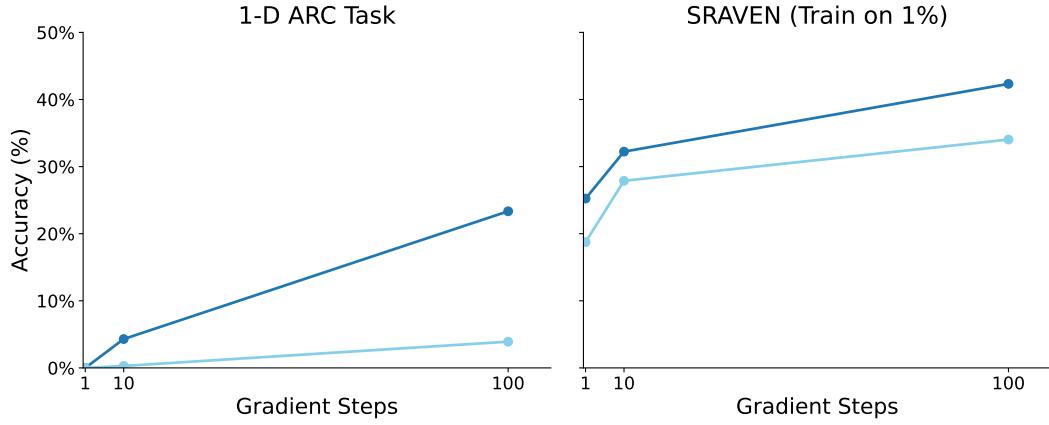


Figure 6: **Accuracy against number of gradient search steps at test-time.** **Left:** Performance of Abduction Transformer and single vector LPN on the 1-D ARC OOD composition task. **Right:** Performance of the same models on SRAVEN OOD composition task where we train on 1% of rule combinations.

## E SRAVEN

### E.1 SRAVEN PROGRESSION RULES

List of SRAVEN progression rules, taken from Schug et al. (2025).  $F$  refers to the size of the feature vocabulary.

1. **Constant:** Each row consists of a random but fixed integer from  $\{1, \dots, F\}$ .
2. **Progression (+1):** The first element of each row is sampled uniformly at random and incremented by 1 modulo  $F$  for each successive column.
3. **Progression (+2):** The first element of each row is sampled uniformly at random and incremented by 2 modulo  $F$  for each successive column.
4. **Progression (-1):** The first entry is sampled randomly, and each following entry is decremented by 1 modulo  $F$ .
5. **Progression (-2):** The first element of each row is sampled uniformly at random and decremented by 2 modulo  $F$  for each successive column.
6. **Addition:** Two elements are sampled uniformly at random for each row and added modulo  $F$  to obtain the last column.

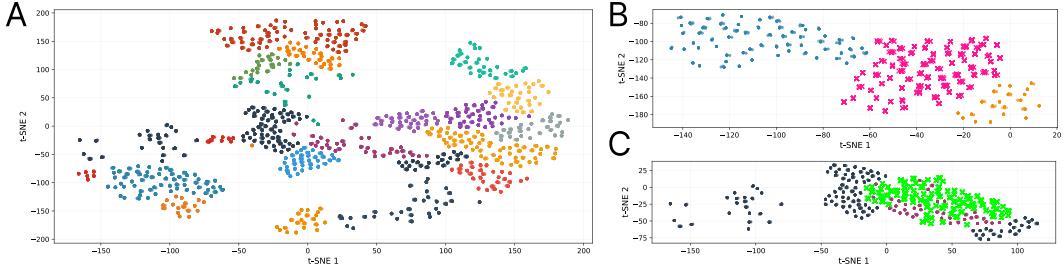


Figure 7: **Visualization of latent space** **A** (Primitive Transformations) t-SNE plot showing the structure of Abduction Transformer’s latent space. Each color corresponds to a particular primitive 1-D ARC transformation. Our mixture distribution representations are flattened by taking their expectation. **B**, **C** (Unseen Compositions) Latent representations of unseen 1-D ARC problem specifications projected to the same space. **B** shows the representations for colorshift in blue, endpoints in orange and the unseen composition colorshift  $\circ$  endpoints in magenta. **C** shows translate in black, denoise in purple, and the unseen composition translate  $\circ$  denoise in green.

7. **Subtraction:** Two elements are sampled uniformly at random for each row and subtracted modulo  $F$  to obtain the last column.
8. **Distribute three:** Three elements are sampled uniformly at random and presented in three independently sampled random permutations for each row.

## E.2 SRAVEN MODEL DETAILS

Model hyperparameters are shown in Table 5. Training parameters are identical to those shown in Table 4. Details regarding the transformer layers and generation method used in all models are identical to those found in §D.2.

Table 5: Details for SRAVEN models.

|                    | Abduction Transformer | Single Vector LPN | Encoder-decoder Baseline | Decoder-only Baseline |
|--------------------|-----------------------|-------------------|--------------------------|-----------------------|
| Num. Parameters    | 1,093,441             | 1,148,640         | 1,093,441                | 1,131,840             |
| Encoder Layers     | 4                     | 4                 | 4                        | 0                     |
| Decoder Layers     | 4                     | 6                 | 4                        | 10                    |
| Emb. Dim.          | 96                    | 96                | 96                       | 96                    |
| MLP Dim.           | 384                   | 384               | 384                      | 384                   |
| No. Heads          | 6                     | 6                 | 6                        | 6                     |
| Dirichlet KL Coef. | 0.1                   | N/A               | N/A                      | N/A                   |
| Gaussian KL Coef.  | 0.001                 | 0.001             | N/A                      | N/A                   |
| Gradient Search LR | 0.1                   | 0.1               | N/A                      | N/A                   |

## F INTERPRETATION GRAMMAR AND META-LEARNING INSTANCE SAMPLING

An example interpretation grammar, taken from Lake & Baroni (2023) is shown in Fig. 8. Interpretation grammars (which each correspond to individual meta-learning instances) are randomly generated from a simple meta-grammar.

Rewrite rules for primitives (the first 4 rules in Fig. 8) are generated by randomly sampling input and output symbol pairs without replacement. Rewrite rules for functions are generated by first sampling the LHS, followed by the RHS. The LHS is generated by sampling (without replacement) an input symbol at random, then sampling whether the function is unary/binary, then sampling either primitive or non-primitive variables as its arguments ( $u$  and  $x$  respectively in Fig. 8). The RHS is generated by sampling a random string of length  $\leq 8$  consisting of any of the function arguments defined in the LHS.

|     |                                                  |               |                                                                                     |
|-----|--------------------------------------------------|---------------|-------------------------------------------------------------------------------------|
| 972 | $\llbracket \text{dax} \rrbracket$               | $\rightarrow$ |  |
| 973 |                                                  |               |                                                                                     |
| 974 |                                                  |               |                                                                                     |
| 975 |                                                  |               |                                                                                     |
| 976 | $\llbracket \text{wif} \rrbracket$               | $\rightarrow$ |  |
| 977 |                                                  |               |                                                                                     |
| 978 |                                                  |               |                                                                                     |
| 979 |                                                  |               |                                                                                     |
| 980 | $\llbracket \text{lug} \rrbracket$               | $\rightarrow$ |  |
| 981 |                                                  |               |                                                                                     |
| 982 |                                                  |               |                                                                                     |
| 983 | $\llbracket \text{zup} \rrbracket$               | $\rightarrow$ |  |
| 984 |                                                  |               |                                                                                     |
| 985 |                                                  |               |                                                                                     |
| 986 | $\llbracket u_1 \text{ fep} \rrbracket$          | $\rightarrow$ | $\llbracket u_1 \rrbracket \llbracket u_1 \rrbracket \llbracket u_1 \rrbracket$     |
| 987 |                                                  |               |                                                                                     |
| 988 |                                                  |               |                                                                                     |
| 989 |                                                  |               |                                                                                     |
| 990 | $\llbracket u_1 \text{ blicket } u_2 \rrbracket$ | $\rightarrow$ | $\llbracket u_1 \rrbracket \llbracket u_2 \rrbracket \llbracket u_1 \rrbracket$     |
| 991 |                                                  |               |                                                                                     |
| 992 |                                                  |               |                                                                                     |
| 993 | $\llbracket x_1 \text{ kiki } x_2 \rrbracket$    | $\rightarrow$ | $\llbracket x_2 \rrbracket \llbracket x_1 \rrbracket$                               |
| 994 |                                                  |               |                                                                                     |
| 995 |                                                  |               |                                                                                     |

Figure 8: **Example interpretation grammar.** Double brackets  $\llbracket \cdot \rrbracket$  denote the interpretation function. Variables  $x_i$  apply to arbitrary non-empty strings, while  $u_i$  apply only to *dax*, *wif*, *lug*, and *zup*.

## G EXPERIMENTS ON GPT MODELS

We use prompts shown in Fig. 9, and Fig. 10 for our 1-D ARC and SRAVEN experiments on GPT-5 Thinking and GPT-4.1. We allow a maximum of 10,000 reasoning tokens for GPT-5 Thinking (which corresponds to ‘effort’ set to ‘low’ for our tasks), and a maximum of 10,000 output tokens for GPT-4.1. We evaluate on 400 randomly selected problems from the test set for 1-D ARC, and 200 for SRAVEN.

## H USE OF LARGE LANGUAGE MODELS

Absolutely no LLMs were used in the writing or proofreading of the main text. We use LLM assisted tools for writing code used in models and experiments. We use LLM assistance for formatting LaTeX figures.

1026  
1027  
1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041 1-D ARC Prompt  
1042 You are solving a 1D pattern recognition puzzle. Each puzzle  
1043 consists of sequences of pixel values from 0-9, where 0 represents  
1044 empty/background.  
1045  
1046 You will be shown several input-output examples that demonstrate a  
1047 transformation rule. Your task is to identify the pattern and apply  
1048 it to a new test input.  
1049  
1050 EXAMPLES:  
1051 Example 1:  
1052 Input: <sequence>  
1053 Output: <sequence>  
1054  
1055 ...  
1056 TEST:  
1057 Input: <sequence>  
1058 Output: ?  
1059  
1060 You may think through the problem in detail, but make sure to end  
1061 your response with the final answer in this exact format:  
1062  
1063 FINAL ANSWER: [your sequence here]  
1064  
1065 The sequence should be space-separated integers only.  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079

Figure 9: Prompt used for 1-D ARC problems.

1080  
 1081  
 1082  
 1083  
 1084  
 1085  
 1086  
 1087  
 1088  
 1089     **SRAVEN Prompt**  
 1090  
 1091     You are solving a SRAVEN (Symbolic RAven's) puzzle. This is a  
 1092     visual reasoning task adapted to sequences.  
 1093     Each puzzle consists of a grid of visual panels, where each panel  
 1094     is represented by a sequence of feature values (integers 0-7). Each  
 1095     row in the grid follows a consistent rule or pattern across its  
 1096     panels.  
 1097     You will be shown several rows as examples, where each row contains:  
 1098       - Input: The first few panels of the row (showing the pattern)  
 1099       - Output: The final panel that completes the pattern  
 1100  
 1101     Your task is to identify the underlying rule and apply it to predict  
 1102     the missing final panel in the test row.  
 1103     **EXAMPLES:**  
 1104  
 1105     **EXAMPLES:**  
 1106       **Example 1:**  
 1107       Input: <sequence>  
 1108       Output: <sequence>  
 1109       ...  
 1110  
 1111       **TEST:**  
 1112       Input: <sequence>  
 1113       Output: ?  
 1114       Analyze the pattern across the example rows and apply the same rule  
 1115       to complete the test row.  
 1116  
 1117       You may think through the problem step by step, but make sure to end  
 1118       your response with the final answer in this exact format:  
 1119       **FINAL ANSWER: [your panel here]**  
 1120  
 1121       The panel should be a comma-separated list of integers, e.g., [1, 2,  
 1122       3, 4]  
 1123  
 1124       Figure 10: Prompt used for SRAVEN problems.  
 1125  
 1126  
 1127  
 1128  
 1129  
 1130  
 1131  
 1132  
 1133