
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-EVOLVING LANGUAGE MODELS VIA
SIMPLE GENERATOR-VERIFIER GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training language models often depends on costly external signals such as
human annotations or domain-specific rewards. As an alternative, we explore
model self-evolution through the lens of simple generator–verifier games. A
single base model plays both roles—generating candidate solutions and verify-
ing/improving their quality—to construct preference data for fine-tuning. To ex-
tract reliable signals from noisy self-verification, we leverage thresholded ma-
jority voting, which approximates high-precision preference pairs. The approach
enables self-evolution on synthetic logical reasoning and realistic mathematical
reasoning tasks, even when models initially perform poorly. For example, on the
Knights and Knaves benchmark, accuracy rises from 31.0% to 40.7% with single-
turn verification, 42.2% with multi-turn verification, 44.1% with iterative train-
ing, and 44.8% with curriculum learning. Notably, models trained only on easier
instances generalize effectively to harder test data, demonstrating emergent easy-
to-hard generalization. These results show that simple generator-verifier games
can unexpectedly enhance reasoning in small models, offering a new perspective
on concurrent research in self-improvement and RL with verifiable rewards.

1 INTRODUCTION

Large language models (LLMs) have made strong progress on complex reasoning tasks (Comanici
et al., 2025; Yang et al., 2025b; DeepSeek-AI et al., 2025). A central driver of this progress has
been post-training techniques that refine model outputs using feedback signals. Paradigms such as
Supervised Finetuning (SFT), Reinforcement Learning from Human Feedback (RLHF), and Rein-
forcement Learning from Verifiable Rewards (RLVR) (Lambert et al., 2024; Gao et al., 2024; Wang
et al., 2025) have become standard for improving performance in downstream reasoning tasks.

However, these approaches remain constrained by their reliance on external supervision. Human
annotation is costly, slow, and limited by domain expertise (Bassi et al., 2025; Giorgi et al., 2025;
Plank, 2022). Verifiable reward signals, such as code execution or exact-match math answers, are
confined to narrow domains (Liu et al., 2025; Wu et al., 2025). Current methods overlook a vast
landscape of tasks where external ground truth is unavailable, ambiguous, or impractical to obtain.

This situation raises a fundamental question: Can a single language model self-improve without ex-
ternal supervision? This deep question has led to a wave of recent research on model self-evolution.
Approaches like test-time reinforcement learning (TTRL) (Zuo et al., 2025) and R-Zero (Huang
et al., 2025) have demonstrated the power of consensus-based signals, such as majority voting, in
tasks where structured outputs admit straightforward comparison. Similarly, Absolute Zero (Zhao
et al., 2025a) effectively utilizes external environments, leveraging code execution as an objective
verifier for domains with executable semantics. Meanwhile, methods such as INTUITOR (Zhao
et al., 2025b), LSP (Kuba et al., 2025), and EMPO (Zhang et al., 2025) have trained models without
external data by using online reinforcement learning. These efforts inspire a systematic analysis of
the core principles of self-evolution. Specifically, we are motivated to study: 1) whether we can
directly use the same model as both generator and verifier to bootstrap self-evolution, and 2) how to
best construct a reinforcement learning dataset in an offline fashion. If this leads to improvements,
it would be a general approach that can be widely applied to downstream domains with minimal
assumptions on reward verifiability, environment executability, or output structures, and it would
effectively reduce the computational burden of training with online reward signals.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

✓

✘

✘

✓

✘

✓

G

Negative
sample

G
Positive
sample

Negative
sample

Positive
sample

✘ ✘

✘✘ ✘

✓

✓

GV V G V
Verification & Revision w/ feedback

V
Verification

Prompt Prompt

Figure 1: Illustration of the generator–verifier games. We use the same base model as a generator
G and a verifier V . The generator outputs several responses, and the verifier V labels them as
correct or incorrect. In the single-turn SimpleGV (left), we run the verifier multiple times and assign
labels based on a threshold. In the multi-turn RevisionGV (right), we use the last two responses if
they switch from incorrect to correct according to the verifier. We train with the positive/negative
samples via offline preference optimization.

In this work, we study several types of self-evolution through generator–verifier (GV) games. At a
high level, a single base model is instantiated in two roles: a generator, which proposes candidate
solutions, and a verifier, which evaluates their quality. In the simplest single-turn game, the veri-
fier forms preference pairs (ywin, ylose) by labeling candidate responses (verifier-as-a-judge). Since
we cannot always expect the verifier to be better than the generator, we also explore thresholded
voting to aggregate multiple verifier responses. In a richer multi-turn game, the verifier iteratively
provides feedback and the generator revises its outputs, producing higher-quality alternatives. We
also explore extensions of these variants, where we use iterative training or curriculum learning.

A central challenge is that self-verification is noisy, as models may mislabel solutions. To address
this, we use a thresholded majority voting method. The verifier is queried multiple times per can-
didate. Define the correctness rate as the fraction of times the verifier says a response is correct.
We label a response as positive if its correctness rate exceeds a threshold τ , and as negative if its
correctness rate less than (1− τ), and we discard it otherwise. This filters out ambiguous cases and
yields “confident” preference pairs, extracting a reliable signal from imperfect self-assessment.

We validate this framework on both synthetic and realistic reasoning tasks. For example, on the
Knights and Knaves (KK) logical reasoning benchmark, accuracy improves from 31.0% for the
base model to 40.7% with single-turn verification, 42.2% with multi-turn verification, 44.1% with
iterative training, and 44.8% with curriculum learning. Similar improvements are observed across
diverse mathematical reasoning benchmarks, including GSM8K, MATH, and TabMWP, leading to
performance competitive with previous self-evolution methods. These results show that even smaller
models, which initially perform poorly, can substantially enhance their reasoning abilities through
simple generator–verifier games, achieving performance nearly on par with supervised methods. Be-
yond absolute accuracy gains, self-evolution also enables strong easy-to-hard generalization: mod-
els trained only on simpler KK instances (2–3 people) transfer to harder ones (4–8 people), where
the KK problem complexity and solution space grow sharply as we add more people.

Our detailed analysis provides the following new contributions and insights:

• Simple yet General Framework for Self-Evolution: We map out and study various generator–
verifier games. We focus on when a single model, without external labels or environments, both
generates and evaluates its own outputs to produce preference data. Despite this simplicity, such
a framework can improve performance across multiple real and synthetic reasoning benchmarks.

• Principles for Self-Evolution: Next, we identify methods that consistently improve performance.
These include (i) enhancing the reliability of verifier feedback through a thresholded majority
voting scheme and (ii) using the generator and verifier in a multi-turn fashion, where the model
revises responses rather than just labeling them as correct or incorrect.

• Bootstrapping and Generalization: Going further, we also show that iterative refinement and
curriculum learning can additionally enhance self-evolution, and that training on easier cases
transfers effectively to harder ones, demonstrating impressive easy-to-hard generalization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

Generator–Verifier Game. A single base model M is instantiated in two roles using different
system prompts: a generator G and a verifier V .1 Given an unlabeled prompt set D and a base
model M, we define a generator–verifier game

GV(M,D, T) → P,

which instantiates M as generator G and verifier V , and runs for T rounds. For a query q ∈ D, the
generator produces k candidates

Ŷ (q) = {ŷ1, . . . , ŷk}, ŷi ∼ G(· | q),
while the verifier assigns binary judgments V(q, ŷi) ∈ {Correct,Incorrect}. Then, from these
interactions we extract preference pairs

(yw, yl) ∈ P iff V(q, yw) = Correct, V(q, yl) = Incorrect.

Single-turn vs. Multi-turn Verification. In the single-turn case, T = 1 and preference pairs are
obtained directly from static judgments. In the multi-turn case (T > 1), the generator refines its
outputs based on verifier feedback:

ŷ(t+1) ∼ G(· | q, f(V(q, ŷ(t)))),
where f : {Correct,Incorrect} → Xfeedback maps verifier judgments into textual feedback
prompts. A pair is extracted whenever

V(q, ŷ(t)) = Incorrect, V(q, ŷ(t+1)) = Correct.

Preference Learning. The generator–verifier game yields a dataset of preference triples Dpref =
{(x, yw, yl)}, where x is a prompt, yw is a preferred response, and yl is a dispreferred one. Prefer-
ence learning fine-tunes a policy πθ so that preferred responses are assigned higher probability than
dispreferred ones. We apply Direct Preference Optimization (DPO) (Rafailov et al., 2023) which
refines πθ relative to a fixed reference policy πref by minimizing

LDPO(πθ;πref) = −E(x,yw,yl)∼Dpref

[
log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
,

where β > 0 is a parameter controlling the sharpness of preference alignment. Intuitively, this
loss increases the relative likelihood of yw over yl while keeping πθ close to reference policy πref,
ensuring both preference alignment and stability during fine-tuning.

Iterative Preference Learning. We may apply GV repeatedly. Starting from M0 = M, define

Pt = GV(Mt−1,Dt, T), Mt = Finetune(Mt−1,Pt).

This yields a sequence {Mt}Tt=1 that progressively refines reasoning ability. Unlike online RL, all
updates are offline since Pt is fixed once generated.

Curriculum Learning. If prompts can be partitioned by difficulty, D = Deasy ∪ Dhard, we first
generate Peasy = GV(M,Deasy, T) and fine-tune on it, before proceeding to Phard.

2.1 EXPERIMENT SETUP

Models. We use the gemma-3-it (Gemma Team, 2025) and Qwen-2.5-Instruct (Yang
et al., 2025a) families as base models. Since the same model is instantiated as both generator and
verifier, we employ instruction-tuned variants rather than raw base models.

Datasets. Our controlled experiments use Knights-and-Knaves (KK) (Xie et al., 2024), a synthetic
dataset for reasoning. Each instance describes a group of inhabitants who are either knights (always
truthful) or knaves (always lying). The task is to infer each inhabitant’s identity from their state-
ments. The difficulty scales with the number of people, as the search space grows exponentially and
demands deeper logical inference. This structured setting provides a testbed for isolating the effects
of self-evolution. To assess generality, we also evaluate on four reasoning benchmarks:

1We provide the exact prompts in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• GSM8K (Cobbe et al., 2021): grade-school math word problems requiring multi-step arithmetic.

• MATH500: a medium-scale subset of the MATH benchmark (Hendrycks et al., 2021) spanning
diverse levels of difficulty.

• MATHHard: the hardest subset of MATH (difficulty level 5), with advanced problem-solving.

• TabMWP (Lu et al., 2022): math word problems involving structured tabular data.

For training, we only use unlabeled prompts, without access to ground-truth solutions. Specifi-
cally, we use the KK training set for logical reasoning tasks and OpenThoughts3 (Guha et al., 2025)
for mathematical reasoning tasks. Notably, OpenThoughts3 includes problems that are not directly
verifiable (e.g., proofs and scientific question answering), highlighting the importance of a general
and self-contained verifier that can analyze free-form outputs.

Evaluation Protocol. We report exact-match accuracy, requiring the model’s output to perfectly
match the ground-truth solution. This strict metric eliminates ambiguity from partial matches. For
each query, we generate one sample using temperature 0.7 and average results over four random
seeds. The same evaluation protocol is applied consistently across KK and the other benchmarks.

3 SIMPLEGV: SINGLE-TURN VERIFICATION WITH VERIFIER-AS-A-JUDGE

We begin with the simplest setting, where a single model serves as both generator and verifier,
and the verifier directly judges the quality of generated responses without iterative feedback. This
“verifier-as-a-judge” setup constitutes the minimal generator–verifier game, allowing us to isolate
its effectiveness before introducing further refinements. It tests our core hypothesis: that a model’s
latent ability to evaluate a solution, even if imperfect, can be harnessed to improve its own generation
ability. We illustrate this SimpleGV approach in Figure 1. We implicitly assume that a model’s
ability to verify a candidate is, on average, more reliable than its ability to generate one from scratch.
We view SimpleGV as distilling these latent verification capabilities into a usable training signal.

3.1 THRESHOLDED MAJORITY VOTING FOR MORE ACCURATE VERIFICATION

0.5
0

0.5
5

0.6
0

0.6
5

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

Threshold

55

60

65

70

75

80

Ve
rif

ica
tio

n
Ac

cu
ra

cy
 (%

)

Base
SimpleGV

Figure 2: Verification accu-
racy on the KK training set for
gemma-3-4b-it and its Sim-
pleGV variant under different
thresholds.

A central challenge is the noisiness of an unsupervised veri-
fier. Smaller models in particular may mislabel solutions or
produce inconsistent judgments, contaminating the preference
dataset. To mitigate this, we use a thresholded majority
voting method. For each candidate ŷ, the verifier is queried
n times, producing binary judgments Zj = 1{V(j)(q, ŷ) =
Correct}. We then compute the empirical correctness rate
p̂(q, ŷ) = 1

n

∑n
j=1 Zj . A candidate is labeled Positive if

p̂(q, ŷ) ≥ τ , Negative if 1 − p̂(q, ŷ) ≥ τ , and discarded
otherwise. Note that thresholding at 0.5 falls back to regular
majority voting. This procedure filters out ambiguous cases
and yields high-confidence preference pairs, extracting a reli-
able signal from noisy self-assessment. As shown in Figure 2,
increasing the threshold effectively improves verification ac-
curacy.

Table 1 summarizes results on five reasoning benchmarks. For
baseline methods, we evaluate their released models on the
corresponding benchmarks, and also refer to their origianl re-
port. SimpleGV consistently improves over base models with-
out requiring ground-truth labels, supervised signals, or exter-
nal environments. Unlike prior methods that depend on executable environments or online rein-
forcement learning, SimpleGV operates directly on free-form text using offline optimization, yet
still achieves substantial gains. Moreover, not only does generation improve, but verification accu-
racy also increases (Figure 2), demonstrating a process of co-evolution where both roles reinforce
one another.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Results on five reasoning benchmarks. For SimpleGV, we train with 20K samples obtained
from OpenThoughts3. We compare baselines: INUITOR, two Absolute Zero (AZR) models, and
GRPO. In the RL type column, we list whether it uses online or offline training. The supervised
(Supervis.) column shows if the method uses additional labels or reward models; the environment
(Environ.) column shows if it uses external tools (* from original report).

Model/Algorithm RL Type Supervis. Environ. Benchmarks

GSM8K MATH500 MATHHard TabMWP KK

Gemma 3

gemma-3-4b-it / / / 89.2* 75.8 (0.4) 53.7 (0.2) 84.5 (0.2) 31.0 (1.3)
SimpleGV (ours) Offline No No 89.0 (0.1) 77.4 (0.6) 55.1 (0.4) 87.4 (0.3) 33.2 (0.5)

gemma-3-12b-it / / / 94.4* 85.6 (0.1) 69.1 (0.3) 95.2 (0.2) 47.5 (0.7)

Qwen 2.5

Qwen2.5-7B-Instruct / / / 90.2 (0.4) 73.5 (0.5) 49.7 (0.3) 91.9 (0.2) 18.1 (0.9)
Base + INTUITOR Online No No 87.3* 75* / / /
Base + AZR Online No Yes 84.0 (0.4) 74.4* 32.8 (0.5) 68.8 (0.7) 5.1 (0.4)
Base + AZR-Coder Online No Yes 83.4 (0.1) 72.6* 40.1 (0.7) 78.5 (0.5) 8.5 (0.4)
Base + GRPO Online Yes No 82.9* 75* / / /
SimpleGV (ours) Offline No No 90.6 (0.1) 76.0 (0.7) 51.5 (0.4) 92.3 (0.2) 17.6 (0.5)

Qwen2.5-14B-Instruct / / / 94.8* 77.1 (0.5) 54.5 (0.3) 93.7 (0.3) 26.4 (0.3)

3.2 SELF-IMPROVEMENT VERSUS MODEL SIZES

We next examine how SimpleGV scales with model size. Figure 3 reports results on gemma-3-it
for 1B, 4B, and 12B, with 27B included as an approximate upper bound. All models are trained on
KK instances with 2–3 people and evaluated on test sets spanning 2–8 people.

We find that self-improvement occurs at all scales but manifests differently. For smaller models
(1B), verifier judgments are noisy and improvements modest. Medium-scale models (4B and 12B),
however, achieve substantial gains, showing that the generator–verifier framework becomes increas-
ingly effective as model capacity grows. While the 27B model establishes a performance roofline,
the 12B model with SimpleGV approaches this level, indicating that self-evolution enables weaker
models to close much of the gap to stronger baselines.

3.3 SELF-IMPROVEMENT VERSUS DATA SIZES

1b 4b 12b
Gemma 3

0

10

20

30

40

50

Ac
c.

 (
%

)

7.8

31.0

47.5

8.4

40.7

51.1Roofline (gemma-3-27b-it)
Base Model
SimpleGV Model

Figure 3: Effect of model size on Sim-
pleGV performance. Models are trained
on KK instances with 2–3 people and
evaluated on 2–8 people.

A natural question is how the amount of self-generated
data influences downstream performance. To investi-
gate this, we experiment with the gemma-4b-itmodel,
varying the size of the preference dataset constructed
from OpenThoughts3 using the generator–verifier game.
We consider datasets of 5K, 10K, 20K, and 40K prefer-
ence pairs (by using a comparable number of initial ques-
tions), while keeping all hyperparameters fixed.

As shown in Figure 4, enlarging the preference set yields
clear gains at small–moderate scales (e.g., 5k → 20k),
but improvements taper thereafter and can even regress
at 40k for TabMWP and KK. This reflects diminishing
returns from simply adding more self-generated pairs:
beyond a moderate size, redundancy and verifier noise
begin to dominate, suggesting that tighter filtering and
greater prompt diversity are more effective than sheer vol-
ume. We note a small dip at 5k samples on GSM8K and
KK; we attribute this to small-sample variance and mild
prompt-distribution skew in early batches, which dimin-
ishes as the dataset grows in size and diversity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 5 10 20 40
87.5

88.0

88.5

89.0

89.5

90.0

Ac
c.

 (%
)

GSM8K

0 5 10 20 40
75.0
75.5
76.0
76.5
77.0
77.5
78.0
78.5

MATH500

0 5 10 20 40
53.0
53.5
54.0
54.5
55.0
55.5
56.0

MATHHard

0 5 10 20 40
84.0
84.5
85.0
85.5
86.0
86.5
87.0
87.5
88.0

TabMWP

0 5 10 20 40
29.0
29.5
30.0
30.5
31.0
31.5
32.0
32.5
33.0
33.5
34.0

KK

Samples (K)

Figure 4: Effect of data size on SimpleGV performance. Models are trained on OpenThoughts3
dataset. Accuracy improves across benchmarks as the number of training samples increases. For
TabMWP and KK, performance slightly degrades when data increases from 20k to 40k. Subplots
show mean accuracy (4 runs) with shaded standard-error regions.

3.4 ITERATIVE PREFERENCE LEARNING

We next test whether repeating the preference-learning loop yields further gains. As shown in Ta-
ble 2, performance improves across iterations, though gains diminish over time. The first iteration
provides the largest boost, while subsequent ones yield smaller increments. Importantly, training
only on easier KK instances (2–3 people) improves generalization to harder ones (4–8 people): three
rounds of unsupervised DPO raise accuracy from 31.0% to 44.1%, approaching the 46.6% obtained
with a supervised verifier. This highlights that iterative preference learning not only compounds
improvements but also supports strong easy-to-hard generalization.

Table 2: Iterative DPO results on KK. Accuracy (%) is averaged over subsets (2–3, 4–5, and 6–8
people) with standard deviations in parentheses. Rows compare different verifier thresholds τ . Or-
acle results (in gray) use ground-truth labels for verification. Three rounds of unsupervised DPO
improve accuracy from 31.0% to 44.1%, approaching the 46.6% achieved with an oracle verifier.

model 2–3 ppl. 4–5 ppl. 6–8 ppl. All

gemma-3-4b-it 62.0 (1.7) 31.0 (0.9) 10.3 (1.3) 31.0 (1.3)

SimpleGV, τ=0.6 70.9 (1.9) 45.4 (3.8) 17.5 (2.9) 40.7 (2.8)
Oracle Verifier 78.4 (1.8) 52.6 (2.1) 21.4 (1.4) 46.6 (1.7)

SimpleGV, τ=0.6 → SimpleGV, τ=0.5 69.5 (1.9) 44.8 (2.7) 18.1 (1.3) 40.4 (1.9)
→ SimpleGV, τ=0.6 74.2 (2.1) 46.9 (2.5) 20.3 (0.8) 43.3 (1.6)
→ SimpleGV, τ=0.7 71.5 (1.8) 46.8 (1.9) 20.8 (2.0) 42.7 (1.9)
→ SimpleGV, τ=0.8 72.2 (1.6) 48.1 (2.2) 18.6 (1.3) 42.4 (1.7)
→ Oracle Verifier 82.4 (0.8) 58.6 (2.3) 30.2 (2.5) 53.2 (1.9)

SimpleGV, τ=0.6 → SimpleGV, τ=0.6 → SimpleGV, τ=0.5 75.2 (1.6) 49.6 (2.0) 19.7 (2.0) 44.1 (1.9)
→ SimpleGV, τ=0.6 74.5 (1.4) 46.0 (1.8) 18.8 (1.7) 42.5 (1.7)
→ SimpleGV, τ=0.7 70.8 (1.6) 46.3 (2.4) 16.3 (1.1) 40.4 (1.6)
→ SimpleGV, τ=0.8 72.2 (2.6) 45.9 (2.4) 20.7 (1.7) 42.6 (2.2)
→ Oracle Verifier 85.0 (1.1) 61.9 (1.8) 25.0 (2.4) 52.6 (1.9)

3.5 CURRICULUM LEARNING

We also study how scheduling problem difficulty impacts self-evolution. In curriculum learning,
we first train on easier problems before progressing to harder ones. This contrasts with a random
mixing baseline that uses both easy and hard problems jointly from the start.

As shown in Table 3, curriculum learning consistently outperforms random mixing. Starting with
simpler problems reduces verifier noise and provides more reliable supervision in early stages, en-
abling more stable self-evolution. Moreover, curriculum learning improves easy-to-hard transfer:
training on KK with 2–3 people and then 4–5 people yields an average accuracy of 44.8%, com-
pared to 31.0% for the base model and 41.2% for random mixing. This demonstrates that staged
progression not only stabilizes training but also enhances easy-to-hard generalization.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Curriculum learning results on KK. Accuracy (%) is averaged over subsets (2–3, 4–5, and
6–8 people) with standard deviations in parentheses. Rows compare different verifier thresholds τ .
Oracle results (in gray) use ground-truth labels for verification. Curriculum learning outperforms
random mixing baselines and enables easy-to-hard generalization.

model 2–3 ppl. 4–5 ppl. 6–8 ppl. All

gemma-3-4b-it 62.0 (1.7) 31.1 (0.9) 10.3 (1.3) 31.0 (1.3)

KK2345 w/ SimpleGV, τ=0.5 68.6 (1.7) 44.3 (1.6) 17.6 (1.5) 39.8 (1.6)
SimpleGV, τ=0.6 67.2 (1.5) 39.9 (2.1) 14.7 (1.5) 36.9 (1.6)
SimpleGV, τ=0.7 71.0 (1.8) 42.9 (1.1) 15.4 (1.1) 39.1 (1.3)
SimpleGV, τ=0.8 72.9 (2.5) 46.1 (1.9) 16.7 (1.8) 41.1 (2.0)
Oracle Verifier 80.9 (1.6) 54.4 (1.9) 23.8 (1.5) 48.8 (1.6)

KK23 w/ SimpleGV, τ=0.6 70.9 (1.9) 45.4 (3.8) 17.5 (2.9) 40.7 (2.8)
KK23 w/ SimpleGV, τ=0.6 → KK45 w/ SimpleGV, τ=0.5 74.1 (1.4) 49.9 (1.8) 19.4 (1.4) 43.7 (1.5)

→ KK45 w/ SimpleGV, τ=0.6 76.2 (2.0) 49.7 (1.8) 20.6 (2.1) 44.8 (2.0)
→ KK45 w/ SimpleGV, τ=0.7 72.4 (2.0) 48.6 (3.5) 20.3 (2.1) 43.2 (2.5)
→ KK45 w/ SimpleGV, τ=0.8 68.4 (1.9) 44.3 (2.0) 18.6 (1.5) 40.1 (1.7)
→ KK45 w/ Oracle Verifier 80.8 (1.2) 60.9 (1.6) 29.8 (2.9) 53.3 (2.0)

KK23 w/ Oracle Verifier 78.4 (1.8) 52.6 (2.1) 21.4 (1.4) 46.6 (1.7)
KK23 w/ Oracle Verifier → KK45 w/ SimpleGV, τ=0.5 80.3 (1.7) 53.7 (2.5) 22.9 (2.4) 48.0 (2.2)

→ KK45 w/ SimpleGV, τ=0.6 77.7 (1.2) 56.2 (1.6) 21.6 (2.2) 47.5 (1.7)
→ KK45 w/ SimpleGV, τ=0.7 76.3 (1.5) 53.9 (1.9) 19.2 (1.7) 45.4 (1.7)
→ KK45 w/ SimpleGV, τ=0.8 78.7 (2.0) 51.8 (2.2) 19.8 (1.9) 45.7 (2.0)
→ KK45 w/ Oracle Verifier 84.2 (1.6) 60.2 (2.0) 28.2 (1.7) 53.3 (1.8)

3.6 COST ANALYSIS

Finally, we analyze the computational trade-offs of the generator–verifier framework. Self-evolution
requires both multiple candidate generations and multiple verifier passes. The total cost thus depends
on the number of generations per query (n1) and verifier passes per candidate (n2). We vary n1 and
n2 systematically across thresholds from 0.5 to 0.8 and report average performance in Figure 5.

4 8 16
generator, #gens

16

8

4ve
rif

ie
r,

#g
en

s 36.9 38.4 38.4

36.9 36.4 38.2

37.8 37.2 36.9

threshold=0.5

4 8 16
generator, #gens

39.5 40.7 35.3

39.7 37.9 34.1

35.8 37.5 38.9

threshold=0.6

4 8 16
generator, #gens

34.2 39.6 41.7

37.8 36.7 40.8

36.9 36.7 37.4

threshold=0.7

4 8 16
generator, #gens

32.4 39.7 40.8

31.9 38.2 41.6

30.2 37.2 37.4

threshold=0.8

4 8 16
generator, #gens

41.2 46.6 44.5

40.8 47.1 42.1

39.4 48.6 47.8

ground truth

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Av
g

sc
or

e

Figure 5: Cost–performance trade-offs in SimpleGV. Grids show average accuracy with generations
n1 (x-axis) and verifier passes n2 (y-axis) across thresholds 0.5–0.8; the right-most plot uses oracle
verification (ground-truth labels). Accuracy improves as n1 and n2 increase, though very high
thresholds (e.g., 0.8) cause data sparsity.

For gemma-3-4b-it, threshold τ = 0.7 achieves the best balance of precision and recall, reach-
ing an average accuracy of 41.7%. Performance scales with both n1 and n2, though costs grow
linearly. These results highlight a practical trade-off: larger generator and verifier budgets yield
higher accuracy, but moderate configurations already achieve strong results at much lower cost. As
a rule of thumb, we conclude that scaling up verifier computation is typically more cost-effective
than scaling up generator computation; however this may depend on the specific task and dataset.

4 REVISIONGV: MULTI-TURN GENERATOR–VERIFIER GAME

While single-turn verification demonstrates the feasibility of using a verifier-as-a-judge, it does not
fully exploit the base model’s ability to provide feedback and analyze solutions. For example, there
are cases where an initial solution may be partially correct but contain errors. In these cases, the
verifier model can identify these errors, going beyond just labeling the solution as incorrect. This in
turn enables the generator and verifier to interact across multiple rounds. Specifically, the generator
can revise its output in response to feedback, and it can progressively improve the solution.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Results on KK for 1B, 4B, and 12B models. Accuracy (%) is averaged over subsets (2–3,
4–5, 6–8 people) with standard deviations in parentheses. Rows compare SimpleGV at different
verifier thresholds τ , RevisionGV, and an oracle verifier (gray) using ground-truth labels.

model 2–3 ppl. 4–5 ppl. 6–8 ppl. All

gemma-3-1b-it 20.9 (1.1) 4.9 (1.1) 1.0 (0.4) 7.8 (0.2)
SimpleGV, τ=0.5 15.2 (1.6) 3.5 (0.6) 0.8 (0.3) 5.7 (0.6)
SimpleGV, τ=0.6 17.0 (1.8) 2.0 (0.8) 0.3 (0.2) 5.6 (0.1)
SimpleGV, τ=0.7 19.0 (1.7) 3.3 (0.8) 0.4 (0.3) 6.5 (0.3)
SimpleGV, τ=0.8 23.8 (2.6) 4.5 (1.1) 0.8 (0.4) 8.4 (0.5)
Oracle Verifier 32.6 (2.2) 10.0 (0.9) 0.7 (0.4) 12.5 (0.4)

RevisionGV 22.4 (2.4) 4.7 (0.8) 0.2 (0.2) 7.8 (0.5)

gemma-3-4b-it 62.0 (1.7) 31.0 (0.9) 10.3 (1.3) 31.0 (0.5)
SimpleGV, τ=0.5 70.8 (1.2) 39.1 (2.6) 16.3 (1.7) 38.4 (0.7)
SimpleGV, τ=0.6 70.9 (1.9) 45.4 (3.8) 17.5 (2.9) 40.7 (0.9)
SimpleGV, τ=0.7 70.1 (1.6) 43.9 (1.0) 16.4 (1.9) 39.6 (0.6)
SimpleGV, τ=0.8 70.4 (1.6) 44.6 (2.1) 16.0 (1.1) 39.7 (0.5)
Oracle Verifier 78.4 (1.8) 52.7 (2.1) 21.4 (1.4) 46.6 (0.7)

RevisionGV 75.8 (3.0) 46.4 (2.6) 17.1 (1.5) 42.2 (0.4)

gemma-3-12b-it 77.7 (1.7) 51.9 (2.3) 24.4 (1.2) 47.5 (0.7)
SimpleGV, τ=0.5 78.3 (1.1) 53.7 (1.5) 24.0 (1.7) 48.0 (0.5)
SimpleGV, τ=0.6 84.8 (1.8) 55.0 (1.3) 26.2 (1.3) 51.1 (0.4)
SimpleGV, τ=0.7 83.0 (0.9) 56.3 (0.6) 24.0 (1.1) 50.1 (0.2)
SimpleGV, τ=0.8 80.5 (2.1) 53.9 (2.5) 21.2 (2.1) 47.5 (1.0)
Oracle Verifier 86.8 (1.8) 60.3 (1.4) 27.0 (2.0) 53.6 (0.5)

RevisionGV 84.8 (1.0) 58.7 (2.6) 27.5 (1.1) 52.8 (1.0)

We refer to this setup as RevisionGV, or multi-turn generator–verifier verification. RevisionGV
enables iterative correction: the verifier provides feedback, and the generator revises its outputs
in subsequent rounds. As detailed in Section 2 and Figure 1, the RevisionGV process generates
a preference pair when the generator revises an incorrect solution into a correct one based on the
verifier’s feedback. In other words, RevisionGV is not just a multi-turn game, but the method is also
a test of the model’s ability to perform in-context learning from its own critiques.

Results. We evaluate RevisionGV on the KK benchmark using gemma-3-it (1B, 4B, and 12B)
as the base model, and compare it against SimpleGV. As shown in Table 4, RevisionGV con-
sistently outperforms SimpleGV across all thresholds and all difficulty levels. RevisionGV on
gemma-3-12b-it achieves an average accuracy of up to 52.8%, approaching the performance of
oracle ground-truth filtering (53.6%). This underscores the strength of self-evolved preference data
and demonstrates that the model can not only identify its own errors but also actively correct them
based on self-feedback—a more sophisticated form of self-improvement than passive selection. Re-
sults in Table 4 also reveal a scaling trend. For the 1B model, SimpleGV is better than RevisionGV.
On the other hand, for the 4B and 12B, we see a consistent improvement with RevisionGV.

Discussion. Our findings from RevisionGV suggest that as model capacity grows, its dual roles as
generator and verifier become increasingly effective. Intuitively, this is possible because the verifier
feedback is more detailed, and also the generator can better incorporate this feedback when revising
the solution. It is not clear if this trend will continue or saturate with even larger models, which is
an area of future work. Finally, we note that RevisionGV takes advantage of the offline nature of
our training, where we can use natural language feedback to create better preference data.

5 RELATED WORK

Recent work has explored ways to improve model performance without explicit supervision. Zhao
et al. (2025a) introduce “Absolute Zero”, a method for generating coding problems and verifiable

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

solutions. Huang et al. (2025) present the R-Zero method, with improvements over Absolute Zero,
using the same general methodology. However, the reliance on verification through majority vot-
ing limits general applicability. Zuo et al. (2025) propose confidence as an unsupervised reward to
enhance performance. Yet, this approach necessitates tasks that support meaningful majority vot-
ing. Zweiger et al. (2025), with Self-Adapting Language Models, employ an external validation set
during inference-time optimization, departing from self-evolution. Similarly, SPC Critic requires
seed data from a larger LLM (Chen et al., 2025). Wen et al. (2025) introduce Internal Coherence
Maximization, a new self-scoring based finetuning algorithm, which is orthogonal to our approach.

Another area is self-refinement, where models use their own feedback to enhance generated text
(Madaan et al., 2023). Further advancements include training models to explicitly self-correct their
reasoning steps via reinforcement learning (Kumar et al., 2024) and employing search-based algo-
rithms to rectify logical chains (Kim et al., 2025). The quality of the training data is also important
and raises challenges for generating high-quality synthetic prompts (Yu et al., 2025).

A trend for better reasoning is the study of methods that minimize the need for custom-trained
rewards. Going beyond standard RL (Zhao et al., 2025c; Ji et al., 2024), this area includes reinforced
self-play (Zhao et al., 2025a), synthetic code edits (Piterbarg et al., 2025), co-evolutionary collective
feedback (Yuan et al., 2025), self-logits evolution (Zhang et al., 2024), and DPO extensions (Tu
et al., 2025). To generate robust rewards, researchers have explored using confident reasoning traces
(Jang et al., 2025), external feedback models (Sun et al., 2023), teaching reward models to “think”
(Zhou et al., 2025), autorating RAG contexts (Joren et al., 2025), entropy-based methods (Zhang
et al., 2025), and ways to avoid spurious rewards (Shao et al., 2025). These ideas extend to adapting
models during deployment, such as test-time training for distribution shifts (Sun et al., 2020) and
TTRL (Zuo et al., 2025), and other self-adaptation ideas (Zweiger et al., 2025).

6 CONCLUSION

We studied a self-evolution framework, where a single language model acts as both generator and
verifier to improve reasoning without external supervision. We showed that the model can produce
reliable pairs for preference tuning. Our experiments across reasoning benchmarks with free-form
outputs demonstrated that self-evolution yields consistent improvements, getting close to supervised
baselines. Our work revealed three key takeaways: (i) scaling self-generated data enhances perfor-
mance; (ii) larger models provide more reliable self-judgments; and (iii) multi-turn verification with
RevisionGV outperforms voting-based SimpleGV. Expanding on (iii), we saw that feedback-driven
corrections in RevisionGV provide a stronger learning signal than simply discriminating between
correct and incorrect solutions with SimpleGV. Ultimately, we provided new evidence that external
signals like human labels or domain-specific rewards is not a prerequisite for improving models.

For future work, it would be interesting to use complementary functionalities of the single base
model, beyond critiquing or judging solutions. Another avenue is to explore how self-generated data
affects training dynamics; it would be a fundamental insight to theoretically analyze the limits or
stability of optimizing with self-generated data, using only input questions as the human-generated
part. Finally, it is an open direction to find methods that work for very small models (≤1B) or very
large models, where we posit that we need to utilize a dataset that is not too challenging and not too
easy, as a pre-requisite to effectively self-evolve. In particular, if a model is over-saturated on some
particular task, it would be interesting to see how much further self-improvement is possible.

Limitations. The SimpleGV and RevisionGV generator–verifier games require multiple generations
and verifier passes, making it computationally intensive. On the other hand, when we consider
small, open source LLMs, we may be willing to pay the trade-off in cost vs. accuracy. Another
aspect to consider is that performance is also sensitive to thresholds, which currently need minor
task-specific tuning. That being said, a threshold between 0.6 and 0.7 seems reliable for multiple
downstream tasks, meaning the optimization is fairly robust. Nonetheless, addressing efficiency and
adaptive calibration are promising directions for future work. Finally, the self-evolution process is
fundamentally limited by the base model’s latent knowledge. While it can effectively surface and
refine existing reasoning abilities, it is not designed to discover knowledge or reasoning strategies
that are entirely outside its initial training distribution. The self-evolution process amplifies what the
model knows, but might struggle to teach it what it does not know at all.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work studies self-evolving language models in a controlled research setting using only publicly
available datasets (e.g., synthetic logic puzzles and benchmark reasoning tasks). No human subjects
or personally identifiable information were involved in data collection. Our methods do not rely
on sensitive or private data, and we make no claims beyond the intended research scope. While
language models have the potential for misuse, our study focuses exclusively on understanding their
self-improvement dynamics under safe, synthetic conditions. We highlight that broader deployment
of such models should carefully consider issues of bias, fairness, and responsible use. This research
adheres to the ICLR Code of Ethics and complies with principles of transparency, integrity, and
reproducibility.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets used in this
study (synthetic Knights and Knaves problems and publicly available reasoning benchmarks) are
clearly described in the main text and appendix, with details of experimental setup provided. We
include complete descriptions of the generator–verifier training protocols, preference learning ob-
jectives, and evaluation metrics in the paper. Hyperparameters, model sizes, and training schedules
are documented in the appendix.

REFERENCES

Davide Bassi, Dimitar Iliyanov Dimitrov, Bernardo D’Auria, Firoj Alam, Maram Hasanain, Chris-
tian Moro, Luisa Orrù, Gian Piero Turchi, Preslav Nakov, and Giovanni Da San Martino. An-
notating the annotators: Analysis, insights and modelling from an annotation campaign on
persuasion techniques detection. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational Linguistics:
ACL 2025, pp. 17918–17929, Vienna, Austria, July 2025. Association for Computational Lin-
guistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.922. URL https:
//aclanthology.org/2025.findings-acl.922/.

Jiaqi Chen, Bang Zhang, Ruotian Ma, Peisong Wang, Xiaodan Liang, Zhaopeng Tu, Xiaolong Li,
and Kwan-Yee K Wong. Spc: Evolving self-play critic via adversarial games for llm reasoning.
arXiv preprint arXiv:2504.19162, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing

10

https://aclanthology.org/2025.findings-acl.922/
https://aclanthology.org/2025.findings-acl.922/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for llm reasoning. arXiv preprint
arXiv:2410.15115, 2024.

Gemma Team. Gemma 3 technical report. arXiv preprint arXiv:2503.19786, 2025. URL https:
//arxiv.org/abs/2503.19786.

Tommaso Giorgi, Lorenzo Cima, Tiziano Fagni, Marco Avvenuti, and Stefano Cresci. Human and
llm biases in hate speech annotations: A socio-demographic analysis of annotators and targets.
In Proceedings of the International AAAI Conference on Web and Social Media, volume 19, pp.
653–670, 2025.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
ing models. arXiv preprint arXiv:2506.04178, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. arXiv
preprint arXiv:2508.05004, 2025.

Hyosoon Jang, Yunhui Jang, Sungjae Lee, Jungseul Ok, and Sungsoo Ahn. Self-training large
language models with confident reasoning. arXiv preprint arXiv:2505.17454, 2025.

Ke Ji, Junying Chen, Anningzhe Gao, Wenya Xie, Xiang Wan, and Benyou Wang. Llms could
autonomously learn without external supervision. arXiv preprint arXiv:2406.00606, 2024.

Hailey Joren, Jianyi Zhang, Chun-Sung Ferng, Da-Cheng Juan, Ankur Taly, and Cyrus Rashtchian.
Sufficient context: A new lens on retrieval augmented generation systems. In The Thirteenth
International Conference on Learning Representations, 2025.

Minsu Kim, Jean-Pierre Falet, Oliver E Richardson, Xiaoyin Chen, Moksh Jain, Sungjin Ahn, Sung-
soo Ahn, and Yoshua Bengio. Search-based correction of reasoning chains for language models.
arXiv preprint arXiv:2505.11824, 2025.

Jakub Grudzien Kuba, Mengting Gu, Qi Ma, Yuandong Tian, and Vijai Mohan. Language self-play
for data-free training. arXiv preprint arXiv:2509.07414, 2025.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, and Rebecca Roelofs. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. arXiv preprint arXiv:2209.14610, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, and Yiming Yang. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus. Training language models on synthetic edit se-
quences improves code synthesis. In The Thirteenth International Conference on Learning Rep-
resentations, 2025.

Barbara Plank. The “problem” of human label variation: On ground truth in data, modeling and
evaluation. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 10671–10682, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, and Ranjay Krishna. Spurious rewards: Rethinking training signals
in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Jiao Sun, Deqing Fu, Yushi Hu, Su Wang, Royi Rassin, Da-Cheng Juan, Dana Alon, Charles Her-
rmann, Sjoerd Van Steenkiste, Ranjay Krishna, et al. Dreamsync: Aligning text-to-image gener-
ation with image understanding feedback. arXiv preprint arXiv:2311.17946, 2023.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International conference
on machine learning, pp. 9229–9248. PMLR, 2020.

Songjun Tu, Jiahao Lin, Xiangyu Tian, Qichao Zhang, Linjing Li, Yuqian Fu, Nan Xu, Wei He, Xi-
angyuan Lan, and Dongmei Jiang. Enhancing llm reasoning with iterative dpo: A comprehensive
empirical investigation. arXiv preprint arXiv:2503.12854, 2025.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025.

Jiaxin Wen, Zachary Ankner, Arushi Somani, Peter Hase, Samuel Marks, Jacob Goldman-Wetzler,
Linda Petrini, Henry Sleight, Collin Burns, He He, et al. Unsupervised elicitation of language
models. arXiv preprint arXiv:2506.10139, 2025.

Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr
may not escape its origin. arXiv preprint arXiv:2507.14843, 2025.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. arXiv
preprint arXiv:2410.23123, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ping Yu, Jack Lanchantin, Tianlu Wang, Weizhe Yuan, Olga Golovneva, Ilia Kulikov, Sainba-
yar Sukhbaatar, Jason Weston, and Jing Xu. Cot-self-instruct: Building high-quality synthetic
prompts for reasoning and non-reasoning tasks. arXiv preprint arXiv:2507.23751, 2025.

Wenzhen Yuan, Shengji Tang, Weihao Lin, Jiacheng Ruan, Ganqu Cui, Bo Zhang, Tao Chen, Ting
Liu, Yuzhuo Fu, and Peng Ye. Wisdom of the crowd: Reinforcement learning from coevolutionary
collective feedback. arXiv preprint arXiv:2508.12338, 2025.

Jianyi Zhang, Da-Cheng Juan, Cyrus Rashtchian, Chun-Sung Ferng, Heinrich Jiang, and Yiran
Chen. Sled: Self logits evolution decoding for improving factuality in large language models.
Advances in Neural Information Processing Systems, 37:5188–5209, 2024.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data. arXiv preprint arXiv:2505.03335, 2025a.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025b.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025c.

Meng Zhou, Bei Li, Jiahao Liu, Xiaowen Shi, Yang Bai, Rongxiang Weng, Jingang Wang, and
Xunliang Cai. Libra: Assessing and improving reward model by learning to think. arXiv preprint
arXiv:2507.21645, 2025.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, and Ermo Hua. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pulkit Agrawal. Self-
adapting language models. arXiv preprint arXiv:2506.10943, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used LLMs solely as a writing assistant to polish the paper. Specifically, LLMs were employed to
improve grammar, clarity, and flow of exposition, without contributing to the research ideas, exper-
imental design, analyses, or results. All scientific content, methodology, and conclusions presented
in this work were conceived and authored entirely by the listed authors.

B EXPERIMENT DETAILS

B.1 TRAINING AND EVALUATION SETTINGS

We consider two main training settings:

• Synthetic reasoning. Models are trained on the Knights and Knaves (KK) training set (restricted
to instances with 2–3 people) and evaluated on the held-out KK test set covering 2–8 people.

• Mathematical reasoning. Models are trained on the OpenThoughts3 dataset and evaluated on
four benchmarks: GSM8K, MATH500, MATHHard, TabMWP, as well as the KK test set.

No additional preprocessing was applied beyond the original dataset splits.

B.2 MODELS AND OPTIMIZATION

We use instruction-tuned gemma-3-it models (1B, 4B, 12B) and Qwen-2.5-7B-Instruct.
All models are fully fine-tuned (no parameter-efficient adaptation). Optimization uses AdamW with
a sequence length of 4096 and batch size of 256. Training schedules are as follows:

• Gemma-1B: learning rate 7.5× 10−7, 3 epochs.

• Gemma-4B: learning rate 5.0× 10−7, 3 epochs.

• Gemma-12B: learning rate 2.5× 10−7, 3 epochs.

• Qwen-7B: learning rate 7.5× 10−7, 5 epochs.

B.3 GENERATOR–VERIFIER SETUP

Unless otherwise specified, we use n1 = 8 candidate generations per query and n2 = 16 verifier
passes per candidate. We set the confidence threshold to τ = 0.6. For RevisionGV (multi-turn
verification), the generator revises responses for up to 4 rounds, with the verifier providing free-
form feedback that ends with a structured label.

B.4 ITERATIVE AND CURRICULUM LEARNING

For iterative preference learning, we repeat the generator–verifier loop for 2–3 rounds. To isolate
the effect of iteration, we reuse the same prompt set at each round rather than re-sampling. For
curriculum learning, difficulty levels are determined by the KK dataset (based on the number of
people). By default, models are trained on KK with 2–3 people before being evaluated on harder
cases.

C PROMPTS

We provide the prompts we use for the specific KK verifier, the generic verifier, and the generic
reviser. In Appendix C.1, we perform experiments showing how the verifier performance changes
with prompts and model sizes. This complements our results in Figure 2 on verifier accuracy (for
the specific KK prompt) as the model trains. For the main experiments, we use “Generic Prompt 3”
for our OpenThoughts data collection, as it performs best on 2 of 3 datasets (Musique & KK).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Knights and Knaves (KK) Specific Prompt for Verifier
CRITIC_POS_SYMBOL = "CRITIC RESULT: SOLUTION IS CORRECT"
CRITIC_NEG_SYMBOL = "CRITIC RESULT: SOLUTION IS INCORRECT"

CRITIC_SYSTEM_MESSAGE = f"""You are a critic tasked with analyzing
a solution to a logical reasoning problem and determining whether
the solution correctly deduces the identities of characters
(e.g., knights or knaves). Carefully examine whether the
explanation uses valid deductive logic, correctly interprets
the statements, and exhaustively considers all cases. Pay
attention to whether contradictions are correctly identified
and if the conclusion logically follows from the analysis.

- If the solution is logically sound and complete, finalize
your critique with ’{CRITIC_POS_SYMBOL}’.

- If the solution contains reasoning flaws, invalid
assumptions, missed cases, or unsupported conclusions, explain
these issues in detail and finalize with ’{CRITIC_NEG_SYMBOL}’."""

CRITIC_PROMPT_TEMPLATE = (
f"{CRITIC_SYSTEM_MESSAGE}\n\n"
"## Problem\n{query}\n\n"
"## Solution\n{response}\n\n"
"## Your response"

)

Generic Prompt for Verifier
CRITIC_POS_SYMBOL = "CRITIC RESULT: SOLUTION IS CORRECT"
CRITIC_NEG_SYMBOL = "CRITIC RESULT: SOLUTION IS INCORRECT"

CRITIC_SYSTEM_MESSAGE = f"""You are a meticulous and critical
logic expert specializing in math, puzzles, logic and
factuality problems. Your task is to analyze a proposed
solution to the problem below and determine if it is correct.

To do this, go through the problem and then go through each
step in the answer very carefully, checking if there are any
inconsistencies or contradictions with the conditions in the
problem. End your response with ’{CRITIC_POS_SYMBOL}’ if the
solution has no contradictions/ inconsistencies to the
conditions in the question. Otherwise, end your response with
’{CRITIC_NEG_SYMBOL}’ if the solution has one more
contradictions or inconsistencies."""

CRITIC_PROMPT_TEMPLATE = (
f"{CRITIC_SYSTEM_MESSAGE}\n\n"
"## Problem\n{query}\n\n"
"## Solution\n{response}\n\n"
"## Your response"

)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Generic Revision Prompt
ANALYSIS_SYMBOL = "ANALYSIS:"
REVISOR_ANSWER_SYMBOL = "REVISED SOLUTION:"

REVISOR_SYSTEM_MESSAGE = f"""You are given a logical reasoning
problem, an initial solution, and a critic’s feedback on that
solution. Your task is to revise the original solution so that
it is correct, logically sound, and fully aligned with the
problem’s requirements. Your revision should strictly follow
the instructions in the problem and address all the issues
raised by the critic.

Your response should be in the following format:
{ANALYSIS_SYMBOL} ...
{REVISOR_ANSWER_SYMBOL} ..."""

REVISOR_PROMPT_TEMPLATE = (
f"{REVISOR_SYSTEM_MESSAGE}\n\n"
"## Problem\n{query}\n\n"
"## Solution\n{response}\n\n"
"## Critic’s Feedback\n{critic_feedback}\n\n"
"## Your response"

)

C.1 VERIFIER RESULTS

We perform a deep dive here in the accuracy of the unsupervised verifier. For different datasets,
we compare an unsupervised labeled (correct/incorrect) versus using a strong model (Gemini 2.5
Pro) that has access to the ground truth as the true label. We then compute the agreement with the
supervised strong model as a measure of unsupervised verifier accuracy. Furthermore, we compare
using three generic prompts (e.g., not specific to reasoning) against a dataset-specific prompt. We
present our results in Tables 5, 6, 7, and 8.

Table 5: Gemma 4B, MATH, Verifier Accuracy. We sample 60 question and compare precision and
accuracy (correct/incorrect labels) of an unsupervised model (no ground truth) versus supervised
Gemini 2.5 Pro (with ground truth answers). For the “Single” cases we average over 3 runs, standard
deviation in parens. We also evaluate taking the Majority (Maj.) over 3 samples.

Prompt Type Prec. Single Acc. Single Prec. Maj. Acc. Maj.
Specific Prompt MATH 85.1 (0.0) 85.0 (0.0) 85.1 85.0
Generic Prompt 1 89.0 (0.1) 88.9 (0.8) 88.9 88.3
Generic Prompt 2 87.0 (1.8) 86.7 (2.7) 87.0 86.7
Generic Prompt 3 81.4 (1.4) 80.6 (1.6) 83.0 81.7

Table 6: Gemma 4B, KK, Verifier Accuracy. We sample 60 question and compare precision and
accuracy (correct/incorrect labels) of an unsupervised model (no ground truth) versus supervised
Gemini 2.5 Pro (with ground truth answers). For the “Single” cases we average over 3 runs, standard
deviation in parens. We also evaluate taking the Majority (Maj.) over 3 samples.

Prompt Type Prec. Single Acc. Single Prec. Maj. Acc. Maj.
Specific Prompt KK 45.2 (4.1) 53.3 (1.4) 50.0 55.0
Generic Prompt 1 52.3 (1.8) 57.8 (2.1) 51.3 56.7
Generic Prompt 2 52.8 (2.2) 58.3 (2.7) 52.9 58.3
Generic Prompt 3 55.1 (0.6) 60.0 (0.0) 55.2 60.0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Gemma 27B, MATH, Verifier Accuracy. We sample 60 question and compare precision
and accuracy (correct/incorrect labels) of an unsupervised model (no ground truth) versus supervised
Gemini 2.5 Pro (with ground truth answers). For the “Single” cases we average over 3 runs, standard
deviation in parens. We also evaluate taking the Majority (Maj.) over 3 samples.

Prompt Type Prec. Single Acc. Single Prec. Maj. Acc. Maj.
Specific Prompt MATH 94.0 (0.7) 91.7 (0.0) 94.6 91.7
Generic Prompt 1 94.2 (0.8) 94.4 (0.8) 94.7 95.0
Generic Prompt 2 92.5 (0.7) 92.2 (0.8) 91.5 91.7
Generic Prompt 3 91.9 (0.8) 90.0 (1.4) 91.4 90.0

Table 8: Gemma 27B, KK, Verifier Accuracy. We sample 60 question and compare precision and
accuracy (correct/incorrect labels) of an unsupervised model (no ground truth) versus supervised
Gemini 2.5 Pro (with ground truth answers). For the “Single” cases we average over 3 runs, standard
deviation in parens. We also evaluate taking the Majority (Maj.) over 3 samples.

Prompt Type Prec. Single Acc. Single Prec. Maj. Acc. Maj.
Specific Prompt KK 84.7 (3.2) 68.3 (2.7) 85.7 70.0
Generic Prompt 1 90.5 (2.0) 90.0 (3.6) 91.3 91.7
Generic Prompt 2 77.6 (0.8) 75.0 (1.4) 76.9 75.0
Generic Prompt 3 80.8 (3.6) 72.8 (4.2) 80.0 73.3

17

	Introduction
	Preliminaries
	Experiment Setup

	SimpleGV: Single-turn Verification with Verifier-as-a-Judge
	Thresholded Majority Voting for More Accurate Verification
	Self-Improvement versus Model Sizes
	Self-Improvement versus Data Sizes
	Iterative Preference Learning
	Curriculum Learning
	Cost Analysis

	RevisionGV: Multi-turn Generator–Verifier Game
	Related Work
	Conclusion
	LLM Usage
	Experiment Details
	Training and Evaluation Settings
	Models and Optimization
	Generator–Verifier Setup
	Iterative and Curriculum Learning

	Prompts
	Verifier Results

