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ABSTRACT

Optimizers are crucial for the efficient training of Large Language Models
(LLMs). While AdamW is the de facto standard, recent structure-aware opti-
mizers like Muon have emerged, which regularize gradient updates by operating
on entire weight matrices. The Muon optimizer balances the gradient updates
along all the directions. However, Muon’s reliance on the matrix sign function
can lead to training instability, exhibits incompatibility when fine-tuning models
pre-trained with AdamW. To address these limitations, we propose REG, a novel
optimizer that replaces Muon’s aggressive matrix sign operator with the Row-and-
Column-Scaling (RACS) operator. Theoretically grounded in balancing a matrix,
the RACS operator regularizes the update steps in a less drastic manner, making
it simpler to implement and more compatible with established training dynam-
ics. Through extensive empirical experiments on LLM training, we demonstrate
that our REG optimizer not only achieves superior performance and stability over
AdamW, but also maintains consistency with the AdamW training paradigm. This
consistency is particularly evident during the fine-tuning stage, where REG opti-
mizer avoids the performance degradation observed with Muon.

1 INTRODUCTION

The rapid advancements of Large Language Models (LLMs) (Achiam et al., 2023; Guo et al., 2025;
Team et al., 2023) have made training efficient and effective optimizers a critical area of research.
While Adam (Kingma & Ba, 2017) and AdamW (Loshchilov & Hutter, 2019) remain standard, re-
cent empirical studies have revealed a key challenge in large-scale LLM training: the momentum
matrices within optimizers often become ill-conditioned. This indicates that a few principal direc-
tions dominate the parameter updates, which can hinder convergence and stability. This observation
has motivated a new class of optimizers, such as Muon (Jordan et al., 2024) and GaLore (Zhao et al.,
2024), that explicitly address the structural properties of parameter matrices.

Among these, the Muon optimizer is notable for its unique approach of treating weights as matrices
and applying a matrix sign function to orthogonalize the momentum-averaged gradient. While this
method successfully addresses the ill-conditioning problem by reducing the spectral condition num-
ber, it introduces significant implementation complexity and has been observed to cause training
instability. Specifically, the Muon optimizer’s aggressive rescaling of singular values can lead to
crashes. Furthermore, its training dynamics are not fully consistent with those of AdamW, which
can cause performance degradation when fine-tuning an AdamW-trained model. These drawbacks
highlight a need for a more stable and computationally simple alternative that can still regularize the
update dynamics.

In this paper, we propose a regularized gradient descent with momentum optimizer, dubbed as REG.
Our approach is grounded in the observation that ill-conditioned momentum matrices can be im-
proved by an operator that makes their rows and columns more uniform in magnitude. Instead of
the computationally complex matrix sign function used in Muon, we propose using a Row-and-
Column-Scaling (RACS) operator. The RACS operator, which involves simple diagonal matrix
multiplications, is computationally efficient and straightforward to implement. We provide theo-
retical grounding for this approach by drawing on classic results from numerical analysis, which
show that row and column scaling can significantly improve a matrix’s conditioning. Critically,
we demonstrate that the RACS operator provides a less drastic regularization than the matrix sign
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function, resulting in a training process that is more stable and compatible with AdamW-trained
models.

Our final proposed algorithm integrates this RACS operator into the standard Gradient Descent with
Momentum (GDM) framework, along with two practical enhancements: weight decay to prevent
overfitting and an RMS-based rescaling to ensure consistent update magnitudes. The latter is partic-
ularly robust for the empirically superior choice of ℓ2-norm scaling, where we derive a closed-form
solution for the RMS of the normalized matrix.

Our contributions are summarized as follows:

• We propose a novel optimizer, named REG, which regularizes the update steps using the
computationally efficient and stable RACS operator.

• We provide a theoretical justification for using the RACS operator by connecting it to clas-
sic results on matrix equilibration, and we provide a closed-form expression for the RMS
of the update matrix when using ℓ2-norm normalization.

• Through a series of empirical experiments, we demonstrate that our optimizer achieves
superior performance for LLM training while offering greater stability and consistency
with the AdamW training paradigm compared to Muon, particularly during the fine-tuning
stage.

2 RELATED WORK

Optimizers The development of optimization algorithms for training machine learning models
has seen significant progress since the introduction of stochastic gradient descent with momentum
(SGDM) by Polyak (1964). Subsequent research has led to a multitude of advanced optimizers,
including but not limited to those proposed by Dozat (2016); Duchi et al. (2011); Graves (2013);
Loshchilov & Hutter (2019); Kingma & Ba (2017); Martens (2020); Shazeer & Stern (2018); Zeiler
(2012). Among these, Adam (Kingma & Ba, 2017) and its variant with decoupled weight decay,
AdamW (Loshchilov & Hutter, 2019), have become the de facto standard for training large lan-
guage models (LLMs). Unlike SGDM, the Adam family of optimizers employs adaptive learning
rates for each parameter, allowing the training process to more effectively navigate the objective
function landscape, especially in regions with varying curvature. However, the use of first and sec-
ond momentum terms in Adam introduces a considerable memory overhead.

To address this memory challenge, several works have focused on developing more memory-efficient
and accelerated variants of Adam. Adafactor (Shazeer & Stern, 2018) reduces memory usage by
omitting the first momentum term and approximating the second momentum term using a factored
representation inspired by the divergence method (Lee & Seung, 1999). Similarly, Anil et al. (2019)
proposed a memory-efficient variation of Adagrad (Duchi et al., 2011). Another successful strategy
involves the use of low-rank approximation. The LoRA method (Hu et al., 2022) facilitates the
efficient fine-tuning of LLMs by training low-rank matrices A and B instead of the full weight
matrix W . Extending this concept to the optimizer itself, GaLore (Zhao et al., 2024) modifies the
Adam optimizer by replacing the full gradient with its low-rank approximation, thereby reducing
the memory footprint of both the first and second momentum terms. A related approach, Flora
(Hao et al., 2024), is based on a similar principle. In a different vein, the Muon optimizer (Jordan
et al., 2024) has shown promising results in LLM training (Liu et al., 2025; Team et al., 2025). This
approach suggests that an optimizer should balance the update matrix to ensure that all parameters
are updated along all directions. While the original Muon optimizer faced challenges with training
very large LLMs, its variants, such as those discussed by Team et al. (2025), have achieved success
in training models with up to 1 trillion parameters.

Matrix Balancing Matrix balancing is a well-established problem in numerical analysis, tradi-
tionally studied for its application in the numerical solution of linear equations (Hildebrand, 1987;
Horn & Johnson, 2012). The Row-And-Column-Scaling (RACS) operator, as discussed in works
such as (Bauer, 1963; Van der Sluis, 1969), is a widely used method for this purpose. Research by
Bauer (1963); Forsythe & Straus (1955); Van der Sluis (1969); Yang et al. (2024) has explored the
effects of RACS on the condition numbers and other properties of matrices. The RACS operator

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

also finds application in solving optimization problems, particularly in balancing matrices within
primal-dual formulations, as demonstrated by Ruiz (2001); Pock & Chambolle (2011).

3 ALGORITHM

3.1 MOTIVATION

We consider the optimization problem of minimizing a differentiable function f : Rm×n → R
over a parameter matrix W ∈ Rm×n. A foundational and widely-adopted method for this class of
problems is Gradient Descent with Momentum (GDM) (Polyak, 1964). At each iteration k, given
the current parameter matrix Wk, the momentum matrix Mk, a learning rate α, and a momentum
coefficient µ, the GDM update rules are defined as:

Mk+1 = µMk + (1− µ)∇f(Wk),

Wk+1 = Wk − αMk+1.
(1)

Recent empirical studies on LLMs have revealed that for 2D parameter matrices within Transformer
architectures, the corresponding momentum matrix M is frequently observed to be ill-conditioned,
exhibiting a large spectral condition number (σmax/σmin) (Gupta et al., 2018; Jordan et al., 2024;
Zhao et al., 2024). A high spectral condition number indicates that the matrix’s energy is concen-
trated along a few principal directions, which in turn implies that parameter updates are dominated
by these directions. This suggests the presence of an intrinsically low-rank structure within the
update dynamics.

This observation motivates the introduction of a computationally efficient regularization operator,
denoted by reg(·), applied to the momentum matrix Mk with the objective of improving its con-
ditioning. We thus propose the regularized GDM optimizer, which incorporates this regularization
step into the standard GDM framework:

Mk+1 = µMk + (1− µ)∇f(Wk),

Mk+1 = reg(Mk+1),

Wk+1 = Wk − αMk+1.

(2)

The choice of the regularization operator reg(·) is critical. For instance, the Muon optimizer employs
the matrix sign function, which theoretically reduces the spectral condition number of the resulting
matrix to one (Jordan et al., 2024). In this work, we investigate the RACS operator. Let Dk denote
the set of non-singular diagonal k×k matrices. The RACS operator is defined as reg(M ;D1, D2) =
D1MD2 for specifically chosen matrices D1 ∈ Dm and D2 ∈ Dn. The central problem is to
determine appropriate diagonal matrices D1 and D2 to improve the matrix’s properties, specifically
by minimizing a measure of its ill-conditioning.

The problem of optimal diagonal scaling to improve a matrix’s conditioning is a classic topic in
numerical analysis. For this, we recall the following foundational result on matrix equilibration
established by Van der Sluis (1969).

Theorem 1 Let M ∈ Rm×n be a matrix. In the following, the norm ∥ · ∥∗ may be any Hölder norm
or the Frobenius norm.

(a) If κ(M) := ∥M∥∞/∥M∥∗, then κ(DM) is minimal if all rows in DM have equal 1-norm.

(b) If κ(M) := ∥M∥1/∥M∥∗, then κ(MD) is minimal if all columns in MD have equal 1-norm.

(c) If M is invertible and κ(M) := (maxi,j |Mij |)∥M−1∥∗, then κ(DM) is minimal if all rows in
DM have equal∞-norm.

(d) If M is invertible and κ(M) := (maxi,j |Mij |)∥M−1∥∗, then κ(MD) is minimal if all columns
in MD have equal∞-norm.

The functions κ(·) in Theorem 1, while distinct from the standard spectral condition number
(σmax(M)/σmin(M)), serve a conceptually analogous purpose: they quantify the “imbalance” of
a matrix. This notion is intrinsically linked to modern concepts of a matrix’s effective dimension-
ality, such as the stable rank (∥M∥2F /∥M∥22) and effective rank. A matrix with a low stable rank,
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for instance, has its energy concentrated in a few dominant singular vectors, a characteristic that
often manifests as rows or columns with disproportionately large norms. The process of “equili-
bration”—scaling rows and columns to have uniform norms—directly counteracts this imbalance.
Therefore, minimizing κ(·) via equilibration can be interpreted as a computationally tractable proxy
for improving the matrix’s effective properties, pushing it towards a state where its constituent rows
and columns are more uniform in magnitude. This principle provides a robust theoretical foundation
for utilizing row or column normalization as a regularization strategy.

Inspired by these findings, we propose a normalization operator, normal(·; p), which, for a given
matrix M ∈ Rm×n, normalizes either its rows or columns based on their ℓp-norm. The choice of
axis is determined by the matrix dimensions to minimize computational overhead:

normal(M ; p) =

{
diag(∥M1,:∥−1

p , . . . , ∥Mm,:∥−1
p )M if m ≤ n,

Mdiag(∥M:,1∥−1
p , . . . , ∥M:,n∥−1

p ) if m > n,
(3)

where Mi,: denotes the i-th row of M and M:,j denotes the j-th column of M . This leads to a
regularized optimizer, parameterized by the norm order p:

Mk+1 = µMk + (1− µ)∇f(Wk),

Mk+1 = normal(Mk+1; p),

Wk+1 = Wk − αMk+1.

(4)

The theoretical results on matrix equilibration primarily support the use of p = 1 or p = ∞.
However, our empirical investigations, particularly in the context of training LLMs, indicate that p =
2 yields superior performance. This discrepancy highlights a known gap between classical numerical
linear algebra theory and the complex dynamics of deep learning optimization. A comprehensive
ablation study to determine the optimal order p across diverse tasks is beyond the scope of this work.
Instead, we focus our experimental validation on the SFT of LLMs, where the effectiveness of the
p = 2 case is demonstrated.

3.2 PRACTICAL ENHANCEMENTS FOR LARGE-SCALE TRAINING

To enhance the practical applicability and robustness of the proposed optimizer, particularly for
large-scale models, we incorporate two established techniques, following the methodology of recent
work Liu et al. (2025).

Weight Decay The first enhancement is the inclusion of weight decay, a standard regularization
technique in deep learning. It is implemented by adding a term proportional to the current weights
Wk to the update rule. This penalizes large weight values, which helps to prevent overfitting and
improve generalization.

Consistent Update Magnitude A second, more critical, modification addresses the need for con-
sistent update magnitudes. The naive regularization in Equation 4 normalizes the rows or columns
of the momentum matrix Mk+1, but does not control its overall scale. The magnitude of the up-
date could therefore vary unpredictably. Following Liu et al. (2025), we rescale the normalized
momentum matrix such that its root mean square falls within a predefined target range (e.g., 0.2 to
0.4).

For a generic p-norm, the RMS of the normalized matrix normal(M ; p) does not have a simple
closed-form expression. However, for the empirically superior case where p = 2, a closed-form
solution exists.

Theorem 2 For any matrix M ∈ Rm×n, the root mean square of the ℓ2-normalized matrix M̃ :=

normal(M ; 2) is given by
√

1
max{m,n} .

Proof 1 The proof follows directly from the definitions. Without loss of generality, assume m ≤ n,
which implies normalization is performed row-wise. The case m > n is analogous. The squared
RMS of M̃ is:

RMS(M̃)2 =
1

mn

m∑
i=1

n∑
j=1

M̃2
ij =

1

mn

m∑
i=1

n∑
j=1

(
Mij

∥Mi,:∥2

)2

=
1

mn

m∑
i=1

∑n
j=1 M

2
ij

∥Mi,:∥22
=

1

n
.
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Thus, RMS(M̃) =
√

1
n . Since we assumed m ≤ n, we have n = max{m,n}, which completes the

proof.

3.3 THE FINAL REGULARIZED OPTIMIZER

By integrating the aforementioned components, we arrive at the final version of our REG optimizer.
At each iteration k, the update rules are defined as follows:

Mk+1 = µMk + (1− µ)∇f(Wk),

M̃k+1 = normal(Mk+1; p),

M̂k+1 = M̃k+1 ·
ρtarget

RMS(M̃k+1)
,

Wk+1 = Wk − α(M̂k+1 + λWk),

(5)

where λ is the weight decay coefficient and ρtarget is a hyperparameter representing the target RMS
of the update matrix. For the specific case of p = 2, the denominator RMS(M̃k+1) can be replaced
by its deterministic value from Theorem 2.

4 THEORETICAL CONVERGENCE ANALYSIS

In this section, we present a theoretical convergence analysis of our regularized optimizer. A direct
convergence proof for the full algorithm, as defined in equation 5, is highly non-trivial and remains
an open problem in numerical optimization. Consequently, our analysis is restricted to a simplified
variant of the regularized optimizer, denoted as the naive version and given by equation 4. While
a comprehensive theoretical guarantee for the full algorithm is beyond the scope of this work, the
analysis presented here provides foundational insights into the convergence behavior of our method.

The analysis in this section focuses on the case where the momentum parameter is set to zero,
i.e., µ = 0. The convergence analysis for the case where µ ̸= 0 is significantly more complex,
as the normalization operator normal breaks the linearity between the gradient term ∇f(W ) and
the momentum term M . This nonlinearity prevents the direct application of classical momentum
analysis techniques. Nevertheless, the convergence proof for the µ = 0 case establishes a crucial
theoretical foundation for our method.

Theorem 3 Assume that f : Rm×n → R is continuously differentiable and its gradient ∇f is L-
Lipschitz. Consider the iteration equation 4 with µ = 0. For a sufficiently small learning rate α that
depends only on the dimensions m and n, the sequence of gradients converges to zero in Frobenius
norm:

lim
k→∞

∥∇f(Wk)∥F = 0.

The following theorem demonstrates that the proposed algorithm converges to a stationary point,
albeit within a neighborhood. The size of this neighborhood is explicitly determined by the step size
α and the momentum parameter µ. Specifically, a smaller step size α and a momentum parameter
µ closer to zero can lead to a tighter bound on the limit inferior of the sum of row norms of the
gradient.

Theorem 4 (Convergence of Row-Normalized Gradient Descent with Momentum) Let the fol-
lowing assumptions hold:

Assumption 1 (L-smoothness) The objective function f : Rm×n → R is L-smooth with respect to
the Frobenius norm, i.e., for any X,Y ∈ Rm×n, we have

∥∇f(X)−∇f(Y )∥F ≤ L ∥X − Y ∥F

Assumption 2 (Bounded Below) The function f is bounded below by a scalar f∗ > −∞.

5
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Consider the algorithm with p = 2,m ≤ n, defined for k ≥ 0 as:

M ′
k+1 = µMk + (1− µ)∇f(Wk),

Mk+1 = normal(M ′
k+1; 2) = diag(

∥∥(M ′
k+1)1,:

∥∥−1

2
, . . . ,

∥∥(M ′
k+1)m,:

∥∥−1

2
)M ′

k+1,

Wk+1 = Wk − αMk+1,

where 0 < µ < 1, α > 0, and we initialize M0 = 0. We assume (M ′
k+1)i,: ̸= 0 for all i, k, ensuring

the normalization is well-defined. Let gk =
∑m

i=1 ∥(∇f(Wk))i,:∥2.

Then, the limit inferior of the sum of row norms of the gradient is bounded as:

lim inf
k→∞

gk ≤
Lαm

2
+

2µm

1− µ

While gk is not the standard Frobenius norm of the gradient matrix, it serves as a useful proxy. The
Frobenius norm of the gradient, ∥∇f(Wk)∥F , can be bounded by gk given that the L2 norm of each
row of the normalized matrix Mk+1 is unity. However, we do not have a direct theoretical guarantee
on the convergence of ∥∇f(Wk)∥F to zero in the presence of momentum (µ ̸= 0), hence the result
is expressed in terms of an upper bound on the gradient’s limit inferior. A full theoretical proof
for this general case is beyond the scope of this paper, and we leave a more rigorous analysis to
future work. The provided theorem offers a foundational understanding of the algorithm’s behavior,
showing that it does not diverge and approaches a region of low gradient.

5 EXPERIMENTS

5.1 SFT WITH FULL-PARAMETERS

Math Word Problems In this part, we conduct an experimental evaluation of mathematical rea-
soning capabilities. Specifically, we fine-tune the Qwen2.5-Math-1.5B model (Yang et al., 2024)
using a 20K data subset sampled from the NuminaMath-CoT dataset (LI et al., 2024). We compare
our proposed REG optimizer with three established baselines: the standard AdamW (Loshchilov &
Hutter, 2019), Muon (Jordan et al., 2024), and NGD (Newtonian Gradient Descent). The perfor-
mance of the fine-tuned models is evaluated on several downstream mathematical reasoning tasks,
including GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), and AIME24.

The AIME24 dataset, consisting of only 30 problems, is noted to yield unstable results with high
variance; therefore, readers should focus on the more robust and statistically significant results from
the GSM8K and MATH500 benchmarks. All experiments were conducted using the EvalScope
framework (Team, 2024). The test accuracies for models fine-tuned with different optimizers are
summarized in Table 1.

Optimizers GSM8K(%) MATH500(%) AIME24(%) Average(%)
Qwen2.5-Math-1.5B 28.1 24.4 13.3 21.9

Muon 49.1 58.6 10.0 39.2
NGD 70.1 60.2 6.7 45.6

AdamW 77.8 61.8 10.0 49.8
REG(ours) 76.5 64.8 10.0 50.4

Table 1: Test Accuracies of fine-tuned models on downstream mathematical reasoning tasks. REG
optimizer achieves competitive and, in some cases, superior performance compared to AdamW and
other baselines.

As shown in Table 1, our proposed REG optimizer achieves highly competitive performance, sur-
passing AdamW in terms of average accuracy. Specifically, REG optimizer obtains a remarkable
64.8% accuracy on MATH500, outperforming all other optimizers. On the GSM8K benchmark,
REG optimizer’s performance (76.5%) is on par with the leading AdamW (77.8%), with a marginal
difference that is not statistically significant.
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In contrast, the Muon optimizer exhibits a significant performance degradation on the GSM8K task,
achieving only 49.1% accuracy, which is considerably lower than both AdamW and our method. Our
method’s ability to maintain high performance across multiple tasks demonstrates its robustness and
effectiveness for mathematical fine-tuning.

Mathematical Optimization Modeling Problem We conduct an empirical experiment on math-
ematical optimization modeling problems (Ramamonjison et al., 2023; Huang et al., 2024; 2025).
This task aims to generate solvable mathematical models from a natural language description of
an optimization problem, and then use a solver to find the optimal solution. We use Qwen3-4B-
Instruct-2507 (Team, 2025) as the base model and fine-tune it using a mixed training dataset. The
model’s performance is evaluated on several standard benchmarks: MAMO (Huang et al., 2024),
NL4OPT (Ramamonjison et al., 2023), IndustryOR-fixed (Xiao et al., 2025), and OptMATH-Bench
(Lu et al., 2025). The training results comparing different optimizers are presented in Table 2.

MAMO NL4OPT IndustryOR OptMATH-Bench Average
EasyLP ComplexLP

Qwen3-4B 74.08 22.28 82.04 27.00 9.84 43.05
AdamW 83.59 33.18 86.12 36.00 4.15 48.61
Muon 84.66 33.65 83.26 37.00 5.18 48.75
REG(ours) 84.66 35.55 87.35 37.00 11.40 51.19

Table 2: Performance comparison of different optimizers on mathematical optimization modeling
tasks. “MAMO” is grouped with two sub-columns: EasyLP and ComplexLP. Other datasets occupy
single columns with vertically merged headers.

As shown in Table 2, fine-tuning with any optimizer significantly improves the model’s performance
across all datasets compared to the original Qwen3-4B-Instruct-2507 model. Our REG optimizer
consistently achieves the highest accuracy on most benchmarks. Specifically, it outperforms all
other optimizers on NL4OPT, MAMO-ComplexLP, and OptMATH-Bench, while matching the best
performance on MAMO-EasyLP and IndustryOR. The most notable improvement is observed on
the challenging OptMATH-Bench dataset, where our method achieves 11.40% accuracy, more than
doubling the performance of AdamW and Muon. The average accuracy across all five datasets
further highlights the superiority of our approach, with REG optimizer scoring 51.19%, compared
to 48.61% for AdamW and 48.75% for Muon. This demonstrates the effectiveness of REG optimizer
in enhancing the model’s ability to handle complex and diverse mathematical optimization problems.

5.2 APPLICATION TO IMAGE CLASSIFICATION

Having validated the REG optimizer on natural language processing benchmarks, we now extend
our evaluation to the domain of computer vision. To this end, we assess its performance on the
CIFAR-100 image classification task (Krizhevsky et al., 2009), which contains 60,000 color images
across 100 classes. Specifically, we train ResNet-18 and ResNet-50 models (He et al., 2016) from
scratch using the REG optimizer for parameter updates. We use SGD, NGD, and Adam as baseline
optimizers. We select Adam over AdamW as it is often the preferred choice for computer vision
tasks. The results of this experiment are summarized in Table 3, and the training curves for loss and
accuracy are presented in Figure 1.

Models SGD NGD Adam REG(ours)
ResNet-18 (%) 41.37 22.43 58.65 59.03
ResNet-50 (%) 33.04 13.01 59.62 59.14

Table 3: Test accuracies on the CIFAR-100 dataset for various optimizers and models.

As shown in Table 3, the REG optimizer achieves superior performances among all the optimiz-
ers.This indicates that while Adam remains a very strong baseline, the adaptive rescaling mecha-
nism of our method is highly effective compared to non-adaptive or poorly-formulated second-order
approaches like NGD.
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(a) ResNet-18 loss (b) ResNet-18 Acc

(c) ResNet-50 loss (d) ResNet-50 Acc

Figure 1: Training loss and accuracy curves on the CIFAR-100 image classification task.

A more detailed analysis of the training curves in Figure 1 reveals a key advantage of our optimizer.
The REG optimizer demonstrates the fastest convergence in terms of both loss reduction and accu-
racy improvement. Notably, its training loss curve descends more rapidly and its training accuracy
curve ascends more steeply than all other optimizers. This suggests that the REG optimizer is par-
ticularly efficient at quickly locating a good, albeit potentially sub-optimal, parameter configuration
early in the training process. This rapid convergence is a desirable property for large-scale training
where computational resources are a primary concern, as it allows for the possibility of achieving a
reasonable performance with fewer training iterations.

5.3 ABLATION STUDIES

On the Necessity of a Hybrid AdamW Approach. In this section, we investigate the necessity
and efficacy of a hybrid optimization strategy that integrates AdamW updates for specific parameter
groups within the REG optimization framework. This study is motivated by established practices in
similar optimization algorithms, such as Muon, where it is a recommended practice to train embed-
ding layers using AdamW while applying the core optimization algorithm to all other parameters.
We hypothesize that this hybrid approach is crucial for mitigating potential numerical instabilities
that may arise from applying matrix-based update mechanisms, such as the Newton-Schulz iteration,
to the unique structural properties of embedding matrices, which are typically large and sparse.

To empirically validate this hypothesis, we conducted an ablation study comparing two distinct op-
timizer configurations. The first is the pure REG optimizer, which applies its update rule uniformly
across all model parameters. The second, designated as REG-with-AdamW, is a hybrid variant that
employs the AdamW update rule exclusively for the Large Language Model’s (LLM) embedding
layers, while retaining the REG update for all other parameters. A comparative analysis of their
performance on a suite of downstream tasks is presented in Table 4, providing a direct assessment
of the practical benefits of the proposed hybrid approach.

The results presented in Table 4 demonstrate that the hybrid REG-with-AdamW optimizer con-
sistently outperforms the pure REG optimizer across a majority of the evaluated tasks, and yields
a superior average performance. This empirical evidence supports our hypothesis regarding the
necessity of a hybrid strategy and confirms the practical advantage of applying AdamW updates

8
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Datasets REG REG-With-AdamW
GSM8K (%) 77.8 76.5
MATH500 (%) 62.4 64.8
AIME24 (%) 3.3 10.0
NL4OPT(%) 88.6 87.4
MAMO-EasyLP(%) 85.6 84.7
MAMO-ComplexLP(%) 28.4 35.6
IndustryOR(%) 26.0 37.0
OptMATH-Bench(%) 7.2 11.4
Average (%) 47.4 50.9

Table 4: Performance comparison of REG and REG-with-AdamW on various tasks. The table
presents the fine-tuned model’s accuracy on a range of datasets.

specifically to the embedding layers while using the REG optimizer for the remaining parameters.
Consequently, we recommend the adoption of the REG-with-AdamW configuration for optimal
performance.

Hyperparameter Selection for Order p. We investigated the selection of the hyperparameter
p for Large Language Model (LLM) training. While theoretical guarantees for balancing update
matrices exist for p = 1 and p = +∞, these values pose a practical challenge: the Root Mean
Square (RMS) norm of the update matrix lacks a closed-form solution. This absence complicates
the necessary rescaling of updates, thus impacting computational efficiency. Conversely, for p = 2,
the RMS norm has a closed-form solution, which significantly improves computational efficiency,
despite the absence of theoretical guarantees. The practical performance of different hyperparameter
choices for p is detailed in Table 5.

GSM8K (%) MATH500 (%) AIME24 (%) Average (%)
p = 1 75.8 63.6 10.0 49.8
p = 2 76.5 64.8 10.0 50.4
p = +∞ 75.6 63.2 3.3 47.4

Table 5: Performance comparison of different hyperparameter p on mathematical tasks. The table
shows the fine-tuned model’s accuracy on various datasets.

Given the limited sample size of the AIME24 dataset (only 30 problems), we suggest its results
be considered with caution. Based on the more extensive experiments conducted on GSM8K and
MATH500, we observed that while p = 2 lacks a theoretical guarantee, it achieves superior perfor-
mance compared to the other hyperparameters. This finding highlights an interesting gap between
theoretical predictions and empirical reality. Consequently, we recommend using p = 2 for training,
as it offers a compelling combination of computational efficiency and empirical effectiveness.

6 CONCLUSION

In this paper, we introduced a novel optimizer, REG, designed to enhance the training of LMs
through the use of the RACS operator. We provided a comprehensive analysis of its theoretical
underpinnings and validated its effectiveness through extensive empirical experiments. The results
consistently demonstrated that the REG optimizer achieves superior performance across diverse
tasks, both language and vision tasks. Furthermore, our findings suggest that REG is more aligned
with the performance characteristics of AdamW than Muon, indicating its significant potential for
future SFT applications.

9
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A ADDITIONAL PROOFS

Proof 2 (Proof of Theorem 3) Without loss of generality, we assume m ≤ n. The proof for the
case m ≥ n is analogous, as the Frobenius inner product is symmetric with respect to transposition,
i.e., ⟨A,B⟩F = ⟨A⊤, B⊤⟩F for any matrices A,B ∈ Rm×n.

Step 1. Preliminaries and Key Inequality. From the L-Lipschitz continuity of the gradient ∇f , we
have the following property, often known as the Descent Lemma:

f(Y ) ≤ f(X) + ⟨∇f(X), Y −X⟩F +
L

2
∥Y −X∥2F

where ⟨A,B⟩F = Tr(ATB) is the Frobenius inner product.

Let Gk := ∇f(Wk) and G̃k := normal(Gk; p). By substituting the update rule Wk+1 = Wk−αG̃k

into this inequality with X = Wk and Y = Wk+1, and recalling that Gk = ∇f(Wk), we obtain:

f(Wk+1) ≤ f(Wk) + ⟨Gk,Wk+1 −Wk⟩F +
L

2
∥Wk+1 −Wk∥2F

= f(Wk)− α⟨Gk, G̃k⟩F +
Lα2

2
∥G̃k∥2F

(6)

This inequality is central to our proof. The goal is to show that as long as Gk ̸= 0, the sum of the
last two terms on the right-hand side is negative, guaranteeing that f(Wk) is a strictly decreasing
sequence.

Step 2. Analysis of the Update Direction G̃k. By definition, for m ≤ n, the i-th row of G̃k, denoted
(G̃k)i, is:

(G̃k)i =
(Gk)i
∥(Gk)i∥p

(We adopt the convention that if (Gk)i = 0, then (G̃k)i = 0).

Let’s analyze the inner product term ⟨Gk, G̃k⟩F and the norm term ∥G̃k∥2F :

⟨Gk, G̃k⟩F =

m∑
i=1

⟨(Gk)i, (G̃k)i⟩ =
m∑
i=1

⟨(Gk)i, (Gk)i⟩
∥(Gk)i∥p

=

m∑
i=1

∥(Gk)i∥22
∥(Gk)i∥p

∥G̃k∥2F =

m∑
i=1

∥(G̃k)i∥22 =

m∑
i=1

∥(Gk)i∥22
∥(Gk)i∥2p

Provided Gk ̸= 0, we have ⟨Gk, G̃k⟩F > 0, which confirms that −G̃k is a descent direction.

Step 3. Bounding the Key Ratio. To ensure convergence, the step size α must be chosen carefully.
From Eq. equation 6, the decrease in f depends on the relationship between ⟨Gk, G̃k⟩F and ∥G̃k∥2F .
Let us define their ratio as γk:

γk =
∥G̃k∥2F
⟨Gk, G̃k⟩F

=

∑m
i=1 ∥(Gk)i∥22/∥(Gk)i∥2p∑m
i=1 ∥(Gk)i∥22/∥(Gk)i∥p

Let vi = (Gk)i, wi = ∥vi∥22/∥vi∥p > 0 (for vi ̸= 0), and zi = ∥vi∥2/∥vi∥p. Then γk can be written
as a weighted average of the zi:

γk =

∑m
i=1 wizi∑m
i=1 wi

Therefore, the value of γk must lie between the minimum and maximum values of zi:

min
i:(Gk)i ̸=0

(
∥(Gk)i∥2
∥(Gk)i∥p

)
≤ γk ≤ max

i:(Gk)i ̸=0

(
∥(Gk)i∥2
∥(Gk)i∥p

)
In the finite-dimensional vector space Rn, all norms are equivalent. This means there exist positive
constants δ and Γ, depending only on the dimension n and the choice of norm p, such that for any
non-zero vector v ∈ Rn:

0 < δ ≤ ∥v∥2
∥v∥p

≤ Γ
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Consequently, the ratio γk is uniformly bounded:

0 < δ ≤ γk ≤ Γ

Step 4. Ensuring Sufficient Decrease in Function Value. Rearranging the inequality for f(Wk+1)
from Eq. equation 6:

f(Wk+1) ≤ f(Wk)− α⟨Gk, G̃k⟩F

(
1− Lα

2

∥G̃k∥2F
⟨Gk, G̃k⟩F

)
(7)

= f(Wk)− α⟨Gk, G̃k⟩F (1−
Lαγk
2

) (8)

To guarantee a strict decrease in the sequence f(Wk), we need the term in the parenthesis to be
positive. We select a fixed step size α that satisfies this condition for all possible values of γk. Since
γk ≤ Γ2, we must choose α such that:

1− LαΓ2

2
> 0 =⇒ α <

2

LΓ2

Let’s choose a step size α such that 0 < α < 2
LΓ2 . Let c = 1− LαΓ2

2 , which is a positive constant.
We then have:

f(Wk+1) ≤ f(Wk)− α(1− Lαγk
2

)⟨Gk, G̃k⟩F ≤ f(Wk)− cα⟨Gk, G̃k⟩F

This gives us:
f(Wk)− f(Wk+1) ≥ cα⟨Gk, G̃k⟩F

Step 5. Proving the Gradient Norm Converges to Zero. Summing the above inequality from k = 0
to N − 1:

N−1∑
k=0

(f(Wk)− f(Wk+1)) ≥ cα

N−1∑
k=0

⟨Gk, G̃k⟩F

The left-hand side is a telescoping sum:

f(W0)− f(WN ) ≥ cα

N−1∑
k=0

⟨Gk, G̃k⟩F

Since f is bounded below by finf , we have f(WN ) ≥ finf . Therefore:

f(W0)− finf ≥ cα

N−1∑
k=0

⟨Gk, G̃k⟩F

As N →∞, the left-hand side is a finite constant. The right-hand side is the partial sum of a series
with non-negative terms. This implies that the series must converge:

∞∑
k=0

⟨Gk, G̃k⟩F <∞

A necessary condition for a series to converge is that its general term must approach zero. Thus:

lim
k→∞

⟨Gk, G̃k⟩F = lim
k→∞

m∑
i=1

∥(Gk)i∥22
∥(Gk)i∥p

= 0

Now, we use norm equivalence again. There exists a constant Γp such that ∥v∥p ≤ Γp∥v∥2.
m∑
i=1

∥(Gk)i∥22
∥(Gk)i∥p

≥
m∑
i=1

∥(Gk)i∥22
Γp∥(Gk)i∥2

=
1

Γp

m∑
i=1

∥(Gk)i∥2

Since ⟨Gk, G̃k⟩F → 0 and each term in the sum is non-negative, we must have:

lim
k→∞

m∑
i=1

∥(Gk)i∥2 = 0

14
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This further implies that for each i = 1, . . . ,m, limk→∞ ∥(Gk)i∥2 = 0. Consequently, the squared
Frobenius norm of the entire gradient matrix also tends to zero:

lim
k→∞

∥Gk∥2F = lim
k→∞

m∑
i=1

∥(Gk)i∥22 = 0

which means limk→∞ ∥∇f(Wk)∥F = 0.

We have shown that under the given assumptions, the norm of the gradient, ∥∇f(Wk)∥F , converges
to 0. By definition of a stationary point, this means that if the sequence {Wk} converges to a point
W ∗, then W ∗ must be a stationary point of f (i.e., ∇f(W ∗) = 0).

The proof of Theorem 4 is tricky. We firstly introduce the auxiliary Lyapunov function. By carefully
defining the Lyapunov function, we can prove the final result.

Proof 3 (Proof of Theorem 4) We define a Lyapunov function Lk for k ≥ 0:

Lk = f(Wk) + c ∥Mk∥2F
where c > 0 is a constant to be determined later. By the definition of the normal operator, for any
k ≥ 1, the rows of Mk are unit vectors in the ℓ2-norm. Thus, ∥(Mk)i,:∥22 = 1 for all i = 1, . . . ,m.
This implies that for k ≥ 1, ∥Mk∥2F =

∑m
i=1 ∥(Mk)i,:∥22 = m. We initialize with M0 = 0, so

∥M0∥2F = 0.

Let’s analyze the one-step change in the Lyapunov function for k ≥ 0.

Lk+1 − Lk = (f(Wk+1)− f(Wk)) + c(∥Mk+1∥2F − ∥Mk∥2F )
From the L-smoothness assumption, we have the descent lemma:

f(Wk+1) ≤ f(Wk) + ⟨∇f(Wk),Wk+1 −Wk⟩+
L

2
∥Wk+1 −Wk∥2F

= f(Wk)− α⟨∇f(Wk),Mk+1⟩+
L

2
∥−αMk+1∥2F

= f(Wk)− α⟨∇f(Wk),Mk+1⟩+
Lα2

2
∥Mk+1∥2F

Since ∥Mk+1∥2F = m for k ≥ 0, this simplifies to:

f(Wk+1)− f(Wk) ≤ −α⟨∇f(Wk),Mk+1⟩+
Lα2m

2

Substituting this into the Lyapunov difference equation yields:

Lk+1 − Lk ≤ −α⟨∇f(Wk),Mk+1⟩+
Lα2m

2
+ c(∥Mk+1∥2F − ∥Mk∥2F ) (9)

The key is to relate the inner product term to quantities we can control. From the algorithm’s
definition, we have (1− µ)∇f(Wk) = M ′

k+1 − µMk. Therefore,

⟨∇f(Wk),Mk+1⟩ =
1

1− µ
⟨M ′

k+1 − µMk,Mk+1⟩

=
1

1− µ

(
⟨M ′

k+1,Mk+1⟩ − µ⟨Mk,Mk+1⟩
)

By the definition of the normalization,

⟨M ′
k+1,Mk+1⟩ =

m∑
i=1

⟨(M ′
k+1)i,:,

(M ′
k+1)i,:∥∥(M ′
k+1)i,:

∥∥
2

⟩ =
m∑
i=1

∥∥(M ′
k+1)i,:

∥∥
2
.

Let’s denote this term by hk. For the second inner product, we use Young’s inequality (2⟨a, b⟩ ≤
∥a∥2F + ∥b∥2F ):

−µ⟨Mk,Mk+1⟩ ≥ −
µ

2
(∥Mk∥2F + ∥Mk+1∥2F )
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Combining these results, we get a lower bound for the inner product:

⟨∇f(Wk),Mk+1⟩ ≥
1

1− µ

(
hk −

µ

2
(∥Mk∥2F + ∥Mk+1∥2F )

)
Now, substitute this back into (9):

Lk+1 − Lk ≤ −
α

1− µ

(
hk −

µ

2
(∥Mk∥2F + ∥Mk+1∥2F )

)
+

Lα2m

2
+ c(∥Mk+1∥2F − ∥Mk∥2F )

Rearranging the terms based on ∥Mk∥2F and ∥Mk+1∥2F :

Lk+1 − Lk ≤ −
αhk

1− µ
+

(
αµ

2(1− µ)
− c

)
∥Mk∥2F +

(
αµ

2(1− µ)
+ c

)
∥Mk+1∥2F +

Lα2m

2

To simplify the expression, we choose the constant c to eliminate the ∥Mk∥2F term:

c =
αµ

2(1− µ)

Since 0 < µ < 1 and α > 0, we have c > 0. With this choice of c, the inequality becomes:

Lk+1 − Lk ≤ −
αhk

1− µ
+

(
αµ

2(1− µ)
+

αµ

2(1− µ)

)
∥Mk+1∥2F +

Lα2m

2

= − αhk

1− µ
+

αµ

1− µ
∥Mk+1∥2F +

Lα2m

2

Since ∥Mk+1∥2F = m, we have:

Lk+1 − Lk ≤ −
αhk

1− µ
+

αµm

1− µ
+

Lα2m

2
(10)

Next, we relate hk =
∑m

i=1

∥∥(M ′
k+1)i,:

∥∥
2

to the gradient norm sum gk =
∑m

i=1 ∥(∇f(Wk))i,:∥2.
Using the reverse triangle inequality on the sum of row norms:

hk =

m∑
i=1

∥(µMk + (1− µ)∇f(Wk))i,:∥2 ≥
m∑
i=1

(
∥((1− µ)∇f(Wk))i,:∥2 − ∥(µMk)i,:∥2

)
= (1− µ)

m∑
i=1

∥(∇f(Wk))i,:∥2 − µ

m∑
i=1

∥(Mk)i,:∥2

= (1− µ)gk − µ

m∑
i=1

1 = (1− µ)gk − µm

Note that for k = 0, M0 = 0, so h0 ≥ (1 − µ)g0. The inequality hk ≥ (1 − µ)gk − µm holds for
all k ≥ 0. Substituting this lower bound for hk into (10):

Lk+1 − Lk ≤ −
α

1− µ
((1− µ)gk − µm) +

αµm

1− µ
+

Lα2m

2

= −αgk +
αµm

1− µ
+

αµm

1− µ
+

Lα2m

2

= −αgk +
2αµm

1− µ
+

Lα2m

2

Let C = 2αµm
1−µ + Lα2m

2 . We have the key recursive inequality:

αgk ≤ Lk − Lk+1 + C

Summing from k = 0 to N − 1:

α

N−1∑
k=0

gk ≤
N−1∑
k=0

(Lk − Lk+1) +

N−1∑
k=0

C = (L0 − LN ) +NC
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Let’s analyze the boundary terms. L0 = f(W0) + c ∥M0∥2F = f(W0). The Lyapunov function is
bounded below because LN = f(WN ) + c ∥MN∥2F ≥ f∗ + c · 0 = f∗ (since ∥MN∥2F ≥ 0). Thus,
L0 − LN ≤ f(W0)− f∗.

α

N−1∑
k=0

gk ≤ f(W0)− f∗ +NC

Dividing by Nα:
1

N

N−1∑
k=0

gk ≤
f(W0)− f∗

Nα
+

C

α

Since the minimum is less than or equal to the average, we have:

min
0≤k<N

gk ≤
f(W0)− f∗

Nα
+

1

α

(
2αµm

1− µ
+

Lα2m

2

)
min

0≤k<N
gk ≤

f(W0)− f∗

Nα
+

2µm

1− µ
+

Lαm

2

Taking the limit as N →∞, the first term vanishes:

lim inf
k→∞

gk ≤
Lαm

2
+

2µm

1− µ

This completes the proof.

B DISTINCTION FROM NORMALIZED GRADIENT DESCENT

The proposed optimizer is fundamentally distinct from the Normalized Gradient Descent (NGD)
algorithm (Nesterov, 1984; Cortés, 2006). While the update rule for scalar and vector parameters
is identical to that of NGD, a significant divergence emerges when considering higher-dimensional
parameters, particularly matrices.

For a matrix parameter W , the NGD update rule scales the gradient matrix∇f(W ) by its Frobenius
norm, which is equivalent to a global learning rate adjustment. This approach preserves the direc-
tional information of the gradient unaltered. In contrast, our proposed optimizer not only modifies
the learning rate but also applies a structural transformation to the gradient ∇f(W ) itself. This
transformation, which includes both a RACS transformation and a magnitude scaling, results in
optimization dynamics that are fundamentally different from those of NGD.

Furthermore, we conducted an empirical evaluation to compare the performance of NGD under dif-
ferent learning rates on mathematical tasks. The learning rate was initialized with a 5% warm-up
and subsequently decayed using a cosine schedule. The results, presented in Table 6, indicate a
strong dependence of NGD on a large learning rate for optimal performance. Analysis of the train-

Datasets lr=3e-2 lr=3e-3 lr=3e-4 lr=3e-5
GSM8K (%) 48.4 70.1 31.1 25.8
MATH500 (%) 57.4 60.2 53.0 24.8
AIME24 (%) 6.7 6.7 13.3 10.0
Average (%) 30.8 45.7 32.4 20.2

Table 6: Performance comparison of NGD with different learning rates across mathematical
datasets.

ing loss revealed that at the large learning rates required for good performance, the loss exhibited
minimal or no decrease during the initial training phase. This suggests that NGD is poorly suited for
the fine-tuning of pre-trained models. One potential explanation is the high variance in the average
magnitude of the NGD updates, which can lead to training instability when compared to optimizers
like AdamW and our proposed method.
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Specifically, for the update values M̃ in NGD, the RMS of the update is given by:

RMS(M̃)2 =
1

mn

m∑
i=1

n∑
j=1

(
Mij

∥M∥F

)2

= 1.

This implies that the average magnitude for each entry of the matrix is fixed at 1√
mn

. For LLMs,
the parameters of different layers (e.g., embedding layers, attention layers, and MLP layers) pos-
sess vastly different scales. This fixed magnitude for updates across varying layer scales makes it
challenging for a single learning rate to appropriately adjust all matrix parameters.

In contrast, our proposed optimizer rescales the magnitude of each matrix according to its RMS norm
and further balances the magnitudes of different channels within a matrix. These operations collec-
tively contribute to a more stable training process. This distinction is particularly significant in the
context of Large Language Models, where the vast majority of trainable parameters are represented
by matrices. Consequently, the performance of our optimizer is expected to diverge significantly
from that of NGD during the training of such models.

C PRETRAINING EXPERIMENTS

In this section, we present the pretraining experiments conducted to evaluate the performance of the
proposed regularized optimizer. We trained a Qwen-like model using various optimizers for com-
parative analysis. The training framework was adapted from the Moonlight repository, accessible at
https://github.com/MoonshotAI/Moonlight.

The model architecture is a Qwen2-like configuration with a hidden size of 896, an interme-
diate size of 4864, 16 attention heads, and 12 hidden layers. The model was trained on the
“Elriggs/openwebtext-100k” dataset for one epoch, consistent with the settings specified in the
Moonlight framework. The training was performed with a learning rate of 1e-4 and 100 warm-up
steps. The progression of the training loss is illustrated in Figure 2.

Figure 2: Training loss curves for AdamW and the regularized optimizer (REG) on the openwebtext-
100k dataset.

As depicted in Figure 2, the training losses of the AdamW and the regularized optimizer are notably
similar. This observation suggests that the regularized optimizer achieves a competitive performance
level with AdamW, despite utilizing only the first momentum term.
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D THE REG REGULARIZATION OPERATOR

In this study, the regularization operator, denoted as reg(·), is defined as a normalization procedure
applied to the update matrix M . Specifically, we employ a single pass of either row-wise or column-
wise normalization.

The choice of this simplified operator warrants justification, particularly when contrasted with estab-
lished practices in numerical analysis. It is common in the numerical analysis literature to iteratively
apply row and column normalizations to a matrix to ensure desirable properties, like Ruiz normal-
ization (Ruiz, 2001) or Pock-Chambolle normalization (Pock & Chambolle, 2011). However, our
empirical results from SFT experiments indicate that a single normalization step is sufficient for
effective regularization. We observed that applying additional normalization iterations yielded no
significant performance gains and could adversely affect the training dynamics. Consequently, we
adopt the most straightforward implementation that proved effective.

For the sake of completeness, we define a generalized version of the REG optimizer in Algorithm
1, which allows for multiple normalization iterations.

Algorithm 1 The Generalized REG Optimizer
Input: Iteration count for normalization t ∈ N, learning rate α > 0, momentum hyperparameter
µ ∈ (0, 1), norm order p ∈ [1,+∞], RMS-norm target ρtarget, weight decay λ ≥ 0.

1: for each training step k = 0, 1, 2, . . . do
2: // Compute update matrix with momentum
3: Mk+1 ← µMk + (1− µ)∇f(Wk)
4: // Apply iterative normalization
5: M̃ ←Mk+1

6: for i = 1, . . . , t do
7: // Row normalization
8: M̃ ← diag(∥M̃1,:∥−1

p , . . . , ∥M̃m,:∥−1
p )M̃

9: // Column normalization
10: M̃ ← M̃ diag(∥M̃:,1∥−1

p , . . . , ∥M̃:,n∥−1
p )

11: end for
12: // Scale to target RMS value
13: M̂k+1 ← M̃ · ρtarget

RMS(M̃)

14: // Update weights with regularized gradient
15: Wk+1 ←Wk − α(M̂k+1 + λWk)
16: end for

The specific optimizer used throughout our experiments is a special case of Algorithm 1 where the
normalization iteration count is set to t = 1. While values of t > 1 were found to yield marginal
performance improvements, these gains were not statistically significant in our experimental setting.
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