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ABSTRACT
Point cloud plays a significant role in recent learning-based vision
tasks, which contain additional information about the physical
space compared to 2D images. However, such a 3D data format also
results in more expensive training costs to train a sophisticated
network with large 3D datasets. Previous methods for point cloud
compression focus on compacting the representation of each point
cloud for better storage and transmission but ignore the improve-
ments in training efficiency. In this paper, we introduce a new open
problem in the point cloud field, named point cloud condensation:
Can we condense a large point cloud dataset into a much smaller
synthetic dataset while preserving the important information of the
original large dataset? In other words, we explore the possibility
of training a network on a smaller dataset of informative point
clouds extracted from the original large dataset but maintaining
similar network classification performance. Training on this small
synthetic dataset could largely improve the training efficiency. To
achieve this goal, we propose a two-stage approach to generate
the synthetic dataset. We first introduce a nearest-feature-mean
based strategy to initialize the synthetic dataset, and then formu-
late our goal as a parameter-matching problem, which we solve by
introducing a gradient-matching strategy to iteratively refine the
synthetic dataset. We conduct extensive experiments on various
synthetic and real-scanned 3D object classification benchmarks,
showing that our synthetic dataset could achieve almost the same
performance with only 5% point clouds of ScanObjectNN dataset
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compared to training with the full dataset. Codes are available at
https://github.com/XLechter/PointCondensation.
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1 INTRODUCTION
Point clouds have recently gained great popularity for representing
objects in 3D vision [13, 16, 32, 36, 73, 74, 76]. Several 3D object
datasets have been created, such as ModelNet [61], ShapeNet [9],
and ScanObjectNN [53]. Also, networks specifically designed for
processing point cloud have been proposed [20, 28, 30, 38, 41–43, 52,
56, 73]. Training networks that work on point clouds is often more
computationally expensive than the 2D image counterpart, as point
clouds have irregular structures where the traditional convolution
operation cannot be directly applied[5, 6, 34, 35, 57, 62, 71, 72, 75].
Some attempts have been made to design a convolution operation
that operates directly on points [28, 42, 52, 56]. However, they
commonly need to search the nearest neighbor points to combine
the local property, involving a greatly high computational cost.
Though downsampling the point cloud to a smaller number of
points is a solution, it will significantly reduce the testing accuracy.

When a new network architecture is developed, as the new
network involves new combinations of different layers, it must
be trained from scratch again on the training sets. This process
can take a long time, especially if the training set is large or if the
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Figure 1: We investigate the possibility of synthesizing a
much smaller and informative training dataset from a large
point cloud dataset. With our generated synthetic training
set, the trained model could achieve similar testing accuracy
on the ScanObjectNN classification benchmark with only 5%
size of the whole dataset.

network architecture is complex. Additionally, even though large
volumes of point cloud data are requested by researchers to train
neural networks, some data collectors may not want to make the
data available to the general public for commercial reasons. For
example, Shibuya et al. [51] have tried to transform point clouds
into 3D line clouds to preserve point cloud data privacy.

Considering both the computation cost and data privacy, we
investigate the feasibility of condensing a point cloud dataset into a
compact set of representative synthetic point clouds, while preserv-
ing the majority of its information and minimizing performance
degradation for classification task. Our objective is to create a syn-
thetic dataset from a large dataset which should be significantly
smaller in size compared to the original dataset, yet preserve the
inherent characteristics of the dataset. Meanwhile, the generated
synthetic dataset should be generalizable enough to train point
cloud networks of different architectures. In this paper, we have
explored that utilizing only a few synthetic point clouds generated
with our method could result in plausible results when training the
same model (Figure 1).

Similar tasks have been recently explored in 2D image areas,
which are defined as image dataset condensation or distillation [55,
79, 81]. Most of these methods try to generate the synthetic image
dataset to approximate the original training set via an iterative
synthetic image optimization process. However, we find directly
applying these methods to point cloud data is non-trivial where the
generated synthetic point clouds are hard to converge to the optimal
shapes by simply employing these methods. This challenge arises
because 2D images are regular grids, allowing the optimization
process to proceed effectively by simply altering pixel colors. In
contrast, point clouds lack such regularity which allows points
to move more freely. This complicates the optimization process
because it becomes more difficult to determine the most effective
optimization direction in 3D space.

We observe that the initialization of the synthetic point cloud
dataset is a delicate factor which heavily impacts the synthetic set
quality. In the 2D image field, most methods start with a synthetic
dataset initialized with Gaussian noise or random samples, and
often achieve satisfactory results after optimization. However, we
find that due to the irregularity characteristic of point clouds, the
initialization of the synthetic point cloud dataset is a delicate factor

that significantly influences the synthetic set convergence. In other
words, a strategic and well-considered initialization is essential for
obtaining the more informative synthetic point cloud dataset.

To address this challenge, we structure our objective by introduc-
ing a two-stage approach. The first stage is centered on devising an
effective method for initializing the synthetic point cloud dataset.
Specifically, we design a strategy based on the mean of the nearest
point cloud feature, which entails initializing our synthetic dataset
with a carefully selected subset of point clouds. In the second stage,
we propose a parameter-matching strategy to optimize the synthetic
point cloud through moving the position of points. Specifically,
given the same network initialization, the parameters of the deep
network trained on the original and synthetic datasets should ide-
ally be very similar. This parameter matching issue could be solved
through an iterative gradient matching strategy where the gradi-
ents for the backpropagation of two networks should be similar in
each training iteration. We illustrate our method pipeline in Figure
2. Instead of leveraging point cloud generative models[1, 27, 33, 65]
to generate synthetic point clouds, we directly regard the input syn-
thetic point clouds as learnable parameters, and treat the network
weights as a differentiable function to optimize the synthetic input.
In each training iteration, we compute the difference between the
gradients from the original and synthetic point clouds and finally
the synthetic point clouds could be optimized via moving the points.

Comprehensive experimental evaluation of our approach on
the various synthetic and real-scanned point cloud classification
datasets shows the effectiveness of our method, demonstrating
that we could train point cloud networks with small synthetic
dataset to significantly fasten the training process with acceptable
performance drop. To further demonstrate the effectiveness of our
method, we further test our approach on practical applications such
as continual learning in our experiments.

In summary, our contributions are as follows: 1) We define a
new open problem in the point cloud field, exploring the possibil-
ity of synthesizing a smaller training dataset from a large point
cloud dataset for efficient training. 2) We introduce a two-stage
solution, in which we propose a nearest-feature-mean based ini-
tialization strategy, followed by a parameter-matching strategy
through gradient-based points moving. 3) Extensive experiments
on various classification benchmarks show the effectiveness of our
synthetic dataset, demonstrating we could train point cloud net-
works with a small synthetic dataset to significantly fasten the
training process with acceptable performance drop. 4) We further
evaluate our approach through applications in point cloud contin-
ual learning, demonstrating the significance of the new task and
the efficacy of our proposed method.

2 RELATEDWORK
Deep Learning on Point Cloud Analysis. The field of point
cloud processing has undergone a significant transformation with
the advent of deep learning technology[29, 66–69]. Traditional
methods that relied on hand-crafted local descriptors [10, 17, 31]
have been gradually replaced by learning-based methods. Qi et al.
proposed PointNet [41] as a solution to the challenge posed by the
disordered nature of point clouds, incorporating shared MLP and
max pooling layers. PointNet++ [42] was subsequently introduced
to enhance feature discrimination through hierarchical local feature
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extraction. Wang et al. introduced DGCNN [56], which utilized the
distance between each point in the feature space instead of the
Euclidean distance to determine the area surrounding each point for
graph feature extraction. Other works have employed convolution
neural networks to learn point cloud local characteristics [3, 14, 18–
20, 26, 28, 30, 38, 43, 48, 49, 52, 63]. Despite the success achieved by
these methods in analyzing point clouds, many of them require the
calculation of point-wise distance information to aggregate local
characteristics, resulting in a higher computational cost than the
convolution of conventional 2D images.
Generative models on point clouds. Our work is also closely
related to generative models for point clouds, including point cloud
generative adversarial networks [1, 27, 33], optimal transport [70],
and probabilistic-based models [24, 37, 65]. PointFlow[65], DPF-
Net[22], and SoftFlow[25] utilize Normalizing Flows, while SetVAE
[23] employs VAEs to generate sets of point clouds. ShapeGF[4]
learns the distributions of gradient fields that constitute shape
surfaces, and SP-GAN[27] utilizes a prior based on a spherical point
cloud. However, the aim of these point cloud generation methods is
to generate realistic-looking point clouds capable of fooling humans,
while the objective of our work is to create informative training
examples that can be effectively utilized for the training of deep
neural networks.
Dataset Compression & Condensation. Recent studies [21, 58,
60, 64, 77, 80, 82, 83] have employed learning-based methods to
compress point cloud data. Given the disorderly nature of point
clouds, current methods [39, 46] usually use a sophisticated data
structure, like an octree, to arrange the unprocessed point cloud
data. However, these methods focus on improving storage and
transmission efficiency rather than training efficiency. In the 2D
image community, some researchers aim to choose a subset of the
entire training dataset, referred to as a “coreset", which can be
used to achieve good performance during training. Most of these
methods [11, 47] progressively select important data points based
on heuristic criteria. Recent works [8, 54, 55, 78, 79, 81] have been
proposed to generate datasets that are not limited to the original
dataset, but applying these works to point clouds is non-trivial due
to the irregularity of point clouds as discussed in the introduction.
To this end, we explore the possibility of synthesizing a smaller,
informative training dataset from a larger point cloud set.

3 PROBLEM DEFINITION
Given a training set T consisting of 𝑁 point cloud and label pairs,
(𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, 2, . . . 𝑁 , our objective is to generate a smaller set
of synthetic point cloud and label pairs, S = (𝑠𝑖 , 𝑦𝑖 ) |𝑖 = 1, 2, . . . 𝑀 ,
where 𝑀 (𝑀 ≪ 𝑁 ) is much smaller than 𝑁 . The ideal scenario
would be a network trained on S converging faster and performing
similarly to a network trained on T .

The networks trained on T and S are denoted as 𝜙𝜽T and
𝜙𝜽S , respectively, where 𝜽 T and 𝜽S represent their respective
parameters. The performance of each network can be defined as
E𝒙∼𝑃D

[
ℓ

(
𝜙𝜽T (𝒙), 𝑦

)]
and E𝒙∼𝑃D

[
ℓ

(
𝜙𝜽S (𝒙), 𝑦

)]
, where 𝑃D rep-

resents the expected real data distribution and ℓ (., .) is the classifi-
cation loss function. Our objective can be formulated as:

E𝒙∼𝑃D
[
ℓ

(
𝜙T𝜽 (𝒙), 𝑦

)]
≃ E𝒙∼𝑃D

[
ℓ

(
𝜙S𝜽 (𝒙), 𝑦

)]
. (1)
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Figure 2: Method Overview. We learn an informative syn-
thetic point cloud set which can get similar network pa-
rameters when a network is trained on it and the original
dataset. We introduce a nearest feature mean based initializa-
tion strategy, and formulate our goal as an efficient gradient
matching problem via points moving. The synthetic sets are
regarded as learnable parameters and optimized iteratively.

In the experiments, the network performance is evaluated on the
splited unseen testing set.

4 METHOD
To get the ideal S for a large point cloud dataset, we propose
a two-stage solution. In the first stage, we introduce a nearest-
feature-mean based initialization strategy, in which we initialize
the synthetic point clouds with representive samples facilitating the
following optimization process. In the second stage, we formulate
our goal as a parameter-matching problem and further solve it by a
gradient-matching strategy to iteratively optimize S. We introduce
our method details step-by-step in the following sections.

4.1 Nearest-feature-mean Based Initialization
As previously noted, the irregular nature of point clouds makes the
initialization of S a sensitive factor in the subsequent optimization
process. A good initialization can significantly enhance the conver-
gence of S to get optimal performance. To define a good initial S,
inspired the heuristic sample selection method Herding [59], we
consider S is well initialized if the initial S could approximate the
overall distribution of the training set T . To this end, we propose
to initialize S by selecting the most representative samples in T
based on the nearest feature mean.

Algorithm 1 describes our initialization strategy for S. Specif-
ically, S are initialized class by class. For the training set point
clouds T𝑐 belonging to class 𝑐 , we extract the latent representation
of each point cloud 𝑥 in T𝑐 through a feature function 𝜙 𝑓 : 𝑥 → R𝑑 .
For the feature function 𝜙 𝑓 , we train a point cloud classification
network on T , and use the last layer feature 𝑓 ∈ 1 × 𝐷 as the
latent representation of each point cloud. Taking PointNet as an
example, we use the feature after the max-pooling layer as the fea-
ture representation.Point clouds 𝑠1, . . . , 𝑠𝑚 are iteratively selected
and accumulated until the desired total of𝑚 is reached. At each
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iteration step, a point cloud from the current dataset T𝑐 is incorpo-
rated into S𝑐 . Specifically, the chosen sample is the one that most
closely aligns the average feature vector of all samples across the
entire training set. To this end, S𝑐 could finally approximate the
distribution of the original set T𝑐 .

Algorithm 1 Synthetic Dataset Initialization Process

Input: point cloud dataset T𝑐 = {𝑥1, . . . , 𝑥𝑛} of class 𝑐
Input: 𝑚 target number of the synthetic dataset S𝑐 of class 𝑐
Require: feature function 𝜙 𝑓 : 𝑥 → R𝑑

𝜇 ← 1
𝑛

∑
𝑥∈T𝑐 𝜙 𝑓 (𝑥) // current class feature mean

for 𝑘 = 1, . . . ,𝑚 do
𝑠𝑘 ← argmin

𝑥∈T𝑐

𝜇 − 1
𝑘
[𝜙 𝑓 (𝑥) +

∑𝑘−1
𝑗=1 𝜙 𝑓 (𝑠 𝑗 )]


end for
S𝑐 ← (𝑠1, . . . , 𝑠𝑚)

Output: Initialized synthetic dataset S𝑐 of class 𝑐

4.2 Parameter Matching
To fulfill the objective outlined in Equation (1), it is crucial to not
only achieve similar network output with minimal loss after train-
ing on S and T , but also to obtain similar network parameters
𝜽S ≈ 𝜽 T , thus ensuring similar parameter optimization progress
for improved generalization ability. Our goal can be expressed as:

min
S
𝐷

(
𝜽S, 𝜽 T

)
, (2)

𝜽S (S) = argmin
𝜽
LS (𝜽 ) (3)

𝜽 T (T ) = argmin
𝜽
LT (𝜽 ) (4)

where 𝐷 denotes the distance function between the parameters of
the two networks, and L denotes the classification function.

In the process of parameter learning, the final trained 𝜽 T and the
S is dependent on the initialization parameter 𝜽 0 which is sampled
from an initialization parameter distribution 𝑃𝜽 0 . Thus the above
Equation 2, 3, 4 can be modified as:

min
S

E𝜽 0∼𝑃𝜃0

[
𝐷

(
𝜽S (𝜽 0) , 𝜽 T (𝜽 0)

)]
(5)

𝜽S (S) = argmin
𝜽
LS (𝜽 (𝜽 0)) (6)

𝜽 T (T ) = argmin
𝜽
LT (𝜽 (𝜽 0)) (7)

Original point cloud set T is time-invariant during training,
therefore we can first get trained 𝜽 T in an offline manner, then 𝜽S

can be learned with 𝜽 T as the target.
The traditional approach to solve Equation 6, 7 involves implicit

differentiation [44]. However, this can be complicated or expensive
due to the formation of the derivative matrix. It becomes infea-
sible when the models are large. An alternative approach, back-
optimization [15], is proposed where the network parameters (𝜽 )
are partially optimized according to the loss function:

𝜽S (S) = 𝑂𝑝𝑡𝜽
(
LS

(
𝜽S

)
,NS

)
(8)

𝜽 T (T ) = 𝑂𝑝𝑡𝜽
(
LT

(
𝜽 T

)
,N T

)
(9)

where O𝑝𝑡 means a specific optimization procedure with a fixed
number of steps (𝑁 ). However, using such a specific optimization
procedure may not yield favorable results in our formulation. One
reason is that the distance between the trained network parameters
𝜽 T and the initial network parameters 𝜽S may be too large, and
there may be multiple local minima in the loss reduction process,
making it difficult to pass through.

4.3 Gradient Matching via Critial Points Moving
Instead of matching the parameters of 𝜽S and trained 𝜽 T , wematch
the updated 𝜽S𝑡 and 𝜽 T𝑡 at each training iteration 𝑡 from the same
initialization to overcome the problem of local minima traps. This
converts the goal of parameter matching into smaller goals for each
iteration which breaks down Equations (5, 6, 7) to:

min
S

E𝜽 0∼𝑃𝜃0

[
𝑇−1∑︁
𝑡=0

𝐷

(
𝜽S𝑡 , 𝜽

T
𝑡

)]
(10)

𝜽S𝑡+1 (S) = 𝑂𝑝𝑡𝜽
(
LS

(
𝜽S𝑡

)
,NS

)
(11)

𝜽 T𝑡+1 (T ) = 𝑂𝑝𝑡𝜽
(
LT

(
𝜽 T𝑡

)
,N T

)
(12)

where 𝑇 denotes the total number of iterations. We hope that
through this method of goal decomposition, we can train the net-
work with the generated point cloud set S and original training set
T to get the similar parameters after each iteration (𝜽S𝑡 ≈ 𝜽 T𝑡 ).

During the gradient descent optimization of iteration 𝑡 + 1, the
update rule of O𝑝𝑡 is:

𝜽S𝑡+1 ← 𝜽S𝑡 − 𝜂𝜽∇𝜽LS
(
𝜽S𝑡

)
(13)

𝜽 T𝑡+1 ← 𝜽 T𝑡 − 𝜂𝜽∇𝜽LT
(
𝜽 T𝑡

)
(14)

where 𝜂𝜽 refers to the learning rate. For a network designed for
point clouds, e.g., PointNet, the assumption is that at each iteration
𝑡 , 𝜽S𝑡 and 𝜽 T𝑡 will become equal. This allows the synthetic input
S to be optimized by minimizing the difference between the mean
gradients, based on gradient matching theory [45, 50, 81]:

min
S

E𝜽 0∼𝑃𝜽0

[
𝑇−1∑︁
𝑡=0

𝐷

(
∇𝜽LS (𝜽 𝑡 ) ,∇𝜽LT (𝜽 𝑡 )

)]
(15)

LS
(
𝜽S𝑡

)
=

1
𝑀

∑︁
(𝑠,𝑦) ∈S

ℓ (𝜙𝜽 𝑡
(𝑠), 𝑦), (16)

LT
(
𝜽 T𝑡

)
=

1
𝑁

∑︁
(𝑥,𝑦) ∈T

ℓ (𝜙𝜽 𝑡
(𝑥), 𝑦), (17)

where 𝐷 denotes the Mean Squared Error (MSE) between the two
gradients at each layer.

Instead of directly minimizing the difference between the pa-
rameters 𝜽S𝑡 and 𝜽 T𝑡 , the gradient distance is used as a simplified
alternative to calculate S. This is because the gradient directly re-
flects the change in parameters, avoiding the need for recalculating
the previous parameters 𝜽𝑛 (𝑛 = 0, ..., 𝑛 − 1) when the parameters
are not significantly different, which leads to faster convergence
and lower memory consumption.
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The gradient matching loss 𝐷 (·; ·) in Equation 15 measures the
distance between two gradients. According to the network layer
type and width, the size of gradients is different in each layer. Here,
we flatten the gradient vectors to 1 × 𝐷𝑖 where 𝐷𝑖 denotes the
total gradient size in the 𝑖-th network layer. We compute the total
layerwise gradient losses as:

𝑑 (GS,GT ) =
out∑︁
𝑖=1

©«1 −
GSi · G

T
iGSi  GTi 

ª®®¬ (18)

whereGSi andGTi denote the gradients of S and T of the 𝑖-th layer,
respectively. With gradient loss backpropagation, the points in S
could move correspondingly to achieve similar gradients in each
iteration. In our experiments, we find that those “critical points”
move more significantly in the optimization process, which is dis-
cussed and illustrated in Sec. 6.2.

Additionally, the point cloud set S generated by our algorithm
contains both point cloud data and the corresponding labels. Due
to the complexity and learning difficulty, it is hard to optimize data
and labels at the same time to get good results. Therefore, we fix a
certain class label in a minibatch for generating the corresponding
point cloud in a certain class.

5 TRAINING ALGORITHM
We illustrate our algorithm in Algorithm 2. We first choose a point
cloud classification network backbone 𝜙 , e.g., PointNet, and initial-
ize the synthetic training set S with the introduced nearest-feature-
mean strategy. The entire algorithm involves an outer loop for
network parameter 𝜃 optimization and an inner loop for synthetic
dataS optimization. For the outer loop, we re-randomly initialize 𝜃0
after𝑇 iterations for𝐾 times to increase the data generalization abil-
ity. In the inner loop, given the iteration 𝑡 , we sample two training
batches 𝐵S𝑐 and 𝐵T𝑐 from both the synthetic and original training
set from the same class 𝑐 . Then we compute the gradient matching
loss between gradients ∇𝜽LS𝑐 (𝜽 𝑡 ) and ∇𝜽LT𝑐 (𝜽 𝑡 ) by applying
gradient descent with learning rate 𝜂S . The gradient matching is
performed class by class. After each iteration 𝑡 , we optimize 𝜃 by
computing the classification loss on the updated synthetic images
S. Though we could optimize S that are from multiple classes, we
find that imitating the mean gradients of the data from a single
class is easier compared to those of multiple classes.

6 EXPERIMENTS
Evaluation Datasets. We evaluate our proposed method on both
synthetic and real-scanned classification datasets. 1) ModelNet.
ModelNet [61] is a widely used dataset for point cloud classification.
Experiments are conducted on both ModelNet10 and ModelNet40.
ModelNet10 contains 4,899 CAD models from 10 categories, with
3,991 shapes for training and 908 for testing. ModelNet40 contains
12,311 shapes from 40 categories, split into 9,843 for training and
2,468 for testing. 2) ShapeNet.We also evaluate our methods on
ShapeNetPart for classification, a subset of ShapeNet [9] with 16
categories containing 12,137 and 2,874 objects for training and
testing, respectively. 3) ScanObjectNN. ScanObjectNN [53] is a
challenging real-scanned dataset containing 11,636 training objects
and 2,814 testing objects that are categorized into 15 classes in the

real world. We evaluated our method on ScanObjectNN without
backgrounds.
Evaluated Networks. We use PointNet as the default classifi-
cation backbone in all experiments if not specified. In the cross-
architecture experiment, we test following 3D classifiers: PointNet
[41], PointNet++ [42], DGCNN [56], PointNeXt [43], PointMLP
[38], covering the pointwise-MLP-based, convolution-based, and
graph-based methods.
Experimental Settings.We evaluate our method in three settings,
generating a synthetic dataset containing one point cloud per cate-
gory, 1% point clouds of the whole dataset, and 5% point clouds of
the whole dataset. Each experiment involves two phases. First, we
learn to synthesize a small synthetic set from a large real training
set. Then we use the learned synthetic set to train randomly initial-
ized neural networks and evaluate their performance on the real
testing set. We use point clouds with 2048 points as inputs. We run
each experiment 5 times and report the best performance of the
learned synthetic set. The batch size 𝐵T𝑐 and 𝐵S𝑐 for sampling the
original dataset and synthetic dataset are all set to 128 for PointNet
and 32 for all other networks on a single A5000. We first use a
learning rate of 0.0001 to optimize the synthetic point clouds for
1,000 iterations. After we get the synthetic dataset, we train new
networks with a learning rate of 0.001 for 300 epochs with batch
size 128.
Baselines We evaluate the performance of our method against
baselines as follows:

• Random point clouds: It involves randomly selecting 𝑀 point
clouds from each class in the training set.
• Herding: It uses the Herding algorithm [2, 7, 11, 59], which is
the same as our initialization strategy to select representative
samples without further optimization.
• K-Center: It uses the K-Center algorithm [47], another coreset
approach, which selects multiple center samples and minimizes
the largest distance between a data sample and its nearest center.
• DC [81] is a 2D dataset condensation approach. The core idea
is to generate the synthetic dataset in a way that produces the
same path of model updates as if training on the original dataset,
which is similar to our gradient matching progress.

6.1 Performance comparison
In our experiments, we evaluated the performance of our proposed
method by comparing it with various baseline methods, as depicted
in Table 1. We employed PointNet as the default network backbone.
Our results show that though some coreset methods, such as Herd-
ing and K-Center, outperformed random selection, our approach
demonstrated a clear advantage over these selection methods as it
was not restricted to a subset of the original dataset. Our approach
outperforms those directly applying 2D dataset condensation meth-
ods, such as DC and DM, indicating the better convergence of our
synthetic dataset. Our synthetic data achieved 73.5% accuracy using
only 10 point clouds on the ModelNet10 dataset and 83.5% accu-
racy with only 5% of the point clouds. Our method also performed
well on the ModelNet40 and ShapeNet datasets. On the real-world
ScanObjectNN dataset, our method achieved 72.0 % accuracy using
only 5% of the data, which is almost the same as the performance
achieved using the entire dataset (73.1% accuracy).
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Algorithm 2 Synthesizing point cloud training dataset.
Input: Original Training dataset T
Initialization: A point cloud classification network 𝜙 , synthetic set S initialized with nearest-feature-mean strategy for 𝐶 classes, outer
loop training iterations 𝐾 , inner loop training iterations 𝑇 , learning rate 𝜂.
1: for outer iteration k in K do
2: Re-randomly initializing network parameters 𝜃0
3: for inner iteration t in T do
4: for class c in C do
5: Sample a minibatch pair 𝐵T𝑐 ∼ T and 𝐵S𝑐 ∼ S ⊲ 𝐵T𝑐 and 𝐵S𝑐 are of the same class 𝑐 .
6: Compute the classification loss LT𝑐 = 1��𝐵T𝑐 �� ∑(𝒙,𝑦) ∈𝐵T𝑐 ℓ (𝜙𝜽 𝑡

(𝒙), 𝑦
)
and LS𝑐 = 1��𝐵S𝑐 �� ∑(𝒔,𝑦) ∈𝐵S𝑐 ℓ (𝜙𝜽 𝑡

(𝒔), 𝑦
)

7: Update S𝑐 ← Opt 𝑔S
(
𝐷

(
∇𝜽LS𝑐 (𝜽 𝑡 ) ,∇𝜽LT𝑐 (𝜽 𝑡 )

)
, 𝜂S

)
8: end for
9: Update 𝜽 𝑡+1 ← Opt log𝜽

(
LS (𝜽 𝑡 ) , 𝜂𝜽

)
⊲ Use the whole S

10: end for
11: end for
Output: Synthetic training set S

Subset size Ratio % Training time (s) Random Herding K-Center DC Ours Whole Dataset

ModelNet10
10 0.25 1.8 39.3 69.6 69.6 71.5 73.5

91.940 1 8.6 73.4 75.6 68.7 78.6 79.0
200 5 40.2 76.1 79.8 70.5 82.9 83.5

ModelNet40
40 0.4 7.0 35.3 45.3 45.3 47.5 49.5

87.7100 1 16.9 47.7 47.3 29.3 57.1 57.9
500 5 82.1 59.6 58.0 38.3 70.8 71.1

ShapeNet
16 0.13 3.0 51.4 58.7 58.7 63.5 65.5

97.1122 1 22.9 76.9 77.5 72.5 80.9 81.1
607 5 109.2 89.3 84.5 80.4 86.7 88.4

ScanObjectNN
15 0.12 3.0 23.9 31.0 31.0 32.6 34.7

73.1116 1 20.9 42.7 45.7 33.8 52.9 53.1
582 5 103.6 59.8 59.4 61.2 69.0 72.0

Table 1: The testing accuracy (%) of different methods on different datasets with PointNet for training and testing.

ModelNet10 ModelNet40 ShapeNet ScanObjectNN
Samples per class 1 1% 5% whole set 1 1% 5% whole set 1 1% 5% whole set 1 1% 5% whole set

Learning synthetic set 1510s 1816s 2898s - 1789s 2203s 4782s - 1651s 2325s 5338s - 1630s 2286s 5270s -
Training network 5s 21s 105s 2313s 20s 56s 271s 5320s 8s 67s 312s 5461s 8s 63s 311s 5295s

Table 2: Time consumption of learning the synthetic data and training PointNet with the synthetic data. The synthetic point
cloud dataset only needs to be generated once.

6.2 Visualization of synthetic point clouds
We visualize the learned synthetic point clouds of ModelNet10 and
ModelNet40 in Figure 3. We find that the synthetic point clouds
are visually recognizable, and we further conduct further analysis
to explore why our generated synthetic point clouds yield better
training performance.

In the visualization from Figure 3, we observe that the network
changes some of the point positions, which leads us to consider
whether our method is modifying some of the "critical points" of the
original point clouds, which is discussed in PointNet and PointNet++
[41, 42]. Using PointNet as the backbone, we illustrate the critical
points that activate the final max-pooling layer. We visualize the

synthetic point clouds and their corresponding critical points at
different epochs in Figure 4. It can be seen that after optimization,
the overall point clouds do not change much, but the critical points
have been significantly altered, which verifies our hypothesis.

6.3 Synthetic set initialization strategies
In our default settings, we initialize our synthetic set with our
proposed nearest-feature-mean based strategy. Here, we make a
comparison via initializing the point clouds with random samples.
In Table 3, we show the averaged results with 20 different random
seeds. We could observe that we could get better performance with
our initialized strategy on all datasets, indicating that the synthetic
dataset S could converge better with our initialization.
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ModelNet10

bathtubbed chair toiletsofa

table desk monitordresser night stand

ModelNet40

Figure 3: Visualization of the learned synthetic data on Mod-
elNet10 and ModelNet40 with one point cloud per class.

ModelNet10 ModelNet40 ShapeNet ScanObjectNN
Samples 1 %1 5% 1 %1 5% 1 %1 5% 1 %1 5%
Random 71.5 80.0 83.1 47.5 57.9 71.1 63.5 80.9 88.4 31.7 52.9 69.2
Ours 73.5 79.0 83.5 50.5 60.9 72.1 65.5 81.1 90.4 34.2 53.1 72.0

Table 3: Synthetic set initialized with random samples and
our initialization strategy.

6.4 Time consumption analysis
We give a time consumption analysis in Table 2 conducted on a
single A5000. We report the time for learning the synthetic set
with different numbers of point clouds per class, and the time for
training PointNet with the synthetic set. Table 2 shows that the
time for learning the synthetic set with 1 sample, 1% samples, and
5% samples per class for 1,000 iterations is less than training on
the whole set for 300 epochs. With a smaller training set size, the
training efficiency has been improved significantly. It is worth
noting that the synthetic point cloud dataset only needs to
be generated once and then distributed to different users for
efficient training without re-generation.

6.5 Cross-architecture generalization
It is expected that the synthetic dataset will also be effective in
training networks with different architectures. Thus we could gen-
erate a synthetic set using one backbone to gain generalization
performance to different networks. We verify this through conduct-
ing two experiments that aim to evaluate the cross-architecture
generalization.

To begin with, we analyze the synthetic datasets generated
through three different PointNet architectures with different layer
numbers and feature dimensions. Specifically, we employ three dis-
tinct PointNet configurations, namely the standard PointNet (which
involves 5 shared Multi-Layer Perceptron (MLP) layers for feature
extraction), the PointNet-small (which involves 3 shared MLP lay-
ers), and the PointNet-large (which involves 7 shared MLP layers).
Specifically, we use shared MLP layers with (64, 128, 512) chan-
nels for PointNet-small, (64, 64, 64 128, 1024) channels for standard
PointNet, and (64, 64, 64 128, 256, 512, 1024) channels for PointNet-
large. Cross-testing is performed across these architectures, with
results displayed in Table 4. It indicates that the generated synthetic
datasets show commendable generalization performance on all of
the PointNet architectures.

Train/Test PointNet PointNet-small PointNet-large
PointNet 73.5 73.5 74.3

PointNet-small 71.2 70.6 71.9
PointNet-large 71.6 70.8 73.9

Table 4: Cross-architecture testing accuracy (%) for one point
cloud per class on ModelNet10.

Nest, we generate synthetic datasets using a range of networks
including PointNet, PointNet++, DGCNN, PointNeXt, PointMLP,
and VoxelNet, all configured with default settings for classification.
Cross-testing was performed across these networks and the results
were evaluated on ModelNet10 with one point cloud per category,
which are presented in Table 5. Results indicate that the synthetic
dataset generated by PointNet produces the best performance on
all the different architectures.We hypothesize this is because all
other baselines involve sorting and ranking operations (e.g.,
TopK operators in Pytorch) for performing local convolu-
tion, such as ball query (PointNet++) and group convolution
(DGCNN) operators. These kinds of operations are demonstrated
as not gradient backpropagating friendly in [12]. Therefore, lever-
aging PointNet as the classification backbone, which is without
sorting and ranking operations, could better optimize the synthetic
dataset. Furthermore, the generated synthetic set using PointNet
also performs well on other baselines, demonstrating that it could
well represent the original set and is generalized with different
architectures. Note that we set a small learning rate to 0.00001 for
all baselines except PointNet, as we found that a larger learning
rate will make the results collapes.

Train/Test PointNet PointNet++ DGCNN PointNeXt PointMLP VoxelNet
PointNet 73.5 68.3 71.2 72.3 73.9 70.2

PointNet++ 58.3 62.9 58.6 62.9 61.6 54.9
DGCNN 64.2 61.4 62.8 61.0 59.9 56.8
PointNeXt 61.3 63.4 60.8 63.8 60.6 58.7
PointMLP 62.3 60.4 61.4 59.6 61.0 59.0

Table 5: Cross-architecture testing accuracy (%) with different
networks for one point cloud per class on ModelNet10.

6.6 Application
As outlined in our introduction, the synthesized compact point
cloud dataset can be utilized in two key applications: 1) It can facil-
itate continual learning in point cloud field, when processing new,



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Wenxiao Zhang et al.

iteration 0 iteration 100 iteration 500 iteration 1000 iteration 2000

Point clouds from 𝑆 Critical points Point clouds from 𝑆 Critical points Point clouds from 𝑆 Critical points Point clouds from 𝑆 Critical points Point clouds from 𝑆 Critical points

Figure 4: Visualization moving process of the critical points which activate the max-pooling layer of PointNet.

previously unseen classes of point cloud data. 2) Privacy concerns
associated with the original data can be mitigated by sharing the
generated datasets rather than the actual ones.

As outlined in our introduction, the synthesized compact point
cloud dataset can be utilized in continual learning application. It can
facilitate continual learning in point cloud field, when processing
new, previously unseen classes of point cloud data.
Point Cloud Continual Learning.We adapted our method for
continual learning to incrementally learn point clouds from new
classes while preserving the performance on existing classes. We
use the setting in [40] as our baseline, in which it progressively
stores training samples in memory to maintain class balance. We re-
placed its Herding sample selection process by using our generated
synthetic point cloud dataset. This includes generating synthetic
point clouds from current classes and storing them in memory. We
then assess the model performance in a task-incremental learning
scenario using the ModelNet40 dataset of 40 classes.

Our method is benchmarked against Random selection, Herding,
and DC, using amemory budget of 5 synthetic point clouds per class
on the ModelNet40 dataset. We structure the learning into 5 and 10
steps, dividing the 40 classes into equal parts for each step. Utilizing
the PointNet backbone, our approach consistently outperformed
the others in both 5-step and 10-step learning scenarios which is
shown in Figure 5. This indicates that our condensed dataset is
more representative of the original dataset.

7 CONCLUSION AND FUTUREWORKS
The purpose of our paper is to explore the feasibility of training
a point cloud classification network to obtain high accuracy us-
ing only a reduced number of synthetic point clouds derived from

Figure 5: (a) 5-step and (b) 10-step class-continual learning
on ModelNet40.

a large dataset. This objective is achieved by formulating it as a
parameter-matching problem where a network can attain compa-
rable network parameters after being trained on both the original
and the generated synthetic point clouds. To resolve this challenge,
a nearest-feature-mean based initialization strategy and effective
iterative gradient matching approach are introduced. Experimen-
tal results demonstrate the effectiveness of the proposed method
across various point cloud classification datasets and its application
in point cloud continual learning and data privacy protection. In
future work, besides the classification task, we aim to explore the
application to more complex point cloud tasks.
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