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Abstract

Despite the significant recent progress made on 3D
point cloud semantic segmentation, the current methods re-
quire training data for all classes at once, and are not suit-
able for real-life scenarios where new categories are be-
ing continuously discovered. Substantial memory storage
and expensive re-training is required to update the model
to sequentially arriving data for new concepts. In this
paper, to continually learn new categories using previous
knowledge, we introduce class-incremental semantic seg-
mentation of 3D point cloud. Unlike 2D images, 3D point
clouds are disordered and unstructured, making it difficult
to store and transfer knowledge especially when the pre-
vious data is not available. We further face the challenge
of semantic shift, where previous/future classes are indis-
criminately collapsed and treated as the background in the
current step, causing a dramatic performance drop on past
classes. We exploit the structure of point cloud and pro-
pose two strategies to address these challenges. First, we
design a geometry-aware distillation module that transfers
point-wise feature associations in terms of their geomet-
ric characteristics. To counter forgetting caused by the
semantic shift, we further develop an uncertainty-aware
pseudo-labelling scheme that eliminates noise in uncertain
pseudo-labels by label propagation within a local neighbor-
hood. Our extensive experiments on S3DIS and ScanNet in
a class-incremental setting show impressive results compa-
rable to the joint training strategy (upper bound). Code is
available at: https://github.com/leolyj/3DPC-CISS

1. Introduction
The semantic segmentation of 3D point cloud plays a

crucial role in applications such as virtual reality, robotics

and autonomous vehicles. In recent years, a number of point

cloud segmentation methods [16, 28, 29, 38, 39, 45] have
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Figure 1. To continually learn new categories without forgetting

the previous ones, we leverage Geometry-aware Feature-relation

Transfer (Sec. 3.2) to distill point-wise relationships from the base

model and further employ Uncertainty-aware Pseudo-label Gener-

ation (Sec. 3.3) to synthesize pseudo labels of old classes with low

uncertainty as guidance for novel model training.

achieved remarkable performance in the traditional setting

where all classes are learned at once. Nevertheless, new

categories are gradually discovered in real-life scenarios,

and updating the model to cater for these new categories re-

quires large memory storage and expensive re-training. In

such situations, as illustrated in Fig. 1, class-incremental

learning provides a promising paradigm, since it enables

progressively learning novel knowledge in an efficient man-

ner while preserving the previous capabilities.

The existing research on class-incremental learning is

mostly on 2D image classification [17,19,21,32] with some

efforts extended to RGB semantic segmentation [3, 4, 10,

41]. These methods employ a strategy based upon regu-
larization [11, 19, 44], rehearsal/replay [2, 17, 24, 32, 35]

or knowledge distillation [8, 20, 21] to preserve previous

knowledge. At present, only a few works have investigated
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3D point clouds based incremental learning for classifica-

tion [5, 6, 9, 22, 43]. They focus on the classification of

an individual object and extend 2D methods to 3D. Unlike

classification which only considers a single object (not the

scene with multiple objects), continually learning to seg-

ment 3D point cloud in complex scenes introduces multiple

new challenges and has not been previously studied.

3D point clouds are disordered and unstructured, which

makes it difficult to preserve previous knowledge and re-

sults in catastrophic forgetting [13,33,36]. This specifically

becomes pronounced when old data is not available. We

further observe that the 3D class-incremental segmentation

faces the phenomenon of semantic shift, where the points

belonging to old classes are indiscriminately collapsed into

background during the current learning step. The semantic

shift further suppresses the capability of the model to rec-

ognize old categories, thus exacerbating forgetting.

In this paper, we are the first to propose a class-

incremental learning approach for 3D point cloud seman-

tic segmentation. To prevent forgetting caused by unstruc-

tured point clouds, we design a Geometry-aware Feature-

relation Transfer (GFT) strategy to transfer the structural re-

lationships among point features. Moreover, to address the

semantic shift issue, we assign uncertainty-aware pseudo-

labels to the background points. Different from the con-

ventional approaches, where pseudo-labels are directly ob-

tained from the old model, we estimate uncertainties ac-

cording to the distribution characteristics of points, and

leverage the neighborhood information to propagate labels

from low to high uncertainties. Our Uncertainty-aware

Pseudo-label Generation (UPG), therefore, assists in elimi-

nating the influence of noisy labels and helps tackle the se-

mantic shift issue. Note that our approach does not involve

any rehearsal or memory replay buffer to store old data or

its annotations during the incremental process. We show

promises of our approach through comprehensive evalua-

tions on benchmarks defined on public datasets i.e., S3DIS

[1] and ScanNet [7]. Our key contributions are:

• A class-incremental learning framework for 3D point

cloud semantic segmentation, to sequentially adapt to

new classes from previous acquired knowledge.

• To transfer previous knowledge and prevent forgetting

caused by unstructured nature of the point clouds, we

propose a Geometry-aware Feature-relation Transfer

(GFT) module that captures the point-wise feature re-

lations based on the geometric information.

• To tackle the semantic shift issue where old classes

are indiscriminately collapsed into the background, we

design an Uncertainty-aware Pseudo-label Generation

(UPG) strategy to enhance pseudo-labelling quality

and thus provide effective guidance for old classes.

• Compared with several baselines on multiple bench-

marks, our approach achieves promising results for 3D

class-incremental semantic segmentation, closer to the

joint training (upper bound) using all data at once.

2. Related Works
Incremental learning [30] enables the model to learn new

knowledge e.g. new classes (class-incremental), new tasks

(task-incremental) or new domains (domain-incremental),

while retaining the previously learned information. Since

task-incremental and domain-incremental can be regarded

as a simplified version of the more challenging class incre-

mental setup, we mainly focus on class-incremental meth-

ods. Below, we touch upon RGB image based class-

incremental learning methods for 2D classification, and se-

mantic segmentation, followed by discussion on incremen-

tal learning approaches for 3D point cloud data.

Class-Incremental learning. We can broadly catego-

rize the existing approaches on image classification into

the following families: (a) regularization-based methods
[11, 19, 44] that avoid catastrophic forgetting by impos-

ing constraints on the previously learned parameters while

updating on new classes. (b) distillation-based methods
[8, 20, 21] that transfer the knowledge acquired from previ-

ous models to new tasks by knowledge distillation from the

previous temporal checkpoint. (c) rehearsal/replay-based
methods [2, 17, 24, 32, 35] that define a memory budget to

store data instances/features from the previous classes as

exemplars, or employ a generative model to synthesize the

information related to the previous tasks, and then use these

exemplars to rehearse the previously acquired knowledge.

(d) Parameter-isolation-based methods [12, 23, 31, 34, 42]

that define different sub-networks or paths to prevent the

interference of previously learned knowledge on new tasks

by separating the parameters between different tasks.

Class-Incremental Segmentation on 2D Images. Recent

efforts [3, 4, 10, 25, 26, 41] extend the traditional 2D im-

age segmentation to class-incremental setting. Cermelli et
al. [4] propose a knowledge distillation loss and a modified

cross-entropy loss of background pixels to reduce forgetting

on previous knowledge. [10] adopts a multi-scale pooling

for distillation and entropy-based pseudo-labeling to trans-

fer knowledge of the old classes. Recently, [41] proposes an

uncertainty-aware contrastive distillation approach with im-

pressive results. Class-incremental semantic segmentation

is also studied in weakly supervised setting to alleviate the

expensive and time-consuming pixel-level labeling in [3].

Class-Incremental Learning on 3D Point Cloud. Differ-

ent from 2D images, class-incremental learning on 3D point

cloud has only recently been tackled, with main focus on

classification [5, 6, 9, 22, 43]. [9] proposes a geometric at-

tention mechanism to prevent forgetting caused by redun-

dant geometric information. For distillation, shared point-

knowledge memory attention is explored in [22] while
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[6] develops a 3D distillation method. Memory replay

using exemplars is explored in [43]. [5] study few-shot

class-incremental learning for 3D classification Further, a

teacher-student architecture [46] is developed to overcome

co-occurrence challenge in 3D-incremental object detec-

tion. Despite the considerable efforts, fine-grained 3D

class-incremental segmentation remains an unexplored area

beyond the traditional offline 3D segmentation [16, 28, 29,

38, 39, 45]. In this paper, we propose multiple novel design

choices to tackle the challenges associated with point clouds

including the forgetting on unstructured 3D data and unique

point semantic shift in class-incremental segmentation.

3. Methodology

3.1. Problem Formulation

Lets define a dataset D containing a set of (P,L) pairs,

where P ∈ R3+F represents the input 3D point cloud with

xyz coordinates and F -dimensional features (e.g. rgb color
etc.), and L contains corresponding point-wise labels. In

the 3D class-incremental semantic segmentation task, Cbase

and Cnovel are two disjoint class sets (i.e. Cbase∩Cnovel =
∅), with corresponding Dbase and Dnovel data available re-

spectively. Our goal is to train an incremental model us-

ing only the Dnovel data, based on a pre-trained model on

Dbase, which recognizes both the base and novel classes

at inference time. The structure of segmentation model is

defined as the combination of feature extractor E(·) and

classifier Y (·). As shown in Fig. 2, the basic steps for

class-incremental semantic segmentation on 3D point cloud

can be summarized as: (a) Train the base model (feature

extractor Eb combined with the classifier Yb, denoted as

base/old model Mbase) on Dbase. (b) Use the pre-trained

base model to initialize a new model and randomly initial-

ize the last layer of new classifier Yn (denoted as novel

model Mnovel), and train on Dnovel data. (c) Apply novel

model Mnovel to segment point clouds of all Cbase+Cnovel

classes in the evaluation phase.

Fig. 3 illustrates the overall schematics of our frame-

work, which completes the 3D class-incremental segmen-

tation without requiring any previous data or annotations.

In base Mbase training, we adopt the DGCNN [38] as our

backbone network, which constructs a dynamic graph to

obtain and fuse both global semantic and local EdgeConv

features. In the novel model Mnovel training, we apply

the Geometry-aware Feature-relation Transfer (GFT) mod-

ule to perform base-to-novel knowledge distillation, so as

to maximize the retention of previous information. More-

over, we employ our proposed Uncertainty-aware Pseudo-

label Generation (UPG) strategy to synthesize pseudo labels

of old categories, which will be combined with the current

new class labels to assist Mnovel training. In the following

sections, we will detail the components of the network.

Train En + Yn on 
Dnovel based on   net       

Train Eb + Yb on 
Dbase  data

Apply             to 
predict Cbase + Cnovel

Apply             to 
predict Cbase + Cnovel

novel

(a) Base Model Training
base

(b) Novel Model Training (c) Inference

Figure 2. The basic steps of class-incremental segmentation on

3D point cloud. (a) Eb and Yb denotes the feature extractor and

classifier of the base model Mbase respectively. (b) En and Yn

represents the novel feature extractor initialized by Eb and clas-

sifier respectively. (c) After training Mnovel on Dnovel data, the

model can predict both base and novel classes in the inference.

3.2. Geometry-aware Feature-relation Transfer

For our approach, we do not have access to previous

data, or exemplar point clouds from previously encountered

categories for replay. In order to tackle catastrophic for-

getting that can cause significant performance degradation

on old classes, we model the point-wise relative relation-

ships within the geometric neighbors for transfer to retain

knowledge learned on previous classes. We argue that the

geometry-aware feature relation is discriminative for vari-

ous semantic categories, and can be exploited to migrate

information while learning continually.

Let Pn ∈ Dnovel be the current input point cloud of

novel classes with S points. We define features extracted

by E (including Eb for base, En for novel model) of Pn

as Fn = E(Pn). E is implemented using DGCNN [38],

which extracts feature Fn by aggregating both global se-

mantic and local EdgeConv features. To model the geome-

try of the point cloud, we first apply the Farthest Point Sam-

pling (FPS) [29] on the input point cloud to uniformly sam-

ple r-proportional points (the number is Z = �r∗S�) as an-

chors {Pa
n}Za=1). We calculate the �2 distance between each

point and anchors using xyz coordinates, and apply KNN to

sample the nearest K points Pa,k
n , k ∈ N (a) to form ar-

eas reflecting the local geometric structures. On this basis,

we represent the point-wise relative relationships Ra within

the geometric neighbors, which carry the crucial structured

knowledge for migration and can be formulated as:

Ra =
1

K

∑

k∈N (a)

(pa,kn − pan)⊕ (Fa,k
n − Fa

n), (1)

where pn are the xyz coordinates of points in Pn, ⊕ indi-

cates the concatenation operation. The feature relation on

Pn of the base and novel model can be expressed as Ra
base

and Ra
novel respectively. We perform base-to-novel feature

relation distillation via simple MSE loss:

Ltrans =
1

Z

Z∑

a=1

||Ra
novel −Ra

base||2. (2)

Using this distillation scheme, the structural and semantic

knowledge contained in the old model is transferred to the

new one, and helps prevent catastrophic forgetting.
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Figure 3. The overall architecture of our proposed framework. (a) During base stage training, we train a backbone encoder Eb and classifier

Yb on the base classes. (b) While updating the base model to novel classes, we develop a geometry-aware feature-relation transfer module

to distill previous knowledge of point-wise relationships and an uncertainty-aware pseudo-labelling strategy to tackle semantic shift issue.

3.3. Uncertainty-aware Pseudo-label Generation

Since labels for points of base categories Cbase are not

available during incremental learning process, they will be

treated as an undifferentiated "background" class while up-

dating the model on the Dnovel. However, these points

belonging to old classes have significantly varying seman-

tic representations. If left unresolved, the novel model be-

comes biased towards the newly added classes and ignore

old ones, thus giving rise to the semantic shift issue that

exacerbates forgetting. A naive way to deal with seman-

tic shift is to use the pseudo labels assigned by the old

model. However, such pseudo labels are usually inaccu-

rate and have high uncertainty, which leads to training in-

stability. Therefore, we propose uncertainty-aware pseudo

labeling (see Fig. 3) refines highly uncertain noisy labels by

neighbors label propagation.

When input a novel point cloud Pn ∈ Dnovel, the

predicted class probabilities of the base and novel model

can be respectively expressed as QV
base = Mbase(Pn)

and QG
novel = Mnovel(Pn). V and G denotes the num-

ber of Cbase + 1 and Cnovel + 1, i.e., the total number

of semantic classes plus a "background" class. Different

from the traditional Monte Carlo Dropout (MC-Dropout)

method [14], which performs multiple predictions to esti-

mate uncertainty, we apply neighborhood spatial aggrega-

tion method combined with MC-dropout to complete the

estimation of the point distribution uncertainty at once,

which is based on space-dependent sampling and has been

demonstrated to be effective in [27]. We first define the set

{p1n, p2n, ..., pin, ..., pSn} as xyz positions of point cloud Pn,

and do K-Nearest Neighbors (KNN) search to get T neigh-

bors of each point pin, i = 1, 2, ..., S as pi,tn , t ∈ N (i) based

on xyz coordinates. We adopt Bayesian Active Learning by

Disagreement (BALD) [15] as our spatial sampling uncer-

tainty estimation function on point cloud, as follows:

U i
n =

−
∑

c

[
1

T

∑

t

q(yi
n = c|Pi

n, ω̂t)]log[
1

T

∑

t

q(yi
n = c|Pi

n, ω̂t)]

+
1

T

∑

c,t

q(yi
n = c|Pi

n, ω̂t)logq(y
i
n = c|Pi

n, ω̂t),

(3)

where yin represents the predicted label for Pi
n of class c.

ω̂t denotes the Bernoulli distribution over the weights of the

neighboring points distribution, q represents the conditional

probabilities. We calculate the normalized cosine similarity

between coordinates pi,tn , t ∈ N (i) and pin to implement ω̂t,
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which can be denoted as σt
n. Finally, the uncertainty of each

point of base model output on Pi
n is given as:

U i
n = −

∑

c

[
1

T

∑

t

Qi,c
base ∗ σt

n]log[
1

T

∑

t

Qi,c
base ∗ σt

n]

+
1

T

∑

c,t

(Qi,c
base ∗ σt

n)log(Qi,c
base ∗ σt

n).
(4)

After obtaining the uncertainty by Eq. (4), we set τ as the

threshold to determine the points with the high or low uncer-

tainty. We argue that the predicted labels of points are usu-

ally inaccurate leading to noise in generated pseudo labels.

To provide better guidance to novel model, we aim to elim-

inate the uncertainty to refine the pseudo-labels quality. We

observe that for a point on point cloud, the points in its local

neighbors are more likely to have the same semantic repre-

sentations. Therefore, for a point with high uncertainty, our

strategy is to replace its prediction with the label of its near-

est neighbor having the low uncertainty. Thus, the pseudo

labels generated by the base model for input point cloud Pi
n

will be combined with the current novel class labels Li
n to

form the mixed labels Hi
n for novel model training:

Hi
n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

argmax
c

Qi,c
base Li

n = c′bg , argmax
c

Qc
base �= cbg and U i

n ≤ τ,

argmax
c

Qt,c
base Li

n = c′bg , argmax
c

Qc
base = cbg or U i

n > τ,

Li
n Li

n �= c′bg ,
ignore otherwise,

(5)

where the cbg and c′bg denote a "background" class other

than the Cbase and Cnovel semantic classes respectively.

c ∈ {Cbase ∪ cbg}, Qt,c
base represent a nearest point t among

T neighbor points for which Qt,c
base 	= cbg and U t

n ≤ τ . It is

worth noting that we ignore part of the labels, for which the

predicted probabilities of both the current point Pi
n and its

neighbors Pt
n, t ∈ N (i) have high uncertainty. Although

these point labels are relatively few, they still have an averse

impact on the results due to significant noise content. Fi-

nally, the cross-entropy segmentation loss is constructed be-

tween the novel model output and mixed label Hi
n:

Lseg = −
∑

i

∑

ĉ

Hi
nlog(Qi,ĉ

novel), (6)

where i ∈ S, ĉ ∈ {Cbase ∪ Cnovel}. Base on above ap-

proach, the output of the base model will guide the novel

model training to overcome the effects of semantic shift.

3.4. Network Training and Inference

We first train the base model Eb and Yb using the cross-

entropy on input base point cloud Pb and its labels Lb:

Lbase = −
∑

i

∑

c

Li
blog(Y

c
b (Eb(P

i
b))), (7)

where i ∈ S, c ∈ {Cbase ∪ cbg} denotes the semantic base

classes plus a "background" class. To train the novel model,

we optimize the last layer of Yn and fine-tune the rest part

by minimizing the feature relation distillation loss based

on geometric structure and the segmentation loss based on

mixed labels (novel ground-truths and pseudo-labels). The

total loss is:

Lnovel = Lseg + Ltrans. (8)

At inference time, our model is able to predict both old

and new categories i.e., given a point cloud P as input, the

novel model Mnovel will predict the category ĉ such that

ĉ ∈ {Cbase ∪ Cnovel}, i.e., argmax
ĉ

Y ĉ
n (En(P)).

4. Experiments

4.1. Datasets and Setup

Datasets. We evaluate our method on two existing public

benchmarks S3DIS [1] and ScanNet [7]. (a) S3DIS con-

tains point clouds from 272 rooms in 6 indoor areas. Each

point contains xyz coordinates and RGB information, and

is labelled with one of 13 classes. We use the more chal-

lenging area 5 as validation and the other areas as training.

(b) ScanNet is an RGB-D video dataset having 1,513 scans

in 707 indoor scenes. Each point is labelled with one of 21

classes (20 semantic classes and unannotated place). The

1210 scans in the dataset are used for training and other 312

scans for validation. For the training and validation splits,

we follow the standard setting of datasets [1, 7] for point

cloud semantic segmentation [28, 29, 39].

Setup. We follow and use the common disjoint setting [4]

in 2D class-incremental segmentation, where the incremen-

tal training includes the old and current classes of point

cloud, but not the future classes. In order to construct the 3D

datasets to satisfy the requirements of 3D class-incremental

segmentation, we adopt two paradigms to develop Cbase

and Cnovel. One (S0) where classes are incrementally in-

troduced as per their original class label order in the dataset,

and the other (S1) introduces classes in an alphabetical or-

der. Details are provided in the supplementary materials. In

the experiments, the number of novel classes Cnovel is set

to 5, 3 and 1 respectively.

For 3D point clouds, we apply a sliding window [29,38]

to divide the rooms of S3DIS and ScanNet into 7,547 and

36,350 1m×1m blocks respectively, and randomly sample

2048 points in each block as input. Dbase consists of point

cloud blocks containing at least 100 points for any classes in

Cbase but ignore the Cnovel annotations. We follow a sim-

ilar process to construct Dnovel. It is worth noting that the

same point cloud may appear in both Dbase and Dnovel, but

they have different available annotations as per the training

phase. We use the common mean intersection-over-union
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Table 1. Experimental comparisons of 3D class-incremental segmentation methods on S3DIS dataset of S0 and S1 split. We apply the
mIoU (%) as the evaluation metric. “BT”, “F&A”, “FT” in the table represents Base Training, Freeze and Add, Fine-Tuning respectively.
“JT” denotes Joint Training on all base+novel classes at once. Asterisk (*) denotes traditional class-incremental methods EWC [19] and
LwF [21] in our reproduction for 3D semantic segmentation. The joint training is treated as the upper bound, and the best results of
incremental learning methods are in bold.

Methods
Cnovel=5 Cnovel=3 Cnovel=1

S0 S1 S0 S1 S0 S1

0-7 8-12 all 0-7 8-12 all 0-9 10-12 all 0-9 10-12 all 0-11 12 all 0-11 12 all

BT 48.54 - - 37.24 - - 46.80 - - 40.73 - - 45.00 - - 45.88 - -

F&A 44.25 12.33 31.98 37.71 42.89 39.44 44.28 3.34 34.83 41.11 35.64 39.85 44.57 0.05 41.14 45.35 0.05 41.86

FT 34.96 30.25 33.15 10.99 50.67 26.53 28.87 31.56 29.49 17.83 54.69 26.34 29.44 29.52 29.45 23.80 5.74 22.41

EWC* 39.38 31.07 36.19 23.19 54.84 35.36 37.13 37.92 37.31 29.38 55.53 35.41 36.55 19.94 35.27 25.60 9.81 24.39

LwF* 44.55 35.01 40.88 32.83 55.19 41.43 43.07 38.34 41.98 37.69 54.73 41.62 39.94 35.50 39.60 32.16 18.26 31.09

Ours 48.94 39.56 45.33 38.17 55.20 44.72 45.15 45.33 45.19 39.83 57.59 43.93 44.08 35.69 43.43 40.33 19.28 38.71

JT 50.23 41.74 46.97 38.38 60.11 46.74 48.62 41.44 46.97 42.63 60.44 46.74 47.51 40.41 46.97 47.09 42.55 46.74

Table 2. Experimental comparisons of 3D class-incremental segmentation methods on ScanNet dataset of S0 and S1 split. We apply the
mIoU (%) as the evaluation metric. “BT”, “F&A”, “FT” in the table represents Base Training, Freeze and Add, Fine-Tuning respectively.
“JT” denotes Joint Training on all base+novel classes at once. Asterisk (*) denotes traditional class-incremental methods EWC [19] and
LwF [21] in our reproduction for 3D semantic segmentation. The joint training is treated as the upper bound, and the best results of
incremental learning methods are in bold.

Methods
Cnovel=5 Cnovel=3 Cnovel=1

S0 S1 S0 S1 S0 S1

0-14 15-19 all 0-14 15-19 all 0-16 17-19 all 0-16 17-19 all 0-18 19 all 0-18 19 all

BT 37.73 - - 29.30 - - 34.03 - - 30.84 - - 31.57 - - 30.78 - -

F&A 36.06 1.77 27.48 25.25 18.72 23.62 32.58 0.86 27.82 26.95 7.37 24.02 30.99 0.95 29.49 30.41 0.01 28.89

FT 9.39 13.65 10.45 5.83 34.03 12.88 8.43 10.98 8.82 4.88 40.94 10.29 8.02 10.46 8.14 4.76 7.57 4.90

EWC* 17.75 13.22 16.62 14.93 33.30 19.52 15.70 11.74 15.11 8.78 31.74 12.22 15.66 6.76 15.21 12.24 8.84 12.07

LwF* 30.38 13.37 26.13 24.04 37.88 27.50 26.22 13.88 24.37 22.76 42.34 25.70 22.15 12.56 21.67 20.63 13.88 20.29

Ours 34.16 13.43 28.98 26.04 35.51 28.41 28.38 14.31 26.27 28.79 40.31 30.52 25.74 12.62 25.08 24.16 12.97 23.60

JT 38.13 16.63 32.76 30.81 38.79 32.81 35.46 17.44 32.76 31.65 39.38 32.81 33.53 18.08 32.76 32.91 30.76 32.81

(mIoU) as the evaluation metric. In our settings, we calcu-

late the mIoU after the last incremental step for base classes

Cbase, novel classes Cnovel and all classes Call respectively.

4.2. Implementation Details and Baselines

Implementation details. We use DGCNN [38] as the fea-

ture extractor and train the model both on Dbase and Dnovel

using a batch size 32 and Adam optimizer [18] with intial

0.001 learning rate and 0.0001 weight decay for 100 epochs.

After 50 epochs, the learning rate decays by 0.5. For incre-

mental training on Dnovel, the new classes weights in clas-

sifier Y (·) are randomly initialized while the rest are ini-

tialized with the pre-trained model’s weights on the base

classes. We empirically select the nearest neighbors K=12

and T=12, we further set uncertainty threshold τ to 0.0065

and 0.0045 for S3DIS and ScanNet via cross-validation re-

spectively. The r is set to 0.25. The point clouds used in

the training are augmented by gaussian jitter and random

rotation around the z-axis.

Baselines. To compare our approach, we design 4 base-

lines in 2 directions: 1) Direct adaptation methods. In-

spired by [46], we use the “Freeze and Add” and “Fine-

Tuning” methods. The former freezes the base model and

adds a novel classifier output layer when training on the

Dnovel, while the latter randomly initializes the new classi-

fier last layer and joins the base model for fine-tuning. 2)
Forgetting-prevention methods. We adapt Elastic Weight

Consolidation (EWC) [19] and Learning without Forget-

ting (LwF) [21] from classical incremental learning mod-

els to 3D point cloud incremental segmentation setting. All

the above models do not involve the rehearsal or replay of

old samples. Additionally, the model jointly trained on all

classes is treated as the performance upper bound.

4.3. Experimental Results

Comparsion with baselines. Tab. 1 ∼ Tab. 2 show the per-

formance of our method versus baselines on S0 and S1 split

of S3DIS and ScanNet datasets. Under different Cnovel set-

tings, we report the mIoU on the old and the new classes

after incremental learning (e.g. the old 0-7 and the new 8-
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Figure 4. Qualitative comparison with the forgetting-prevention methods EWC [19] and LwF [21] on S3DIS and ScanNet datasets of

Cnovel = 5 in S0 split. Only the base and novel classes included in current point cloud scenario are explained in the legend. Results in

black on ScanNet dataset represent unlabeled and do not belong to either the base or novel classes.

12 with Cnovel=5 on S3DIS dataset). From the tables, we

observe that the results of the two direct adaptation meth-

ods are relatively unbalanced. For the freeze and add, while

the performance on Cbase is maintained due to the frozen

base model, it is difficult to adapt to the new classes, result-

ing in poor performance on Cnovel. The other fine-tuning

method learns new classes by updating the parameters of

both base feature extractor and the randomly initialized new

classifier. Nevertheless, due to the lack of any measures to

prevent forgetting, large degradation occurs in Cbase. Since

the adapted EWC [19] method introduces the weight regu-

larization loss which restricts the modification of important

weights for previous tasks, it can reduce the forgetting of the

old tasks compared with fine-tuning. Meanwhile, LwF [21]

leverages the output probability of previous model to guide

the new classes learning, thus alleviating forgetting. Con-

sidering the overall mIoU, our method consistently achieves

the best results on all the datasets. We note that our method

is only 1.64% lower than joint training on S3DIS dataset

and 3.78% on ScanNet dataset of S0 split of Cnovel=5. In

addition, it is worth noting that our method is slightly lower

than LwF on novel classes of ScanNet in S1 split. It may

be due to the fact that we introduce more constraints to pre-

serve the old information. Fig. 4 shows the qualitative com-

parison of our method with EWC and LwF. Our approach

strikes a balance between keeping the knowledge of base

classes and learning the novel classes.

Comparison by changing the classes order. To study if

the order of classes effects the results, we conduct several

experiments on different splits (i.e., S0 and S1). By com-

Table 3. Individual contributions of modules. Cnovel=5 on S3DIS
(S1) and ScanNet (S0). FT, GFT and UPG represent Fine-Tuning,
Geometry-aware Feature-relation Transfer and Uncertainty-aware
Pseudo-label Generation. mIoU (%) used as the metric.

FT GFT UPG
S3DIS (S1) ScanNet (S0)

0-7 8-12 all 0-14 15-19 all

� × × 10.99 50.67 26.53 9.39 13.65 10.45� � × 14.86 53.33 29.98 12.50 11.54 12.26� × � 35.12 55.18 42.84 31.91 13.41 27.28� � � 38.17 55.20 44.72 34.16 13.43 28.98

paring S0 and S1 results in Tab. 1 and Tab. 2, we can notice

that, for the non-incremental joint training baseline, there is

no difference in the performance since it is trained with all

the labeled data at once. But for other incremental methods,

the overall performance variations are observed, especially

in Cnovel=1 on S3DIS dataset. The overall performance of

our model varies e.g. 43.43% (S0) and 38.71% (S1). These

experiments suggest that the initial knowledge learned on

the base classes has an impact on the subsequently intro-

duced classes while learning incrementally. Nevertheless,

amongst compared incremental learning approaches, our

method still achieves the best mIoU under different orders

of classes.

4.4. Ablation Study

Individual contributions of different modules. Tab. 3

shows contributions of proposed modules on S3DIS (S1)

and ScanNet (S0) for Cnovel=5. From the results, we ob-

verse that adding both individual GFT and UPG modules
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Table 4. Multi-step incremental segmentation of overlapped setting on S3DIS datasets in S0 split. We use mIoU (%) as the evaluation
metric. The first 8 classes are base, and the remaining 5 classes are novel. Instead of the incremental procedure in the disjoint setting of
Cnovel=5, We use multi-step increments, each step increments 1 class, total increments 5 times.

0 1 2 3 4 5 6 7 8 9 10 11 12 all base novel

Base Training 88.74 96.58 73.30 0.00 6.76 40.60 17.61 64.70 - - - - - - 48.54 -

Step 1 88.09 95.63 73.46 0.00 7.93 39.70 22.76 63.06 34.42 - - - - 47.23 48.83 34.42

Step 2 85.46 95.66 71.57 0.00 0.90 32.01 19.74 50.07 13.69 3.73 - - - 37.28 44.43 8.71

Step 3 85.72 95.76 72.07 0.00 0.81 34.79 11.74 51.78 12.32 3.84 44.31 - - 37.56 44.08 20.16

Step 4 85.91 95.37 65.17 0.00 0.00 31.28 6.82 44.29 0.21 5.04 40.10 8.02 - 31.85 41.11 13.34

Final Step 5 88.04 95.83 65.89 0.00 0.00 34.48 8.01 44.38 0.07 3.56 36.18 10.63 33.50 32.35 42.08 16.79

Table 5. Comparsion on incremental classification across datasets

under different backbones. We follow [6] setting and metrics to

conduct evaluation. The Acc∗o denotes the base model’s accuracy,

Acco and Accn represents the accuracy on base and novel classes

using the final incremental model. � =
Acc∗o−Acco

Acc∗o
× 100%, the

lower � represents less forgetting of the novel model. * denotes

our reproduced baseline. The best results are in bold.

Backbone Methods
ModelNet40 →ScanObjectNN ModelNet40 →ModelNet10

Acc∗o↑ Acco↑ Accn↑ �↓ Acc∗o↑ Acco↑ Accn↑ �↓

DGCNN [38]

lwf-3D [6]* 92.91 73.34 79.41 21.06 91.71 87.14 93.32 4.98

+GFT 92.91 76.31 81.19 17.87 91.71 88.95 93.32 3.01

+GFT+UPG 92.91 78.19 82.82 15.84 91.71 88.99 93.86 2.97

PointNet [28]

lwf-3D [6]* 90.14 84.77 76.87 5.96 88.71 81.59 90.41 8.03

+GFT 90.14 84.09 77.15 3.92 88.71 82.23 90.43 7.30

+GFT+UPG 90.14 86.84 79.12 3.66 88.71 83.18 91.27 6.20

PointConv [39]

lwf-3D [6] * 92.69 87.19 79.33 5.93 91.26 83.59 92.13 8.41

+GFT 92.69 88.32 79.75 4.71 91.26 83.80 92.03 8.18

+GFT+UPG 92.69 88.79 80.08 4.21 91.26 84.65 93.32 7.24

results in performance gain. The UPG contributes the most

to the improvement, suggesting that it can effectively solve

the serious semantic shift of previous classes. Moreover,

comparing the results of the first two rows or the last two

rows, it can be found that the performance of the model

on the base classes has been significantly increased. This

phenomenon indicates that the GFT module can capture the

feature relations according to the point structure to reduce

catastrophic forgetting of old knowledge. The combination

of two modules achieves the best results, where we observe

gains over “FT” by 18.19% and 18.53% in terms of mIoU

on S3DIS and ScanNet respectively.

Effects of multi-step increments. We further construct a

more complicated overlapped setting [4] beyond disjoint,
where the points at the current incremental episode may be-

long to the old, the current and the future classes. Tab. 4

shows the results of our method for challenging multi-step

increments on S3DIS dataset of S0 split. We notice that due

to the adoption of more steps (5-step) in incremental learn-

ing, the model gradually forgets the previous knowledge,

so the final overall mIoU is less compared to Cnovel=5 in

Tab. 1. Furthermore, we observe performance degradation

in the incremental classes added earlier. We argue that this

is because in the subsequent incremental classes learning,

the model is forced to not only confront with the forgetting

of old classes, but also to deal with the background seman-

tic shift of both old and the unknown future classes, which

confuses the model in recognition of previous categories.

Cross-dataset incremental classification. To further eval-

uate the effectiveness of our proposed modules, we per-

form additional cross-dataset incremental classification ex-

periments following [6] setting. We can simply extend

our method to incremental object recognition from dataset

ModelNet40 [40]→ScanObjectNN [37] and ModelNet40

[40]→ModelNet10 [40]. In Tab. 5, we implement the lwf-

3D [6] method without semantic embeddings in our repro-

duction as baseline, and we gradually add the designed GFT

and UPG modules. It shows that introducing two modules

significantly improve the performance across various back-

bone architectures, especially in terms of Accn and � met-

rics. This phenomenon fully demonstrates that the adopted

modules are able to effectively reduce the forgetting of old

classes information and continually learn new classes.

5. Conclusion

In this paper, we propose a class-incremental learning

approach to semantic segmentation of 3D point cloud. Due

to the disordered and unstructured nature of point cloud,

continual migration and retention of learned knowledge be-

comes a significant challenge. We exploit point-wise asso-

ciations based upon the geometric structure of point cloud

to distill knowledge between models. Further, to tackle

the semantic shift issue where labels for old class points

get collapsed into background, we develop an uncertainty-

aware pseudo-labelling strategy, that helps preserve learned

knowledge on previous classes. Our extensive experiments

show the promises of our approach to alleviate catastrophic

forgetting, where our achieved overall performance is close

to joint training (upper bound). Our model is currently only

evaluated for indoor 3D point cloud data. We leave explo-

ration to more challenging outdoor scenes as future work.

In addition, we will further study the class-incremental seg-

mentation of 3D point cloud under few-shot setting.

Acknowledgement: This work was supported by the Na-

tional Natural Science Foundation of China (No.62276176).

21766



References
[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic

parsing of large-scale indoor spaces. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1534–1543, 2016. 2, 5

[2] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil,

Cordelia Schmid, and Karteek Alahari. End-to-end incre-

mental learning. In Proceedings of the European conference
on computer vision (ECCV), pages 233–248, 2018. 1, 2

[3] Fabio Cermelli, Dario Fontanel, Antonio Tavera, Marco Ci-

ccone, and Barbara Caputo. Incremental learning in se-

mantic segmentation from image labels. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4371–4381, 2022. 1, 2

[4] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo,

Elisa Ricci, and Barbara Caputo. Modeling the background

for incremental learning in semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9233–9242, 2020.

1, 2, 5, 8

[5] Townim Chowdhury, Ali Cheraghian, Sameera Ramasinghe,

Sahar Ahmadi, Morteza Saberi, and Shafin Rahman. Few-

shot class-incremental learning for 3d point cloud objects.

arXiv preprint arXiv:2205.15225, 2022. 2, 3

[6] Townim Chowdhury, Mahira Jalisha, Ali Cheraghian, and

Shafin Rahman. Learning without forgetting for 3d point

cloud objects. In International Work-Conference on Arti-
ficial Neural Networks (IWANN), pages 484–497. Springer,

2021. 2, 3, 8

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5828–5839, 2017.

2, 5

[8] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng,

Ziyan Wu, and Rama Chellappa. Learning without memoriz-

ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 5138–

5146, 2019. 1, 2

[9] Jiahua Dong, Yang Cong, Gan Sun, Bingtao Ma, and Lichen

Wang. I3dol: Incremental 3d object learning without catas-

trophic forgetting. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), volume 35, pages 6066–6074,

2021. 2

[10] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and

Matthieu Cord. Plop: Learning without forgetting for contin-

ual semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4040–4050, 2021. 1, 2

[11] Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and

Marcus Rohrbach. Uncertainty-guided continual learning in

bayesian neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 75–78, 2019. 1, 2

[12] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori

Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and

Daan Wierstra. Pathnet: Evolution channels gradient descent

in super neural networks. arXiv preprint arXiv:1701.08734,

2017. 2

[13] Robert M French. Catastrophic forgetting in connectionist

networks. Trends in cognitive sciences, 3(4):128–135, 1999.

2

[14] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian

approximation: Representing model uncertainty in deep

learning. In International Conference on Machine Learning
(ICML), pages 1050–1059. PMLR, 2016. 4

[15] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté

Lengyel. Bayesian active learning for classification and pref-

erence learning. arXiv preprint arXiv:1112.5745, 2011. 4

[16] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan

Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.

Randla-net: Efficient semantic segmentation of large-scale

point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages

11108–11117, 2020. 1, 3

[17] Ronald Kemker and Christopher Kanan. Fearnet: Brain-

inspired model for incremental learning. arXiv preprint
arXiv:1711.10563, 2017. 1, 2

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[19] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the National Academy of Sci-
ences (NAS), 114(13):3521–3526, 2017. 1, 2, 6, 7

[20] Vinod K Kurmi, Badri N Patro, Venkatesh K Subramanian,

and Vinay P Namboodiri. Do not forget to attend to uncer-

tainty while mitigating catastrophic forgetting. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 736–745, 2021. 1, 2

[21] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 40(12):2935–2947, 2017. 1, 2, 6, 7

[22] Yuyang Liu, Yang Cong, Gan Sun, Tao Zhang, Jiahua Dong,

and Hongsen Liu. L3doc: Lifelong 3d object classification.

IEEE Transactions on Image Processing (TIP), 30:7486–

7498, 2021. 2

[23] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-

tiple tasks to a single network by iterative pruning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7765–7773, 2018. 2

[24] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jah-

nichen, and Moin Nabi. Learning to remember: A synaptic

plasticity driven framework for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11321–11329, 2019.

1, 2

[25] Firat Ozdemir, Philipp Fuernstahl, and Orcun Goksel. Learn

the new, keep the old: Extending pretrained models with new

21767



anatomy and images. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention
(MICCAI), pages 361–369. Springer, 2018. 2

[26] Firat Ozdemir and Orcun Goksel. Extending pretrained seg-

mentation networks with additional anatomical structures.

International Journal of Computer Assisted Radiology and
Surgery ((IJCARS), 14(7):1187–1195, 2019. 2

[27] Chao Qi, Jianqin Yin, Huaping Liu, and Jun Liu. Neighbor-

hood spatial aggregation based efficient uncertainty estima-

tion for point cloud semantic segmentation. In 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 14025–14031. IEEE, 2021. 4

[28] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages

652–660, 2017. 1, 3, 5, 8

[29] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), pages 5099–5108, 2017.

1, 3, 5

[30] Haoxuan Qu, Hossein Rahmani, Li Xu, Bryan Williams, and

Jun Liu. Recent advances of continual learning in computer

vision: An overview. arXiv preprint arXiv:2109.11369,

2021. 2

[31] Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fa-

had Shahbaz Khan, and Ling Shao. Random path selection

for incremental learning. Advances in Neural Information
Processing Systems, 3, 2019. 2

[32] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental clas-

sifier and representation learning. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2001–2010, 2017. 1, 2

[33] Anthony Robins. Catastrophic forgetting, rehearsal and

pseudorehearsal. Connection Science, 7(2):123–146, 1995.

2

[34] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016. 2

[35] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. Advances in
Neural Information Processing Systems (NeurIPS), 30, 2017.

1, 2

[36] Sebastian Thrun. Lifelong learning algorithms. In Learning
to learn, pages 181–209. Springer, 1998. 2

[37] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,

Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud

classification: A new benchmark dataset and classification

model on real-world data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages

1588–1597, 2019. 8

[38] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 38(5):1–12, 2019. 1, 3, 5, 6, 8

[39] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep

convolutional networks on 3d point clouds. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9621–9630, 2019. 1, 3, 5, 8

[40] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1912–1920, 2015.

8

[41] Guanglei Yang, Enrico Fini, Dan Xu, Paolo Rota, Mingli

Ding, Moin Nabi, Xavier Alameda-Pineda, and Elisa Ricci.

Uncertainty-aware contrastive distillation for incremental se-

mantic segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2022. 1, 2

[42] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju

Hwang. Lifelong learning with dynamically expandable net-

works. In International Conference on Learning Represen-
tations (ICLR), 2018. 2

[43] Maciej Zamorski, Michał Stypułkowski, Konrad Kara-
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