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Figure 1: Comparisons of the proposed EI2 and prior SOTA for text-driven video editing with
Text-to-Image diffusion model. EI2 addresses problems on temporal and semantic inconsistencies
existing in prior work, leading to more consistent editing results. Better visual effect in color mode.

Abstract

Existing works have advanced Text-to-Image (TTI) diffusion models for video
editing in a one-shot learning manner. Despite their low requirements of data and
computation, these methods might produce results of unsatisfied consistency with
text prompt as well as temporal sequence, limiting their applications in the real
world. In this paper, we propose to address the above issues with a novel EI2
model towards Enhancing vIdeo Editing consIstency of TTI-based frameworks.
Specifically, we analyze and find that the inconsistent problem is caused by newly
added modules into TTI models for learning temporal information. These modules
lead to covariate shift in the feature space, which harms the editing capability. Thus,
we design EI2 to tackle the above drawbacks with two classical modules: Shift-
restricted Temporal Attention Module (STAM) and Fine-coarse Frame Attention
Module (FFAM). First, through theoretical analysis, we demonstrate that covariate
shift is highly related to Layer Normalization, thus STAM employs a Instance
Centering layer replacing it to preserve the distribution of temporal features. In
addition, STAM employs an attention layer with normalized mapping to transform
temporal features while constraining the variance shift. As the second part, we
incorporate STAM with a novel FFAM, which efficiently leverages fine-coarse
spatial information of overall frames to further enhance temporal consistency.
Extensive experiments demonstrate the superiority of the proposed EI2 model.
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1 Introduction

In light of the surging popularity of video applications in modern times, there has been a growing
focus on developing editing techniques [18, 41, 54, 45] in research community to provide automatic
and efficient video editing services for counterparts, e.g., content creators and media professionals.
While existing techniques have explored the use of Variational Autoencoders (VAEs) [25, 32] and
Generative Adversarial Networks (GANs) [12, 20, 57, 51], they are often limited to specific scenes or
datasets, and struggle to provide a comprehensive solution. Thanks to the remarkable capabilities of
diffusion models [15, 15, 48] in distribution learning, recent research [39, 38, 41, 36] has facilitated
great progress in various fields including image synthesis, editing and restoration, posing significant
promise for solving tasks in video domain. However, replicating the success in video domain is
challenging, due to the higher-dimensional complexity, temporal consistency, and lack of high-
quality datasets. In this paper, we develop diffusion model to tackle text-driven single video editing
task [4, 56, 10], which utilizes text prompts to guide the change of style and objects in a given video.

From the perspective of diffusion models, prior works typically build Text-to-Video (TTV) frame-
works and leverage the generative prior to address this task, wherein two primary approaches are
exploited: The first approach [31, 10, 45] directly trains a TTV model on a large corpus of text
and video pairs to facilitate video editing. However, due to the lack of high-quality public video
datasets, current methods mainly rely on in-house datasets and demand significant computational
resources. The second approach [56, 28] extends the architecture of pre-trained Text-to-Image (TTI)
models [39, 38] for video editing. To capture motion in videos, various temporal modules, e.g.,
Spatial-Casual Attention (SCA) and Temporal Attention (TA), are introduced to TTI models. The
temporal motion will be learned from video via tuning and DDIM inversion. This approach is more
cost-efficient, easily accessible, and thus gaining more attention in recent studies [28, 44, 35, 7, 55].

Nonetheless, methods inflating TTI models [56, 28] suffer from two critical issues: Temporal
inconsistency, where the edited video exhibits cross-frame flickering in vision, and Semantic disparity,
where videos are not altered in accordance with the semantics of given text prompts. Addressing these
issues will considerably push the frontiers of text-driven video editing. In this paper, we reveal that
the cause of the semantic disparity is not fine-tuning or over-fitting to the given video, but rather the
newly introduced temporal layer, designed to ensure consistency across frames, which may weaken
or even eliminate the editing power of TTI models. We attribute this phenomenon to the covariate
shift of generative feature space, as the extra added parameters of Temporal Attention (TA) without
any constraint inevitably transform the statistics of features [21, 52, 3]. Moreover, while using SCA
can help reduce computational overhead, it is a suboptimal choice given that the non-autoregressive
nature of the diffusion model demands considering global relationships. Therefore, incorporating
efficient global spatial-temporal attention [53, 47] is essential for enhancing temporal consistency.

We present a novel approach called EI2 that enhances the capabilities of existing pre-trained TTI
diffusion models [39] by incorporating well-grounded temporal modules for video editing task. EI2
follows the one-shot tuning paradigm [56], while making significant contributions in both theory
and practice: (1) Shift-restricted Temporal Attention Module (STAM) to resolve the semantic
disparity: (i) We provide theoretical proof, under certain assumptions, that the covariate shift is
unrelated to tuning, but is caused by newly introduced parameters in the TA module. This provides
valuable guidance in addressing the problem. (ii) On this basis, we identify that the Layer Norm [3]
in TA module is the prime cause of covariate shift. To mitigate this issue, we propose a simple yet
effective replacement called Instance Centering to restrict distribution shift. (iii) Furthermore, we
constrain the shift of variance by normalizing the weights in the vanilla attention within the TA module.
(2) Fine-coarse Frame Attention Module (FFAM) to enhance temporal consistency: We improve
SCA with a novel fine-coarse interactive mechanism to establish an efficient spatial-temporal attention,
which considers all frames while achieving low computational complexity. Instead of discarding
information on the temporal dimension, we perform sampling along the spatial dimension. This
preserves the overall structure of spatial-temporal data and reduces the data volumes for consideration.
Concretely, FFAM respects the vanilla attention design to preserve fine information in the current
frame, but downsamples non-current frames to obtain coarse features for interaction. In this way,
FFAM can achieve improved modeling of motion while keeping comparable computational burden
as SCA. (3) Extensive experiments validate that EI2 effectively addresses semantic disparity and
enhances temporal consistency in video editing compared to the current state-of-the-art methods.
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2 Related works
Text-to-Image diffusion models. Diffusion models have demonstrated remarkable success in
image generation by effectively approximating data distributions [15, 46, 48, 24, 9], outperforming
previous generative models like GANs [6, 22, 43, 60]. Building upon the advancements of pre-trained
language models [37], Text-to-Image (TTI) diffusion models [38, 41, 39] have been developed to
generate high-fidelity images conditioned on text descriptions. Prominent examples include recent
works like DALLE2 [38], and Imagen [41] achieve impressive and controllable image generation.
Recently, the Latent Diffusion Model (LDM) [39] has drawn more attention due to its efficiency and
compelling results, which is used as our base model in the experiments.
Text-to-Video diffusion models. TTV generation poses greater challenges compared to image
generation due to its higher-dimensional complexity and the scarcity of high-quality datasets. Previous
approaches mainly rely on autoregressive models [54, 19]. Pioneering works [18, 41] introduce
new architectures using 3D U-Net [8] with factorized spatial-temporal attention [2, 16, 5]. Recent
works attempt to leverage image diffusion priors in both modeling and data, such as Make-A-
Video [45], which proposes fine-tuning from a pre-trained DALLE2 [38] with spatial-temporal
modules. However, the challenges of collecting large-scale text-video datasets and the substantial
computational overheads still hinder many researchers in this field. Recently, two concurrent works
[23, 1] propose adapting LDM to the video without fine-tuning, but still persist inconsistent issues.
Diffusion for text-driven editing. Due to clear mapping relationships between data and diffusion
latent space, it is efficient to obtain DDPM [15] or DDIM [46] latent of a given image and then
perform text-driven editing. To strengthen structural control, P2P [13] and Plug-and-Play [50] use
attention control to minimize changes to unrelated parts. Null-Text Inversion [30] fine-tunes the
embedding of null text to improve real image editing. Some works [11, 40, 26] fine-tune TTI models
to learn special tokens for personalized concepts and generate related images. While these methods
can be applied to video editing frame by frame, it is hard for them to ensure temporal consistency.
[31, 10] train TTV models to achieve impressive editing performance but are not open-source. At a
earlier period, one-shot training and tuning approaches have been popular in GANs [43, 59, 58, 12]
for various tasks. Tune-A-Video (TAV) [56] proposes the first tuning strategy on LDM [39] for video
editting. Based on it, several concurrent works [28, 44, 35, 7, 55] are developed to improve the
editing quality, e.g., speed and background preservation. By contrast, we are concerned about the
essential problem, i.e., the negative impact of introduced parameters on text-driven editing ability.

3 Preliminaries
Diffusion probability model. DDPM [15] establishes a relationship between complex data dis-
tribution and the Gaussian distribution using forward and reverse Markov chains. Following the
convention, we denote the random variable of data as x0, and the forward process generates latent
variables x1, . . . , xT through q(xt|xt−1) = N(xt;

√
αtxt−1, (1 − αt)I), where {αt}Tt=1 is a fixed

variance schedule. The reverse process starts from xT to sample the real data x0 sequentially through

pθ(xt−1|xt,P) = N(yt−1;µθ(xt, t,P),Σθ(xt, t,P)). (1)

Herein, P is an optional condition, Σθ can be either predefined constants or trainable parameters
associated with the variance schedule, and µθ(xt, t,P) = 1√

ᾱt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t,P)), where

ᾱt =
∏t

i=1 αi, and εθ is a parameterized function that is trained under diffusion loss supervision

Loss(εθ) = Ex0∼pdata,ε∼N(0,I),t∼Uniform(1,T ) ∥ε− εθ (xt, t,P)∥22 . (2)

This makes the reverse process Eq. (1) approach to the Evidence Lower Bound of data distribution.
Latent Diffusion Model (LDM). LDM [39] first trains an Autoencoder network consisting of an
encoder E and a decoder D, where the composition D ◦ E approximates the identity mapping. This
enables E to compress image data into a low-dimensional latent space. LDM then learns a diffusion
model by optimizing Objective (2) in the latent space, with the corresponding text prompt P . In
LDM, ϵθ is equipped with a convolutional Transformer-based U-Net architecture, where the attention
mechanism plays a critical role in interacting information from different modalities. Specifically,
given two features z ∈ Rl1×d1 and c ∈ Rl2×d2 , the attention mechanism [53] obtains three elements
Query Q, Key K and Value V by Q = zWq, K = cWk, V = cWv, where Wq ∈ Rd1×d, Wk and
Wv ∈ Rd2×d. After that, they will interact to generate the transferred feature via

Attention(z, c) = MQ,KV, where MQ,K = softmax(QKT /
√
d). (3)
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Figure 2: Illustration of EI2 for text-driven video editing. (a) One-shot tuning paradigm: Given a
video and a text prompt, EI2 first inflates a pre-trained TTI model into a TTV model, which is further
tuned by minimizing the diffusion loss. (b) Video editing: EI2 uses noise from DDIM inversion [15]
and a custom text prompt to generate the edited video. (c) Model details: EI2 enhances the TTI model
by upgrading its Self Attention (SA) module to a Fine-coarse Frame Attention Module (FFAM) and
introducing a novel Shift-restricted Temporal Attention Module (STAM). Unlike Temporal Attention
(TA) Module which shifts the input distribution intensively, STAM constrains the output to better
align with the subsequent modules. (d) Interactive mechanism in FFAM: For each patch (red star) in
the latent, it interacts with the fine patches in the current frame and coarse patches in other frames.

Let define norm as the Layer Norm operator [3] and Linear(z) = zWL + b, where WL ∈ Rd×d1

and b ∈ Rd1 , a Transformer block in εθ has the residual structure shown below

Transformer(z, c) = z + Linear(Attention(norm(z), norm(c))). (4)

For convenience in later discussions, we include the normalization operation of c in the equation,
although it may not be implemented in practice. LDM incorporates two types of Transformer blocks.
The first Self Attention module only receives z to compute Transformer(z, z), and the other Cross
Attention module takes the latent feature z and the text embedding c to compute Eq. (4). We also
overlook the Dropout [49] in the transformer block, as it freezes during the fine-tuning process.

Notations. For clarity, we abbreviate Self Attention, Cross Attention, and Temporal Attention as
SA, CA, and TA, respectively. Accordingly, the Transformer blocks in Eq. (4) associated with these
attention mechanisms are named SA Module, CA Module, and TA Module. In this paper, we use
variables n, l and d to represent the length of temporal, spatial, and feature dimensions, respectively.

4 Methodology

4.1 Overview of EI2

Given a video clip V = {v1, . . . , vn} consisting of n frames, and an associated text prompt P ,
text-driven video editing task leverages other text prompts to guide style or object changes in the
video. While existing large-scale TTI diffusion models [39, 38, 41] have shown exceptional behavior
in image editing, they suffer from temporal inconsistency when applied to the video frames.

One-shot tuning for video editing. In this paper, we propose a novel approach, named EI2, which
inflates the frequent pre-trained TTI diffusion model LDM [39] with well-designed temporal modules
to create a TTV diffusion model. As depicted in Figure 2, the inflated model is optimized to minimize
diffusion loss about data pair (V,P) , so as to capture the temporal motion in video V , while retaining
the editing capability of TTI model. To edit the video, we use an altered prompt to guide the diffusion
reverse process based on Eq. (1), where the initial latent xT is obtained by the DDIM inversion [15].

Model Inflation. Technically, during the inflation process, the initial step involves converting
all spatial convolutions in LDM into pseudo 3D convolutions, which allows video data and latent
to be processed in the same way as a batch of images. Furthermore, our approach differs from
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previous work [56, 15, 35, 28] in two key aspects within Transformer blocks: (a) We introduce
a novel Shift-restricted Temporal Attention Module (STAM) that learns motion while solving the
covariate shift problem. This addresses the essential limitation in previous works [56, 28], where the
text-driven capability of the TTI model is weakened or deprived after inflation with a TA Module.
(b) Recognizing the complexities over time, we upgrade the existing SA Module into a new Fine-
coarse Frame Attention Module (FFAM). Unlike SCA in previous approaches [56, 28] reduces the
complexity of attention through causal sampling along the time dimension, our FFAM compresses
information along spatial dimension while retaining temporal information to facilitate efficient and
effective spatial-temporal attention interaction, leading to better results.

4.2 Theoretical analysis of covariate shift problem

As depicted in Figure 1, it is apparent that previous works [56, 28] can lead to semantic disparity, i.e.,
inconsistencies between the text prompt and the edited video. We attribute this disparity to the
covariate shift [21] in the feature space, where modifying the prior distribution of a pre-trained
generative model typically leads to a degradation in synthesis. In the case of Tune-A-Video [56], the
one-shot data poses difficulties in training meaningful parameters for aligning the output distribution
from TA Module with the demands of the subsequent module. Therefore, our analysis investigates
the transition of feature distribution in TTV model and provides evidence of covariate shift.

Since Tune-A-Video solely tunes the parameters of Transformers including Wq in the vanilla modules,
and all weights in TA Module, we abstract the problem as changes in distribution after passing through
these weights. By considering the structures in Eq. (3) and Eq. (4), which serve as the basis for the
SA, CA and TA Modules, we can obtain the following discoveries:
Proposition 1. We assume that for Transformers in Eq. (4), any input feature z ∈ Rl×d (or Rn×d) is
a sample of i.i.d d-dimensional Gaussian random variables, denoted as rv(z) ∼ N(µrv(z),Σrv(z)),
and ẑ = Norm(z), same notation for c. (i) For the output from Eq. (3), the i-th row vector vari-
able, Attention(z, c)i, follows the Gaussian distribution N(µrv(V ), ωQ,KΣrv(V )), where µrv(V ) =

WT
v µrv(ĉ), Σrv(V ) = WT

v Σrv(ĉ)Wv, and ωQ,K = ∥M i
Q,K∥22. (ii) For the output from Eq. (4),

each row vector variable in Transformer(z, c) follows the Gaussian distribution N(µ′
rv(z),Σ

′
rv(z)),

where µ′
rv(z) = µrv(z) +WT

L µrv(V ) + b, and Σ′
rv(z) = Σrv(z) + ωQ,KWT

L Σrv(V )WL.

The proof is provided in Supplementary Materials. We remark that (i) The Gaussian assumption is
common and basic in modern neural networks [21, 3, 52], as it is efficient to characterize feature dis-
tributions. Here we leverage its properties, particularly additivity, to analyze changes in distributions.
(ii) When tuning the weight matrix Wq in SA and CA, the mean µ′

rv(z) remains unaffected, while the
covariance Σ′

rv(z) is primarily influenced by the modification of ωQ,K . However, since Wq is well
initialized from the pre-trained TTI model, its impact on the covariate shift is considered negligible.
(iii) The weights in TA Module, which are randomly initialized and learned from one-shot data, have
the potential to greatly influence the feature distribution, whereas it is crucial to ensure the output
distribution resembles the input distribution to properly fit the following pre-trained modules.

4.3 Shift-restricted Temporal Attention Module

Based on the analysis, we can explicitly identify that TA Module leads to covariate shift. To address
this issue, we propose to improve this module by restricting the distribution shift. In concrete, given
that each unit in the spatial grid has temporal feature z ∈ Rn×d, when passing TA Module it will
be transformed by the operation Transformer(z, z) in Eq. (4). Therefore, our main objective is to
minimize the diffusion loss while ensuring TA Modules are constrained in distribution shift, i.e.,

min
θ

Loss(εθ), where TA Modules subject to
{
µrv(z) +WT

L µrv(V ) + b −→ µrv(z)

Σrv(z) + ωQ,KWT
L Σrv(V )WL −→ Σrv(z)

(5)

It is worth noting that there exist trivial solutions for TA Modules, such as vanishing all parameters.
However, we seek to identify the optimal configuration that maximizes the contribution to the task.
Plight from Layer Norm. As an essential operation, nevertheless, we find Layer Norm [3] in
the TA Module significantly contributes to the issue of covariate shift. The computation of Layer
Norm across all dimensions, e.g., the mean value µz = 1

nd

∑n,d
i,j=1 z

i,j , fails to properly center the
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feature along the temporal dimension. This results in non-zero values for µrv(ẑ) and µrv(V ), leading
to covariate shift and conflicts with the objective (5). Experimental results demonstrate a notable
discrepancy between µrv(z) and µz , with the former ranging from 1e − 1 to 1, while the latter is
typically less than 1e − 2. Therefore, we can conclude that Layer Norm inadequately centers the
feature in the temporal dimension, leading to a shift in the mean value. This conclusion is supported
not only by theoretical analysis but also by compelling empirical evidence (see Section 5.2 and Figure
4), where even minor refinements in Layer Norm can yield noticeable improvements in the results.
Instance Centering layer. To address the issue of Layer Norm in TA Module, we propose Instance
Centering (IC) as an effective replacement, which operates on temporal data z ∈ Rn×d by

IC(z) = z − 1

n
Σn

i=1z
i. (6)

When applied to a batch of temporal data z ∈ Rl×n×d, it is defined to individually operate on each
sample. Consequently, the IC layer guarantees that µrv(ẑ), µrv(V ), and WT

L µrv(V ) in Objective
(5) vanish in principle. In this way, the new parameters in TA, except for the bias, would not affect
the mean of distribution. Importantly, IC layer preserves the temporal variance of the data. This
deviation from the Instance Norm [52], which normalizes the data along the sequence dimensions,
offers not only computational efficiency, resulting in about 20% increase in computational speed, but
also plays a role in controlling variance shifts associated with subsequent techniques.
Normalized linear mapping. Due to the interaction of multiple variables, the change of temporal
variance in TA Module is unavoidable. We can establish the relation using norm properties:

∥Σ′
rv(z) − Σrv(z)∥ ≤ ∥WL∥2∥Wv∥2∥Σrv(ẑ)∥. (7)

When considering the Frobenius norm, this equation indicates that the change in each element of the
covariance is controlled by the rescaling coefficient in Norm, matrix norm of WL in Linear, and Wv

in TA. Therefore, it implies that we can mitigate the variance shift by regularizing these values. From
this we design the following improvements: (a) We do not employ the rescaling operator in IC since
the order of most temporal feature variances is varied from 1e− 2 to 1e− 1, meaning the operation
would amplify the variance and magnifying the covariate shift. This observation is also supported
by qualitative results (see Figure 4). (b) Instead of adding a regularization term to loss, we employ
a more efficient technique called spectral normalization (SN ) [29] to rescale W̄ = W/σmax(W ),
where σmax is the spectral norm of matrix. SN has been widely used in various tasks and offers better
stability and theoretical guarantees compared to other weight normalization [42]. In our approach,
we leverage SN to redefine the Attention and Linear layers as follows:

¯Attention(z, c) = MQ,KzW̄v, and ¯Linear(z) = zW̄L + b. (8)

STAM. The STAM layer is an extension of Transformer in Eq. (4) and formulated as follows:

STAM(z) = z + ¯Linear( ¯Attention(IC(z), IC(z))). (9)

We can prove that the feature vector in STAM(z) follows a distribution N(µrv(z)+ b,Σ′
rv(z)), where

∥Σ′
rv(z)∥ ≤ 2∥Σrv(z)∥ under the spectral norm. Since the bias b is initialized from zero, the impact

on µrv(z) is negligible under a small learning rate. Therefore, this design effectively alleviates the
covariate shift in theory, enabling the improvement of semantic disparity in practice.

4.4 Fine-coarse Frame Attention Module

Considering the set Z = {zj ∈ Rl×d}nj=1, which comprises features of all frames, Tune-A-Video
introduces a Sparse-Casual Attention (SCA) mechanism to enhance the SA with sparse-temporal
interaction, where only the first frame and its immediate previous frame are used for interaction,
instead of considering all frames. This significantly reduces the computational complexity from
O(n2l2) to O(2nl2). While SCA is more effective than SA, it is not optimal for video editing tasks,
in which global spatial-temporal relationships are crucial to ensure overall coherence. To address
this issue, we propose the Fine-coarse Frame Attention Module (FFAM) as a new solution. FFAM
leverages a fine-coarse strategy to incorporate fine-grained information from the current frame with
coarse features from other frames. Specifically, FFAM is defined as follows:

FFAM(zi;Z) = Attention(zi, zFC),

where zFC = concat[zi, {downsample(zj , r)}j ̸=i] ∈ R(n−1+r2

r2
l)×d,

(10)
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Table 1: Quantitative comparison with evaluated baselines. The “Training” refers to the process of
optimization and DDIM inversion [15], and “Memory” refers to the peak footprint of GPU device.

Method Frame consistency Textual alignment Runtime [min] Memory [Gib]
CLIP Score↑User Vote↑CLIP Score↑User Vote↑Training↓Inference↓Training↓Inference↓

Tune-A-Video [56] 96.64 25.6% 28.72 15.4% 11.0 0.5 9.6 5.3
Video-P2P [28] 96.84 28.3% 28.24 19.5% 19.2 2.0 27.3 19.5

Vid2Vide-zero [33] 95.17 11.2% 29.39 22.4% 2.5 2.5 17.2 23.3
EI2 95.94 34.9% 29.84 42.7% 12.5 0.5 11.0 5.3

where downsample(·, r) rescales the input with ratio 1/r2. The design of FFAM respects the rule of
SA to leverage data in the current frame, and uses coarse features sampled from other frames as an
aid. In contrast to SCA, which samples data over time to improve efficiency, FFAM adopts a robust
way that condenses data along the spatial dimension, while retaining the structural relationships
in both spatial and temporal dimensions. It is worth noting that FFAM reduces the complexity to
O(n−1+r2

r2 nl2). In experiments, when r is set to 2 or 4, FFAM obtains improved temporal consistency
while achieving comparable speed to SCA. This trade-off between SA and global spatial-temporal
interaction enables FFAM to strike a balance between efficiency and consistency in video tasks.

5 Experiments
Implementation details. Our implementation of EI2 is based on the stable diffusion v1-4 frame-
work3. We keep the Autoencoder of LDM frozen and tune WQ of the FFAM and CA Modules, and
all parameters of STAMs. We follow previous works [56] to perform tuning on 8-frame videos of
size 512 × 512. We utilize the AdamW optimizer with a learning rate of 3e − 5 for a total of 500
steps. During inference, we initialize the model from the DDIM inversion[46] and set the default
classifier-free guidance [17] to 7.5. All experiments are conducted on an NVIDIA Tesla V100 GPU.
Baselines. In view of the limited accessible resource in this field, we select the three representative
methods as baselines. (1) Tune-A-Video [56]: The current SOTA in the field and the conventional
baseline for related works. (2) Vid2Vid-zero [55]: A TTI-based zero-shot video editing method
without fine-tuning. (3) Video-P2P [28]: An improvement method over Tune-A-Video via using
P2P [13] and Null-Text [30]. Experiments are conducted with their official codes and configurations.
Datasets. Following previous works [56, 28], we collect videos from the DAVIS dataset [34] for
comparison. We also gather face videos from the Pexels website to assess the fine-grained editing in
the face domain. We utilize a captioning model [27] to automatically generate the text prompts.

5.1 Comparison

Qualitative results. We present qualitative comparison results between EI2 and baselines in
Figure 3. Due to limited space, additional results are provided in the Supplementary Materials.
We evaluate the performance of the methods using different general scenarios including object and
style editing. The following conclusions can be drawn from the results: (1) Tune-A-Video [56] tends
to performs better in coarse-level object replacement but poorly in terms of style. This is evident in
its attempt to forcefully fit the “surfing” action for object replacement, resulting in noticeable artifacts
in the generated results. It also fails to produce the desired stylistic effects and still maintains the
photorealistic style of the original videos. (2) Video-P2P [28], based on Tune-A-Video, improves
consistency with the original video through attention control but struggles with global style as before.
(3) Vid2Vid-zero [55] does not use the TA Module and adopts the parameters of the source model
entirely, avoiding the issue of covariate shift. However, the lacking of fine-tuning procedure leads to
the edited results could not faithfully preserve the characteristics of source videos. (4) Compared to
previous works, our approach combines the fidelity to the original video from Tune-A-Video with
the editing power of the TTI model from Vid2Vid-zero. For instance, in the case of “surfing”, EI2
effectively preserves the motion of source videos while creating frames suitable for characters, instead
of blindly copying the source motion and introducing artifacts. Our experiments demonstrate that EI2
exhibits significant visual advantages over the competitors.
Quantitative results. In line with previous studies [56, 28, 55], we evaluate methods using CLIP
score [14] and user study to assess frame consistency and textual alignment. (1) CLIP score: To

3Stable Diffusion: https://huggingface.co/CompVis/stable-diffusion-v1-4
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Figure 3: Comparison of EI2 with Tune-A-Video [56], Video-P2P [28], and Vid2Vid-zero [55]. The
black text in the first line represents the video caption, while the green text indicates the prompt for
revision. The outputs generated by EI2 exhibit greater temporal continuity and semantic consistency.

evaluate frame consistency, we calculate CLIP [37] image embedding for all frames in the edited
videos and report the average cosine similarity between pairs of video frames. For measuring textual
faithfulness, we compute the average CLIP score between frames of output videos and corresponding
edited prompts. We employ 15 videos from the dataset and edit them in terms of object and style,
resulting in a total of 75 edited videos for each model. Table 1 details the average results, which
indicate that our method exhibits the strongest ability to achieve semantic alignment. Nevertheless, it
is important to note that the automatic evaluation may not align perfectly with human perception [31],
thus should only serve as reference scores. (2) User study: We present 30 pairs of videos and text
prompts to volunteers and ask them to vote for edited videos with the best temporal consistency and
those that best match the textual description. We collect valid votes from 50 volunteers. Table 1
illustrates that EI2 receives the highest number of votes in both aspects, indicating that our method
achieves superior editing quality and is preferred by users in practice.

Resource consumption. The practical resource consumption of video editing is a significant con-
sideration. The results in Table 1 show that EI2 introduces only a marginal increase in computational
overhead compared to Tune-A-Video, while achieving a substantial improvement in performance.
This indicates that our approach effectively balances the trade-off between resource utilization and
editing performance, making it a practical and efficient solution for video editing task.

5.2 Ablation Study
Restricting covariate shift. As the core of our research, we evaluate the impact of the covariate
shift problem on video editing performance. According to the theoretic analysis in Sec. 4.2, we focus
on the Layer Norm within the TA Module of Tune-A-Video and make modifications while keeping the
rest of the architecture unchanged. These modifications are performed based on the official code of
Tune-A-Video. Figure 4 presents the results of these experiments. In the second column, it is observed
that the vanilla Tune-A-Video tends to restrain the textual guidance, leading to inadequate editing
performance. Removing the rescaling parameters of the Layer Norm or completely eliminating the
module itself does not effectively alleviate the covariate shift problem. However, when we replace the
module with the Instance Norm [52], a notable improvement in performance is achieved. Moreover,
incorporating IC and weight normalization further enhance the results. These findings indicate a
significant relationship between covariate offset and semantic disparity, affirming the effectiveness of
our approach in mitigating these challenges.
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Figure 4: Ablation on the restriction of covariate shift. “*” means that the operator does not use
learnable weights. Replacing Layer Norm with instance-based operator can obviously mitigate the
covariate shift and has a very distinct effect on improving textual guidance.

Figure 5: Ablation on the spatial-temporal attention mechanism. Compared with previous SCA
Module [56], our FFAM can enhance the temporal consistency even with a large scale ratio.

Fine-coarse Frame Attention. Figure 5 illustrates the effectiveness of the fine-coarse interaction in
improving temporal consistency. When combining the SCA Module with STAM, it cannot effectively
learn temporal information, resulting in obvious flickering. In contrast, FFAM effectively addresses
this issue, ensuring superior editing quality and temporal coherence in our model. It is important
to note that the scale ratio used in FFAM needs to be within the range of the LDM feature map,
which ranges from 8 to 64. Moreover, applying full spatial-temporal attention to 8 frames requires
approximately 32GiB memory footprint and a significant amount of time (∼45min) for training,
which is not practical in application. In this regard, our FFAM provides a flexible alternative to
spatial-temporal interaction, addressing the limitations associated with resource consumption while
still achieving satisfactory results in terms of temporal consistency.

6 Conclusion

In this paper, we propose the EI2 model to tackle inconsistent editing results in expanding TTI models
for video editing. Our analysis reveals that semantic inconsistency arises from new parameters in
temporal attention, leading to covariate shift and compromising editing capability. The EI2 model
comprises two key modules: the Shift-restricted Temporal Attention module (STAM) and the Fine-
coarse Frame Attention module (FFAM). STAM employs a simplified Instance Centering layer to
eliminate mean shift and normalized attention mapping to constrain variance shift. FFAM, integrated
with STAM, effectively utilizes fine-coarse spatial information across frames to enhance temporal
consistency. Extensive experiments confirm the validity and effectiveness of our approach. We hope
our work provides insights for future research in related fields.
Limitations. Our work has two main limitations. Firstly, while we believe that our analysis and
proof of the covariate shift provides valuable insights into related issues, it heavily relies on the
Gaussian assumption, which cannot hold exactly in practical settings. Secondly, although our method
demonstrates stronger editing capabilities, it still suffers from failures of temporal consistency in
some cases, such as when replacing the “surfing man” with animals. We observe that EI2 performs
better in most style editing, but the replacement for objects is limited to similar attributes. Further
investigation and improvement are necessary to address these limitations.
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