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Abstract

The Langevin Dynamics framework, which aims to generate samples from the1

score function of a probability distribution, is widely used for analyzing and2

interpreting score-based generative modeling. While the convergence behavior of3

Langevin Dynamics under unimodal distributions has been extensively studied in4

the literature, in practice the data distribution could consist of multiple distinct5

modes. In this work, we investigate Langevin Dynamics in producing samples6

from multimodal distributions and theoretically study its mode-seeking properties.7

We prove that under a variety of sub-Gaussian mixtures, Langevin Dynamics is8

unlikely to find all mixture components within a sub-exponential number of steps in9

the data dimension. To reduce the mode-seeking tendencies of Langevin Dynamics,10

we propose Chained Langevin Dynamics, which divides the data vector into patches11

of constant size and generates every patch sequentially conditioned on the previous12

patches. We perform a theoretical analysis of Chained Langevin Dynamics by13

reducing it to sampling from a constant-dimensional distribution. We present14

the results of several numerical experiments on synthetic and real image datasets,15

supporting our theoretical results on the iteration complexities of sample generation16

from mixture distributions using the chained and vanilla Langevin Dynamics.17

1 Introduction18

A central task in unsupervised learning involves learning the underlying probability distribution of19

training data and efficiently generating new samples from the distribution. Score-based generative20

modeling (SGM) (Song et al., 2020c) has achieved state-of-the-art performance in various learning21

tasks including image generation (Song and Ermon, 2019, 2020; Ho et al., 2020; Song et al., 2020a;22

Ramesh et al., 2022; Rombach et al., 2022), audio synthesis (Chen et al., 2020; Kong et al., 2020),23

and video generation (Ho et al., 2022; Blattmann et al., 2023). In addition to the successful empirical24

results, the convergence analysis of SGM has attracted significant attention in the recent literature25

(Lee et al., 2022, 2023; Chen et al., 2023; Li et al., 2023, 2024).26

Stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011), as a fundamental method-27

ology to implement and interpret SGM, can produce samples from the (Stein) score function of a28

probability density, i.e., the gradient of the log probability density function with respect to data. It29

has been widely recognized that a pitfall of SGLD is its slow mixing rate (Wooddard et al., 2009;30

Raginsky et al., 2017; Lee et al., 2018). Specifically, Song and Ermon (2019) shows that under a31

multi-modal data distribution, the samples from Langevin dynamics may have an incorrect relative32

density across the modes. Based on this finding, Song and Ermon (2019) proposes anneal Langevin33

dynamics, which injects different levels of Gaussian noise into the data distribution and samples with34

SGLD on the perturbed distribution. While outputting the correct relative density across modes can35

be challenging for SGLD, a natural question is whether SGLD would be able to find all the modes of36

a multi-modal distribution.37
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In this work, we study this question by analyzing the mode-seeking properties of SGLD. The notion38

of mode-seekingness (Bishop, 2006; Ke et al., 2021; Li and Farnia, 2023) refers to the property that a39

generative model captures only a subset of the modes of a multi-modal distribution. We note that40

a similar problem, known as metastability, has been studied in the context of Langevin diffusion,41

a continuous-time version of SGLD described by stochastic differential equation (SDE) (Bovier42

et al., 2002, 2004; Gayrard et al., 2005). Specifically, Bovier et al. (2002) gave a sharp bound on43

the mean hitting time of Langevin diffusion and proved that it may require exponential (in the space44

dimensionality d) time for transition between modes. Regarding discrete SGLD, Lee et al. (2018)45

constructed a probability distribution whose density is close to a mixture of two well-separated46

isotropic Gaussians, and proved that SGLD could not find one of the two modes within an exponential47

number of steps. However, further exploration of mode-seeking tendencies of SGLD and its variants48

such as annealed Langevin dynamics for general distributions is still lacking in the literature.49

In this work, we theoretically formulate and demonstrate the potential mode-seeking tendency of50

SGLD. We begin by analyzing the convergence under a variety of Gaussian mixture probability51

distributions, under which SGLD could fail to visit all the mixture components within sub-exponential52

steps (in the data dimension). Subsequently, we generalize this result to mixture distributions with53

sub-Gaussian modes. This generalization extends our earlier result on Gaussian mixtures to a54

significantly larger family of mixture models, as the sub-Gaussian family includes any distribution55

over an ℓ2-norm-bounded support set. Furthermore, we extend our theoretical results to anneal56

Langevin dynamics with bounded noise scales.57

To reduce SGLD’s large iteration complexity shown under a high-dimensional input vector, we58

propose Chained Langevin Dynamics (Chained-LD). Since SGLD could suffer from the curse of59

dimensionality, we decompose the sample x ∈ Rd into d/Q patches x(1), · · · ,x(d/Q), each of60

constant size Q, and sequentially generate every patch x(q) for all q ∈ [d/Q] statistically conditioned61

on previous patches, i.e., P (x(q) | x(0), · · ·x(q−1)). The combination of all patches generated from62

the conditional distribution faithfully follows the probability density P (x), while learning each patch63

requires less cost due to the reduced dimension. We also provide a theoretical analysis of Chained-LD64

by reducing the convergence of a d-dimensional sample to the convergence of each patch.65

Finally, we present the results of several numerical experiments to validate our theoretical findings.66

For synthetic experiments, we consider moderately high-dimensional Gaussian mixture models,67

where the vanilla and annealed Langevin dynamics could not find all the components within a million68

steps, while Chained-LD could capture all the components with correct frequencies in O(104) steps.69

For experiments on real image datasets, we consider a mixture of two modes by using the original70

images from MNIST/Fashion-MNIST training dataset (black background and white digits/objects)71

as the first mode and constructing the second mode by i.i.d. flipping the images (white background72

and black digits/objects) with probability 0.5. Following from Song and Ermon (2019), we trained73

a Noise Conditional Score Network (NCSN) to estimate the score function. Our numerical results74

indicate that vanilla Langevin dynamics can fail to capture the two modes, as also observed by Song75

and Ermon (2019). On the other hand, Chained-LD was capable of finding both modes regardless of76

initialization. We summarize the contributions of this work as follows:77

• Theoretically studying the mode-seeking properties of vanilla and annealed Langevin dynamics,78

• Proposing Chained Langevin Dynamics (Chained-LD), which decomposes the sample into patches79

and sequentially generates each patch conditioned on previous patches,80

• Providing a theoretical analysis of the convergence behavior of Chained-LD,81

• Numerically comparing the mode-seeking properties of vanilla, annealed, and chained Langevin82

dynamics.83

Notations: We use [n] to denote the set {1, 2, · · · , n}. Also, in the paper, ∥·∥ refers to the ℓ2 norm.84

We use 0n and 1n to denote a 0-vector and 1-vector of length n. We use In to denote the identity85

matrix of size n× n. In the text, TV stands for the total variation distance.86

2 Related Works87

Langevin Dynamics: The convergence guarantees for Langevin diffusion, a continuous version of88

Langevin dynamics, are classical results extensively studied in the literature (Bhattacharya, 1978;89
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Roberts and Tweedie, 1996; Bakry and Émery, 1983; Bakry et al., 2008). Langevin dynamics, also90

known as Langevin Monte Carlo, is a discretization of Langevin diffusion typically modeled as a91

Markov Chain Monte Carlo (Welling and Teh, 2011). For unimodal distributions, e.g., the probability92

density function that is log-concave or satisfies log-Sobolev inequality, the convergence of Langevin93

dynamics is provably fast (Dalalyan, 2017; Durmus and Moulines, 2017; Vempala and Wibisono,94

2019). However, for multimodal distributions, the non-asymptotic convergence analysis is much more95

challenging (Cheng et al., 2018). Raginsky et al. (2017) gave an upper bound on the convergence time96

of Langevin dynamics for arbitrary non-log-concave distributions with certain regularity assumptions,97

which, however, could be exponentially large without imposing more restrictive assumptions. Lee98

et al. (2018) studied the special case of a mixture of Gaussians of equal variance and provided99

heuristic analysis of sampling from general non-log-concave distributions.100

Mode-Seekingness of Langevin Dynamics: The investigation of the mode-seekingness of gener-101

ative models starts with different generative adversarial network (GAN) (Goodfellow et al., 2014)102

model formulations and divergence measures, from both the practical (Goodfellow, 2016; Poole103

et al., 2016) and theoretical (Shannon et al., 2020; Li and Farnia, 2023) perspectives. In the context104

of Langevin dynamics, mode-seekingness is closely related to a lower bound on the transition time105

between two modes, e.g., two local maximums. Bovier et al. (2002, 2004); Gayrard et al. (2005)106

studied the mean hitting time of the continuous Langevin diffusion. Lee et al. (2018) proved the107

existence of a mixture of two Gaussian distributions whose covariance matrices differ by a constant108

factor, Langevin dynamics cannot find both modes in polynomial time.109

Score-based Generative Modeling: Since Song et al. (2020b) proposed sliced score matching110

which can train deep models to learn the score functions of implicit probability distributions on high-111

dimensional data, score-based generative modeling (SGM) has been going through a spurt of growth.112

Annealed Langevin dynamics (Song and Ermon, 2019) estimates the noise score of the probability113

density perturbed by Gaussian noise and utilizes stochastic gradient Langevin dynamics to generate114

samples from a sequence of decreasing noise scales. Song and Ermon (2020) conducted a heuristic115

analysis of the effect of noise levels on the performance of annealed Langevin dynamics. Denoising116

diffusion probabilistic model (DDPM) (Ho et al., 2020) incorporates a step-by-step introduction of117

random noise into data, followed by learning to reverse this diffusion process in order to generate118

desired data samples from the noise. Song et al. (2020c) unified anneal Langevin dynamics and119

DDPM via a stochastic differential equation. A recent line of work focuses on the non-asymptotic120

convergence guarantees for SGM with an imperfect score estimation under various assumptions on121

the data distribution (Block et al., 2020; De Bortoli et al., 2021; Lee et al., 2022; Chen et al., 2023;122

Benton et al., 2023; Li et al., 2023, 2024).123

3 Preliminaries124

3.1 Langevin Dynamics125

Generative modeling aims to produce samples such that their distribution is close to the underlying true126

distribution P . For a continuously differentiable probability density P (x) on Rd, its score function is127

defined as the gradient of the log probability density function (PDF)∇x logP (x). Langevin diffusion128

is a stochastic process defined by the stochastic differential equation (SDE)129

dxt = −∇x logP (xt) dt+
√
2 dwt,

where wt is the Wiener process on Rd. To generate samples from Langevin diffusion, Welling and130

Teh (2011) proposed stochastic gradient Langevin dynamics (SGLD), a discretization of the SDE for131

T iterations. Each iteration of SGLD is defined as132

xt = xt−1 +
δt
2
∇x logP (xt−1) +

√
δtϵt, (1)

where δt is the step size and ϵt ∼ N (0d, Id) is Gaussian noise. It has been widely recognized133

that Langevin diffusion could take exponential time to mix without additional assumptions on the134

probability density (Bovier et al., 2002, 2004; Gayrard et al., 2005; Raginsky et al., 2017; Lee et al.,135

2018). To combat the slow mixing, Song and Ermon (2019) proposed annealed Langevin dynamics136

by perturbing the probability density with Gaussian noise of variance σ2, i.e.,137

Pσ(x) :=

∫
P (z)N (x | z, σ2Id) dz, (2)
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and running SGLD on the perturbed data distribution Pσt(x) with gradually decreasing noise levels138

{σt}t∈[T ], i.e.,139

xt = xt−1 +
δt
2
∇x logPσt(xt−1) +

√
δtϵt, (3)

where δt is the step size and ϵt ∼ N (0d, Id) is Gaussian noise. When the noise level σ is vanishingly140

small, the perturbed distribution is close to the true distribution, i.e., Pσ(x) ≈ P (x). Since we do141

not have direct access to the (perturbed) score function, Song and Ermon (2019) proposed the Noise142

Conditional Score Network (NCSN) sθ(x, σ) to jointly estimate the scores of all perturbed data143

distributions, i.e.,144

∀σ ∈ {σt}t∈[T ] , sθ(x, σ) ≈ ∇x logPσ(x).

To train the NCSN, Song and Ermon (2019) adopted denoising score matching, which minimizes the145

following loss146

L
(
θ; {σt}t∈[T ]

)
:=

1

2T

∑
t∈[T ]

σ2
tEx∼PEx̃∼N (x,σ2

t Id)

[∥∥∥∥sθ(x̃, σt)−
x̃− x

σ2
t

∥∥∥∥2].
Assuming the NCSN has enough capacity, sθ∗(x, σ) minimizes the loss L

(
θ; {σt}t∈[T ]

)
if and only147

if sθ∗(x, σt) = ∇x logPσt
(x) almost surely for all t ∈ [T ].148

3.2 Multi-Modal Distributions149

Our work focuses on multi-modal distributions. We use P =
∑

i∈[k] wiP
(i) to represent a mixture150

of k modes, where each mode P (i) is a probability density with frequency wi such that wi > 0151

for all i ∈ [k] and
∑

i∈[k] wi = 1. In our theoretical analysis, we consider Gaussian mixtures and152

sub-Gaussian mixtures, i.e., every component P (i) is a Gaussian or sub-Gaussian distribution. A153

probability distribution p(z) of dimension d is defined as a sub-Gaussian distribution with parameter154

ν2 if, given the mean vector µ := Ez∼p[z], the moment generating function (MGF) of p satisfies the155

following inequality for every vector α ∈ Rd:156

Ez∼p

[
exp

(
αT (z− µ

)]
≤ exp

(ν2 ∥α∥22
2

)
. (4)

We remark that sub-Gaussian distributions include a wide variety of distributions such as Gaussian157

distributions and any distribution within a bounded ℓ2-norm distance from the mean µ. From158

equation 2 we note that the perturbed distribution is the convolution of the original distribution159

and a Gaussian random variable, i.e., for random variables z ∼ p and t ∼ N (0d, Id), their sum160

z+t ∼ pσ follows the perturbed distribution with noise level σ. Therefore, a perturbed (sub)Gaussian161

distribution remains (sub)Gaussian. We formalize this property in Proposition 1 and defer the proof162

to Appendix A for completeness.163

Proposition 1. Suppose the perturbed distribution of a d-dimensional probability distribution p with164

noise level σ is pσ , then the mean of the perturbed distribution is the same as the original distribution,165

i.e., Ez∼pσ [z] = Ez∼p[z]. If p = N (µ,Σ) is a Gaussian distribution, pσ = N (µ,Σ+ σ2Id) is also166

a Gaussian distribution. If p is a sub-Gaussian distribution with parameter ν2, pσ is a sub-Gaussian167

distribution with parameter (ν2 + σ2).168

4 Theoretical Analysis of the Mode-Seeking Properties of Langevin Dynamics169

In this section, we theoretically investigate the mode-seeking properties of vanilla and annealed170

Langevin dynamics. We begin with analyzing Langevin dynamics in Gaussian mixtures.171

4.1 Langevin Dynamics in Gaussian Mixtures172

Assumption 1. Consider a data distribution P :=
∑k

i=0 wiP
(i) as a mixture of Gaussian distribu-173

tions, where 1 ≤ k = o(d) and wi > 0 is a positive constant such that
∑k

i=0 wi = 1. Suppose that174

P (i) = N (µi, ν
2
i Id) is a Gaussian distribution over Rd for all i ∈ {0} ∪ [k] such that for all i ∈ [k],175

νi < ν0 and ∥µi − µ0∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

)
d. Denote νmax := maxi∈[k] νi.176
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Regarding the first requirement νi < ν0, we first note that the probability density p(z) of a Gaussian177

distribution N (µ, ν2Id) decays exponentially in terms of ∥z−µ∥2

ν2 . When a state z is sufficiently far178

from all modes (i.e., ∥z∥ ≫ ∥µi∥), the Gaussian distribution with the largest variance (i.e., P (0) in179

Assumption 1) dominates all other modes because ∥z−µ0∥2

ν2
0

≈ ∥z∥2

ν2
0
≫ ∥z∥2

ν2
i
≈ ∥z−µi∥2

ν2
i

. We call180

such mode P (0) the universal mode. Therefore, if z is initialized far from all modes, it can only181

converge to the universal mode because the gradient information of other modes is masked. Once182

z enters the universal mode P (0), if the step size δt of Langevin dynamics is small (i.e., δt ≤ ν20 ),183

it would take exponential steps to escape the local mode P (0); while if the step size is large (i.e.,184

δt > ν20 ), the state z would again be far from all modes and thus the universal mode P (0) dominates185

all other modes. Hence, z can only visit the universal mode unless the stochastic noise ϵt miraculously186

leads it to the region of another mode. In addition, it can be verified that log
(

ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

is a187

positive constant for νi < ν0, thus the second requirement of Assumption 1 essentially represents188

∥µi − µ0∥2 ≤ O(d). We formalize the intuition in Theorem 1 and defer the proof to Appendix A.1.189

Theorem 1. Consider a data distribution P satisfying Assumption 1. We follow Langevin dynamics190

for T = exp(O(d)) steps. Suppose the sample is initialized in P (0), then with probability at least191

1− T · exp(−Ω(d)), we have ∥xt − µi∥2 >
ν2
0+ν2

max

2 d for all t ∈ {0} ∪ [T ] and i ∈ [k].192

We note that ∥xt − µi∥2 >
ν2
0+ν2

max

2 d is a strong notion of mode-seekingness, since the probability193

density of mode P (i) = N (µi, ν
2
i Id) concentrates around the ℓ2-norm ball

{
z : ∥z− µi∥2 ≤ ν2i d

}
.194

This notion can also easily be translated into a lower bound in terms of other distance measures such195

as total variation distance and Wasserstein 2-distance. Moreover, in Theorem 2 we extend the result196

to annealed Langevin dynamics with bounded noise level, and the proof is deferred to Appendix A.2.197

Theorem 2. Consider a data distribution P satisfying Assumption 1. We follow annealed Langevin198

dynamics for T = exp(O(d)) steps with noise levels cσ ≥ σ0 ≥ · · · ≥ σT ≥ 0 for constant cσ > 0.199

In addition, assume for all i ∈ [k], ∥µi − µ0∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i +c2σ

ν2
0+c2σ

)
− ν2

i +c2σ
2ν2

0+c2σ
+

ν2
0+c2σ

2ν2
i +c2σ

)
d.200

Suppose that the sample is initialized in P
(0)
σ0 , then with probability at least 1− T · exp(−Ω(d)), we201

have ∥xt − µi∥2 >
ν2
0+ν2

max+2σ2
t

2 d for all t ∈ {0} ∪ [T ] and i ∈ [k].202

4.2 Langevin Dynamics in Sub-Gaussian Mixtures203

We further generalize our results to sub-Gaussian mixtures. We impose the following assumptions on204

the mixture. It is worth noting that these assumptions automatically hold for Gaussian mixtures.205

Assumption 2. Consider a data distribution P :=
∑k

i=0 wiP
(i) as a mixture of sub-Gaussian206

distributions, where 1 ≤ k = o(d) and wi > 0 is a positive constant such that
∑k

i=0 wi = 1.207

Suppose that P (0) = N (µ0, ν
2
0Id) is Gaussian and for all i ∈ [k], P (i) satisfies208

i. P (i) is a sub-Gaussian distribution of mean µi with parameter ν2i ,209

ii. P (i) is differentiable and∇P (i)(µi) = 0d,210

iii. the score function of P (i) is Li-Lipschitz such that Li ≤ cL
ν2
i

for some constant cL > 0,211

iv. ν20 > max
{
1,

4(c2L+cνcL)
cν(1−cν)

}
ν2
max

1−cν
for constant cν ∈ (0, 1), where νmax := maxi∈[k] νi,212

v. ∥µi − µ0∥2 ≤ (1−cν)ν
2
0−ν2

i

2(1−cν)

(
log

cνν
2
i

(c2L+cνcL)ν2
0
− ν2

i

2(1−cν)ν2
0
+

(1−cν)ν
2
0

2ν2
i

)
d.213

We validate the feasibility of Assumption 2.v. in Lemma 9 in the Appendix. With Assumption 2, we214

show the mode-seeking tendency of Langevin dynamics under sub-Gaussian distributions in Theorem215

3 and defer the proof to Appendix A.3.216
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Algorithm 1 Chained Langevin Dynamics (Chained-LD)
Require: Patch size Q, dimension d, conditional score function estimator sθ, number of iterations

T , noise levels {σt}t∈[TQ/d], step size {δt}t∈[TQ/d].

1: Initialize x0, and divide x0 into d/Q patches x(1)
0 , · · ·x(d/Q)

0 of equal size Q

2: for q ← 1 to d/Q do
3: for t← 1 to TQ/d do

4: x
(q)
t ← x

(q)
t−1 +

δt
2 sθ

(
x
(q)
t | σt,x

(1)
t , · · · ,x(q−1)

t

)
+
√
δtϵt, where ϵt ∼ N (0Q, IQ)

5: end for
6: x

(q)
0 ← x

(q)
TQ/d

7: end for
8: return xTQ/d

Theorem 3. Consider a data distribution P satisfying Assumption 2. We follow Langevin dynamics217

for T = exp(O(d)) steps. Suppose the sample is initialized in P (0), then with probability at least218

1− T · exp(−O(d)), we have ∥xt − µi∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d for all t ∈ {0} ∪ [T ] and i ∈ [k].219

Finally, we slightly modify Assumption 2 and extend our results to annealed Langevin dynamics220

under sub-Gaussian mixtures in Theorem 4. The details of Assumption 3 and the proof of Theorem 4221

are deferred to Appendix A.4.222

Theorem 4. Consider a data distribution P satisfying Assumption 3. We follow annealed Langevin223

dynamics for T = exp(O(d)) steps with noise levels cσ ≥ σ0 ≥ · · · ≥ σT ≥ 0. Suppose224

the sample is initialized in P
(0)
σ0 , then with probability at least 1 − T · exp(−O(d)), we have225

∥xt − µi∥2 >
(

ν2
0+σ2

t

2 +
ν2
max+σ2

t

2(1−cν)

)
d for all t ∈ {0} ∪ [T ] and i ∈ [k].226

5 Chained Langevin Dynamics227

To reduce the mode-seeking tendencies of vanilla and annealed Langevin dynamics, we propose228

Chained Langevin Dynamics (Chained-LD) in Algorithm 1. While vanilla and annealed Langevin229

dynamics apply gradient updates to all coordinates of the sample in every step, we decompose the230

sample into patches of constant size and generate each patch sequentially to alleviate the exponen-231

tial dependency on the dimensionality. More precisely, we divide a sample x into d/Q patches232

x(1), · · ·x(d/Q) of some constant size Q, and apply annealed Langevin dynamics to sample each233

patch x(q) (for q ∈ [d/Q]) from the conditional distribution P (x(q) | x(1), · · ·x(q−1)).234

An ideal conditional score function estimator sθ could jointly estimate the scores of all perturbed235

conditional patch distribution, i.e., ∀σ ∈ {σt}t∈[TQ/d] , q ∈ [d/Q],236

sθ

(
x(q) | σ,x(1), · · · ,x(q−1)

)
≈ ∇x(q) logPσ(x

(q) | x(1), · · ·x(q−1)).

Following from Song and Ermon (2019), we use the denoising score matching to train the estimator.237

For a given σ, the denoising score matching objective is238

ℓ(θ;σ) :=
1

2
Ex∼PEx̃∼N (x,σ2Id)

∑
q∈[d/Q]

[∥∥∥∥sθ (x(q) | σ,x(1), · · · ,x(q−1)
)
− x̃(q) − x(q)

σ2

∥∥∥∥2
]
.

Then, combining the objectives gives the following loss239

L
(
θ; {σt}t∈[TQ/d]

)
:=

d

TQ

∑
t∈[TQ/d]

σ2
t ℓ(θ;σt).

As shown in Vincent (2011), an estimator sθ with enough capacity minimizes the loss L if and only if240

sθ outputs the scores of all perturbed conditional patch distribution almost surely. Ideally, if a sampler241
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Figure 1: Samples from a mixture of three Gaussian modes generated by vanilla, annealed, and
chained Langevin dynamics. Three axes are ℓ2 distance from samples to the mean of the three modes.
The samples are initialized in mode 0.

perfectly generates every patch, combining all patches gives a sample from the original distribution242

since P (x) =
∏

q∈[d/Q] P (x(q) | x(1), · · ·x(q−1)). In Theorem 5 we give a linear reduction from243

producing samples of dimension d using Chained-LD to learning the distribution of a Q-dimensional244

variable for constant Q. The proof of Theorem 5 is deferred to Appendix A.5.245

Theorem 5. Consider a sampler algorithm taking the first q − 1 patches x(1), · · · ,x(q−1) as input246

and outputing a sample of the next patch x(q) with probability P̂
(
x(q) | x(1), · · · ,x(q−1)

)
for all247

q ∈ [d/Q]. Suppose that for every q ∈ [d/Q] and any given previous patches x(1), · · · ,x(q−1), the248

sampler algorithm can achieve249

TV
(
P̂
(
x(q) | x(1), · · · ,x(q−1)

)
, P
(
x(q) | x(1), · · · ,x(q−1)

))
≤ ε · Q

d

in τ(ε, d) iterations for some ε > 0. Then, equipped with the sampler algorithm, the Chained-LD250

algorithm in d
Q · τ(ε, d) iterations can achieve251

TV
(
P̂ (x), P (x)

)
≤ ε.

6 Numerical Results252

In this section, we empirically evaluated the mode-seeking tendencies of vanilla, annealed, and253

chained Langevin dynamics. We performed numerical experiments on synthetic Gaussian mixture254

models and real image datasets including MNIST (LeCun, 1998) and Fashion-MNIST (Xiao et al.,255

2017). Details on the experiment setup are deferred to Appendix B.256
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Figure 2: Samples from a mixture distribution of the original and flipped images from the MNIST
dataset generated by vanilla, annealed, and chained Langevin dynamics. The samples are initialized
as original images from MNIST.

Synthetic Gaussian mixture model: We define the data distribution P as a mixture of three Gaussian257

components in dimension d = 100, where mode 0 defined as P (0) = N (0d, 3Id) is the universal258

mode with the largest variance, and mode 1 and mode 2 are respectively defined as P (1) = N (1d, Id)259

and P (2) = N (−1d, Id). The frequencies of the three modes are 0.2, 0.4 and 0.4, i.e.,260

P = 0.2P (0) + 0.4P (1) + 0.4P (2) = 0.2N (0d, 3Id) + 0.4N (1d, Id) + 0.4N (−1d, Id).

As shown in Figure 1, vanilla and annealed Langevin dynamics cannot find mode 1 or 2 within 106261

iterations if the sample is initialized in mode 0, while chained Langevin dynamics can find the other262

two modes in 1000 steps and correctly recover their frequencies as gradually increasing the number263

of iterations. In Appendix B.1 we present additional experiments on samples initialized in mode 1 or264

2, which also verify the mode-seeking tendencies of vanilla and annealed Langevin dynamics.265

Image datasets: We construct the distribution as a mixture of two modes by using the original images266

from MNIST/Fashion-MNIST training dataset (black background and white digits/objects) as the267

first mode and constructing the second mode by i.i.d. randomly flipping an image (white background268

and black digits/objects) with probability 0.5. Regarding the neural network architecture of the score269

function estimator, for vanilla and annealed Langevin dynamics we use U-Net (Ronneberger et al.,270

2015) following from Song and Ermon (2019). For chained Langevin dynamics, we proposed to use271

Recurrent Neural Network (RNN) architectures. We note that for a sequence of inputs, the output of272

RNN from the previous step is fed as input to the current step. Therefore, in the scenario of chained273

Langevin dynamics, the hidden state of RNN contains information about the previous patches and274

allows the network to estimate the conditional score function ∇x(q) logP (x(q) | x(1), · · ·x(q−1)).275

More implementation details are deferred to Appendix B.2.276
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Figure 3: Samples from a mixture distribution of the original and flipped images from the Fashion-
MNIST dataset generated by vanilla, annealed, and chained Langevin dynamics. The samples are
initialized as original images from Fashion-MNIST.

The numerical results on image datasets are shown in Figures 2 and 3. Vanilla Langevin dynamics277

fails to generate reasonable samples, as also observed in Song and Ermon (2019). When the sample278

is initialized as original images from the datasets, annealed Langevin dynamics tends to generate279

samples from the same mode, while chained Langevin dynamics can generate samples from both280

modes. Additional experiments are deferred to Appendix B.2.281

7 Conclusion282

In this work, we theoretically and numerically studied the mode-seeking properties of vanilla and283

annealed Langevin dynamics sampling methods under a multi-modal distribution. We characterized284

Gaussian and sub-Gaussian mixture models under which Langevin dynamics are unlikely to find all285

the components within a sub-exponential number of iterations. To reduce the mode-seeking tendency286

of vanilla Langevin dynamics, we proposed Chained Langevin Dynamics (Chained-LD) and analyzed287

its convergence behavior. Studying the connections between Chained-LD and denoising diffusion288

models will be an interesting topic for future exploration.289

Limitations290

Our RNN-based implementation of Chained-LD is currently limited to image data generation tasks.291

An interesting future direction is to extend the application of Chained-LD to other domains such as292

audio and text data. Another future direction could be to study the convergence of Chained-LD under293

an imperfect score estimation which we did not address in our analysis.294

9



References295

Bakry, D., Barthe, F., Cattiaux, P., and Guillin, A. (2008). A simple proof of the poincaré inequality296

for a large class of probability measures. Electronic Communications in Probability [electronic297

only], 13:60–66.298

Bakry, D. and Émery, M. (1983). Diffusions hypercontractives. Seminaire de Probabilites XIX, page299

177.300

Benton, J., De Bortoli, V., Doucet, A., and Deligiannidis, G. (2023). Linear convergence bounds for301

diffusion models via stochastic localization. arXiv preprint arXiv:2308.03686.302

Bhattacharya, R. (1978). Criteria for recurrence and existence of invariant measures for multidimen-303

sional diffusions. The Annals of Probability, pages 541–553.304

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer google schola, 2:645–678.305

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S. W., Fidler, S., and Kreis, K. (2023).306

Align your latents: High-resolution video synthesis with latent diffusion models. In Proceedings307

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22563–22575.308

Block, A., Mroueh, Y., and Rakhlin, A. (2020). Generative modeling with denoising auto-encoders309

and langevin sampling. arXiv preprint arXiv:2002.00107.310

Bovier, A., Eckhoff, M., Gayrard, V., and Klein, M. (2002). Metastability and low lying spectra in311

reversible markov chains. Communications in mathematical physics, 228:219–255.312

Bovier, A., Eckhoff, M., Gayrard, V., and Klein, M. (2004). Metastability in reversible diffusion313

processes i: Sharp asymptotics for capacities and exit times. Journal of the European Mathematical314

Society, 6(4):399–424.315

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and Chan, W. (2020). Wavegrad: Estimating316

gradients for waveform generation. In International Conference on Learning Representations.317

Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., and Zhang, A. R. (2023). Sampling is as easy as learning318

the score: theory for diffusion models with minimal data assumptions. In International Conference319

on Learning Representations.320

Cheng, X., Chatterji, N. S., Abbasi-Yadkori, Y., Bartlett, P. L., and Jordan, M. I. (2018). Sharp con-321

vergence rates for langevin dynamics in the nonconvex setting. arXiv preprint arXiv:1805.01648.322

Dalalyan, A. S. (2017). Theoretical guarantees for approximate sampling from smooth and log-323

concave densities. Journal of the Royal Statistical Society Series B: Statistical Methodology,324

79(3):651–676.325

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. (2021). Diffusion schrödinger bridge with326

applications to score-based generative modeling. Advances in Neural Information Processing327

Systems, 34:17695–17709.328

Durmus, A. and Moulines, É. (2017). Nonasymptotic convergence analysis for the unadjusted329

langevin algorithm. The Annals of Applied Probability, 27(3):1551–1587.330

Gayrard, V., Bovier, A., and Klein, M. (2005). Metastability in reversible diffusion processes331

ii: Precise asymptotics for small eigenvalues. Journal of the European Mathematical Society,332

7(1):69–99.333

Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint334

arXiv:1701.00160.335

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,336

and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing337

systems, 27.338

10



Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D. P., Poole, B., Norouzi,339

M., Fleet, D. J., et al. (2022). Imagen video: High definition video generation with diffusion340

models. arXiv preprint arXiv:2210.02303.341

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural342

information processing systems, 33:6840–6851.343

Ke, L., Choudhury, S., Barnes, M., Sun, W., Lee, G., and Srinivasa, S. (2021). Imitation learning344

as f-divergence minimization. In Algorithmic Foundations of Robotics XIV: Proceedings of the345

Fourteenth Workshop on the Algorithmic Foundations of Robotics 14, pages 313–329. Springer.346

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B. (2020). Diffwave: A versatile diffusion347

model for audio synthesis. In International Conference on Learning Representations.348

Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection.349

Annals of statistics, pages 1302–1338.350

LeCun, Y. (1998). The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/.351

Lee, H., Lu, J., and Tan, Y. (2022). Convergence for score-based generative modeling with polynomial352

complexity. Advances in Neural Information Processing Systems, 35:22870–22882.353

Lee, H., Lu, J., and Tan, Y. (2023). Convergence of score-based generative modeling for general354

data distributions. In International Conference on Algorithmic Learning Theory, pages 946–985.355

PMLR.356

Lee, H., Risteski, A., and Ge, R. (2018). Beyond log-concavity: Provable guarantees for sampling357

multi-modal distributions using simulated tempering langevin monte carlo. Advances in neural358

information processing systems, 31.359

Li, C. T. and Farnia, F. (2023). Mode-seeking divergences: theory and applications to gans. In360

International Conference on Artificial Intelligence and Statistics, pages 8321–8350. PMLR.361

Li, G., Huang, Y., Efimov, T., Wei, Y., Chi, Y., and Chen, Y. (2024). Accelerating convergence of362

score-based diffusion models, provably. arXiv preprint arXiv:2403.03852.363

Li, G., Wei, Y., Chen, Y., and Chi, Y. (2023). Towards non-asymptotic convergence for diffusion-based364

generative models. In The Twelfth International Conference on Learning Representations.365

Lin, G., Milan, A., Shen, C., and Reid, I. (2017). Refinenet: Multi-path refinement networks for366

high-resolution semantic segmentation. In Proceedings of the IEEE conference on computer vision367

and pattern recognition, pages 1925–1934.368

Poole, B., Alemi, A. A., Sohl-Dickstein, J., and Angelova, A. (2016). Improved generator objectives369

for gans. arXiv preprint arXiv:1612.02780.370

Raginsky, M., Rakhlin, A., and Telgarsky, M. (2017). Non-convex learning via stochastic gradient371

langevin dynamics: a nonasymptotic analysis. In Conference on Learning Theory, pages 1674–372

1703. PMLR.373

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical text-conditional374

image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3.375

Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of langevin distributions and376

their discrete approximations. Bernoulli, pages 341–363.377

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-resolution image378

synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer379

vision and pattern recognition, pages 10684–10695.380

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical381

image segmentation. In Medical image computing and computer-assisted intervention–MICCAI382

2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III383

18, pages 234–241. Springer.384

11



Sak, H., Senior, A., and Beaufays, F. (2014). Long short-term memory based recurrent neural network385

architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128.386

Shannon, M., Poole, B., Mariooryad, S., Bagby, T., Battenberg, E., Kao, D., Stanton, D., and387

Skerry-Ryan, R. (2020). Non-saturating gan training as divergence minimization. arXiv preprint388

arXiv:2010.08029.389

Song, J., Meng, C., and Ermon, S. (2020a). Denoising diffusion implicit models. arXiv preprint390

arXiv:2010.02502.391

Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution.392

Advances in neural information processing systems, 32.393

Song, Y. and Ermon, S. (2020). Improved techniques for training score-based generative models.394

Advances in neural information processing systems, 33:12438–12448.395

Song, Y., Garg, S., Shi, J., and Ermon, S. (2020b). Sliced score matching: A scalable approach to396

density and score estimation. In Uncertainty in Artificial Intelligence, pages 574–584. PMLR.397

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2020c). Score-398

based generative modeling through stochastic differential equations. In International Conference399

on Learning Representations.400

Vempala, S. and Wibisono, A. (2019). Rapid convergence of the unadjusted langevin algorithm:401

Isoperimetry suffices. Advances in neural information processing systems, 32.402

Vincent, P. (2011). A connection between score matching and denoising autoencoders. Neural403

computation, 23(7):1661–1674.404

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics. In405

Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688.406

Citeseer.407

Wooddard, D. B., Schmidler, S. C., and Huber, M. (2009). Conditions for rapid mixing of parallel and408

simulated tempering on multimodal distributions. The Annals of Applied Probability, 19(2):617–409

640.410

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking411

machine learning algorithms. arXiv preprint arXiv:1708.07747.412

12



A Theoretical Analysis on the Mode-Seeking Tendency of Langevin Dynamics413

We begin by introducing some well-established lemmas used in our proof. We first provide the proof414

of Proposition 1 for completeness:415

Proof of Proposition 1. By the definition in equation 2, we have416

pσ(z) =

∫
p(t)N (z | t, σ2Id) dt =

∫
p(t)N (z− t | 0d, σ

2Id) dt.

For random variables t ∼ p and y ∼ N (0d, Id), their sum z = t+ y ∼ pσ follows the perturbed417

distribution with noise level σ. Therefore,418

Ez∼pσ
[z] = E(t+y)∼pσ

[t+ y] = Et∼p[t] + Ey∼N (0d,Id)[y] = Et∼p[t].

If t ∼ p = N (µ,Σ) follows a Gaussian distribution, we have z = t+ y ∼ pσ = N (µ,Σ+ σ2Id).419

If p is a sub-Gaussian distribution with parameter ν2, we have z = t + y ∼ pσ is a sub-Gaussian420

distribution with parameter (ν2 + σ2). Hence we obtain Proposition 1.421

We use the following lemma on the tail bound for multivariate Gaussian random variables.422

Lemma 1 (Lemma 1, Laurent and Massart (2000)). Suppose that a random variable z ∼ N (0d, Id).423

Then for any λ > 0,424

P
(
∥z∥2 ≥ d+ 2

√
dλ+ 2λ

)
≤ exp(−λ),

P
(
∥z∥2 ≤ d− 2

√
dλ
)
≤ exp(−λ).

We also use a tail bound for one-dimensional Gaussian random variables and provide the proof here425

for completeness.426

Lemma 2. Suppose a random variable Z ∼ N (0, 1). Then for any t > 0,427

P(Z ≥ t) = P(Z ≤ −t) ≤ exp(−t2/2)√
2πt

.

Proof of Lemma 2. Since z
t ≥ 1 for all z ∈ [t,∞), we have428

P(Z ≥ t) =
1√
2π

∫ ∞

t

exp

(
−z2

2

)
dz ≤ 1√

2π

∫ ∞

t

z

t
exp

(
−z2

2

)
dz =

exp(−t2/2)√
2πt

.

Since the Gaussian distribution is symmetric, we have P(Z ≥ t) = P(Z ≤ −t). Hence we obtain the429

desired bound.430

A.1 Proof of Theorem 1: Langevin Dynamics under Gaussian Mixtures431

Without loss of generality, we assume that µ0 = 0d for simplicity. Let r and n respectively denote432

the rank and nullity of the vector space {µi}i∈[k], then we have r + n = d and 0 ≤ r ≤ k = o(d).433

Denote R ∈ Rd×r an orthonormal basis of the vector space {µi}i∈[k], and denote N ∈ Rd×n an434

orthonormal basis of the null space of {µi}i∈[k]. Now consider decomposing the sample xt by435

rt := RTxt, and nt := NTxt,

where rt ∈ Rr, nt ∈ Rn. Then we have436

xt = Rrt +Nnt.

Similarly, we decompose the noise ϵt into437

ϵ
(r)
t := RT ϵt, and ϵ

(n)
t := NT ϵt,

where ϵ
(r)
t ∈ Rr, ϵ(n)t ∈ Rn. Then we have438

ϵt = Rϵ
(r)
t +Nϵ

(n)
t .
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Since a linear combination of a Gaussian random variable still follows Gaussian distribution, by439

ϵt ∼ N (0d, Id), RTR = Ir, and NTN = In we obtain440

ϵ
(r)
t ∼ N (0r, Ir), and ϵ

(n)
t ∼ N (0n, In).

By the definition of Langevin dynamics in equation 1, the two components of xt follow from the441

update rule:442

nt = nt−1 +
δt
2
NT∇x logP (xt−1) +

√
δtϵ

(n)
t , (5)

rt = rt−1 +
δt
2
RT∇x logP (xt−1) +

√
δtϵ

(r)
t .

It is worth noting that since NTµi = 0n. To show ∥xt − µi∥2 >
ν2
0+ν2

max

2 d, it suffices to prove443

∥nt∥2 >
ν20 + ν2max

2
d.

We start by proving that the initialization of the state x0 has a large norm on the null space with high444

probability in the following proposition.445

Proposition 2. Suppose that a sample x0 is initialized in the distribution P (0), i.e., x0 ∼ P (0), then446

for any constant νmax < ν0, with probability at least 1− exp(−Ω(d)), we have ∥n0∥2 ≥ 3ν2
0+ν2

max

4 d.447

Proof of Proposition 2. Since x0 ∼ P (0) = N (0d, ν
2
0Id) and NTN = In, we know n0 = NTx0 ∼448

N (0n, ν
2
0In). Therefore, by Lemma 1 we can bound449

P
(
∥n0∥2 ≤

3ν20 + ν2max

4
d

)
= P

∥n0∥2

ν20
≤ d− 2

√
d ·
(
ν20 − ν2max

8ν20

)2

d


≤ P

∥n0∥2

ν20
≤ n− 2

√
n

(
ν20 − ν2max

8ν20

)2
d

2


≤ exp

(
−
(
ν20 − ν2max

8ν20

)2
d

2

)
,

where the second last step follows from the assumption d− n = r = o(d). Hence we complete the450

proof of Proposition 2.451

Then, with the assumption that the initialization satisfies ∥n0∥2 ≥ 3ν2
0+ν2

max

4 d, the following proposi-452

tion shows that ∥nt∥ remains large with high probability.453

Proposition 3. Consider a data distribution P satisfies the constraints specified in Theorem 1.454

We follow the Langevin dynamics for T = exp(O(d)) steps. Suppose that the initial sample455

satisfies ∥n0∥2 ≥ 3ν2
0+ν2

max

4 d, then with probability at least 1 − T · exp(−Ω(d)), we have that456

∥nt∥2 >
ν2
0+ν2

max

2 d for all t ∈ {0} ∪ [T ].457

Proof of Proposition 3. To establish a lower bound on ∥nt∥, we consider different cases of the step458

size δt. Intuitively, when δt is large enough, nt will be too noisy due to the introduction of random459

noise
√
δtϵ

(n)
t in equation 5. While for small δt, the update of nt is bounded and thus we can460

iteratively analyze nt. We first handle the case of large δt in the following lemma.461

Lemma 3. If δt > ν20 , with probability at least 1− exp(−Ω(d)), for nt satisfying equation 5, we462

have ∥nt∥2 ≥ 3ν2
0+ν2

max

4 d regardless of the previous state xt−1.463

Proof of Lemma 3. Denote v := nt−1 +
δt
2 N

T∇x logP (xt−1) for simplicity. Note that v is fixed464

for any given xt−1. We decompose ϵ
(n)
t into a vector aligning with v and another vector orthogonal465
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to v. Consider an orthonormal matrix M ∈ Rn×(n−1) such that MTv = 0n−1 and MTM = In−1.466

By denoting u := ϵ
(n)
t −MMT ϵ

(n)
t we have MTu = 0n−1, thus we obtain467

∥nt∥2 =
∥∥∥v +

√
δtϵ

(n)
t

∥∥∥2
=
∥∥∥v +

√
δtu+

√
δtMMT ϵ

(n)
t

∥∥∥2
=
∥∥∥v +

√
δtu
∥∥∥2 + ∥∥∥√δtMMT ϵ

(n)
t

∥∥∥2
≥
∥∥∥√δtMMT ϵ

(n)
t

∥∥∥2
≥ ν20

∥∥∥MT ϵ
(n)
t

∥∥∥2 .
Since ϵ

(n)
t ∼ N (0n, In) and MTM = In−1, we obtain MT ϵ

(n)
t ∼ N (0n−1, In−1). Therefore, by468

Lemma 1 we can bound469

P
(
∥nt∥2 ≤

3ν20 + ν2max

4
d

)
≤ P

(∥∥∥MT ϵ
(n)
t

∥∥∥2 ≤ 3ν20 + ν2max

4ν20
d

)

= P

∥∥∥MT ϵ
(n)
t

∥∥∥2 ≤ d− 2

√
d ·
(
ν20 − ν2max

8ν20

)2

d


≤ P

∥∥∥MT ϵ
(n)
t

∥∥∥2 ≤ (n− 1)− 2

√
(n− 1)

(
ν20 − ν2max

8ν20

)2
d

2


≤ exp

(
−
(
ν20 − ν2max

8ν20

)2
d

2

)
,

where the second last step follows from the assumption d− n = r = o(d). Hence we complete the470

proof of Lemma 3.471

We then consider the case when δt ≤ ν20 . Let r := RTx and n := NTx, then x = Rr+Nn. We472

first show that when ∥n∥2 ≥ ν2
0+ν2

max

2 d, P (i)(x) is exponentially smaller than P (0)(x) for all i ∈ [k]473

in the following lemma.474

Lemma 4. Given that ∥n∥2 ≥ ν2
0+ν2

max

2 d and ∥µi∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

)
d for all475

i ∈ [k], we have P (i)(x)
P (0)(x)

≤ exp(−Ω(d)) for all i ∈ [k].476

Proof of Lemma 4. For all i ∈ [k], define ρi(x) :=
P (i)(x)
P (0)(x)

, then477

ρi(x) =
P (i)(x)

P (0)(x)
=

(2πν2i )
−d/2 exp

(
− 1

2ν2
i
∥x− µi∥2

)
(2πν20)

−d/2 exp
(
− 1

2ν2
0
∥x∥2

)
=

(
ν20
ν2i

)d/2

exp

(
1

2ν20
∥x∥2 − 1

2ν2i
∥x− µi∥2

)
=

(
ν20
ν2i

)d/2

exp

((
1

2ν20
− 1

2ν2i

)
∥Nn∥2 +

(
∥Rr∥2

2ν20
− ∥Rr− µi∥2

2ν2i

))

=

(
ν20
ν2i

)d/2

exp

((
1

2ν20
− 1

2ν2i

)
∥n∥2 +

(
∥r∥2

2ν20
−
∥∥r−RTµi

∥∥2
2ν2i

))
,

where the last step follows from the definition that R ∈ Rd×r an orthonormal basis of the vector space478

{µi}i∈[k] and NTN = In. Since ν20 > ν2i , the quadratic term ∥r∥2

2ν2
0
− ∥r−RTµi∥2

2ν2
i

is maximized at479
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r =
ν2
0R

Tµi

ν2
0−ν2

i
. Therefore,480

∥r∥2

2ν20
−
∥∥r−RTµi

∥∥2
2ν2i

≤
ν40
∥∥RTµi

∥∥2
2ν20(ν

2
0 − ν2i )

2
− 1

2ν2i

(
ν20

ν20 − ν2i
− 1

)2 ∥∥RTµi

∥∥2 =
∥µi∥2

2(ν20 − ν2i )
.

Hence, for ∥n∥2 ≥ ν2
0+ν2

max

2 d and ∥µi∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

)
d, we have481

ρi(x) =

(
ν20
ν2i

)d/2

exp

((
1

2ν20
− 1

2ν2i

)
∥n∥2 +

(
∥r∥2

2ν20
−
∥∥r−RTµi

∥∥2
2ν2i

))

≤
(
ν20
ν2i

)d/2

exp

((
1

2ν20
− 1

2ν2i

)
ν20 + ν2i

2
d+

∥µi∥2

2(ν20 − ν2i )

)

= exp

(
−
(
log

(
ν2i
ν20

)
− ν2i

2ν20
+

ν20
2ν2i

)
d

2
+

∥µi∥2

2(ν20 − ν2i )

)

≤ exp

(
−
(
log

(
ν2i
ν20

)
− ν2i

2ν20
+

ν20
2ν2i

)
d

4

)
.

Notice that for function f(z) = log z − z
2 + 1

2z , we have f(1) = 0 and d
dz f(z) =

1
z −

1
2 −

1
2z2 =482

− 1
2

(
1
z − 1

)2
< 0 when z ∈ (0, 1). Thus, log

(
ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

is a positive constant for νi < ν0,483

i.e., ρi(x) = exp(−Ω(d)). Therefore we finish the proof of Lemma 4.484

Lemma 4 implies that when ∥n∥ is large, the Gaussian mode P (0) dominates other modes P (i). To485

bound ∥nt∥, we first consider a simpler case that ∥nt−1∥ is large. Intuitively, the following lemma486

proves that when the previous state nt−1 is far from a mode, a single step of Langevin dynamics with487

bounded step size is not enough to find the mode.488

Lemma 5. Suppose δt ≤ ν20 and ∥nt−1∥2 > 36ν20d, then for nt following from equation 5, we have489

∥nt∥2 ≥ ν20d with probability at least 1− exp(−Ω(d)).490

Proof of Lemma 5. From the recursion of nt in equation 5 we have491

nt = nt−1 +
δt
2
NT∇x logP (xt−1) +

√
δtϵ

(n)
t

= nt−1 −
δt
2

k∑
i=0

P (i)(xt−1)

P (xt−1)
· N

T (xt−1 − µi)

ν2i
+
√
δtϵ

(n)
t

=

(
1− δt

2

k∑
i=0

P (i)(xt−1)

P (xt−1)
· 1
ν2i

)
nt−1 +

√
δtϵ

(n)
t . (6)

By Lemma 4, we have P (i)(xj−1)

P (0)(xj−1)
≤ exp(−Ω(d)) for all i ∈ [k], therefore492

1− δt
2

k∑
i=0

P (i)(xt−1)

P (xt−1)
· 1
ν2i
≥ 1− δt

2
· 1
ν20
− δt

2

∑
i∈[k]

wiP
(i)(xt−1)

w0P (0)(xt−1)
· 1
ν2i
≥ 1− 1

2
−exp(−Ω(d)) > 1

3
.

(7)

On the other hand, from ϵ
(n)
t ∼ N (0n, In) we know ⟨nt−1,ϵ

(n)
t ⟩

∥nt−1∥ ∼ N (0, 1) for any fixed nt−1 ̸= 0n,493

hence by Lemma 2 we have494

P

(
⟨nt−1, ϵ

(n)
t ⟩

∥nt−1∥
≥
√
d

4

)
= P

(
⟨nt−1, ϵ

(n)
t ⟩

∥nt−1∥
≤ −
√
d

4

)
≤ 4√

2πd
exp

(
− d

32

)
(8)

16



Combining equation 6, equation 7 and equation 8 gives that495

∥nt∥2 ≥
(
1

3

)2

∥nt−1∥2 − 2ν0|⟨nt−1, ϵ
(n)
t ⟩|

≥ 1

9
∥nt−1∥2 −

ν0
√
d

2
∥nt−1∥

≥ 1

9
· 36ν20d−

ν0
√
d

2
· 6ν0
√
d

= ν20d

with probability at least 1− 8√
2πd

exp
(
− d

32

)
= 1− exp(−Ω(d)). This proves Lemma 5.496

We then proceed to bound ∥nt∥ iteratively for ∥nt−1∥2 ≤ 36ν20d. Recall that equation 5 gives497

nt = nt−1 +
δt
2
NT∇x logP (xt−1) +

√
δtϵ

(n)
t .

We notice that the difficulty of solving nt exhibits in the dependence of logP (xt−1) on rt−1. Since498

P =
∑k

i=0 wiP
(i) =

∑k
i=0 wiN (µi, ν

2
i Id), we can rewrite the score function as499

∇x logP (x) =
∇xP (x)

P (x)
= −

k∑
i=0

P (i)(x)

P (x)
· x− µi

ν2i
= − x

ν20
+
∑
i∈[k]

P (i)(x)

P (x)

(
x

ν20
− x− µi

ν2i

)
.

(9)

Now, instead of directly working with nt, we consider a surrogate recursion n̂t such that n̂0 = n0500

and for all t ≥ 1,501

n̂t = n̂t−1 −
δt
2ν20

n̂t−1 +
√

δtϵ
(n)
t . (10)

The advantage of the surrogate recursion is that n̂t is independent of r, thus we can obtain the502

closed-form solution to n̂t. Before we proceed to bound n̂t, we first show that n̂t is sufficiently close503

to the original recursion nt in the following lemma.504

Lemma 6. For any t ≥ 1, given that δj ≤ ν20 and ν2
0+ν2

max

2 d ≤ ∥nj−1∥2 ≤ 36ν20d for all j ∈ [t] and505

∥µi∥2 ≤ ν2
0−ν2

i

2

(
log
(

ν2
i

ν2
0

)
− ν2

i

2ν2
0
+

ν2
0

2ν2
i

)
d for all i ∈ [k], we have ∥n̂t − nt∥ ≤ t

exp(Ω(d))

√
d.506

Proof of Lemma 6. Upon comparing equation 5 and equation 10, by equation 9 we have that for all507

j ∈ [t],508

∥n̂j − nj∥ =
∥∥∥∥n̂j−1 −

δj
2ν20

n̂j−1 − nj−1 −
δj
2
NT∇x logP (xj−1)

∥∥∥∥
=

∥∥∥∥∥∥
(
1− δj

2ν20

)
(n̂j−1 − nj−1) +

δj
2

∑
i∈[k]

P (i)(xj−1)

P (xj−1)

(
1

ν2i
− 1

ν20

)
nj−1

∥∥∥∥∥∥
≤
(
1− δj

2ν20

)
∥n̂j−1 − nj−1∥+

∑
i∈[k]

δj
2

P (i)(xj−1)

P (xj−1)

(
1

ν2i
− 1

ν20

)
∥nj−1∥

≤ ∥n̂j−1 − nj−1∥+
∑
i∈[k]

δj
2

P (i)(xj−1)

P (0)(xj−1)

(
1

ν2i
− 1

ν20

)
6ν0
√
d.

By Lemma 4, we have P (i)(xj−1)

P (0)(xj−1)
≤ exp(−Ω(d)) for all i ∈ [k], hence we obtain a recursive bound509

∥n̂j − nj∥ ≤ ∥n̂j−1 − nj−1∥+
1

exp(Ω(d))

√
d.
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Finally, by n̂0 = n0, we have510

∥n̂t − nt∥ =
∑
j∈[t]

(∥n̂j − nj∥ − ∥n̂j−1 − nj−1∥) ≤
t

exp(Ω(d))

√
d.

Hence we obtain Lemma 6.511

We then proceed to analyze n̂t, The following lemma gives us the closed-form solution of n̂t. We512

slightly abuse the notations here, e.g.,
∏c2

i=c1

(
1− δi

2ν2
0

)
= 1 and

∑c2
j=c1

δj = 0 for c1 > c2.513

Lemma 7. For all t ≥ 0, n̂t ∼ N
(∏t

i=1

(
1− δi

2ν2
0

)
n0,

∑t
j=1

∏t
i=j+1

(
1− δi

2ν2
0

)2
δjIn

)
, where514

the mean and covariance satisfy
∏t

i=1

(
1− δi

2ν2
0

)2
+ 1

ν2
0

∑t
j=1

∏t
i=j+1

(
1− δi

2ν2
0

)2
δj ≥ 1.515

Proof of Lemma 7. We prove the two properties by induction. When t = 0, they are trivial. Suppose516

they hold for t− 1, then for the distribution of n̂t, we have517

n̂t = n̂t−1 −
δt
2ν20

n̂t−1 +
√
δtϵ

(n)
t

∼ N

(1− δt
2ν20

) t−1∏
i=1

(
1− δi

2ν20

)
n0,

(
1− δt

2ν20

)2 t−1∑
j=1

t−1∏
i=j+1

(
1− δi

2ν20

)2

δjIn + δtIn


= N

 t∏
i=1

(
1− δi

2ν20

)
n0,

t∑
j=1

t∏
i=j+1

(
1− δi

2ν20

)2

δjIn

 .

For the second property,518

t∏
i=1

(
1− δi

2ν20

)2

+
1

ν20

t∑
j=1

t∏
i=j+1

(
1− δi

2ν20

)2

δj

=

(
1− δt

2ν20

)2
t−1∏

i=1

(
1− δi

2ν20

)2

+
1

ν20

t−1∑
j=1

t−1∏
i=j+1

(
1− δi

2ν20

)2

δj

+
1

ν20
δt

≥
(
1− δt

2ν20

)2

+
1

ν20
δt = 1 +

δ2t
4ν40
≥ 1.

Hence we finish the proof of Lemma 7.519

Armed with Lemma 7, we are now ready to establish the lower bound on ∥n̂t∥. For simplicity,520

denote α :=
∏t

i=1

(
1− δi

2ν2
0

)2
and β := 1

ν2
0

∑t
j=1

∏t
i=j+1

(
1− δi

2ν2
0

)2
δj . By Lemma 7 we know521

n̂t ∼ N (αn0, βν
2
0In), so we can write n̂t = αn0 +

√
βν0ϵ, where ϵ ∼ N (0n, In).522

Lemma 8. Given that ∥n̂0∥2 ≥ 3ν2
0+ν2

max

4 d, we have ∥n̂t∥2 ≥ 5ν2
0+3ν2

max

8 d with probability at least523

1− exp (−Ω(d)).524

Proof of Lemma 8. By n̂t = αn0 +
√
βν0ϵ we have525

∥n̂t∥2 = α2 ∥n0∥2 + βν20 ∥ϵ∥
2
+ 2α

√
βν0⟨n0, ϵ⟩
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By Lemma 1 we can bound526

P
(
∥ϵ∥2 ≤ 3ν20 + ν2max

4ν20
d

)
= P

∥ϵ∥2 ≤ d− 2

√
d ·
(
ν20 − ν2max

8ν20

)2

d


≤ P

∥ϵ∥2 ≤ (n− 1)− 2

√
(n− 1)

(
ν20 − ν2max

8ν20

)2
d

2


≤ exp

(
−
(
ν20 − ν2max

8ν20

)2
d

2

)
,

where the second last step follows from the assumption d− n = r = o(d). Since ϵ ∼ N (0n, In),527

we know ⟨n0,ϵ⟩
∥n0∥ ∼ N (0, 1). Therefore by Lemma 2,528

P

(
⟨n0, ϵ⟩
∥n0∥

≤ − ν20 − ν2max

4ν0
√
3ν20 + ν2max

√
d

)
≤ 4ν0

√
3ν20 + ν2max√

2π(ν20 − ν2max)
√
d
exp

(
− (ν20 − ν2max)

2d

32ν20(3ν
2
0 + ν2max)

)
Conditioned on ∥n̂0∥2 ≥ 3ν2

0+ν2
max

4 d, ∥ϵ∥2 >
3ν2

0+ν2
max

4ν2
0

d and 1
∥n0∥ ⟨n0, ϵ⟩ > − ν2

0−ν2
max

4ν0

√
3ν2

0+ν2
max

√
d,529

since Lemma 7 gives α2 + β ≥ 1 we have530

∥n̂t∥2 = α2 ∥n0∥2 + βν20 ∥ϵ∥
2
+ 2α

√
βν0⟨n0, ϵ⟩

≥ α2 ∥n0∥2 + βν20 ∥ϵ∥
2 − 2α

√
βν0 ∥n0∥

ν20 − ν2max

4ν0
√

3ν20 + ν2max

√
d

≥ α2 ∥n0∥2 + βν20 ∥ϵ∥
2 − 2α

√
βν0 ∥n0∥ ∥ϵ∥ ·

ν20 − ν2max

6ν20 + 2ν2max

≥
(
1− ν20 − ν2max

6ν20 + 2ν2max

)(
α2 ∥n0∥2 + βν20 ∥ϵ∥

2
)

≥ 5ν20 + 3ν2max

6ν20 + 2ν2max

(
α2 + β

)
· 3ν

2
0 + ν2max

4
d

≥ 5ν20 + 3ν2max

8
d.

Hence by union bound, we complete the proof of Lemma 8.531

Upon having all the above lemmas, we are now ready to establish Proposition 3 by induction. Suppose532

the theorem holds for all T values of 1, · · · , T − 1. We consider the following 3 cases:533

• If there exists some t ∈ [T ] such that δt > ν20 , by Lemma 3 we know that with probability534

at least 1− exp(−Ω(d)), we have ∥nt∥2 ≥ 3ν2
0+ν2

max

4 d, thus the problem reduces to the two535

sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can be solved by induction.536

• Suppose δt ≤ ν20 for all t ∈ [T ]. If there exists some t ∈ [T ] such that ∥nt−1∥2 > 36ν20d,537

by Lemma 5 we know that with probability at least 1 − exp(−Ω(d)), we have ∥nt∥2 ≥538

ν20d >
3ν2

0+ν2
max

4 d, thus the problem similarly reduces to the two sub-arrays n0, · · · ,nt−1539

and nt, · · · ,nT , which can be solved by induction.540

• Suppose δt ≤ ν20 and ∥nt−1∥2 ≤ 36ν20d for all t ∈ [T ]. Conditioned on ∥nt−1∥2 >541

ν2
0+ν2

max

2 d for all t ∈ [T ], by Lemma 6 we have that for T = exp(O(d)),542

∥n̂T − nT ∥ <

(√
5ν20 + 3ν2max

8
−
√

ν20 + ν2max

2

)
√
d.

By Lemma 8 we have that with probability at least 1− exp(−Ω(d)),543

∥n̂T ∥2 ≥
5ν20 + 3ν2max

8
d.
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Combining the two inequalities implies the desired bound544

∥nT ∥ ≥ ∥n̂T ∥ − ∥n̂T − nT ∥ >
√

ν20 + ν2max

2
d.

Hence by induction we obtain ∥nt∥2 >
ν2
0+ν2

max

2 d for all t ∈ [T ] with probability at least545

(1− (T − 1) exp(−Ω(d))) · (1− exp(−Ω(d))) ≥ 1− T exp(−Ω(d)).

Therefore we complete the proof of Proposition 3.546

Finally, combining Propositions 2 and 3 finishes the proof of Theorem 1.547

A.2 Proof of Theorem 2: Annealed Langevin Dynamics under Gaussian Mixtures548

To establish Theorem 2, we first note from Proposition 1 that perturbing a Gaussian distribution549

N (µ, ν2Id) with noise level σ results in a Gaussian distribution N (µ, (ν2 + σ2)Id). Therefore, for550

a Gaussian mixture P =
∑k

i=0 wiP
(i) =

∑k
i=0 wiN (µi, ν

2
i Id), the perturbed distribution of noise551

level σ is552

Pσ =

k∑
i=0

wiN (µi, (ν
2
i + σ2)Id).

Similar to the proof of Theorem 1, we decompose553

xt = Rrt +Nnt, and ϵt = Rϵ
(r)
t +Nϵ

(n)
t ,

where R ∈ Rd×r an orthonormal basis of the vector space {µi}i∈[k] and N ∈ Rd×n an orthonormal554

basis of the null space of {µi}i∈[k]. Now, we prove Theorem 2 by applying the techniques developed555

in Appendix A.1 via substituting ν2 with ν2 + σ2
t at time step t.556

First, by Proposition 2, suppose that the sample is initialized in the distribution P
(0)
σ0 , then with557

probability at least 1− exp(−Ω(d)), we have558

∥n0∥2 ≥
3(ν20 + σ2

0) + (ν2max + σ2
0)

4
d =

3ν20 + ν2max + 4σ2
0

4
d. (11)

Then, with the assumption that the initialization satisfies ∥n0∥2 ≥ 3ν2
0+ν2

max+4σ2
0

4 d, the following559

proposition similar to Proposition 3 shows that ∥nt∥ remains large with high probability.560

Proposition 4. Consider a data distribution P satisfies the constraints specified in Theorem 2.561

We follow annealed Langevin dynamics for T = exp(O(d)) steps with noise level cσ ≥ σ0 ≥562

σ1 ≥ σ2 ≥ · · · ≥ σT ≥ 0 for some constant cσ > 0. Suppose that the initial sample satisfies563

∥n0∥2 ≥ 3ν2
0+ν2

max+4σ2
0

4 d, then with probability at least 1− T · exp(−Ω(d)), we have that ∥nt∥2 >564

ν2
0+ν2

max+2σ2
t

2 d for all t ∈ {0} ∪ [T ].565

Proof of Proposition 4. We prove Proposition 4 by induction. Suppose the theorem holds for all T566

values of 1, · · · , T − 1. We consider the following 3 cases:567

• If there exists some t ∈ [T ] such that δt > ν20 + σ2
t , by Lemma 3 we know that with proba-568

bility at least 1− exp(−Ω(d)), we have ∥nt∥2 ≥ 3(ν2
0+σ2

t )+(ν2
max+σ2

t )
4 d =

3ν2
0+ν2

max+4σ2
t

4 d,569

thus the problem reduces to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can570

be solved by induction.571

• Suppose δt ≤ ν20 + σ2
t for all t ∈ [T ]. If there exists some t ∈ [T ] such that ∥nt−1∥2 >572

36(ν20 + σ2
t−1)d ≥ 36(ν20 + σ2

t )d, by Lemma 5 we know that with probability at least573

1 − exp(−Ω(d)), we have ∥nt∥2 ≥ (ν20 + σ2
t )d >

3ν2
0+ν2

max+4σ2
t

4 d, thus the problem574

similarly reduces to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can be solved575

by induction.576
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• Suppose δt ≤ ν20 +σ2
t and ∥nt−1∥2 ≤ 36(ν20 +σ2

t−1)d for all t ∈ [T ]. Consider a surrogate577

sequence n̂t such that n̂0 = n0 and for all t ≥ 1,578

n̂t = n̂t−1 −
δt

2ν20 + 2σ2
t

n̂t−1 +
√

δtϵ
(n)
t .

Since ν0 > νi and cσ ≥ σt for all t ∈ {0} ∪ [T ], we have ν2
i +c2σ

ν2
0+c2σ

≥ ν2
i +σ2

t

ν2
0+σ2

t
. Notice that for579

function f(z) = log z − z
2 + 1

2z , we have d
dz f(z) =

1
z −

1
2 −

1
2z2 = − 1

2

(
1
z − 1

)2 ≤ 0.580

Thus, by the assumption581

∥µi − µ0∥2 ≤
ν20 − ν2i

2

(
log

(
ν2i + c2σ
ν20 + c2σ

)
− ν2i + c2σ

2ν20 + c2σ
+

ν20 + c2σ
2ν2i + c2σ

)
d,

we have that for all t ∈ [T ],582

∥µi − µ0∥2 ≤
ν20 − ν2i

2

(
log

(
ν2i + σ2

t

ν20 + σ2
t

)
− ν2i + σ2

t

2ν20 + σ2
t

+
ν20 + σ2

t

2ν2i + σ2
t

)
d.

Conditioned on ∥nt−1∥2 >
ν2
0+ν2

max+2σ2
t−1

2 d for all t ∈ [T ], by Lemma 6 we have that for583

T = exp(O(d)),584

∥n̂T − nT ∥ <

(√
5ν20 + 3ν2max + 8σ2

T

8
−
√

ν20 + ν2max + 2σ2
T

2

)
√
d.

By Lemma 8 we have that with probability at least 1− exp(−Ω(d)),585

∥n̂T ∥2 ≥
5ν20 + 3ν2max + 8σ2

T

8
d.

Combining the two inequalities implies the desired bound586

∥nT ∥ ≥ ∥n̂T ∥ − ∥n̂T − nT ∥ >
√

ν20 + ν2max + 2σ2
T

2
d.

Hence by induction we obtain ∥nt∥2 >
ν2
0+ν2

max+2σ2
t

2 d for all t ∈ {0}∪ [T ] with probability587

at least588

(1− (T − 1) exp(−Ω(d))) · (1− exp(−Ω(d))) ≥ 1− T exp(−Ω(d)).

Therefore we complete the proof of Proposition 4.589

Finally, combining equation 11 and Proposition 4 finishes the proof of Theorem 2.590

A.3 Proof of Theorem 3: Langevin Dynamics under Sub-Gaussian Mixtures591

The proof framework is similar to the proof of Theorem 1. To begin with, we validate Assumption592

2.v. in the following lemma:593

Lemma 9. For constants ν0, νi, cν , cL satisfying Assumptions 2.iii. and 2.iv., we have (1−cν)ν
2
0−ν2

i

2(1−cν)
>594

0 and log
cνν

2
i

(c2L+cνcL)ν2
0
− ν2

i

2(1−cν)ν2
0
+

(1−cν)ν
2
0

2ν2
i

> 0 are both positive constants.595

Proof of Lemma 9. From Assumption 2.iv. that ν20 >
ν2
max

1−cν
≥ ν2

i

1−cν
, we easily obtain (1−cν)ν

2
0−ν2

i

2(1−cν)
>596

0 is a positive constant. For the second property, let f(z) := log
cνν

2
i

(c2L+cνcL)z
− ν2

i

2(1−cν)z
+ (1−cν)z

2ν2
i

.597

For any z >
ν2
i

1−cν
, the derivative of f(z) satisfies598

d

dz
f(z) = −1

z
+

ν2i
2(1− cν)z2

+
1− cν
2ν2i

=
ν2i

2(1− cν)

(
1− cν
ν2i

− 1

z

)2

> 0.
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Therefore, when 4(c2L+cνcL)
cν(1−cν)

≤ 1, we have599

f(ν20) > f

(
ν2i

1− cν

)
= log

cν(1− cν)

c2L + cνcL
≥ log 4 > 0.

When 4(c2L+cνcL)
cν(1−cν)

> 1, we have600

f(ν20) > f

(
4(c2L + cνcL)

cν(1− cν)

ν2i
1− cν

)
= 2 log

cν(1− cν)

2(c2L + cνcL)
− cν(1− cν)

8(c2L + cνcL)
+

2(c2L + cνcL)

cν(1− cν)

≥ 2− 2 log 2− 2(c2L + cνcL)

cν(1− cν)
− cν(1− cν)

8(c2L + cνcL)
+

2(c2L + cνcL)

cν(1− cν)
> 2− 2 log 2− 1

2
> 0.

Thus we obtain Lemma 9.601

Without loss of generality, we assume µ0 = 0d. Similar to the proof of Theorem 1, we decompose602

xt = Rrt +Nnt, and ϵt = Rϵ
(r)
t +Nϵ

(n)
t ,

where R ∈ Rd×r an orthonormal basis of the vector space {µi}i∈[k] and N ∈ Rd×n an orthonormal603

basis of the null space of {µi}i∈[k]. To show ∥xt − µi∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d, it suffices to prove604

∥nt∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d. By Proposition 2, if x0 is initialized in the distribution P (0), i.e.,605

x0 ∼ P (0), since ν20 > 1
1−cν

ν2max, with probability at least 1− exp(−Ω(d)) we have606

∥n0∥2 ≥
(
3ν20
4

+
ν2max

4(1− cν)

)
d. (12)

Then, conditioned on ∥n0∥2 ≥
(

3ν2
0

4 +
ν2
max

4(1−cν)

)
d, the following proposition shows that ∥nt∥607

remains large with high probability.608

Proposition 5. Consider a distribution P satisfying Assumption 2. We follow the Langevin dynamics609

for T = exp(O(d)) steps. Suppose that the initial sample satisfies ∥n0∥2 ≥
(

3ν2
0

4 +
ν2
max

4(1−cν)

)
d,610

then with probability at least 1− T · exp(−Ω(d)), we have that ∥nt∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d for all611

t ∈ {0} ∪ [T ].612

Proof of Proposition 5. Firstly, by Lemma 3, if δt > ν20 , since ν20 >
ν2
max

1−cν
, we similarly have that613

∥nt∥2 ≥
(

3ν2
0

4 +
ν2
max

4(1−cν)

)
d with probability at least 1 − exp(−Ω(d)) regardless of the previous614

state xt−1. We then consider the case when δt ≤ ν20 . Intuitively, we aim to prove that the score615

function is close to − x
ν2
0

when ∥n∥2 ≥
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d. Towards this goal, we first show that616

P (0)(x) is exponentially larger than P (i)(x) for all i ∈ [k] in the following lemma:617

Lemma 10. Suppose P satisfies Assumption 2. Then for any ∥n∥2 ≥
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d, we have618

P (i)(x)
P (0)(x)

≤ exp(−Ω(d)) and ∥∇xP
(i)(x)∥

P (x) ≤ exp(−Ω(d)) for all i ∈ [k].619

Proof of Lemma 10. We first give an upper bound on the sub-Gaussian probability density. For any620

vector v ∈ Rd, by considering some vector m ∈ Rd, from Markov’s inequality and the definition in621

equation 4 we can bound622

Pz∼P (i)

(
mT (z− µi) ≥mT (v − µi)

)
≤

Ez∼P (i)

[
exp

(
mT (z− µi)

)]
exp (mT (v − µi))

≤ exp

(
ν2i ∥m∥

2

2
−mT (v − µi)

)
.
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Upon optimizing the last term at m = v−µi

ν2
i

, we obtain623

Pz∼P (i)

(
(v − µi)

T (v − z) ≤ 0
)
≤ exp

(
−∥v − µi∥2

2ν2i

)
. (13)

Denote B :=
{
z : (v − µi)

T (v − z) ≤ 0
}

. To bound Pz∼P (i)(z ∈ B), we first note that624

logP (i)(v)− logP (i)(z)

=

∫ 1

0

⟨v − z,∇ logP (i)(v + λ(z− v))⟩dλ

= ⟨v − z,∇ logP (i)(v)⟩+
∫ 1

0

⟨v − z,∇ logP (i)(v + λ(z− v))−∇ logP (i)(v)⟩dλ

≤ ∥v − z∥
∥∥∥∇ logP (i)(v)

∥∥∥+ ∫ 1

0

∥v − z∥
∥∥∥∇ logP (i)(v + λ(z− v))−∇ logP (i)(v)

∥∥∥ dλ

≤ ∥v − z∥ · Li ∥v − µi∥+
∫ 1

0

∥v − z∥ · Li ∥λ(z− v)∥ dλ (14)

≤ Licν
2cL

∥v − µi∥2 +
(
cL + cν
2cν

)
Li ∥v − z∥2 ,

where equation 14 follows from Assumption 2.ii. that ∇ logP (i)(µi) = 0d and Assumption 2.iii.625

that the score function∇ logP (i) is Li-Lipschitz. Therefore we obtain626

Pz∼P (i)(z ∈ B) =
∫
z∈B

P (i)(z) dz

≥
∫
z∈B

P (i)(v) exp

(
−Licν

2cL
∥v − µi∥2 −

cL + cν
2cν

Li ∥v − z∥2
)

dz

= P (i)(v) exp

(
−Licν

2cL
∥v − µi∥2

)∫
z∈B

exp

(
−cL + cν

2cν
Li ∥v − z∥2

)
dz. (15)

By observing that g : B→
{
z : (v − µi)

T (v − z) ≥ 0
}

with g(z) = 2v− z is a bijection such that627

∥v − z∥ = ∥v − g(z)∥ for any z ∈ B, we have628 ∫
z∈B

exp

(
−cL + cν

2cν
Li ∥v − z∥2

)
dz =

1

2

∫
z∈Rd

exp

(
−cL + cν

2cν
Li ∥v − z∥2

)
dz

=
1

2

(
2πcν

(cL + cν)Li

) d
2

. (16)

Hence, by combining equation 13, equation 15, and equation 16, we obtain629

exp

(
−∥v − µi∥2

2ν2i

)
≥ Pz∼P (i)

(
(v − µi)

T (v − z) ≤ 0
)

≥ P (i)(v) exp

(
−Licν

2cL
∥v − µi∥2

)
· 1
2

(
2πcν

(cL + cν)Li

) d
2

.

By Assumption 2.iii. that Li ≤ cL
ν2
i

we obtain the following bound on the probability density:630

P (i)(v) ≤ 2

(
2πcνν

2
i

(cL + cν)cL

)− d
2

exp

(
−1− cν

2ν2i
∥v − µi∥2

)
. (17)
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Then we can bound the ratio of P (i) and P (0). For all i ∈ [k], define ρi(x) :=
P (i)(x)
P (0)(x)

, then we have631

ρi(x) =
P (i)(x)

P (0)(x)
≤

2(2πcνν
2
i /(c

2
L + cνcL))

−d/2 exp
(
−(1− cν) ∥x− µi∥2 /2ν2i

)
(2πν20)

−d/2 exp
(
−∥x∥2 /2ν20

)
= 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

(
∥x∥2

2ν20
− (1− cν) ∥x− µi∥2

2ν2i

)

= 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

((
1

2ν20
− 1− cν

2ν2i

)
∥Nn∥2 +

(
∥Rr∥2

2ν20
− (1− cν) ∥Rr− µi∥2

2ν2i

))

= 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

((
1

2ν20
− 1− cν

2ν2i

)
∥n∥2 +

(
∥r∥2

2ν20
−

(1− cν)
∥∥r−RTµi

∥∥2
2ν2i

))
,

where the last step follows from the definition that R ∈ Rd×r an orthogonal basis of the vector space632

{µi}i∈[k] and NTN = In. Since ν2i < (1− cν)ν
2
0 , the quadratic term ∥r∥2

2ν2
0
− (1−cν)∥r−RTµi∥2

2ν2
i

is633

maximized at r =
(1−cν)ν

2
0R

Tµi

(1−cν)ν2
0−ν2

i
. Therefore, we obtain634

∥r∥2

2ν20
−

(1− cν)
∥∥r−RTµi

∥∥2
2ν2i

≤ (1− cν) ∥µi∥2

2((1− cν)ν20 − ν2i )
.

Hence, for ∥µi − µ0∥2 ≤ (1−cν)ν
2
0−ν2

i

2(1−cν)

(
log

cνν
2
i

(c2L+cνcL)ν2
0
− ν2

i

2(1−cν)ν2
0
+

(1−cν)ν
2
0

2ν2
i

)
d and ∥n∥2 ≥635 (

ν2
0

2 +
ν2
max

2(1−cν)

)
d, we have636

ρi(x) ≤ 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

((
1

2ν20
− 1− cν

2ν2i

)
∥n∥2 + (1− cν) ∥µi∥2

2((1− cν)ν20 − ν2i )

)

≤ 2

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

((
1

2ν20
− 1− cν

2ν2i

)(
ν20
2

+
ν2i

2(1− cν)

)
d+

(1− cν) ∥µi∥2

2((1− cν)ν20 − ν2i )

)

= 2 exp

(
−
(
log

cνν
2
i

(c2L + cνcL)ν20
− ν2i

2(1− cν)ν20
+

(1− cν)ν
2
0

2ν2i

)
d

2
+

(1− cν) ∥µi∥2

2((1− cν)ν20 − ν2i )

)

≤ 2 exp

(
−
(
log

cνν
2
i

(c2L + cνcL)ν20
− ν2i

2(1− cν)ν20
+

(1− cν)ν
2
0

2ν2i

)
d

4

)
.

From Lemma 9, we obtain ρi(x) ≤ exp(−Ω(d)).637

To show ∥∇xP
(i)(x)∥

P (x) ≤ exp(−Ω(d)), from Assumptions 2.ii. and 2.iii. we have638 ∥∥∥∥∇xP
(i)(x)

P (i)(x)

∥∥∥∥ =

∥∥∥∥∇xP
(i)(x)

P (i)(x)
− ∇xP

(i)(µi)

P (i)(µi)

∥∥∥∥ =
∥∥∥∇x logP

(i)(x)−∇x logP
(i)(µi)

∥∥∥
≤ Li ∥x− µi∥ ≤

cL
ν2i
∥x− µi∥ .

Therefore, we can bound ∥∇xP
(i)(x)∥

P (x) ≤ cL
ν2
i
ρi(x) ∥x− µi∥. When ∥x− µi∥ = exp(o(d)) is639

small, by ρi(x) ≤ exp(−Ω(d)) we directly have ∥∇xP
(i)(x)∥

P (x) ≤ exp(−Ω(d)). When ∥x− µi∥ =640

exp(Ω(d)) is exceedingly large, from equation 17 we have641 ∥∥∇xP
(i)(x)

∥∥
P (x)

≤ 2cL
ν2i

(
(c2L + cνcL)ν

2
0

cνν2i

) d
2

exp

(
∥x∥2

2ν20
− (1− cν) ∥x− µi∥2

2ν2i

)
∥x− µi∥ .
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Since ν20 >
ν2
i

1−cν
, when ∥x− µi∥ = exp(Ω(d))≫ ∥µi∥ we have642

exp

(
∥x∥2

2ν20
− (1− cν) ∥x− µi∥2

2ν2i

)
= exp(−Ω(∥x− µi∥2)).

Therefore ∥∇xP
(i)(x)∥

P (x) ≤ exp(−Ω(d)). Thus we complete the proof of Lemma 10.643

Similar to Lemma 5, the following lemma proves that when the previous state nt−1 is far from a644

mode, a single step of Langevin dynamics with bounded step size is not enough to find the mode.645

Lemma 11. Suppose δt ≤ ν20 and ∥nt−1∥2 > 36ν20d, then we have ∥nt∥2 ≥ ν20d with probability at646

least 1− exp(−Ω(d)).647

Proof of Lemma 11. For simplicity, denote v := nt−1 + δt
2 N

T∇x logP (xt−1). Since P =648 ∑k
i=0 wiP

(i) and P (0) = N (µ0, ν
2
0Id), the score function can be written as649

∇x logP (x) =
∇xP (x)

P (x)
=
∇xw0P

(0)(x)

P (x)
+
∑
i∈[k]

∇xwiP
(i)(x)

P (x)

= −w0P
(0)(x)

P (x)
· x
ν20

+
∑
i∈[k]

wi∇xP
(i)(x)

P (x)

= − x

ν20
+
∑
i∈[k]

wiP
(i)(x)

P (x)
· x
ν20

+
∑
i∈[k]

wi∇xP
(i)(x)

P (x)
. (18)

For ∥nt−1∥2 > 36ν20d by Lemma 10 we have ∥∇xP
(i)(xt−1)∥

P (xt−1)
≤ exp(−Ω(d)). Since δt ≤ ν20 , we650

can bound the norm of v by651

∥v∥ =
∥∥∥∥nt−1 +

δt
2
NT∇x logP (xt−1)

∥∥∥∥
=

∥∥∥∥∥∥nt−1 −
δt
2ν20

nt−1 +
∑
i∈[k]

wiδt
2ν20

P (i)(xt−1)

P (xt−1)
nt−1 +

∑
i∈[k]

wiδt
2

NT∇xP
(i)(xt−1)

P (xt−1)

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
1− δt

2ν20
+
∑
i∈[k]

wiδt
2ν20

P (i)(xt−1)

P (xt−1)

nt−1

∥∥∥∥∥∥−
∑
i∈[k]

wiδt
2

∥∥∇xP
(i)(xt−1)

∥∥
P (xt−1)

≥ 1

2
∥nt−1∥ −

∑
i∈[k]

wiδt
2

exp(−Ω(d))

> 2ν0
√
d.

On the other hand, from ϵ
(n)
t ∼ N (0n, In) we know ⟨v,ϵ(n)

t ⟩
∥v∥ ∼ N (0, 1) for any fixed v ̸= 0n, hence652

by Lemma 2 we have653

P

(
⟨v, ϵ(n)t ⟩
∥v∥

≥
√
d

4

)
= P

(
⟨v, ϵ(n)t ⟩
∥v∥

≤ −
√
d

4

)
≤ 4√

2πd
exp

(
− d

32

)
Combining the above inequalities gives654

∥nt∥2 =
∥∥∥v +

√
δtϵ

(n)
t

∥∥∥2 ≥ ∥v∥2 − 2ν0|⟨v, ϵ(n)t ⟩| ≥ ∥v∥
2 − ν0

√
d

2
∥v∥ > ν20d

with probability at least 1− 8√
2πd

exp
(
− d

32

)
= 1− exp(−Ω(d)). This proves Lemma 11.655
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When ∥nt−1∥2 ≤ 36ν20d, similar to Theorem 1, we consider a surrogate recursion n̂t such that656

n̂0 = n0 and for all t ≥ 1,657

n̂t = n̂t−1 −
δt
2ν20

n̂t−1 +
√

δtϵ
(n)
t . (19)

The following Lemma shows that n̂t is sufficiently close to the original recursion nt.658

Lemma 12. For any t ≥ 1, given that for all j ∈ [t], δj ≤ ν20 and
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d ≤ ∥nj−1∥2 ≤659

36ν20d, if µi satisfies Assumption 2.v. for all i ∈ [k], we have ∥n̂t − nt∥ ≤ t
exp(Ω(d))

√
d.660

Proof of Lemma 12. By equation 18 we have that for all j ∈ [t],661

∥n̂j − nj∥ =
∥∥∥∥n̂j−1 − nj−1 −

δj
2ν20

n̂j−1 −
δj
2
NT∇x logP (xj−1)

∥∥∥∥
=

∥∥∥∥∥∥n̂j−1 − nj−1 −
∑
i∈[k]

wiP
(i)(xj−1)

ν20P (xj−1)
nj−1 −

∑
i∈[k]

wiN
T∇xP

(i)(xj−1)

P (xj−1)

∥∥∥∥∥∥
≤ ∥n̂j−1 − nj−1∥+

∑
i∈[k]

wiP
(i)(xj−1)

ν20P (xj−1)
∥nj−1∥+

∑
i∈[k]

wi

∥∥∇xP
(i)(xj−1)

∥∥
P (xj−1)

.

By Lemma 10, we have P (i)(xj−1)

P (0)(xj−1)
≤ exp(−Ω(d)) and ∥∇xP

(i)(xj−1)∥
P (xj−1)

≤ exp(−Ω(d)) for all662

i ∈ [k], hence from ∥nj−1∥ ≤ 6ν0
√
d we obtain a recursive bound663

∥n̂j − nj∥ ≤ ∥n̂j−1 − nj−1∥+
1

exp(Ω(d))

√
d.

Finally, by n̂0 = n0, we have664

∥n̂t − nt∥ =
∑
j∈[t]

(∥n̂j − nj∥ − ∥n̂j−1 − nj−1∥) ≤
t

exp(Ω(d))

√
d.

Hence we obtain Lemma 12.665

Armed with the above lemmas, we are now ready to establish Proposition 5 by induction. Please666

note that we also apply some lemmas from the proof of Theorem 1 by substituting ν2max with ν2
max

1−cν
.667

Suppose the theorem holds for all T values of 1, · · · , T − 1. We consider the following 3 cases:668

• If there exists some t ∈ [T ] such that δt > ν20 , by Lemma 3 we know that with probability669

at least 1− exp(−Ω(d)), we have ∥nt∥2 ≥
(

3ν2
0

4 +
ν2
max

4(1−cν)

)
d, thus the problem reduces670

to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can be solved by induction.671

• Suppose δt ≤ ν20 for all t ∈ [T ]. If there exists some t ∈ [T ] such that ∥nt−1∥2 > 36ν20d, by672

Lemma 11 we know that with probability at least 1−exp(−Ω(d)), we have ∥nt∥2 ≥ ν20d >673 (
3ν2

0

4 +
ν2
max

4(1−cν)

)
d, thus the problem similarly reduces to the two sub-arrays n0, · · · ,nt−1674

and nt, · · · ,nT , which can be solved by induction.675

• Suppose δt ≤ ν20 and ∥nt−1∥2 ≤ 36ν20d for all t ∈ [T ]. Conditioned on ∥nt−1∥2 >676 (
ν2
0

2 +
ν2
max

2(1−cν)

)
d for all t ∈ [T ], by Lemma 12 we have that for T = exp(O(d)),677

∥n̂T − nT ∥ <

(√
5ν20
8

+
3ν2max

8(1− cν)
−

√
ν20
2

+
ν2max

2(1− cν)

)
√
d.

By Lemma 8 we have that with probability at least 1− exp(−Ω(d)),678

∥n̂T ∥2 ≥
(
5ν20
8

+
3ν2max

8(1− cν)

)
d.
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Combining the two inequalities implies the desired bound679

∥nT ∥ ≥ ∥n̂T ∥ − ∥n̂T − nT ∥ >

√(
ν20
2

+
ν2max

2(1− cν)

)
d.

Hence by induction we obtain ∥nt∥2 >
(

ν2
0

2 +
ν2
max

2(1−cν)

)
d for all t ∈ [T ] with probability680

at least681

(1− (T − 1) exp(−Ω(d))) · (1− exp(−Ω(d))) ≥ 1− T exp(−Ω(d)).

Therefore we complete the proof of Proposition 5.682

Finally, combining equation 12 and Proposition 5 finishes the proof of Theorem 3.683

A.4 Proof of Theorem 4: Annealed Langevin Dynamics under Sub-Gaussian Mixtures684

Assumption 3. Consider a data distribution P :=
∑k

i=0 wiP
(i) as a mixture of sub-Gaussian685

distributions, where 1 ≤ k = o(d) and wi > 0 is a positive constant such that
∑k

i=0 wi = 1.686

Suppose that P (0) = N (µ0, ν
2
0Id) is Gaussian and for all i ∈ [k], P (i) satisfies687

i. P (i) is a sub-Gaussian distribution of mean µi with parameter ν2i ,688

ii. P (i) is differentiable and∇P (i)
σt (µi) = 0d for all t ∈ {0} ∪ [T ],689

iii. for all t ∈ {0} ∪ [T ], the score function of P (i)
σt is Li,t-Lipschitz such that Li,t ≤ cL

ν2
i +σ2

t
for690

some constant cL > 0,691

iv. ν20 > max
{
1,

4(c2L+cνcL)
cν(1−cν)

}
ν2
max+c2σ
1−cν

− c2σ for constant cν ∈ (0, 1), where νmax := maxi∈[k] νi,692

693

v. ∥µi − µ0∥2 ≤ (1−cν)ν
2
0−ν2

i −cνc
2
σ

2(1−cν)

(
log

cν(ν
2
i +c2σ)

(c2L+cνcL)(ν2
0+c2σ)

− (ν2
i +c2σ)

2(1−cν)(ν2
0+c2σ)

+
(1−cν)(ν

2
0+c2σ)

2(ν2
i +c2σ)

)
d.694

The feasibility of Assumption 3.v. can be validated by substituting ν2 in Lemma 9 with ν2 + c2σ.695

To establish Theorem 4, we first note from Proposition 1 that for a sub-Gaussian mixture P =696 ∑k
i=0 wiP

(i), the perturbed distribution of noise level σ is Pσ =
∑k

i=0 wiP
(i)
σ , where P (0) =697

N (µ0, (ν
2
i +σ2)Id) and P (i) is a sub-Gaussian distribution with mean µi and sub-Gaussian parameter698

(ν2i + σ2). Similar to the proof of Theorem 1, we decompose699

xt = Rrt +Nnt, and ϵt = Rϵ
(r)
t +Nϵ

(n)
t ,

where R ∈ Rd×r an orthonormal basis of the vector space {µi}i∈[k] and N ∈ Rd×n an orthonormal700

basis of the null space of {µi}i∈[k]. Now, we prove Theorem 4 by applying the techniques developed701

in Appendix A.1 and A.3 via substituting ν2 and ν2

1−cν
with ν2+σ2

t

1−cν
at time step t. Note that for all702

t ∈ {0} ∪ [T ], Assumption 3.iv. implies ν20 + σ2
t > max

{
1,

4(c2L+cνcL)
cν(1−cν)

}
ν2
max+σ2

t

1−cν
because cσ ≥ σt.703

First, by Proposition 2, suppose that the sample is initialized in the distribution P
(0)
σ0 , then with704

probability at least 1− exp(−Ω(d)), we have705

∥n0∥2 ≥
(
3(ν20 + σ2

0)

4
+

ν2max + σ2
0

4(1− cν)

)
d. (20)

Then, with the assumption that the initialization satisfies ∥n0∥2 ≥
(

3(ν2
0+σ2

0)
4 +

ν2
max+σ2

0

4(1−cν)

)
d, the706

following proposition similar to Proposition 5 shows that ∥nt∥ remains large with high probability.707

Proposition 6. Consider a distribution P satisfying Assumption 3. We follow annealed Langevin708

dynamics for T = exp(O(d)) steps with noise level cσ ≥ σ0 ≥ σ1 ≥ · · · ≥ σT ≥ 0 for some709

constant cσ > 0. Suppose that the initial sample satisfies ∥n0∥2 ≥
(

3(ν2
0+σ2

0)
4 +

ν2
max+σ2

0

4(1−cν)

)
d, then710

with probability at least 1− T · exp(−Ω(d)), we have that ∥nt∥2 >
(

ν2
0+σ2

t

2 +
ν2
max+σ2

t

2(1−cν)

)
d for all711

t ∈ {0} ∪ [T ].712
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Proof of Proposition 6. We prove Proposition 6 by induction. Suppose the theorem holds for all T713

values of 1, · · · , T − 1. We consider the following 3 cases:714

• If there exists some t ∈ [T ] such that δt > ν20 + σ2
t , by Lemma 3 we know that with715

probability at least 1− exp(−Ω(d)), we have ∥nt∥2 ≥
(

3(ν2
0+σ2

t )
4 +

ν2
max+σ2

t

4(1−cν)

)
d, thus the716

problem reduces to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can be solved717

by induction.718

• Suppose δt ≤ ν20 + σ2
t for all t ∈ [T ]. If there exists some t ∈ [T ] such that ∥nt−1∥2 >719

36(ν20 + σ2
t−1)d ≥ 36(ν20 + σ2

t )d, by Lemma 11 we know that with probability at least720

1 − exp(−Ω(d)), we have ∥nt∥2 ≥ (ν20 + σ2
t )d >

(
3(ν2

0+σ2
t )

4 +
ν2
max+σ2

t

4(1−cν)

)
d, thus the721

problem similarly reduces to the two sub-arrays n0, · · · ,nt−1 and nt, · · · ,nT , which can722

be solved by induction.723

• Suppose δt ≤ ν20 +σ2
t and ∥nt−1∥2 ≤ 36(ν20 +σ2

t−1)d for all t ∈ [T ]. Consider a surrogate724

sequence n̂t such that n̂0 = n0 and for all t ≥ 1,725

n̂t = n̂t−1 −
δt

2ν20 + 2σ2
t

n̂t−1 +
√

δtϵ
(n)
t .

Since ν0 > νi and cσ ≥ σt for all t ∈ {0} ∪ [T ], we have ν2
i +c2σ

ν2
0+c2σ

>
ν2
i +σ2

t

ν2
0+σ2

t
. Notice that for726

function f(z) = log z − z
2 + 1

2z , we have d
dz f(z) =

1
z −

1
2 −

1
2z2 = − 1

2

(
1
z − 1

)2 ≤ 0.727

Thus, by Assumption 3.v. we have that for all t ∈ [T ],728

∥µi − µ0∥2 ≤
(1− cν)ν

2
0 − ν2i − cνc

2
σ

2(1− cν)

(
log

cν(ν
2
i + c2σ)

(c2L + cνcL)(ν20 + c2σ)

− (ν2i + c2σ)

2(1− cν)(ν20 + c2σ)
+

(1− cν)(ν
2
0 + c2σ)

2(ν2i + c2σ)

)
d

≤ (1− cν)ν
2
0 − ν2i − cνσ

2
t

2(1− cν)

(
log

cν(ν
2
i + σ2

t )

(c2L + cνcL)(ν20 + σ2
t )

− (ν2i + σ2
t )

2(1− cν)(ν20 + σ2
t )

+
(1− cν)(ν

2
0 + σ2

t )

2(ν2i + σ2
t )

)
d

Conditioned on ∥nt−1∥2 >
(

ν2
0+σ2

t−1

2 +
ν2
max+σ2

t−1

2(1−cν)

)
d for all t ∈ [T ], by Lemma 12 we729

have that for T = exp(O(d)),730

∥n̂T − nT ∥ <

(√
5(ν20 + σ2

T )

8
+

3(ν2max + σ2
T )

8(1− cν)
−

√
ν20 + σ2

T

2
+

ν2max + σ2
T

2(1− cν)

)
√
d.

By Lemma 8 we have that with probability at least 1− exp(−Ω(d)),731

∥n̂T ∥2 ≥
(
5(ν20 + σ2

T )

8
+

3(ν2max + σ2
T )

8(1− cν)

)
d.

Combining the two inequalities implies the desired bound732

∥nT ∥ ≥ ∥n̂T ∥ − ∥n̂T − nT ∥ >

√(
ν20 + σ2

T

2
+

ν2max + σ2
T

2(1− cν)

)
d.

Hence by induction we obtain ∥nt∥2 >
(

ν2
0+σ2

T

2 +
ν2
max+σ2

T

2(1−cν)

)
d for all t ∈ [T ] with proba-733

bility at least734

(1− (T − 1) exp(−Ω(d))) · (1− exp(−Ω(d))) ≥ 1− T exp(−Ω(d)).

Therefore we complete the proof of Proposition 6.735

Finally, combining equation 20 and Proposition 6 finishes the proof of Theorem 4.736
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A.5 Proof of Theorem 5: Convergence Analysis of Chained Langevin Dynamics737

For simplicity, denote x[q] =
{
x(1), · · · ,x(q)

}
. By the definition of total variation distance, for all738

q ∈ [d/Q] we have739

TV
(
P̂
(
x[q]
)
, P
(
x[q]
))

=
1

2

∫ ∣∣∣P̂ (x[q]
)
− P

(
x[q]
)∣∣∣ dx[q]

=
1

2

∫ ∣∣∣P̂ (x(q) | x[q−1]
)
P̂
(
x[q−1]

)
− P

(
x(q) | x[q−1]

)
P
(
x[q−1]

)∣∣∣ dx[q]

≤ 1

2

∫ ∣∣∣P̂ (x(q) | x[q−1]
)
P̂
(
x[q−1]

)
− P̂

(
x(q) | x[q−1]

)
P
(
x[q−1]

)∣∣∣ dx[q]

+
1

2

∫ ∣∣∣P̂ (x(q) | x[q−1]
)
P
(
x[q−1]

)
− P

(
x(q) | x[q−1]

)
P
(
x[q−1]

)∣∣∣ dx[q]

=
1

2

∫
P̂
(
x(q) | x[q−1]

)
dx(q)

∫ ∣∣∣P̂ (x[q−1]
)
− P

(
x[q−1]

)∣∣∣ dx[q−1]

+
1

2

∫ ∣∣∣P̂ (x(q) | x[q−1]
)
− P

(
x(q) | x[q−1]

)∣∣∣ dx(q)

∫
P
(
x[q−1]

)
dx[q−1]

= TV
(
P̂
(
x[q−1]

)
, P
(
x[q−1]

))
+ TV

(
P̂
(
x(q) | x[q−1]

)
, P
(
x(q) | x[q−1]

))
≤ TV

(
P̂
(
x[q−1]

)
, P
(
x[q−1]

))
+ ε · Q

d
.

Upon summing up the above inequality for all q ∈ [d/Q], we obtain740

TV
(
P̂ (x), P (x)

)
=

d/Q∑
q=1

(
TV
(
P̂
(
x[q]
)
, P
(
x[q]
))
− TV

(
P̂
(
x[q−1]

)
, P
(
x[q−1]

)))

≤
d/Q∑
q=1

ε · Q
d

= ε

Thus we finish the proof of Theorem 5.741

B Additional Experiments742

Algorithm Setup: Our choices of algorithm hyperparameters are based on Song and Ermon (2019).743

We consider L = 10 different standard deviations such that {λi}i∈[L] is a geometric sequence with744

λ1 = 1 and λ10 = 0.01. For annealed Langevin dynamics with T iterations, we choose the noise745

levels {σt}t∈[T ] by repeating every element of {λi}i∈[L] for T/L times and we set the step size as746

δt = 2×10−5 ·σ2
t /σ

2
T for every t ∈ [T ]. For vanilla Langevin dynamics with T iterations, we use the747

same step size as annealed Langevin dynamics. For chained Langevin dynamics with T iterations, the748

patch size Q is chosen depending on different tasks. For every patch of chained Langevin dynamics,749

we choose the noise levels {σt}t∈[TQ/d] by repeating every element of {λi}i∈[L] for TQ/dL times750

and we set the step size as δt = 2× 10−5 · σ2
t /σ

2
TQ/d for every t ∈ [TQ/d].751

B.1 Synthetic Gaussian Mixture Model752

We choose the data distribution P as a mixture of three Gaussian components in dimension d = 100:753

P = 0.2P (0) + 0.4P (1) + 0.4P (2) = 0.2N (0d, 3Id) + 0.4N (1d, Id) + 0.4N (−1d, Id).

Since the distribution is given, we assume that the sampling algorithms have access to the ground-truth754

score function. We set the batch size as 1000 and patch size Q = 10 for chained Langevin dynamics.755

We use T ∈
{
103, 104, 105, 106

}
iterations for vanilla, annealed, and chained Langevin dynamics.756

The initial samples are i.i.d. chosen from P (0), P (1), or P (2), and the results are presented in Figures757
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Figure 4: Samples from a mixture of three Gaussian modes generated by vanilla, annealed, and
chained Langevin dynamics. Three axes are ℓ2 distance from samples to the mean of the three modes.
The samples are initialized in mode 1.

1, 4, and 5 respectively. The two subfigures above the dashed line illustrate the samples from the758

initial distribution and target distribution, and the subfigures below the dashed line are the samples759

generated by different algorithms. A sample x is clustered in mode 1 if it satisfies ∥x− µ1∥2 ≤ 5d760

and ∥x− µ1∥2 ≤ ∥x− µ2∥2; in mode 2 if ∥x− µ2∥2 ≤ 5d and ∥x− µ1∥2 > ∥x− µ2∥2; and in761

mode 0 otherwise. The experiments were run on an Intel Xeon CPU with 2.90GHz.762

B.2 Image Datasets763

Our implementation and hyperparameter selection are based on Song and Ermon (2019). During764

training, we i.i.d. randomly flip an image with probability 0.5 to construct the two modes (i.e., original765

and flipped images). All models are optimized by Adam with learning rate 0.001 and batch size 128766

for a total of 200000 training steps, and we use the model at the last iteration to generate the samples.767

We perform experiments on MNIST (LeCun, 1998) (CC BY-SA 3.0 License) and Fashion-MNIST768

(Xiao et al., 2017) (MIT License) datasets and we set the patch size as Q = 14.769

For the score networks of vanilla and annealed Langevin dynamics, following from Song and Ermon770

(2019), we use the 4-cascaded RefineNet (Lin et al., 2017), a modern variant of U-Net (Ronneberger771

et al., 2015) with residual design. For the score networks of chained Langevin dynamics, we use the772

official PyTorch implementation of an LSTM network (Sak et al., 2014) followed by a linear layer.773

For MNIST and Fashion-MNIST datasets, we set the input size of the LSTM as Q = 14, the number774

of features in the hidden state as 1024, and the number of recurrent layers as 2. The inputs of LSTM775

include inputting tensor, hidden state, and cell state, and the outputs of LSTM include the next hidden776

state and cell state, which can be fed to the next input. To estimate the noisy score function, we first777

input the noise level σ (repeated for Q times to match the input size of LSTM) and all-0 hidden and778
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Figure 5: Samples from a mixture of three Gaussian modes generated by vanilla, annealed, and
chained Langevin dynamics. Three axes are ℓ2 distance from samples to the mean of the three modes.
The samples are initialized in mode 2.

cell states to obtain an initialization of the hidden and cell states. Then, we divide a sample into d/Q779

patches and input the sequence of patches to the LSTM. For every output hidden state corresponding780

to one patch, we apply a linear layer of size 1024 × Q to estimate the noisy score function of the781

patch.782

To generate samples, we use T ∈ {3000, 10000, 30000, 100000} iterations for vanilla, annealed, and783

chained Langevin dynamics. The initial samples are chosen as either original or flipped images784

from the dataset, and the results for MNIST and Fashion-MNIST datasets are presented in Figures 2,785

6, 3, and 7 respectively. The two subfigures above the dashed line illustrate the samples from the786

initial distribution and target distribution, and the subfigures below the dashed line are the samples787

generated by different algorithms. High-quality figures generated by annealed and chained Langevin788

dynamics for T = 100000 iterations are presented in Figures 8 and 9.789

All experiments were run with one RTX3090 GPU. It is worth noting that the training and inference790

time of chained Langevin dynamics using LSTM is considerably faster than vanilla/annealed Langevin791

dynamics using RefineNet. For a course of 200000 training steps on MNIST/Fashion-MNIST, due792

to the different network architectures, LSTM takes around 2.3 hours while RefineNet takes around793

9.2 hours. Concerning image generation, chained Langevin dynamics is significantly faster than794

vanilla/annealed Langevin dynamics since every iteration of chained Langevin dynamics only updates795

a patch of constant size, while every iteration of vanilla/annealed Langevin dynamics requires796

computing all coordinates of the sample. One iteration of chained Langevin dynamics using LSTM797

takes around 1.97 ms, while one iteration of vanilla/annealed Langevin dynamics using RefineNet798

takes around 43.7 ms.799
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Figure 6: Samples from a mixture distribution of the original and flipped images from the MNIST
dataset generated by vanilla, annealed, and chained Langevin dynamics. The samples are initialized
as flipped images from MNIST.

C Boarder Impacts800

This paper presents work whose goal is to advance the field of machine learning. No potential societal801

consequence of this work needs to be highlighted here.802
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Figure 7: Samples from a mixture distribution of the original and flipped images from the Fashion-
MNIST dataset generated by vanilla, annealed, and chained Langevin dynamics. The samples are
initialized as flipped images from Fashion-MNIST.

33



Figure 8: Samples from a mixture distribution of the original and flipped images from the MNIST
dataset generated by annealed and chained Langevin dynamics for T = 100000 iterations. The
samples are initialized as the original or flipped images from MNIST.
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Figure 9: Samples from a mixture distribution of the original and flipped images from the Fashion-
MNIST dataset generated by annealed and chained Langevin dynamics for T = 100000 iterations.
The samples are initialized as the original or flipped images from Fashion-MNIST.
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