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ABSTRACT

Post-training language models often depends on costly external signals such as
human annotations or domain-specific rewards. As an alternative, we explore
model self-evolution through the lens of simple generator–verifier games. A
single base model plays both roles—generating candidate solutions and verify-
ing/improving their quality—to construct preference data for fine-tuning. To ex-
tract reliable signals from noisy self-verification, we leverage thresholded ma-
jority voting, which approximates high-precision preference pairs. The approach
enables self-evolution on synthetic logical reasoning and realistic mathematical
reasoning tasks, even when models initially perform poorly. For example, on the
Knights and Knaves benchmark, accuracy rises from 31.0% to 40.7% with single-
turn verification, 42.2% with multi-turn verification, 44.1% with iterative train-
ing, and 44.8% with curriculum learning. Notably, models trained only on easier
instances generalize effectively to harder test data, demonstrating emergent easy-
to-hard generalization. These results show that simple generator-verifier games
can unexpectedly enhance reasoning in small models, offering a new perspective
on concurrent research in self-improvement and RL with verifiable rewards.

1 INTRODUCTION

Large language models (LLMs) have made strong progress on complex reasoning tasks (Comanici
et al., 2025; Yang et al., 2025b; DeepSeek-AI et al., 2025). A central driver of this progress has
been post-training techniques that refine model outputs using feedback signals. Paradigms such as
Supervised Finetuning (SFT), Reinforcement Learning from Human Feedback (RLHF), and Rein-
forcement Learning from Verifiable Rewards (RLVR) (Lambert et al., 2024; Gao et al., 2024; Wang
et al., 2025) have become standard for improving performance in downstream reasoning tasks.

However, these approaches remain constrained by their reliance on external supervision. Human
annotation is costly, slow, and limited by domain expertise (Bassi et al., 2025; Giorgi et al., 2025;
Plank, 2022). Verifiable reward signals, such as code execution or exact-match math answers, are
confined to narrow domains (Liu et al., 2025; Wu et al., 2025). Current methods overlook a vast
landscape of tasks where external ground truth is unavailable, ambiguous, or impractical to obtain.

This situation raises a fundamental question: Can a single language model self-improve without ex-
ternal supervision? This deep question has led to a wave of recent research on model self-evolution.
Approaches like test-time reinforcement learning (TTRL) (Zuo et al., 2025) and R-Zero (Huang
et al., 2025) have demonstrated the power of consensus-based signals, such as majority voting, in
tasks where structured outputs admit straightforward comparison. Similarly, Absolute Zero (Zhao
et al., 2025a) effectively utilizes external environments, leveraging code execution as an objective
verifier for domains with executable semantics. Meanwhile, methods such as INTUITOR (Zhao
et al., 2025b), LSP (Kuba et al., 2025), and EMPO (Zhang et al., 2025) have trained models without
external data by using online reinforcement learning. These efforts inspire a systematic analysis of
the core principles of self-evolution. Specifically, we are motivated to study: 1) whether we can
directly use the same model as both generator and verifier to bootstrap self-evolution, and 2) how to
best construct a reinforcement learning dataset in an offline fashion. If this leads to improvements,
it would be a general approach that can be widely applied to downstream domains with minimal
assumptions on reward verifiability, environment executability, or output structures, and it would
effectively reduce the computational burden of training with online reward signals.
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Figure 1: Illustration of the generator–verifier games. We use the same base model as a generator
G and a verifier V . The generator outputs several responses, and the verifier V labels them as
correct or incorrect. In the single-turn SimpleGV (left), we run the verifier multiple times and assign
labels based on a threshold. In the multi-turn RevisionGV (right), we use the last two responses if
they switch from incorrect to correct according to the verifier. We train with the positive/negative
samples via offline preference optimization.

In this work, we study several types of self-evolution through generator–verifier (GV) games. At a
high level, a single base model is instantiated in two roles: a generator, which proposes candidate
solutions, and a verifier, which evaluates their quality. In the simplest single-turn game, the veri-
fier forms preference pairs (ywin, ylose) by labeling candidate responses (verifier-as-a-judge). Since
we cannot always expect the verifier to be better than the generator, we also explore thresholded
voting to aggregate multiple verifier responses. In a richer multi-turn game, the verifier iteratively
provides feedback and the generator revises its outputs, producing higher-quality alternatives. We
also explore extensions of these variants, where we use iterative training or curriculum learning.

A central challenge is that self-verification is noisy, as models may mislabel solutions. To address
this, we use a thresholded majority voting method. The verifier is queried multiple times per can-
didate. Define the correctness rate as the fraction of times the verifier says a response is correct.
We label a response as positive if its correctness rate exceeds a threshold τ , and as negative if its
correctness rate less than (1− τ), and we discard it otherwise. This filters out ambiguous cases and
yields “confident” preference pairs, extracting a reliable signal from imperfect self-assessment.

We validate this framework on both synthetic and realistic reasoning tasks. For example, on the
Knights and Knaves (KK) logical reasoning benchmark, accuracy improves from 31.0% for the
base model to 40.7% with single-turn verification, 42.2% with multi-turn verification, 44.1% with
iterative training, and 44.8% with curriculum learning. Similar improvements are observed across
diverse mathematical reasoning benchmarks, including GSM8K, MATH, and TabMWP, leading to
performance competitive with previous self-evolution methods. These results show that even smaller
models, which initially perform poorly, can substantially enhance their reasoning abilities through
simple generator–verifier games, achieving performance nearly on par with supervised methods. Be-
yond absolute accuracy gains, self-evolution also enables strong easy-to-hard generalization: mod-
els trained only on simpler KK instances (2–3 people) transfer to harder ones (4–8 people), where
the KK problem complexity and solution space grow sharply as we add more people.

Our detailed analysis provides the following new contributions and insights:

• Simple yet General Framework for Self-Evolution: We map out and study various generator–
verifier games. We focus on when a single model, without external labels or environments, both
generates and evaluates its own outputs to produce preference data. Despite this simplicity, such
a framework can improve performance across multiple real and synthetic reasoning benchmarks.

• Principles for Self-Evolution: Next, we identify methods that consistently improve performance.
These include (i) enhancing the reliability of verifier feedback through a thresholded majority
voting scheme and (ii) using the generator and verifier in a multi-turn fashion, where the model
revises responses rather than just labeling them as correct or incorrect.

• Bootstrapping and Generalization: Going further, we also show that iterative refinement and
curriculum learning can additionally enhance self-evolution, and that training on easier cases
transfers effectively to harder ones, demonstrating impressive easy-to-hard generalization.
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2 PRELIMINARIES

Generator–Verifier Game. A single base model M is instantiated in two roles using different
system prompts: a generator G and a verifier V .1 Given an unlabeled prompt set D and a base
model M, we define a generator–verifier game

GV(M,D, T ) → P,

which instantiates M as generator G and verifier V , and runs for T rounds. For a query q ∈ D, the
generator produces k candidates

Ŷ (q) = {ŷ1, . . . , ŷk}, ŷi ∼ G(· | q),
while the verifier assigns binary judgments V(q, ŷi) ∈ {Correct,Incorrect}. Then, from these
interactions we extract preference pairs

(yw, yl) ∈ P iff V(q, yw) = Correct, V(q, yl) = Incorrect.

Single-turn vs. Multi-turn Verification. In the single-turn case, T = 1 and preference pairs are
obtained directly from static judgments. In the multi-turn case (T > 1), the generator refines its
outputs based on verifier feedback:

ŷ(t+1) ∼ G(· | q, f(V(q, ŷ(t)))),
where f : {Correct,Incorrect} → Xfeedback maps verifier judgments into textual feedback
prompts. A pair is extracted whenever

V(q, ŷ(t)) = Incorrect, V(q, ŷ(t+1)) = Correct.

Preference Learning. The generator–verifier game yields a dataset of preference triples Dpref =
{(x, yw, yl)}, where x is a prompt, yw is a preferred response, and yl is a dispreferred one. Prefer-
ence learning fine-tunes a policy πθ so that preferred responses are assigned higher probability than
dispreferred ones. We apply Direct Preference Optimization (DPO) (Rafailov et al., 2023) which
refines πθ relative to a fixed reference policy πref by minimizing

LDPO(πθ;πref) = −E(x,yw,yl)∼Dpref

[
log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
,

where β > 0 is a parameter controlling the sharpness of preference alignment. Intuitively, this
loss increases the relative likelihood of yw over yl while keeping πθ close to reference policy πref,
ensuring both preference alignment and stability during fine-tuning.

Iterative Preference Learning. We may apply GV repeatedly. Starting from M0 = M, define

Pt = GV(Mt−1,Dt, T ), Mt = Finetune(Mt−1,Pt).

This yields a sequence {Mt}Tt=1 that progressively refines reasoning ability. Unlike online RL, all
updates are offline since Pt is fixed once generated.

Curriculum Learning. If prompts can be partitioned by difficulty, D = Deasy ∪ Dhard, we first
generate Peasy = GV(M,Deasy, T ) and fine-tune on it, before proceeding to Phard.

2.1 EXPERIMENT SETUP

Models. We use the gemma-3-it (Gemma Team, 2025) and Qwen-2.5-Instruct (Yang
et al., 2025a) families as base models. Since the same model is instantiated as both generator and
verifier, we employ instruction-tuned variants rather than raw base models.

Datasets. Our controlled experiments use Knights-and-Knaves (KK) (Xie et al., 2024), a synthetic
dataset for reasoning. Each instance describes a group of inhabitants who are either knights (always
truthful) or knaves (always lying). The task is to infer each inhabitant’s identity from their state-
ments. The difficulty scales with the number of people, as the search space grows exponentially and
demands deeper logical inference. This structured setting provides a testbed for isolating the effects
of self-evolution. To assess generality, we also evaluate on four reasoning benchmarks:

1We provide the exact prompts in Appendix C.
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• GSM8K (Cobbe et al., 2021): grade-school math word problems requiring multi-step arithmetic.

• MATH500: a medium-scale subset of the MATH benchmark (Hendrycks et al., 2021) spanning
diverse levels of difficulty.

• MATHHard: the hardest subset of MATH (difficulty level 5), with advanced problem-solving.

• TabMWP (Lu et al., 2022): math word problems involving structured tabular data.

For training, we only use unlabeled prompts, without access to ground-truth solutions. Specifi-
cally, we use the KK training set for logical reasoning tasks and OpenThoughts3 (Guha et al., 2025)
for mathematical reasoning tasks. Notably, OpenThoughts3 includes problems that are not directly
verifiable (e.g., proofs and scientific question answering), highlighting the importance of a general
and self-contained verifier that can analyze free-form outputs.

Evaluation Protocol. We report exact-match accuracy, requiring the model’s output to perfectly
match the ground-truth solution. This strict metric eliminates ambiguity from partial matches. For
each query, we generate one sample using temperature 0.7 and average results over four random
seeds. The same evaluation protocol is applied consistently across KK and the other benchmarks.

3 SIMPLEGV: SINGLE-TURN VERIFICATION WITH VERIFIER-AS-A-JUDGE

We begin with the simplest setting, where a single model serves as both generator and verifier,
and the verifier directly judges the quality of generated responses without iterative feedback. This
“verifier-as-a-judge” setup constitutes the minimal generator–verifier game, allowing us to isolate
its effectiveness before introducing further refinements. It tests our core hypothesis: that a model’s
latent ability to evaluate a solution, even if imperfect, can be harnessed to improve its own generation
ability. We illustrate this SimpleGV approach in Figure 1. We implicitly assume that a model’s
ability to verify a candidate is, on average, more reliable than its ability to generate one from scratch.
We view SimpleGV as distilling these latent verification capabilities into a usable training signal.

3.1 THRESHOLDED MAJORITY VOTING FOR MORE ACCURATE VERIFICATION
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Figure 2: Verification accu-
racy on the KK training set for
gemma-3-4b-it and its Sim-
pleGV variant under different
thresholds.

A central challenge is the noisiness of an unsupervised veri-
fier. Smaller models in particular may mislabel solutions or
produce inconsistent judgments, contaminating the preference
dataset. To mitigate this, we use a thresholded majority
voting method. For each candidate ŷ, the verifier is queried
n times, producing binary judgments Zj = 1{V(j)(q, ŷ) =
Correct}. We then compute the empirical correctness rate
p̂(q, ŷ) = 1

n

∑n
j=1 Zj . A candidate is labeled Positive if

p̂(q, ŷ) ≥ τ , Negative if 1 − p̂(q, ŷ) ≥ τ , and discarded
otherwise. Note that thresholding at 0.5 falls back to regular
majority voting. This procedure filters out ambiguous cases
and yields high-confidence preference pairs, extracting a reli-
able signal from noisy self-assessment. As shown in Figure 2,
increasing the threshold effectively improves verification ac-
curacy.

Table 1 summarizes results on five reasoning benchmarks. For
baseline methods, we evaluate their released models on the
corresponding benchmarks, and also refer to their origianl re-
port. SimpleGV consistently improves over base models with-
out requiring ground-truth labels, supervised signals, or exter-
nal environments. Unlike prior methods that depend on executable environments or online rein-
forcement learning, SimpleGV operates directly on free-form text using offline optimization, yet
still achieves substantial gains. Moreover, not only does generation improve, but verification accu-
racy also increases (Figure 2), demonstrating a process of co-evolution where both roles reinforce
one another.
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Table 1: Results on five reasoning benchmarks. For SimpleGV, we train with 20K samples obtained
from OpenThoughts3. We compare baselines: INUITOR, two Absolute Zero (AZR) models, and
GRPO. In the RL type column, we list whether it uses online or offline training. The supervised
(Supervis.) column shows if the method uses additional labels or reward models; the environment
(Environ.) column shows if it uses external tools (* from original report).

Model/Algorithm RL Type Supervis. Environ. Benchmarks

GSM8K MATH500 MATHHard TabMWP KK

Gemma 3

gemma-3-4b-it / / / 89.2* 75.8 (0.4) 53.7 (0.2) 84.5 (0.2) 31.0 (1.3)
SimpleGV (ours) Offline No No 89.0 (0.1) 77.4 (0.6) 55.1 (0.4) 87.4 (0.3) 33.2 (0.5)

gemma-3-12b-it / / / 94.4* 85.6 (0.1) 69.1 (0.3) 95.2 (0.2) 47.5 (0.7)

Qwen 2.5

Qwen2.5-7B-Instruct / / / 90.2 (0.4) 73.5 (0.5) 49.7 (0.3) 91.9 (0.2) 18.1 (0.9)
Base + INTUITOR Online No No 87.3* 75* / / /
Base + AZR Online No Yes 84.0 (0.4) 74.4* 32.8 (0.5) 68.8 (0.7) 5.1 (0.4)
Base + AZR-Coder Online No Yes 83.4 (0.1) 72.6* 40.1 (0.7) 78.5 (0.5) 8.5 (0.4)
Base + GRPO Online Yes No 82.9* 75* / / /
SimpleGV (ours) Offline No No 90.6 (0.1) 76.0 (0.7) 51.5 (0.4) 92.3 (0.2) 17.6 (0.5)

Qwen2.5-14B-Instruct / / / 94.8* 77.1 (0.5) 54.5 (0.3) 93.7 (0.3) 26.4 (0.3)

3.2 SELF-IMPROVEMENT VERSUS MODEL SIZES

We next examine how SimpleGV scales with model size. Figure 3 reports results on gemma-3-it
for 1B, 4B, and 12B, with 27B included as an approximate upper bound. All models are trained on
KK instances with 2–3 people and evaluated on test sets spanning 2–8 people.

We find that self-improvement occurs at all scales but manifests differently. For smaller models
(1B), verifier judgments are noisy and improvements modest. Medium-scale models (4B and 12B),
however, achieve substantial gains, showing that the generator–verifier framework becomes increas-
ingly effective as model capacity grows. While the 27B model establishes a performance roofline,
the 12B model with SimpleGV approaches this level, indicating that self-evolution enables weaker
models to close much of the gap to stronger baselines.

3.3 SELF-IMPROVEMENT VERSUS DATA SIZES
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Figure 3: Effect of model size on Sim-
pleGV performance. Models are trained
on KK instances with 2–3 people and
evaluated on 2–8 people.

A natural question is how the amount of self-generated
data influences downstream performance. To investi-
gate this, we experiment with the gemma-4b-itmodel,
varying the size of the preference dataset constructed
from OpenThoughts3 using the generator–verifier game.
We consider datasets of 5K, 10K, 20K, and 40K prefer-
ence pairs (by using a comparable number of initial ques-
tions), while keeping all hyperparameters fixed.

As shown in Figure 4, enlarging the preference set yields
clear gains at small–moderate scales (e.g., 5k → 20k),
but improvements taper thereafter and can even regress
at 40k for TabMWP and KK. This reflects diminishing
returns from simply adding more self-generated pairs:
beyond a moderate size, redundancy and verifier noise
begin to dominate, suggesting that tighter filtering and
greater prompt diversity are more effective than sheer vol-
ume. We note a small dip at 5k samples on GSM8K and
KK; we attribute this to small-sample variance and mild
prompt-distribution skew in early batches, which dimin-
ishes as the dataset grows in size and diversity.
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Figure 4: Effect of data size on SimpleGV performance. Models are trained on OpenThoughts3
dataset. Accuracy improves across benchmarks as the number of training samples increases. For
TabMWP and KK, performance slightly degrades when data increases from 20k to 40k. Subplots
show mean accuracy (4 runs) with shaded standard-error regions.

3.4 ITERATIVE PREFERENCE LEARNING

We next test whether repeating the preference-learning loop yields further gains. As shown in Ta-
ble 2, performance improves across iterations, though gains diminish over time. The first iteration
provides the largest boost, while subsequent ones yield smaller increments. Importantly, training
only on easier KK instances (2–3 people) improves generalization to harder ones (4–8 people): three
rounds of unsupervised DPO raise accuracy from 31.0% to 44.1%, approaching the 46.6% obtained
with a supervised verifier. This highlights that iterative preference learning not only compounds
improvements but also supports strong easy-to-hard generalization.

Table 2: Iterative DPO results on KK. Accuracy (%) is averaged over subsets (2–3, 4–5, and 6–8
people) with standard deviations in parentheses. Rows compare different verifier thresholds τ . Or-
acle results (in gray) use ground-truth labels for verification. Three rounds of unsupervised DPO
improve accuracy from 31.0% to 44.1%, approaching the 46.6% achieved with an oracle verifier.

model 2–3 ppl. 4–5 ppl. 6–8 ppl. All

gemma-3-4b-it 62.0 (1.7) 31.0 (0.9) 10.3 (1.3) 31.0 (1.3)

SimpleGV, τ=0.6 70.9 (1.9) 45.4 (3.8) 17.5 (2.9) 40.7 (2.8)
Oracle Verifier 78.4 (1.8) 52.6 (2.1) 21.4 (1.4) 46.6 (1.7)

SimpleGV, τ=0.6 → SimpleGV, τ=0.5 69.5 (1.9) 44.8 (2.7) 18.1 (1.3) 40.4 (1.9)
→ SimpleGV, τ=0.6 74.2 (2.1) 46.9 (2.5) 20.3 (0.8) 43.3 (1.6)
→ SimpleGV, τ=0.7 71.5 (1.8) 46.8 (1.9) 20.8 (2.0) 42.7 (1.9)
→ SimpleGV, τ=0.8 72.2 (1.6) 48.1 (2.2) 18.6 (1.3) 42.4 (1.7)
→ Oracle Verifier 82.4 (0.8) 58.6 (2.3) 30.2 (2.5) 53.2 (1.9)

SimpleGV, τ=0.6 → SimpleGV, τ=0.6 → SimpleGV, τ=0.5 75.2 (1.6) 49.6 (2.0) 19.7 (2.0) 44.1 (1.9)
→ SimpleGV, τ=0.6 74.5 (1.4) 46.0 (1.8) 18.8 (1.7) 42.5 (1.7)
→ SimpleGV, τ=0.7 70.8 (1.6) 46.3 (2.4) 16.3 (1.1) 40.4 (1.6)
→ SimpleGV, τ=0.8 72.2 (2.6) 45.9 (2.4) 20.7 (1.7) 42.6 (2.2)
→ Oracle Verifier 85.0 (1.1) 61.9 (1.8) 25.0 (2.4) 52.6 (1.9)

3.5 CURRICULUM LEARNING

We also study how scheduling problem difficulty impacts self-evolution. In curriculum learning,
we first train on easier problems before progressing to harder ones. This contrasts with a random
mixing baseline that uses both easy and hard problems jointly from the start.

As shown in Table 3, curriculum learning consistently outperforms random mixing. Starting with
simpler problems reduces verifier noise and provides more reliable supervision in early stages, en-
abling more stable self-evolution. Moreover, curriculum learning improves easy-to-hard transfer:
training on KK with 2–3 people and then 4–5 people yields an average accuracy of 44.8%, com-
pared to 31.0% for the base model and 41.2% for random mixing. This demonstrates that staged
progression not only stabilizes training but also enhances easy-to-hard generalization.
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Table 3: Curriculum learning results on KK. Accuracy (%) is averaged over subsets (2–3, 4–5, and
6–8 people) with standard deviations in parentheses. Rows compare different verifier thresholds τ .
Oracle results (in gray) use ground-truth labels for verification. Curriculum learning outperforms
random mixing baselines and enables easy-to-hard generalization.

model 2–3 ppl. 4–5 ppl. 6–8 ppl. All

gemma-3-4b-it 62.0 (1.7) 31.1 (0.9) 10.3 (1.3) 31.0 (1.3)

KK2345 w/ SimpleGV, τ=0.5 68.6 (1.7) 44.3 (1.6) 17.6 (1.5) 39.8 (1.6)
SimpleGV, τ=0.6 67.2 (1.5) 39.9 (2.1) 14.7 (1.5) 36.9 (1.6)
SimpleGV, τ=0.7 71.0 (1.8) 42.9 (1.1) 15.4 (1.1) 39.1 (1.3)
SimpleGV, τ=0.8 72.9 (2.5) 46.1 (1.9) 16.7 (1.8) 41.1 (2.0)
Oracle Verifier 80.9 (1.6) 54.4 (1.9) 23.8 (1.5) 48.8 (1.6)

KK23 w/ SimpleGV, τ=0.6 70.9 (1.9) 45.4 (3.8) 17.5 (2.9) 40.7 (2.8)
KK23 w/ SimpleGV, τ=0.6 → KK45 w/ SimpleGV, τ=0.5 74.1 (1.4) 49.9 (1.8) 19.4 (1.4) 43.7 (1.5)

→ KK45 w/ SimpleGV, τ=0.6 76.2 (2.0) 49.7 (1.8) 20.6 (2.1) 44.8 (2.0)
→ KK45 w/ SimpleGV, τ=0.7 72.4 (2.0) 48.6 (3.5) 20.3 (2.1) 43.2 (2.5)
→ KK45 w/ SimpleGV, τ=0.8 68.4 (1.9) 44.3 (2.0) 18.6 (1.5) 40.1 (1.7)
→ KK45 w/ Oracle Verifier 80.8 (1.2) 60.9 (1.6) 29.8 (2.9) 53.3 (2.0)

KK23 w/ Oracle Verifier 78.4 (1.8) 52.6 (2.1) 21.4 (1.4) 46.6 (1.7)
KK23 w/ Oracle Verifier → KK45 w/ SimpleGV, τ=0.5 80.3 (1.7) 53.7 (2.5) 22.9 (2.4) 48.0 (2.2)

→ KK45 w/ SimpleGV, τ=0.6 77.7 (1.2) 56.2 (1.6) 21.6 (2.2) 47.5 (1.7)
→ KK45 w/ SimpleGV, τ=0.7 76.3 (1.5) 53.9 (1.9) 19.2 (1.7) 45.4 (1.7)
→ KK45 w/ SimpleGV, τ=0.8 78.7 (2.0) 51.8 (2.2) 19.8 (1.9) 45.7 (2.0)
→ KK45 w/ Oracle Verifier 84.2 (1.6) 60.2 (2.0) 28.2 (1.7) 53.3 (1.8)

3.6 COST ANALYSIS

Finally, we analyze the computational trade-offs of the generator–verifier framework. Self-evolution
requires both multiple candidate generations and multiple verifier passes. The total cost thus depends
on the number of generations per query (n1) and verifier passes per candidate (n2). We vary n1 and
n2 systematically across thresholds from 0.5 to 0.8 and report average performance in Figure 5.
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Figure 5: Cost–performance trade-offs in SimpleGV. Grids show average accuracy with generations
n1 (x-axis) and verifier passes n2 (y-axis) across thresholds 0.5–0.8; the right-most plot uses oracle
verification (ground-truth labels). Accuracy improves as n1 and n2 increase, though very high
thresholds (e.g., 0.8) cause data sparsity.

For gemma-3-4b-it, threshold τ = 0.7 achieves the best balance of precision and recall, reach-
ing an average accuracy of 41.7%. Performance scales with both n1 and n2, though costs grow
linearly. These results highlight a practical trade-off: larger generator and verifier budgets yield
higher accuracy, but moderate configurations already achieve strong results at much lower cost. As
a rule of thumb, we conclude that scaling up verifier computation is typically more cost-effective
than scaling up generator computation; however this may depend on the specific task and dataset.

4 REVISIONGV: MULTI-TURN GENERATOR–VERIFIER GAME

While single-turn verification demonstrates the feasibility of using a verifier-as-a-judge, it does not
fully exploit the base model’s ability to provide feedback and analyze solutions. For example, there
are cases where an initial solution may be partially correct but contain errors. In these cases, the
verifier model can identify these errors, going beyond just labeling the solution as incorrect. This in
turn enables the generator and verifier to interact across multiple rounds. Specifically, the generator
can revise its output in response to feedback, and it can progressively improve the solution.
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Table 4: Results on KK for 1B, 4B, and 12B models. Accuracy (%) is averaged over subsets (2–3,
4–5, 6–8 people) with standard deviations in parentheses. Rows compare SimpleGV at different
verifier thresholds τ , RevisionGV, and an oracle verifier (gray) using ground-truth labels.

model 2–3 ppl. 4–5 ppl. 6–8 ppl. All

gemma-3-1b-it 20.9 (1.1) 4.9 (1.1) 1.0 (0.4) 7.8 (0.2)
SimpleGV, τ=0.5 15.2 (1.6) 3.5 (0.6) 0.8 (0.3) 5.7 (0.6)
SimpleGV, τ=0.6 17.0 (1.8) 2.0 (0.8) 0.3 (0.2) 5.6 (0.1)
SimpleGV, τ=0.7 19.0 (1.7) 3.3 (0.8) 0.4 (0.3) 6.5 (0.3)
SimpleGV, τ=0.8 23.8 (2.6) 4.5 (1.1) 0.8 (0.4) 8.4 (0.5)
Oracle Verifier 32.6 (2.2) 10.0 (0.9) 0.7 (0.4) 12.5 (0.4)

RevisionGV 22.4 (2.4) 4.7 (0.8) 0.2 (0.2) 7.8 (0.5)

gemma-3-4b-it 62.0 (1.7) 31.0 (0.9) 10.3 (1.3) 31.0 (0.5)
SimpleGV, τ=0.5 70.8 (1.2) 39.1 (2.6) 16.3 (1.7) 38.4 (0.7)
SimpleGV, τ=0.6 70.9 (1.9) 45.4 (3.8) 17.5 (2.9) 40.7 (0.9)
SimpleGV, τ=0.7 70.1 (1.6) 43.9 (1.0) 16.4 (1.9) 39.6 (0.6)
SimpleGV, τ=0.8 70.4 (1.6) 44.6 (2.1) 16.0 (1.1) 39.7 (0.5)
Oracle Verifier 78.4 (1.8) 52.7 (2.1) 21.4 (1.4) 46.6 (0.7)

RevisionGV 75.8 (3.0) 46.4 (2.6) 17.1 (1.5) 42.2 (0.4)

gemma-3-12b-it 77.7 (1.7) 51.9 (2.3) 24.4 (1.2) 47.5 (0.7)
SimpleGV, τ=0.5 78.3 (1.1) 53.7 (1.5) 24.0 (1.7) 48.0 (0.5)
SimpleGV, τ=0.6 84.8 (1.8) 55.0 (1.3) 26.2 (1.3) 51.1 (0.4)
SimpleGV, τ=0.7 83.0 (0.9) 56.3 (0.6) 24.0 (1.1) 50.1 (0.2)
SimpleGV, τ=0.8 80.5 (2.1) 53.9 (2.5) 21.2 (2.1) 47.5 (1.0)
Oracle Verifier 86.8 (1.8) 60.3 (1.4) 27.0 (2.0) 53.6 (0.5)

RevisionGV 84.8 (1.0) 58.7 (2.6) 27.5 (1.1) 52.8 (1.0)

We refer to this setup as RevisionGV, or multi-turn generator–verifier verification. RevisionGV
enables iterative correction: the verifier provides feedback, and the generator revises its outputs
in subsequent rounds. As detailed in Section 2 and Figure 1, the RevisionGV process generates
a preference pair when the generator revises an incorrect solution into a correct one based on the
verifier’s feedback. In other words, RevisionGV is not just a multi-turn game, but the method is also
a test of the model’s ability to perform in-context learning from its own critiques.

Results. We evaluate RevisionGV on the KK benchmark using gemma-3-it (1B, 4B, and 12B)
as the base model, and compare it against SimpleGV. As shown in Table 4, RevisionGV con-
sistently outperforms SimpleGV across all thresholds and all difficulty levels. RevisionGV on
gemma-3-12b-it achieves an average accuracy of up to 52.8%, approaching the performance of
oracle ground-truth filtering (53.6%). This underscores the strength of self-evolved preference data
and demonstrates that the model can not only identify its own errors but also actively correct them
based on self-feedback—a more sophisticated form of self-improvement than passive selection. Re-
sults in Table 4 also reveal a scaling trend. For the 1B model, SimpleGV is better than RevisionGV.
On the other hand, for the 4B and 12B, we see a consistent improvement with RevisionGV.

Discussion. Our findings from RevisionGV suggest that as model capacity grows, its dual roles as
generator and verifier become increasingly effective. Intuitively, this is possible because the verifier
feedback is more detailed, and also the generator can better incorporate this feedback when revising
the solution. It is not clear if this trend will continue or saturate with even larger models, which is
an area of future work. Finally, we note that RevisionGV takes advantage of the offline nature of
our training, where we can use natural language feedback to create better preference data.

5 RELATED WORK

Recent work has explored ways to improve model performance without explicit supervision. Zhao
et al. (2025a) introduce “Absolute Zero”, a method for generating coding problems and verifiable
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solutions. Huang et al. (2025) present the R-Zero method, with improvements over Absolute Zero,
using the same general methodology. However, the reliance on verification through majority vot-
ing limits general applicability. Zuo et al. (2025) propose confidence as an unsupervised reward to
enhance performance. Yet, this approach necessitates tasks that support meaningful majority vot-
ing. Zweiger et al. (2025), with Self-Adapting Language Models, employ an external validation set
during inference-time optimization, departing from self-evolution. Similarly, SPC Critic requires
seed data from a larger LLM (Chen et al., 2025). Wen et al. (2025) introduce Internal Coherence
Maximization, a new self-scoring based finetuning algorithm, which is orthogonal to our approach.

Another area is self-refinement, where models use their own feedback to enhance generated text
(Madaan et al., 2023). Further advancements include training models to explicitly self-correct their
reasoning steps via reinforcement learning (Kumar et al., 2024) and employing search-based algo-
rithms to rectify logical chains (Kim et al., 2025). The quality of the training data is also important
and raises challenges for generating high-quality synthetic prompts (Yu et al., 2025).

A trend for better reasoning is the study of methods that minimize the need for custom-trained
rewards. Going beyond standard RL (Zhao et al., 2025c; Ji et al., 2024), this area includes reinforced
self-play (Zhao et al., 2025a), synthetic code edits (Piterbarg et al., 2025), co-evolutionary collective
feedback (Yuan et al., 2025), self-logits evolution (Zhang et al., 2024), and DPO extensions (Tu
et al., 2025). To generate robust rewards, researchers have explored using confident reasoning traces
(Jang et al., 2025), external feedback models (Sun et al., 2023), teaching reward models to “think”
(Zhou et al., 2025), autorating RAG contexts (Joren et al., 2025), entropy-based methods (Zhang
et al., 2025), and ways to avoid spurious rewards (Shao et al., 2025). These ideas extend to adapting
models during deployment, such as test-time training for distribution shifts (Sun et al., 2020) and
TTRL (Zuo et al., 2025), and other self-adaptation ideas (Zweiger et al., 2025).

6 CONCLUSION

We studied a self-evolution framework, where a single language model acts as both generator and
verifier to improve reasoning without external supervision. We showed that the model can produce
reliable pairs for preference tuning. Our experiments across reasoning benchmarks with free-form
outputs demonstrated that self-evolution yields consistent improvements, getting close to supervised
baselines. Our work revealed three key takeaways: (i) scaling self-generated data enhances perfor-
mance; (ii) larger models provide more reliable self-judgments; and (iii) multi-turn verification with
RevisionGV outperforms voting-based SimpleGV. Expanding on (iii), we saw that feedback-driven
corrections in RevisionGV provide a stronger learning signal than simply discriminating between
correct and incorrect solutions with SimpleGV. Ultimately, we provided new evidence that external
signals like human labels or domain-specific rewards is not a prerequisite for improving models.

For future work, it would be interesting to use complementary functionalities of the single base
model, beyond critiquing or judging solutions. Another avenue is to explore how self-generated data
affects training dynamics; it would be a fundamental insight to theoretically analyze the limits or
stability of optimizing with self-generated data, using only input questions as the human-generated
part. Finally, it is an open direction to find methods that work for very small models (≤1B) or very
large models, where we posit that we need to utilize a dataset that is not too challenging and not too
easy, as a pre-requisite to effectively self-evolve. In particular, if a model is over-saturated on some
particular task, it would be interesting to see how much further self-improvement is possible.

Limitations. The SimpleGV and RevisionGV generator–verifier games require multiple generations
and verifier passes, making it computationally intensive. On the other hand, when we consider
small, open source LLMs, we may be willing to pay the trade-off in cost vs. accuracy. Another
aspect to consider is that performance is also sensitive to thresholds, which currently need minor
task-specific tuning. That being said, a threshold between 0.6 and 0.7 seems reliable for multiple
downstream tasks, meaning the optimization is fairly robust. Nonetheless, addressing efficiency and
adaptive calibration are promising directions for future work. Finally, the self-evolution process is
fundamentally limited by the base model’s latent knowledge. While it can effectively surface and
refine existing reasoning abilities, it is not designed to discover knowledge or reasoning strategies
that are entirely outside its initial training distribution. The self-evolution process amplifies what the
model knows, but might struggle to teach it what it does not know at all.
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ETHICS STATEMENT

This work studies self-evolving language models in a controlled research setting using only publicly
available datasets (e.g., synthetic logic puzzles and benchmark reasoning tasks). No human subjects
or personally identifiable information were involved in data collection. Our methods do not rely
on sensitive or private data, and we make no claims beyond the intended research scope. While
language models have the potential for misuse, our study focuses exclusively on understanding their
self-improvement dynamics under safe, synthetic conditions. We highlight that broader deployment
of such models should carefully consider issues of bias, fairness, and responsible use. This research
adheres to the ICLR Code of Ethics and complies with principles of transparency, integrity, and
reproducibility.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets used in this
study (synthetic Knights and Knaves problems and publicly available reasoning benchmarks) are
clearly described in the main text and appendix, with details of experimental setup provided. We
include complete descriptions of the generator–verifier training protocols, preference learning ob-
jectives, and evaluation metrics in the paper. Hyperparameters, model sizes, and training schedules
are documented in the appendix.
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A LLM USAGE

We used LLMs solely as a writing assistant to polish the paper. Specifically, LLMs were employed to
improve grammar, clarity, and flow of exposition, without contributing to the research ideas, exper-
imental design, analyses, or results. All scientific content, methodology, and conclusions presented
in this work were conceived and authored entirely by the listed authors.

B EXPERIMENT DETAILS

B.1 TRAINING AND EVALUATION SETTINGS

We consider two main training settings:

• Synthetic reasoning. Models are trained on the Knights and Knaves (KK) training set (restricted
to instances with 2–3 people) and evaluated on the held-out KK test set covering 2–8 people.

• Mathematical reasoning. Models are trained on the OpenThoughts3 dataset and evaluated on
four benchmarks: GSM8K, MATH500, MATHHard, TabMWP, as well as the KK test set.

No additional preprocessing was applied beyond the original dataset splits.

B.2 MODELS AND OPTIMIZATION

We use instruction-tuned gemma-3-it models (1B, 4B, 12B) and Qwen-2.5-7B-Instruct.
All models are fully fine-tuned (no parameter-efficient adaptation). Optimization uses AdamW with
a sequence length of 4096 and batch size of 256. Training schedules are as follows:

• Gemma-1B: learning rate 7.5× 10−7, 3 epochs.

• Gemma-4B: learning rate 5.0× 10−7, 3 epochs.

• Gemma-12B: learning rate 2.5× 10−7, 3 epochs.

• Qwen-7B: learning rate 7.5× 10−7, 5 epochs.

B.3 GENERATOR–VERIFIER SETUP

Unless otherwise specified, we use n1 = 8 candidate generations per query and n2 = 16 verifier
passes per candidate. We set the confidence threshold to τ = 0.6. For RevisionGV (multi-turn
verification), the generator revises responses for up to 4 rounds, with the verifier providing free-
form feedback that ends with a structured label.

B.4 ITERATIVE AND CURRICULUM LEARNING

For iterative preference learning, we repeat the generator–verifier loop for 2–3 rounds. To isolate
the effect of iteration, we reuse the same prompt set at each round rather than re-sampling. For
curriculum learning, difficulty levels are determined by the KK dataset (based on the number of
people). By default, models are trained on KK with 2–3 people before being evaluated on harder
cases.

C PROMPTS

We provide the prompts we use for the specific KK verifier, the generic verifier, and the generic
reviser. In Appendix C.1, we perform experiments showing how the verifier performance changes
with prompts and model sizes. This complements our results in Figure 2 on verifier accuracy (for
the specific KK prompt) as the model trains. For the main experiments, we use “Generic Prompt 3”
for our OpenThoughts data collection, as it performs best on 2 of 3 datasets (Musique & KK).
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Knights and Knaves (KK) Specific Prompt for Verifier
CRITIC_POS_SYMBOL = "CRITIC RESULT: SOLUTION IS CORRECT"
CRITIC_NEG_SYMBOL = "CRITIC RESULT: SOLUTION IS INCORRECT"

CRITIC_SYSTEM_MESSAGE = f"""You are a critic tasked with analyzing
a solution to a logical reasoning problem and determining whether
the solution correctly deduces the identities of characters
(e.g., knights or knaves). Carefully examine whether the
explanation uses valid deductive logic, correctly interprets
the statements, and exhaustively considers all cases. Pay
attention to whether contradictions are correctly identified
and if the conclusion logically follows from the analysis.

- If the solution is logically sound and complete, finalize
your critique with ’{CRITIC_POS_SYMBOL}’.

- If the solution contains reasoning flaws, invalid
assumptions, missed cases, or unsupported conclusions, explain
these issues in detail and finalize with ’{CRITIC_NEG_SYMBOL}’."""

CRITIC_PROMPT_TEMPLATE = (
f"{CRITIC_SYSTEM_MESSAGE}\n\n"
"## Problem\n{query}\n\n"
"## Solution\n{response}\n\n"
"## Your response"

)

Generic Prompt for Verifier
CRITIC_POS_SYMBOL = "CRITIC RESULT: SOLUTION IS CORRECT"
CRITIC_NEG_SYMBOL = "CRITIC RESULT: SOLUTION IS INCORRECT"

CRITIC_SYSTEM_MESSAGE = f"""You are a meticulous and critical
logic expert specializing in math, puzzles, logic and
factuality problems. Your task is to analyze a proposed
solution to the problem below and determine if it is correct.

To do this, go through the problem and then go through each
step in the answer very carefully, checking if there are any
inconsistencies or contradictions with the conditions in the
problem. End your response with ’{CRITIC_POS_SYMBOL}’ if the
solution has no contradictions/ inconsistencies to the
conditions in the question. Otherwise, end your response with
’{CRITIC_NEG_SYMBOL}’ if the solution has one more
contradictions or inconsistencies."""

CRITIC_PROMPT_TEMPLATE = (
f"{CRITIC_SYSTEM_MESSAGE}\n\n"
"## Problem\n{query}\n\n"
"## Solution\n{response}\n\n"
"## Your response"

)
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Generic Revision Prompt
ANALYSIS_SYMBOL = "ANALYSIS:"
REVISOR_ANSWER_SYMBOL = "REVISED SOLUTION:"

REVISOR_SYSTEM_MESSAGE = f"""You are given a logical reasoning
problem, an initial solution, and a critic’s feedback on that
solution. Your task is to revise the original solution so that
it is correct, logically sound, and fully aligned with the
problem’s requirements. Your revision should strictly follow
the instructions in the problem and address all the issues
raised by the critic.

Your response should be in the following format:
{ANALYSIS_SYMBOL} ...
{REVISOR_ANSWER_SYMBOL} ..."""

REVISOR_PROMPT_TEMPLATE = (
f"{REVISOR_SYSTEM_MESSAGE}\n\n"
"## Problem\n{query}\n\n"
"## Solution\n{response}\n\n"
"## Critic’s Feedback\n{critic_feedback}\n\n"
"## Your response"

)

C.1 VERIFIER RESULTS

We perform a deep dive here in the accuracy of the unsupervised verifier. For different datasets,
we compare an unsupervised labeled (correct/incorrect) versus using a strong model (Gemini 2.5
Pro) that has access to the ground truth as the true label. We then compute the agreement with the
supervised strong model as a measure of unsupervised verifier accuracy. Furthermore, we compare
using three generic prompts (e.g., not specific to reasoning) against a dataset-specific prompt. We
present our results in Tables 5, 6, 7, and 8.

Table 5: Gemma 4B, MATH, Verifier Accuracy. We sample 60 question and compare precision and
accuracy (correct/incorrect labels) of an unsupervised model (no ground truth) versus supervised
Gemini 2.5 Pro (with ground truth answers). For the “Single” cases we average over 3 runs, standard
deviation in parens. We also evaluate taking the Majority (Maj.) over 3 samples.

Prompt Type Prec. Single Acc. Single Prec. Maj. Acc. Maj.
Specific Prompt MATH 85.1 (0.0) 85.0 (0.0) 85.1 85.0
Generic Prompt 1 89.0 (0.1) 88.9 (0.8) 88.9 88.3
Generic Prompt 2 87.0 (1.8) 86.7 (2.7) 87.0 86.7
Generic Prompt 3 81.4 (1.4) 80.6 (1.6) 83.0 81.7

Table 6: Gemma 4B, KK, Verifier Accuracy. We sample 60 question and compare precision and
accuracy (correct/incorrect labels) of an unsupervised model (no ground truth) versus supervised
Gemini 2.5 Pro (with ground truth answers). For the “Single” cases we average over 3 runs, standard
deviation in parens. We also evaluate taking the Majority (Maj.) over 3 samples.

Prompt Type Prec. Single Acc. Single Prec. Maj. Acc. Maj.
Specific Prompt KK 45.2 (4.1) 53.3 (1.4) 50.0 55.0
Generic Prompt 1 52.3 (1.8) 57.8 (2.1) 51.3 56.7
Generic Prompt 2 52.8 (2.2) 58.3 (2.7) 52.9 58.3
Generic Prompt 3 55.1 (0.6) 60.0 (0.0) 55.2 60.0
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Table 7: Gemma 27B, MATH, Verifier Accuracy. We sample 60 question and compare precision
and accuracy (correct/incorrect labels) of an unsupervised model (no ground truth) versus supervised
Gemini 2.5 Pro (with ground truth answers). For the “Single” cases we average over 3 runs, standard
deviation in parens. We also evaluate taking the Majority (Maj.) over 3 samples.

Prompt Type Prec. Single Acc. Single Prec. Maj. Acc. Maj.
Specific Prompt MATH 94.0 (0.7) 91.7 (0.0) 94.6 91.7
Generic Prompt 1 94.2 (0.8) 94.4 (0.8) 94.7 95.0
Generic Prompt 2 92.5 (0.7) 92.2 (0.8) 91.5 91.7
Generic Prompt 3 91.9 (0.8) 90.0 (1.4) 91.4 90.0

Table 8: Gemma 27B, KK, Verifier Accuracy. We sample 60 question and compare precision and
accuracy (correct/incorrect labels) of an unsupervised model (no ground truth) versus supervised
Gemini 2.5 Pro (with ground truth answers). For the “Single” cases we average over 3 runs, standard
deviation in parens. We also evaluate taking the Majority (Maj.) over 3 samples.

Prompt Type Prec. Single Acc. Single Prec. Maj. Acc. Maj.
Specific Prompt KK 84.7 (3.2) 68.3 (2.7) 85.7 70.0
Generic Prompt 1 90.5 (2.0) 90.0 (3.6) 91.3 91.7
Generic Prompt 2 77.6 (0.8) 75.0 (1.4) 76.9 75.0
Generic Prompt 3 80.8 (3.6) 72.8 (4.2) 80.0 73.3
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