
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REG: A REGULARIZATION OPTIMIZER FOR ROBUST
TRAINING DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimizers are crucial for the efficient training of Large Language Models
(LLMs). While AdamW is the de facto standard, recent structure-aware opti-
mizers like Muon have emerged, which regularize gradient updates by operating
on entire weight matrices. The Muon optimizer balances the gradient updates
along all the directions. However, Muon’s reliance on the matrix sign function
can lead to training instability, exhibits incompatibility when fine-tuning models
pre-trained with AdamW. To address these limitations, we propose REG, a novel
optimizer that replaces Muon’s aggressive matrix sign operator with the Row-and-
Column-Scaling (RACS) operator. Theoretically grounded in balancing a matrix,
the RACS operator regularizes the update steps in a less drastic manner, making
it simpler to implement and more compatible with established training dynam-
ics. Through extensive empirical experiments on LLM training, we demonstrate
that our REG optimizer not only achieves superior performance and stability over
AdamW, but also maintains consistency with the AdamW training paradigm. This
consistency is particularly evident during the fine-tuning stage, where REG opti-
mizer avoids the performance degradation observed with Muon.

1 INTRODUCTION

The rapid advancements of Large Language Models (LLMs) (Achiam et al., 2023; Guo et al., 2025;
Team et al., 2023) have made training efficient and effective optimizers a critical area of research.
While Adam (Kingma & Ba, 2017) and AdamW (Loshchilov & Hutter, 2019) remain standard, re-
cent empirical studies have revealed a key challenge in large-scale LLM training: the momentum
matrices within optimizers often become ill-conditioned. This indicates that a few principal direc-
tions dominate the parameter updates, which can hinder convergence and stability. This observation
has motivated a new class of optimizers, such as Muon (Jordan et al., 2024) and GaLore (Zhao et al.,
2024), that explicitly address the structural properties of parameter matrices.

Among these, the Muon optimizer is notable for its unique approach of treating weights as matrices
and applying a matrix sign function to orthogonalize the momentum-averaged gradient. While this
method successfully addresses the ill-conditioning problem by reducing the spectral condition num-
ber, it introduces significant implementation complexity and has been observed to cause training
instability. Specifically, the Muon optimizer’s aggressive rescaling of singular values can lead to
crashes. Furthermore, its training dynamics are not fully consistent with those of AdamW, which
can cause performance degradation when fine-tuning an AdamW-trained model. These drawbacks
highlight a need for a more stable and computationally simple alternative that can still regularize the
update dynamics.

In this paper, we propose a regularized gradient descent with momentum optimizer, dubbed as REG.
Our approach is grounded in the observation that ill-conditioned momentum matrices can be im-
proved by an operator that makes their rows and columns more uniform in magnitude. Instead of
the computationally complex matrix sign function used in Muon, we propose using a Row-and-
Column-Scaling (RACS) operator. The RACS operator, which involves simple diagonal matrix
multiplications, is computationally efficient and straightforward to implement. We provide theo-
retical grounding for this approach by drawing on classic results from numerical analysis, which
show that row and column scaling can significantly improve a matrix’s conditioning. Critically,
we demonstrate that the RACS operator provides a less drastic regularization than the matrix sign

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

function, resulting in a training process that is more stable and compatible with AdamW-trained
models.

Our final proposed algorithm integrates this RACS operator into the standard Gradient Descent with
Momentum (GDM) framework, along with two practical enhancements: weight decay to prevent
overfitting and an RMS-based rescaling to ensure consistent update magnitudes. The latter is partic-
ularly robust for the empirically superior choice of ℓ2-norm scaling, where we derive a closed-form
solution for the RMS of the normalized matrix.

Our contributions are summarized as follows:

• We propose a novel optimizer, named REG, which regularizes the update steps using the
computationally efficient and stable RACS operator.

• We provide a theoretical justification for using the RACS operator by connecting it to clas-
sic results on matrix equilibration, and we provide a closed-form expression for the RMS
of the update matrix when using ℓ2-norm normalization.

• Through a series of empirical experiments, we demonstrate that our optimizer achieves
superior performance for LLM training while offering greater stability and consistency
with the AdamW training paradigm compared to Muon, particularly during the fine-tuning
stage.

2 RELATED WORK

Optimizers The development of optimization algorithms for training machine learning models
has seen significant progress since the introduction of stochastic gradient descent with momentum
(SGDM) by Polyak (1964). Subsequent research has led to a multitude of advanced optimizers,
including but not limited to those proposed by Dozat (2016); Duchi et al. (2011); Graves (2013);
Loshchilov & Hutter (2019); Kingma & Ba (2017); Martens (2020); Shazeer & Stern (2018); Zeiler
(2012). Among these, Adam (Kingma & Ba, 2017) and its variant with decoupled weight decay,
AdamW (Loshchilov & Hutter, 2019), have become the de facto standard for training large lan-
guage models (LLMs). Unlike SGDM, the Adam family of optimizers employs adaptive learning
rates for each parameter, allowing the training process to more effectively navigate the objective
function landscape, especially in regions with varying curvature. However, the use of first and sec-
ond momentum terms in Adam introduces a considerable memory overhead.

To address this memory challenge, several works have focused on developing more memory-efficient
and accelerated variants of Adam. Adafactor (Shazeer & Stern, 2018) reduces memory usage by
omitting the first momentum term and approximating the second momentum term using a factored
representation inspired by the divergence method (Lee & Seung, 1999). Similarly, Anil et al. (2019)
proposed a memory-efficient variation of Adagrad (Duchi et al., 2011). Another successful strategy
involves the use of low-rank approximation. The LoRA method (Hu et al., 2022) facilitates the
efficient fine-tuning of LLMs by training low-rank matrices A and B instead of the full weight
matrix W . Extending this concept to the optimizer itself, GaLore (Zhao et al., 2024) modifies the
Adam optimizer by replacing the full gradient with its low-rank approximation, thereby reducing
the memory footprint of both the first and second momentum terms. A related approach, Flora
(Hao et al., 2024), is based on a similar principle. In a different vein, the Muon optimizer (Jordan
et al., 2024) has shown promising results in LLM training (Liu et al., 2025; Team et al., 2025). This
approach suggests that an optimizer should balance the update matrix to ensure that all parameters
are updated along all directions. While the original Muon optimizer faced challenges with training
very large LLMs, its variants, such as those discussed by Team et al. (2025), have achieved success
in training models with up to 1 trillion parameters.

Matrix Balancing Matrix balancing is a well-established problem in numerical analysis, tradi-
tionally studied for its application in the numerical solution of linear equations (Hildebrand, 1987;
Horn & Johnson, 2012). The Row-And-Column-Scaling (RACS) operator, as discussed in works
such as (Bauer, 1963; Van der Sluis, 1969), is a widely used method for this purpose. Research by
Bauer (1963); Forsythe & Straus (1955); Van der Sluis (1969); Yang et al. (2024) has explored the
effects of RACS on the condition numbers and other properties of matrices. The RACS operator

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

also finds application in solving optimization problems, particularly in balancing matrices within
primal-dual formulations, as demonstrated by Ruiz (2001); Pock & Chambolle (2011).

3 ALGORITHM

3.1 MOTIVATION

We consider the optimization problem of minimizing a differentiable function f : Rm×n → R
over a parameter matrix W ∈ Rm×n. A foundational and widely-adopted method for this class of
problems is Gradient Descent with Momentum (GDM) (Polyak, 1964). At each iteration k, given
the current parameter matrix Wk, the momentum matrix Mk, a learning rate α, and a momentum
coefficient µ, the GDM update rules are defined as:

Mk+1 = µMk + (1− µ)∇f(Wk),

Wk+1 = Wk − αMk+1.
(1)

Recent empirical studies on LLMs have revealed that for 2D parameter matrices within Transformer
architectures, the corresponding momentum matrix M is frequently observed to be ill-conditioned,
exhibiting a large spectral condition number (σmax/σmin) (Gupta et al., 2018; Jordan et al., 2024;
Zhao et al., 2024). A high spectral condition number indicates that the matrix’s energy is concen-
trated along a few principal directions, which in turn implies that parameter updates are dominated
by these directions. This suggests the presence of an intrinsically low-rank structure within the
update dynamics.

This observation motivates the introduction of a computationally efficient regularization operator,
denoted by reg(·), applied to the momentum matrix Mk with the objective of improving its con-
ditioning. We thus propose the regularized GDM optimizer, which incorporates this regularization
step into the standard GDM framework:

Mk+1 = µMk + (1− µ)∇f(Wk),

Mk+1 = reg(Mk+1),

Wk+1 = Wk − αMk+1.

(2)

The choice of the regularization operator reg(·) is critical. For instance, the Muon optimizer employs
the matrix sign function, which theoretically reduces the spectral condition number of the resulting
matrix to one (Jordan et al., 2024). In this work, we investigate the RACS operator. Let Dk denote
the set of non-singular diagonal k×k matrices. The RACS operator is defined as reg(M ;D1, D2) =
D1MD2 for specifically chosen matrices D1 ∈ Dm and D2 ∈ Dn. The central problem is to
determine appropriate diagonal matrices D1 and D2 to improve the matrix’s properties, specifically
by minimizing a measure of its ill-conditioning.

The problem of optimal diagonal scaling to improve a matrix’s conditioning is a classic topic in
numerical analysis. For this, we recall the following foundational result on matrix equilibration
established by Van der Sluis (1969).

Theorem 1 Let M ∈ Rm×n be a matrix. In the following, the norm ∥ · ∥∗ may be any Hölder norm
or the Frobenius norm.

(a) If κ(M) := ∥M∥∞/∥M∥∗, then κ(DM) is minimal if all rows in DM have equal 1-norm.

(b) If κ(M) := ∥M∥1/∥M∥∗, then κ(MD) is minimal if all columns in MD have equal 1-norm.

(c) If M is invertible and κ(M) := (maxi,j |Mij |)∥M−1∥∗, then κ(DM) is minimal if all rows in
DM have equal∞-norm.

(d) If M is invertible and κ(M) := (maxi,j |Mij |)∥M−1∥∗, then κ(MD) is minimal if all columns
in MD have equal∞-norm.

The functions κ(·) in Theorem 1, while distinct from the standard spectral condition number
(σmax(M)/σmin(M)), serve a conceptually analogous purpose: they quantify the “imbalance” of
a matrix. This notion is intrinsically linked to modern concepts of a matrix’s effective dimension-
ality, such as the stable rank (∥M∥2F /∥M∥22) and effective rank. A matrix with a low stable rank,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

for instance, has its energy concentrated in a few dominant singular vectors, a characteristic that
often manifests as rows or columns with disproportionately large norms. The process of “equili-
bration”—scaling rows and columns to have uniform norms—directly counteracts this imbalance.
Therefore, minimizing κ(·) via equilibration can be interpreted as a computationally tractable proxy
for improving the matrix’s effective properties, pushing it towards a state where its constituent rows
and columns are more uniform in magnitude. This principle provides a robust theoretical foundation
for utilizing row or column normalization as a regularization strategy.

Inspired by these findings, we propose a normalization operator, normal(·; p), which, for a given
matrix M ∈ Rm×n, normalizes either its rows or columns based on their ℓp-norm. The choice of
axis is determined by the matrix dimensions to minimize computational overhead:

normal(M ; p) =

{
diag(∥M1,:∥−1

p , . . . , ∥Mm,:∥−1
p)M if m ≤ n,

Mdiag(∥M:,1∥−1
p , . . . , ∥M:,n∥−1

p) if m > n,
(3)

where Mi,: denotes the i-th row of M and M:,j denotes the j-th column of M . This leads to a
regularized optimizer, parameterized by the norm order p:

Mk+1 = µMk + (1− µ)∇f(Wk),

Mk+1 = normal(Mk+1; p),

Wk+1 = Wk − αMk+1.

(4)

The theoretical results on matrix equilibration primarily support the use of p = 1 or p = ∞.
However, our empirical investigations, particularly in the context of training LLMs, indicate that p =
2 yields superior performance. This discrepancy highlights a known gap between classical numerical
linear algebra theory and the complex dynamics of deep learning optimization. A comprehensive
ablation study to determine the optimal order p across diverse tasks is beyond the scope of this work.
Instead, we focus our experimental validation on the SFT of LLMs, where the effectiveness of the
p = 2 case is demonstrated.

3.2 PRACTICAL ENHANCEMENTS FOR LARGE-SCALE TRAINING

To enhance the practical applicability and robustness of the proposed optimizer, particularly for
large-scale models, we incorporate two established techniques, following the methodology of recent
work Liu et al. (2025).

Weight Decay The first enhancement is the inclusion of weight decay, a standard regularization
technique in deep learning. It is implemented by adding a term proportional to the current weights
Wk to the update rule. This penalizes large weight values, which helps to prevent overfitting and
improve generalization.

Consistent Update Magnitude A second, more critical, modification addresses the need for con-
sistent update magnitudes. The naive regularization in Equation 4 normalizes the rows or columns
of the momentum matrix Mk+1, but does not control its overall scale. The magnitude of the up-
date could therefore vary unpredictably. Following Liu et al. (2025), we rescale the normalized
momentum matrix such that its root mean square falls within a predefined target range (e.g., 0.2 to
0.4).

For a generic p-norm, the RMS of the normalized matrix normal(M ; p) does not have a simple
closed-form expression. However, for the empirically superior case where p = 2, a closed-form
solution exists.

Theorem 2 For any matrix M ∈ Rm×n, the root mean square of the ℓ2-normalized matrix M̃ :=

normal(M ; 2) is given by
√

1
max{m,n} .

Proof 1 The proof follows directly from the definitions. Without loss of generality, assume m ≤ n,
which implies normalization is performed row-wise. The case m > n is analogous. The squared
RMS of M̃ is:

RMS(M̃)2 =
1

mn

m∑
i=1

n∑
j=1

M̃2
ij =

1

mn

m∑
i=1

n∑
j=1

(
Mij

∥Mi,:∥2

)2

=
1

mn

m∑
i=1

∑n
j=1 M

2
ij

∥Mi,:∥22
=

1

n
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Thus, RMS(M̃) =
√

1
n . Since we assumed m ≤ n, we have n = max{m,n}, which completes the

proof.

3.3 THE FINAL REGULARIZED OPTIMIZER

By integrating the aforementioned components, we arrive at the final version of our REG optimizer.
At each iteration k, the update rules are defined as follows:

Mk+1 = µMk + (1− µ)∇f(Wk),

M̃k+1 = normal(Mk+1; p),

M̂k+1 = M̃k+1 ·
ρtarget

RMS(M̃k+1)
,

Wk+1 = Wk − α(M̂k+1 + λWk),

(5)

where λ is the weight decay coefficient and ρtarget is a hyperparameter representing the target RMS
of the update matrix. For the specific case of p = 2, the denominator RMS(M̃k+1) can be replaced
by its deterministic value from Theorem 2.

4 THEORETICAL CONVERGENCE ANALYSIS

In this section, we present a theoretical convergence analysis of our regularized optimizer. A direct
convergence proof for the full algorithm, as defined in equation 5, is highly non-trivial and remains
an open problem in numerical optimization. Consequently, our analysis is restricted to a simplified
variant of the regularized optimizer, denoted as the naive version and given by equation 4. While
a comprehensive theoretical guarantee for the full algorithm is beyond the scope of this work, the
analysis presented here provides foundational insights into the convergence behavior of our method.

The analysis in this section focuses on the case where the momentum parameter is set to zero,
i.e., µ = 0. The convergence analysis for the case where µ ̸= 0 is significantly more complex,
as the normalization operator normal breaks the linearity between the gradient term ∇f(W) and
the momentum term M . This nonlinearity prevents the direct application of classical momentum
analysis techniques. Nevertheless, the convergence proof for the µ = 0 case establishes a crucial
theoretical foundation for our method.

Theorem 3 Assume that f : Rm×n → R is continuously differentiable and its gradient ∇f is L-
Lipschitz. Consider the iteration equation 4 with µ = 0. For a sufficiently small learning rate α that
depends only on the dimensions m and n, the sequence of gradients converges to zero in Frobenius
norm:

lim
k→∞

∥∇f(Wk)∥F = 0.

The following theorem demonstrates that the proposed algorithm converges to a stationary point,
albeit within a neighborhood. The size of this neighborhood is explicitly determined by the step size
α and the momentum parameter µ. Specifically, a smaller step size α and a momentum parameter
µ closer to zero can lead to a tighter bound on the limit inferior of the sum of row norms of the
gradient.

Theorem 4 (Convergence of Row-Normalized Gradient Descent with Momentum) Let the fol-
lowing assumptions hold:

Assumption 1 (L-smoothness) The objective function f : Rm×n → R is L-smooth with respect to
the Frobenius norm, i.e., for any X,Y ∈ Rm×n, we have

∥∇f(X)−∇f(Y)∥F ≤ L ∥X − Y ∥F

Assumption 2 (Bounded Below) The function f is bounded below by a scalar f∗ > −∞.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Consider the algorithm with p = 2,m ≤ n, defined for k ≥ 0 as:

M ′
k+1 = µMk + (1− µ)∇f(Wk),

Mk+1 = normal(M ′
k+1; 2) = diag(

∥∥(M ′
k+1)1,:

∥∥−1

2
, . . . ,

∥∥(M ′
k+1)m,:

∥∥−1

2
)M ′

k+1,

Wk+1 = Wk − αMk+1,

where 0 < µ < 1, α > 0, and we initialize M0 = 0. We assume (M ′
k+1)i,: ̸= 0 for all i, k, ensuring

the normalization is well-defined. Let gk =
∑m

i=1 ∥(∇f(Wk))i,:∥2.

Then, the limit inferior of the sum of row norms of the gradient is bounded as:

lim inf
k→∞

gk ≤
Lαm

2
+

2µm

1− µ

While gk is not the standard Frobenius norm of the gradient matrix, it serves as a useful proxy. The
Frobenius norm of the gradient, ∥∇f(Wk)∥F , can be bounded by gk given that the L2 norm of each
row of the normalized matrix Mk+1 is unity. However, we do not have a direct theoretical guarantee
on the convergence of ∥∇f(Wk)∥F to zero in the presence of momentum (µ ̸= 0), hence the result
is expressed in terms of an upper bound on the gradient’s limit inferior. A full theoretical proof
for this general case is beyond the scope of this paper, and we leave a more rigorous analysis to
future work. The provided theorem offers a foundational understanding of the algorithm’s behavior,
showing that it does not diverge and approaches a region of low gradient.

5 EXPERIMENTS

5.1 SFT WITH FULL-PARAMETERS

Math Word Problems In this part, we conduct an experimental evaluation of mathematical rea-
soning capabilities. Specifically, we fine-tune the Qwen2.5-Math-1.5B model (Yang et al., 2024)
using a 20K data subset sampled from the NuminaMath-CoT dataset (LI et al., 2024). We compare
our proposed REG optimizer with three established baselines: the standard AdamW (Loshchilov &
Hutter, 2019), Muon (Jordan et al., 2024), and NGD (Newtonian Gradient Descent). The perfor-
mance of the fine-tuned models is evaluated on several downstream mathematical reasoning tasks,
including GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), and AIME24.

The AIME24 dataset, consisting of only 30 problems, is noted to yield unstable results with high
variance; therefore, readers should focus on the more robust and statistically significant results from
the GSM8K and MATH500 benchmarks. All experiments were conducted using the EvalScope
framework (Team, 2024). The test accuracies for models fine-tuned with different optimizers are
summarized in Table 1.

Optimizers GSM8K(%) MATH500(%) AIME24(%) Average(%)
Qwen2.5-Math-1.5B 28.1 24.4 13.3 21.9

Muon 49.1 58.6 10.0 39.2
NGD 70.1 60.2 6.7 45.6

AdamW 77.8 61.8 10.0 49.8
REG(ours) 76.5 64.8 10.0 50.4

Table 1: Test Accuracies of fine-tuned models on downstream mathematical reasoning tasks. REG
optimizer achieves competitive and, in some cases, superior performance compared to AdamW and
other baselines.

As shown in Table 1, our proposed REG optimizer achieves highly competitive performance, sur-
passing AdamW in terms of average accuracy. Specifically, REG optimizer obtains a remarkable
64.8% accuracy on MATH500, outperforming all other optimizers. On the GSM8K benchmark,
REG optimizer’s performance (76.5%) is on par with the leading AdamW (77.8%), with a marginal
difference that is not statistically significant.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

In contrast, the Muon optimizer exhibits a significant performance degradation on the GSM8K task,
achieving only 49.1% accuracy, which is considerably lower than both AdamW and our method. Our
method’s ability to maintain high performance across multiple tasks demonstrates its robustness and
effectiveness for mathematical fine-tuning.

Mathematical Optimization Modeling Problem We conduct an empirical experiment on math-
ematical optimization modeling problems (Ramamonjison et al., 2023; Huang et al., 2024; 2025).
This task aims to generate solvable mathematical models from a natural language description of
an optimization problem, and then use a solver to find the optimal solution. We use Qwen3-4B-
Instruct-2507 (Team, 2025) as the base model and fine-tune it using a mixed training dataset. The
model’s performance is evaluated on several standard benchmarks: MAMO (Huang et al., 2024),
NL4OPT (Ramamonjison et al., 2023), IndustryOR-fixed (Xiao et al., 2025), and OptMATH-Bench
(Lu et al., 2025). The training results comparing different optimizers are presented in Table 2.

MAMO NL4OPT IndustryOR OptMATH-Bench Average
EasyLP ComplexLP

Qwen3-4B 74.08 22.28 82.04 27.00 9.84 43.05
AdamW 83.59 33.18 86.12 36.00 4.15 48.61
Muon 84.66 33.65 83.26 37.00 5.18 48.75
REG(ours) 84.66 35.55 87.35 37.00 11.40 51.19

Table 2: Performance comparison of different optimizers on mathematical optimization modeling
tasks. “MAMO” is grouped with two sub-columns: EasyLP and ComplexLP. Other datasets occupy
single columns with vertically merged headers.

As shown in Table 2, fine-tuning with any optimizer significantly improves the model’s performance
across all datasets compared to the original Qwen3-4B-Instruct-2507 model. Our REG optimizer
consistently achieves the highest accuracy on most benchmarks. Specifically, it outperforms all
other optimizers on NL4OPT, MAMO-ComplexLP, and OptMATH-Bench, while matching the best
performance on MAMO-EasyLP and IndustryOR. The most notable improvement is observed on
the challenging OptMATH-Bench dataset, where our method achieves 11.40% accuracy, more than
doubling the performance of AdamW and Muon. The average accuracy across all five datasets
further highlights the superiority of our approach, with REG optimizer scoring 51.19%, compared
to 48.61% for AdamW and 48.75% for Muon. This demonstrates the effectiveness of REG optimizer
in enhancing the model’s ability to handle complex and diverse mathematical optimization problems.

5.2 APPLICATION TO IMAGE CLASSIFICATION

Having validated the REG optimizer on natural language processing benchmarks, we now extend
our evaluation to the domain of computer vision. To this end, we assess its performance on the
CIFAR-100 image classification task (Krizhevsky et al., 2009), which contains 60,000 color images
across 100 classes. Specifically, we train ResNet-18 and ResNet-50 models (He et al., 2016) from
scratch using the REG optimizer for parameter updates. We use SGD, NGD, and Adam as baseline
optimizers. We select Adam over AdamW as it is often the preferred choice for computer vision
tasks. The results of this experiment are summarized in Table 3, and the training curves for loss and
accuracy are presented in Figure 1.

Models SGD NGD Adam REG(ours)
ResNet-18 (%) 41.37 22.43 58.65 59.03
ResNet-50 (%) 33.04 13.01 59.62 59.14

Table 3: Test accuracies on the CIFAR-100 dataset for various optimizers and models.

As shown in Table 3, the REG optimizer achieves superior performances among all the optimiz-
ers.This indicates that while Adam remains a very strong baseline, the adaptive rescaling mecha-
nism of our method is highly effective compared to non-adaptive or poorly-formulated second-order
approaches like NGD.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) ResNet-18 loss (b) ResNet-18 Acc

(c) ResNet-50 loss (d) ResNet-50 Acc

Figure 1: Training loss and accuracy curves on the CIFAR-100 image classification task.

A more detailed analysis of the training curves in Figure 1 reveals a key advantage of our optimizer.
The REG optimizer demonstrates the fastest convergence in terms of both loss reduction and accu-
racy improvement. Notably, its training loss curve descends more rapidly and its training accuracy
curve ascends more steeply than all other optimizers. This suggests that the REG optimizer is par-
ticularly efficient at quickly locating a good, albeit potentially sub-optimal, parameter configuration
early in the training process. This rapid convergence is a desirable property for large-scale training
where computational resources are a primary concern, as it allows for the possibility of achieving a
reasonable performance with fewer training iterations.

5.3 ABLATION STUDIES

On the Necessity of a Hybrid AdamW Approach. In this section, we investigate the necessity
and efficacy of a hybrid optimization strategy that integrates AdamW updates for specific parameter
groups within the REG optimization framework. This study is motivated by established practices in
similar optimization algorithms, such as Muon, where it is a recommended practice to train embed-
ding layers using AdamW while applying the core optimization algorithm to all other parameters.
We hypothesize that this hybrid approach is crucial for mitigating potential numerical instabilities
that may arise from applying matrix-based update mechanisms, such as the Newton-Schulz iteration,
to the unique structural properties of embedding matrices, which are typically large and sparse.

To empirically validate this hypothesis, we conducted an ablation study comparing two distinct op-
timizer configurations. The first is the pure REG optimizer, which applies its update rule uniformly
across all model parameters. The second, designated as REG-with-AdamW, is a hybrid variant that
employs the AdamW update rule exclusively for the Large Language Model’s (LLM) embedding
layers, while retaining the REG update for all other parameters. A comparative analysis of their
performance on a suite of downstream tasks is presented in Table 4, providing a direct assessment
of the practical benefits of the proposed hybrid approach.

The results presented in Table 4 demonstrate that the hybrid REG-with-AdamW optimizer con-
sistently outperforms the pure REG optimizer across a majority of the evaluated tasks, and yields
a superior average performance. This empirical evidence supports our hypothesis regarding the
necessity of a hybrid strategy and confirms the practical advantage of applying AdamW updates

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Datasets REG REG-With-AdamW
GSM8K (%) 77.8 76.5
MATH500 (%) 62.4 64.8
AIME24 (%) 3.3 10.0
NL4OPT(%) 88.6 87.4
MAMO-EasyLP(%) 85.6 84.7
MAMO-ComplexLP(%) 28.4 35.6
IndustryOR(%) 26.0 37.0
OptMATH-Bench(%) 7.2 11.4
Average (%) 47.4 50.9

Table 4: Performance comparison of REG and REG-with-AdamW on various tasks. The table
presents the fine-tuned model’s accuracy on a range of datasets.

specifically to the embedding layers while using the REG optimizer for the remaining parameters.
Consequently, we recommend the adoption of the REG-with-AdamW configuration for optimal
performance.

Hyperparameter Selection for Order p. We investigated the selection of the hyperparameter
p for Large Language Model (LLM) training. While theoretical guarantees for balancing update
matrices exist for p = 1 and p = +∞, these values pose a practical challenge: the Root Mean
Square (RMS) norm of the update matrix lacks a closed-form solution. This absence complicates
the necessary rescaling of updates, thus impacting computational efficiency. Conversely, for p = 2,
the RMS norm has a closed-form solution, which significantly improves computational efficiency,
despite the absence of theoretical guarantees. The practical performance of different hyperparameter
choices for p is detailed in Table 5.

GSM8K (%) MATH500 (%) AIME24 (%) Average (%)
p = 1 75.8 63.6 10.0 49.8
p = 2 76.5 64.8 10.0 50.4
p = +∞ 75.6 63.2 3.3 47.4

Table 5: Performance comparison of different hyperparameter p on mathematical tasks. The table
shows the fine-tuned model’s accuracy on various datasets.

Given the limited sample size of the AIME24 dataset (only 30 problems), we suggest its results
be considered with caution. Based on the more extensive experiments conducted on GSM8K and
MATH500, we observed that while p = 2 lacks a theoretical guarantee, it achieves superior perfor-
mance compared to the other hyperparameters. This finding highlights an interesting gap between
theoretical predictions and empirical reality. Consequently, we recommend using p = 2 for training,
as it offers a compelling combination of computational efficiency and empirical effectiveness.

6 CONCLUSION

In this paper, we introduced a novel optimizer, REG, designed to enhance the training of LMs
through the use of the RACS operator. We provided a comprehensive analysis of its theoretical
underpinnings and validated its effectiveness through extensive empirical experiments. The results
consistently demonstrated that the REG optimizer achieves superior performance across diverse
tasks, both language and vision tasks. Furthermore, our findings suggest that REG is more aligned
with the performance characteristics of AdamW than Muon, indicating its significant potential for
future SFT applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

Friedrich L Bauer. Optimally scaled matrices. Numerische Mathematik, 5(1):73–87, 1963.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Jorge Cortés. Finite-time convergent gradient flows with applications to network consensus. Auto-
matica, 42(11):1993–2000, 2006.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

George E Forsythe and Ernst G Straus. On best conditioned matrices. Proceedings of the American
Mathematical Society, 6(3):340–345, 1955.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization, 2018. URL https://arxiv.org/abs/1802.09568.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks, 2016. URL https://arxiv.org/abs/1603.05027.

Francis Begnaud Hildebrand. Introduction to numerical analysis. Courier Corporation, 1987.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou
Wang, and Zizhuo Wang. Orlm: A customizable framework in training large models for auto-
mated optimization modeling, 2025. URL https://arxiv.org/abs/2405.17743.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: a mathematical
modeling benchmark with solvers, 2024. URL https://arxiv.org/abs/2405.13144.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

10

https://arxiv.org/abs/1802.09568
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/2405.17743
https://arxiv.org/abs/2405.13144
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/1412.6980

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factor-
ization. nature, 401(6755):788–791, 1999.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Jingyuan Liu, Jianling Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Meng Dong, Zheng Zhang, Yongsheng Kang,
Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is scalable
for llm training. ArXiv, abs/2502.16982, 2025. URL https://api.semanticscholar.
org/CorpusID:276575212.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Hongliang Lu, Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, and Zaiwen Wen. OptMATH:
A scalable bidirectional data synthesis framework for optimization modeling. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=9P5e6iE4WK.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

Yurii E Nesterov. Minimization methods for nonsmooth convex and quasiconvex functions.
Matekon, 29(3):519–531, 1984.

Thomas Pock and Antonin Chambolle. Diagonal preconditioning for first order primal-dual al-
gorithms in convex optimization. In 2011 International Conference on Computer Vision, pp.
1762–1769. IEEE, 2011.

Boris Polyak. Some methods of speeding up the convergence of iteration methods. Ussr Com-
putational Mathematics and Mathematical Physics, 4:1–17, 1964. URL https://api.
semanticscholar.org/CorpusID:120243018.

Rindranirina Ramamonjison, Timothy T. Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan
Ghaddar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong
Zhang. Nl4opt competition: Formulating optimization problems based on their natural language
descriptions, 2023. URL https://arxiv.org/abs/2303.08233.

Daniel Ruiz. A scaling algorithm to equilibrate both rows and columns norms in matrices. Technical
report, CM-P00040415, 2001.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

ModelScope Team. EvalScope: Evaluation framework for large models, 2024. URL https:
//github.com/modelscope/evalscope.

11

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://api.semanticscholar.org/CorpusID:276575212
https://api.semanticscholar.org/CorpusID:276575212
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://openreview.net/forum?id=9P5e6iE4WK
https://openreview.net/forum?id=9P5e6iE4WK
https://api.semanticscholar.org/CorpusID:120243018
https://api.semanticscholar.org/CorpusID:120243018
https://arxiv.org/abs/2303.08233
https://github.com/modelscope/evalscope
https://github.com/modelscope/evalscope

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Abraham Van der Sluis. Condition numbers and equilibration of matrices. Numerische Mathematik,
14(1):14–23, 1969.

Ziyang Xiao, Jingrong Xie, Lilin Xu, Shisi Guan, Jingyan Zhu, Xiongwei Han, Xiaojin Fu, WingYin
Yu, Han Wu, Wei Shi, Qingcan Kang, Jiahui Duan, Tao Zhong, Mingxuan Yuan, Jia Zeng,
Yuan Wang, Gang Chen, and Dongxiang Zhang. A survey of optimization modeling meets llms:
Progress and future directions, 2025. URL https://arxiv.org/abs/2508.10047.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024. URL
https://arxiv.org/abs/2403.03507.

12

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2508.10047
https://arxiv.org/abs/2403.03507

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL PROOFS

Proof 2 (Proof of Theorem 3) Without loss of generality, we assume m ≤ n. The proof for the
case m ≥ n is analogous, as the Frobenius inner product is symmetric with respect to transposition,
i.e., ⟨A,B⟩F = ⟨A⊤, B⊤⟩F for any matrices A,B ∈ Rm×n.

Step 1. Preliminaries and Key Inequality. From the L-Lipschitz continuity of the gradient ∇f , we
have the following property, often known as the Descent Lemma:

f(Y) ≤ f(X) + ⟨∇f(X), Y −X⟩F +
L

2
∥Y −X∥2F

where ⟨A,B⟩F = Tr(ATB) is the Frobenius inner product.

Let Gk := ∇f(Wk) and G̃k := normal(Gk; p). By substituting the update rule Wk+1 = Wk−αG̃k

into this inequality with X = Wk and Y = Wk+1, and recalling that Gk = ∇f(Wk), we obtain:

f(Wk+1) ≤ f(Wk) + ⟨Gk,Wk+1 −Wk⟩F +
L

2
∥Wk+1 −Wk∥2F

= f(Wk)− α⟨Gk, G̃k⟩F +
Lα2

2
∥G̃k∥2F

(6)

This inequality is central to our proof. The goal is to show that as long as Gk ̸= 0, the sum of the
last two terms on the right-hand side is negative, guaranteeing that f(Wk) is a strictly decreasing
sequence.

Step 2. Analysis of the Update Direction G̃k. By definition, for m ≤ n, the i-th row of G̃k, denoted
(G̃k)i, is:

(G̃k)i =
(Gk)i
∥(Gk)i∥p

(We adopt the convention that if (Gk)i = 0, then (G̃k)i = 0).

Let’s analyze the inner product term ⟨Gk, G̃k⟩F and the norm term ∥G̃k∥2F :

⟨Gk, G̃k⟩F =

m∑
i=1

⟨(Gk)i, (G̃k)i⟩ =
m∑
i=1

⟨(Gk)i, (Gk)i⟩
∥(Gk)i∥p

=

m∑
i=1

∥(Gk)i∥22
∥(Gk)i∥p

∥G̃k∥2F =

m∑
i=1

∥(G̃k)i∥22 =

m∑
i=1

∥(Gk)i∥22
∥(Gk)i∥2p

Provided Gk ̸= 0, we have ⟨Gk, G̃k⟩F > 0, which confirms that −G̃k is a descent direction.

Step 3. Bounding the Key Ratio. To ensure convergence, the step size α must be chosen carefully.
From Eq. equation 6, the decrease in f depends on the relationship between ⟨Gk, G̃k⟩F and ∥G̃k∥2F .
Let us define their ratio as γk:

γk =
∥G̃k∥2F
⟨Gk, G̃k⟩F

=

∑m
i=1 ∥(Gk)i∥22/∥(Gk)i∥2p∑m
i=1 ∥(Gk)i∥22/∥(Gk)i∥p

Let vi = (Gk)i, wi = ∥vi∥22/∥vi∥p > 0 (for vi ̸= 0), and zi = ∥vi∥2/∥vi∥p. Then γk can be written
as a weighted average of the zi:

γk =

∑m
i=1 wizi∑m
i=1 wi

Therefore, the value of γk must lie between the minimum and maximum values of zi:

min
i:(Gk)i ̸=0

(
∥(Gk)i∥2
∥(Gk)i∥p

)
≤ γk ≤ max

i:(Gk)i ̸=0

(
∥(Gk)i∥2
∥(Gk)i∥p

)
In the finite-dimensional vector space Rn, all norms are equivalent. This means there exist positive
constants δ and Γ, depending only on the dimension n and the choice of norm p, such that for any
non-zero vector v ∈ Rn:

0 < δ ≤ ∥v∥2
∥v∥p

≤ Γ

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Consequently, the ratio γk is uniformly bounded:

0 < δ ≤ γk ≤ Γ

Step 4. Ensuring Sufficient Decrease in Function Value. Rearranging the inequality for f(Wk+1)
from Eq. equation 6:

f(Wk+1) ≤ f(Wk)− α⟨Gk, G̃k⟩F

(
1− Lα

2

∥G̃k∥2F
⟨Gk, G̃k⟩F

)
(7)

= f(Wk)− α⟨Gk, G̃k⟩F (1−
Lαγk
2

) (8)

To guarantee a strict decrease in the sequence f(Wk), we need the term in the parenthesis to be
positive. We select a fixed step size α that satisfies this condition for all possible values of γk. Since
γk ≤ Γ2, we must choose α such that:

1− LαΓ2

2
> 0 =⇒ α <

2

LΓ2

Let’s choose a step size α such that 0 < α < 2
LΓ2 . Let c = 1− LαΓ2

2 , which is a positive constant.
We then have:

f(Wk+1) ≤ f(Wk)− α(1− Lαγk
2

)⟨Gk, G̃k⟩F ≤ f(Wk)− cα⟨Gk, G̃k⟩F

This gives us:
f(Wk)− f(Wk+1) ≥ cα⟨Gk, G̃k⟩F

Step 5. Proving the Gradient Norm Converges to Zero. Summing the above inequality from k = 0
to N − 1:

N−1∑
k=0

(f(Wk)− f(Wk+1)) ≥ cα

N−1∑
k=0

⟨Gk, G̃k⟩F

The left-hand side is a telescoping sum:

f(W0)− f(WN) ≥ cα

N−1∑
k=0

⟨Gk, G̃k⟩F

Since f is bounded below by finf , we have f(WN) ≥ finf . Therefore:

f(W0)− finf ≥ cα

N−1∑
k=0

⟨Gk, G̃k⟩F

As N →∞, the left-hand side is a finite constant. The right-hand side is the partial sum of a series
with non-negative terms. This implies that the series must converge:

∞∑
k=0

⟨Gk, G̃k⟩F <∞

A necessary condition for a series to converge is that its general term must approach zero. Thus:

lim
k→∞

⟨Gk, G̃k⟩F = lim
k→∞

m∑
i=1

∥(Gk)i∥22
∥(Gk)i∥p

= 0

Now, we use norm equivalence again. There exists a constant Γp such that ∥v∥p ≤ Γp∥v∥2.
m∑
i=1

∥(Gk)i∥22
∥(Gk)i∥p

≥
m∑
i=1

∥(Gk)i∥22
Γp∥(Gk)i∥2

=
1

Γp

m∑
i=1

∥(Gk)i∥2

Since ⟨Gk, G̃k⟩F → 0 and each term in the sum is non-negative, we must have:

lim
k→∞

m∑
i=1

∥(Gk)i∥2 = 0

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This further implies that for each i = 1, . . . ,m, limk→∞ ∥(Gk)i∥2 = 0. Consequently, the squared
Frobenius norm of the entire gradient matrix also tends to zero:

lim
k→∞

∥Gk∥2F = lim
k→∞

m∑
i=1

∥(Gk)i∥22 = 0

which means limk→∞ ∥∇f(Wk)∥F = 0.

We have shown that under the given assumptions, the norm of the gradient, ∥∇f(Wk)∥F , converges
to 0. By definition of a stationary point, this means that if the sequence {Wk} converges to a point
W ∗, then W ∗ must be a stationary point of f (i.e., ∇f(W ∗) = 0).

The proof of Theorem 4 is tricky. We firstly introduce the auxiliary Lyapunov function. By carefully
defining the Lyapunov function, we can prove the final result.

Proof 3 (Proof of Theorem 4) We define a Lyapunov function Lk for k ≥ 0:

Lk = f(Wk) + c ∥Mk∥2F
where c > 0 is a constant to be determined later. By the definition of the normal operator, for any
k ≥ 1, the rows of Mk are unit vectors in the ℓ2-norm. Thus, ∥(Mk)i,:∥22 = 1 for all i = 1, . . . ,m.
This implies that for k ≥ 1, ∥Mk∥2F =

∑m
i=1 ∥(Mk)i,:∥22 = m. We initialize with M0 = 0, so

∥M0∥2F = 0.

Let’s analyze the one-step change in the Lyapunov function for k ≥ 0.

Lk+1 − Lk = (f(Wk+1)− f(Wk)) + c(∥Mk+1∥2F − ∥Mk∥2F)
From the L-smoothness assumption, we have the descent lemma:

f(Wk+1) ≤ f(Wk) + ⟨∇f(Wk),Wk+1 −Wk⟩+
L

2
∥Wk+1 −Wk∥2F

= f(Wk)− α⟨∇f(Wk),Mk+1⟩+
L

2
∥−αMk+1∥2F

= f(Wk)− α⟨∇f(Wk),Mk+1⟩+
Lα2

2
∥Mk+1∥2F

Since ∥Mk+1∥2F = m for k ≥ 0, this simplifies to:

f(Wk+1)− f(Wk) ≤ −α⟨∇f(Wk),Mk+1⟩+
Lα2m

2

Substituting this into the Lyapunov difference equation yields:

Lk+1 − Lk ≤ −α⟨∇f(Wk),Mk+1⟩+
Lα2m

2
+ c(∥Mk+1∥2F − ∥Mk∥2F) (9)

The key is to relate the inner product term to quantities we can control. From the algorithm’s
definition, we have (1− µ)∇f(Wk) = M ′

k+1 − µMk. Therefore,

⟨∇f(Wk),Mk+1⟩ =
1

1− µ
⟨M ′

k+1 − µMk,Mk+1⟩

=
1

1− µ

(
⟨M ′

k+1,Mk+1⟩ − µ⟨Mk,Mk+1⟩
)

By the definition of the normalization,

⟨M ′
k+1,Mk+1⟩ =

m∑
i=1

⟨(M ′
k+1)i,:,

(M ′
k+1)i,:∥∥(M ′
k+1)i,:

∥∥
2

⟩ =
m∑
i=1

∥∥(M ′
k+1)i,:

∥∥
2
.

Let’s denote this term by hk. For the second inner product, we use Young’s inequality (2⟨a, b⟩ ≤
∥a∥2F + ∥b∥2F):

−µ⟨Mk,Mk+1⟩ ≥ −
µ

2
(∥Mk∥2F + ∥Mk+1∥2F)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Combining these results, we get a lower bound for the inner product:

⟨∇f(Wk),Mk+1⟩ ≥
1

1− µ

(
hk −

µ

2
(∥Mk∥2F + ∥Mk+1∥2F)

)
Now, substitute this back into (9):

Lk+1 − Lk ≤ −
α

1− µ

(
hk −

µ

2
(∥Mk∥2F + ∥Mk+1∥2F)

)
+

Lα2m

2
+ c(∥Mk+1∥2F − ∥Mk∥2F)

Rearranging the terms based on ∥Mk∥2F and ∥Mk+1∥2F :

Lk+1 − Lk ≤ −
αhk

1− µ
+

(
αµ

2(1− µ)
− c

)
∥Mk∥2F +

(
αµ

2(1− µ)
+ c

)
∥Mk+1∥2F +

Lα2m

2

To simplify the expression, we choose the constant c to eliminate the ∥Mk∥2F term:

c =
αµ

2(1− µ)

Since 0 < µ < 1 and α > 0, we have c > 0. With this choice of c, the inequality becomes:

Lk+1 − Lk ≤ −
αhk

1− µ
+

(
αµ

2(1− µ)
+

αµ

2(1− µ)

)
∥Mk+1∥2F +

Lα2m

2

= − αhk

1− µ
+

αµ

1− µ
∥Mk+1∥2F +

Lα2m

2

Since ∥Mk+1∥2F = m, we have:

Lk+1 − Lk ≤ −
αhk

1− µ
+

αµm

1− µ
+

Lα2m

2
(10)

Next, we relate hk =
∑m

i=1

∥∥(M ′
k+1)i,:

∥∥
2

to the gradient norm sum gk =
∑m

i=1 ∥(∇f(Wk))i,:∥2.
Using the reverse triangle inequality on the sum of row norms:

hk =

m∑
i=1

∥(µMk + (1− µ)∇f(Wk))i,:∥2 ≥
m∑
i=1

(
∥((1− µ)∇f(Wk))i,:∥2 − ∥(µMk)i,:∥2

)
= (1− µ)

m∑
i=1

∥(∇f(Wk))i,:∥2 − µ

m∑
i=1

∥(Mk)i,:∥2

= (1− µ)gk − µ

m∑
i=1

1 = (1− µ)gk − µm

Note that for k = 0, M0 = 0, so h0 ≥ (1 − µ)g0. The inequality hk ≥ (1 − µ)gk − µm holds for
all k ≥ 0. Substituting this lower bound for hk into (10):

Lk+1 − Lk ≤ −
α

1− µ
((1− µ)gk − µm) +

αµm

1− µ
+

Lα2m

2

= −αgk +
αµm

1− µ
+

αµm

1− µ
+

Lα2m

2

= −αgk +
2αµm

1− µ
+

Lα2m

2

Let C = 2αµm
1−µ + Lα2m

2 . We have the key recursive inequality:

αgk ≤ Lk − Lk+1 + C

Summing from k = 0 to N − 1:

α

N−1∑
k=0

gk ≤
N−1∑
k=0

(Lk − Lk+1) +

N−1∑
k=0

C = (L0 − LN) +NC

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Let’s analyze the boundary terms. L0 = f(W0) + c ∥M0∥2F = f(W0). The Lyapunov function is
bounded below because LN = f(WN) + c ∥MN∥2F ≥ f∗ + c · 0 = f∗ (since ∥MN∥2F ≥ 0). Thus,
L0 − LN ≤ f(W0)− f∗.

α

N−1∑
k=0

gk ≤ f(W0)− f∗ +NC

Dividing by Nα:
1

N

N−1∑
k=0

gk ≤
f(W0)− f∗

Nα
+

C

α

Since the minimum is less than or equal to the average, we have:

min
0≤k<N

gk ≤
f(W0)− f∗

Nα
+

1

α

(
2αµm

1− µ
+

Lα2m

2

)
min

0≤k<N
gk ≤

f(W0)− f∗

Nα
+

2µm

1− µ
+

Lαm

2

Taking the limit as N →∞, the first term vanishes:

lim inf
k→∞

gk ≤
Lαm

2
+

2µm

1− µ

This completes the proof.

B DISTINCTION FROM NORMALIZED GRADIENT DESCENT

The proposed optimizer is fundamentally distinct from the Normalized Gradient Descent (NGD)
algorithm (Nesterov, 1984; Cortés, 2006). While the update rule for scalar and vector parameters
is identical to that of NGD, a significant divergence emerges when considering higher-dimensional
parameters, particularly matrices.

For a matrix parameter W , the NGD update rule scales the gradient matrix∇f(W) by its Frobenius
norm, which is equivalent to a global learning rate adjustment. This approach preserves the direc-
tional information of the gradient unaltered. In contrast, our proposed optimizer not only modifies
the learning rate but also applies a structural transformation to the gradient ∇f(W) itself. This
transformation, which includes both a RACS transformation and a magnitude scaling, results in
optimization dynamics that are fundamentally different from those of NGD.

Furthermore, we conducted an empirical evaluation to compare the performance of NGD under dif-
ferent learning rates on mathematical tasks. The learning rate was initialized with a 5% warm-up
and subsequently decayed using a cosine schedule. The results, presented in Table 6, indicate a
strong dependence of NGD on a large learning rate for optimal performance. Analysis of the train-

Datasets lr=3e-2 lr=3e-3 lr=3e-4 lr=3e-5
GSM8K (%) 48.4 70.1 31.1 25.8
MATH500 (%) 57.4 60.2 53.0 24.8
AIME24 (%) 6.7 6.7 13.3 10.0
Average (%) 30.8 45.7 32.4 20.2

Table 6: Performance comparison of NGD with different learning rates across mathematical
datasets.

ing loss revealed that at the large learning rates required for good performance, the loss exhibited
minimal or no decrease during the initial training phase. This suggests that NGD is poorly suited for
the fine-tuning of pre-trained models. One potential explanation is the high variance in the average
magnitude of the NGD updates, which can lead to training instability when compared to optimizers
like AdamW and our proposed method.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Specifically, for the update values M̃ in NGD, the RMS of the update is given by:

RMS(M̃)2 =
1

mn

m∑
i=1

n∑
j=1

(
Mij

∥M∥F

)2

= 1.

This implies that the average magnitude for each entry of the matrix is fixed at 1√
mn

. For LLMs,
the parameters of different layers (e.g., embedding layers, attention layers, and MLP layers) pos-
sess vastly different scales. This fixed magnitude for updates across varying layer scales makes it
challenging for a single learning rate to appropriately adjust all matrix parameters.

In contrast, our proposed optimizer rescales the magnitude of each matrix according to its RMS norm
and further balances the magnitudes of different channels within a matrix. These operations collec-
tively contribute to a more stable training process. This distinction is particularly significant in the
context of Large Language Models, where the vast majority of trainable parameters are represented
by matrices. Consequently, the performance of our optimizer is expected to diverge significantly
from that of NGD during the training of such models.

C PRETRAINING EXPERIMENTS

In this section, we present the pretraining experiments conducted to evaluate the performance of the
proposed regularized optimizer. We trained a Qwen-like model using various optimizers for com-
parative analysis. The training framework was adapted from the Moonlight repository, accessible at
https://github.com/MoonshotAI/Moonlight.

The model architecture is a Qwen2-like configuration with a hidden size of 896, an interme-
diate size of 4864, 16 attention heads, and 12 hidden layers. The model was trained on the
“Elriggs/openwebtext-100k” dataset for one epoch, consistent with the settings specified in the
Moonlight framework. The training was performed with a learning rate of 1e-4 and 100 warm-up
steps. The progression of the training loss is illustrated in Figure 2.

Figure 2: Training loss curves for AdamW and the regularized optimizer (REG) on the openwebtext-
100k dataset.

As depicted in Figure 2, the training losses of the AdamW and the regularized optimizer are notably
similar. This observation suggests that the regularized optimizer achieves a competitive performance
level with AdamW, despite utilizing only the first momentum term.

18

https://github.com/MoonshotAI/Moonlight

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D THE REG REGULARIZATION OPERATOR

In this study, the regularization operator, denoted as reg(·), is defined as a normalization procedure
applied to the update matrix M . Specifically, we employ a single pass of either row-wise or column-
wise normalization.

The choice of this simplified operator warrants justification, particularly when contrasted with estab-
lished practices in numerical analysis. It is common in the numerical analysis literature to iteratively
apply row and column normalizations to a matrix to ensure desirable properties, like Ruiz normal-
ization (Ruiz, 2001) or Pock-Chambolle normalization (Pock & Chambolle, 2011). However, our
empirical results from SFT experiments indicate that a single normalization step is sufficient for
effective regularization. We observed that applying additional normalization iterations yielded no
significant performance gains and could adversely affect the training dynamics. Consequently, we
adopt the most straightforward implementation that proved effective.

For the sake of completeness, we define a generalized version of the REG optimizer in Algorithm
1, which allows for multiple normalization iterations.

Algorithm 1 The Generalized REG Optimizer
Input: Iteration count for normalization t ∈ N, learning rate α > 0, momentum hyperparameter
µ ∈ (0, 1), norm order p ∈ [1,+∞], RMS-norm target ρtarget, weight decay λ ≥ 0.

1: for each training step k = 0, 1, 2, . . . do
2: // Compute update matrix with momentum
3: Mk+1 ← µMk + (1− µ)∇f(Wk)
4: // Apply iterative normalization
5: M̃ ←Mk+1

6: for i = 1, . . . , t do
7: // Row normalization
8: M̃ ← diag(∥M̃1,:∥−1

p , . . . , ∥M̃m,:∥−1
p)M̃

9: // Column normalization
10: M̃ ← M̃ diag(∥M̃:,1∥−1

p , . . . , ∥M̃:,n∥−1
p)

11: end for
12: // Scale to target RMS value
13: M̂k+1 ← M̃ · ρtarget

RMS(M̃)

14: // Update weights with regularized gradient
15: Wk+1 ←Wk − α(M̂k+1 + λWk)
16: end for

The specific optimizer used throughout our experiments is a special case of Algorithm 1 where the
normalization iteration count is set to t = 1. While values of t > 1 were found to yield marginal
performance improvements, these gains were not statistically significant in our experimental setting.

19

	Introduction
	Related Work
	Algorithm
	Motivation
	Practical Enhancements for Large-Scale Training
	The Final Regularized Optimizer

	Theoretical Convergence Analysis
	Experiments
	SFT with Full-Parameters
	Application to Image Classification
	Ablation Studies

	Conclusion
	Additional Proofs
	Distinction from Normalized Gradient Descent
	Pretraining Experiments
	The REG Regularization Operator

