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ABSTRACT

With the advent of DeepSeek-R1, a new wave of reinforcement learning (RL)
methods has emerged that seem to unlock stronger mathematical reasoning. How-
ever, a closer look at the open-source ecosystem reveals a critical limitation: with
sufficiently many draws (e.g., pass@1024), many existing base models already
solve nearly all questions on widely used math benchmarks such as MATH-500
and AIME 2024. This suggests that the RL fine-tuning methods prevalent in the
LLM reasoning literature largely sharpen existing solution modes rather than dis-
covering entirely new ones. Such sharpening stands in contrast to the broader
promise of RL: to foster exploration and to acquire new skills. To move beyond
this plateau, we introduce MATH-Beyond (MATH-B), a benchmark deliberately
constructed to defeat common open-source models of up to 8B parameters even
under large sampling budgets. Improving performance on our benchmark via RL re-
quires methods that learn to reason in ways that go beyond base model capabilities
in repeated sampling. Since the problems are drawn from subsets of DAPO-
Math-17K and DeepScaleR datasets, they remain topically equivalent to standard
high-school math. Validating our premise, RL fine-tuned models such as Nemotron-
Research-Reasoning-Qwen-1.5B and DeepScaleR-1.5B-Preview perform poorly
on MATH-B at pass@1024, showing how existing approaches fall short on tack-
ling harder instances. We hope MATH-B will catalyze exploration-driven RL ap-
proaches that elicit deeper reasoning capabilities. We release MATH-B at ht tps:
//huggingface.co/datasets/brendel-group/MATH-Beyond.
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Figure 1: MATH-Beyond: Benchmark Construction and Difficulty. Left: Schematic of the
MATH-B creation process. A large set of problems from DAPO-Math-17K and DeepScaleR is first
refined through quality filters to ensure answer correctness and verifiability. This is followed by
evaluation against a gauntlet of open-source base models (< 8B, e.g., Qwen3, Qwen2.5 (-Math),
DeepSeek-R1-Distill) at a pass@1024 budget to isolate problems that lie beyond their limits. The
filtering yields the MATH-B suite of benchmarks: a 41-problem intersection set (unsolved by all base
models) for evaluating universal difficulty, and a larger 181-problem union set (unsolved by at least
one model) with model-specific splits for targeted analysis. This suite provides a rigorous testbed to
drive the development of exploration methods for RL. Right: An illustration of MATH-B’s significant
difficulty compared to common test sets like AIME24. Representative open-source models like
Qwen2.5 achieve near-zero pass@1024 scores on MATH-B, highlighting its difficulty. Qwen2.5
results are from Yue et al. (2025).
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1 INTRODUCTION

In the 2010s, deep reinforcement learning showcased its power through striking demonstrations
of exploration and skill acquisition (Mnih et al., 2013). Atari agents, starting from random play,
mastered complex games by discovering strategies unreachable to base policies, guided by exploration
incentives and intrinsic rewards (LLadosz et al., 2022; Amin et al., 2021). Methods such as count-based
exploration (Bellemare et al., 2016) and later Go-Explore (Ecoffet et al., 2021) drove dramatic jumps
from inept play to expertise, highlighting RL’s ability to uncover new capabilities. Around the same
time, AlphaGo (Silver et al., 2016) and AlphaZero (Silver et al., 2017) extended this promise to board
games like Go, Chess, and Shogi, where self-play took agents from scratch to superhuman mastery,
revealing novel strategies along the way.

Against this backdrop, academic progress in reasoning-focused LLMs has taken a very different
path. Community-trained models often show improved accuracy on popular benchmarks such as
MATH or AIME24 (Liu et al., 2025b; Song et al., 2025; Chen et al., 2025; Cheng et al., 2025; Cui
et al., 2025; Shao et al., 2025; Wang et al., 2025; Yu et al., 2025b). However, these RL models
typically succeed only on problems that their corresponding base models could already solve given
realistic sampling budgets (Wu et al., 2025; Yue et al., 2025). This is a far cry from earlier RL
successes, where base policies were incapable of solving tasks outright and progress required genuine
exploration and skill acquisition. This disconnect between RL’s exploratory promise and its current
application reflects a substantial blindspot in the current open-source evaluation ecosystem. Because
several open-source base models already achieve nearly 100% pass@1024 on several popular
benchmarks (Yue et al., 2025), test sets in their current form are fundamentally inadequate for
measuring—or encouraging—genuine progress in reasoning beyond the base model’s reach.

To address this gap, we introduce MATH-Beyond (MATH-B), a new benchmark of high-
school-level competition math problems, specifically constructed so that popular open-weight base
models are unlikely to solve even with 1024 attempts. As a result, progress on MATH-B necessarily
requires expanding the reasoning capabilities of base models, making it an ideal target for academic
research.

MATH-B is constructed by filtering mathematical reasoning datasets (DAPO-Math-17K (Yu et al.,
2025b) and DeepScaleR (Luo et al., 2025)), resulting in problems that are topically indistinguishable
from those in standard benchmarks. While constructing the dataset, we also uncovered and addressed
several non-obvious failure modes in programmatic verification, which informed our final benchmark
design. To ensure correctness, all problems are additionally verified against stronger reasoning models
such as GPT-5-Mini or o4-mini-high, which reliably solve them. We further confirm that leading
community RL models, including Nemotron-Research-Reasoning-Qwen-1.5B (Liu et al., 20252a) and
DeepScaleR-1.5B, perform poorly on MATH-B, underscoring the limitations of current approaches
and the need for methods that extend reasoning capabilities. In summary, our contributions are as
follows:

* New benchmark suite: We construct MATH-Beyond, a benchmark suite derived from the
failures of a large and diverse set of base models (pass@1024 = 0). This suite includes:
a union set of 181 problems unsolved by at least one of these models; model-specific
benchmarks for targeted analysis; and a highly challenging intersection set of 41 problems
that proved unsolvable for the entire considered set. To ensure quality, all problems are
annotated for topic and difficulty following the procedure from Omni-MATH (Gao et al.,
2024a), and undergo answer verification by frontier models (04-mini-high & GPT5-Mini).

* Verification pitfalls: During benchmark construction, we observed several pitfalls in
standard RLVR verification. We take these into account in our benchmark design and also
document them, highlighting subtle edge cases for the community to be aware of.

* Model evaluation: We evaluate RL-finetuned models such as Nemotron-Research-
Reasoning-Qwen-1.5B, DeepScaleR-1.5B, and Skywork-OR1 (He et al., 2025a) on MATH-
B and find that they do not substantially expand reasoning boundaries. In contrast, we find
that newer model families like Qwen3-4B and Qwen3-8B (Yang et al., 2025) perform better,
presumably due to better distributional overlap with our dataset.
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2 FRAMEWORK FOR EVALUATING MODEL EXPANSION

Our goal is to quantify whether a post-trained model (e.g., after RLVR) expands its reasoning
capabilities beyond its base model. While post-training can affect many aspects (e.g., robustness,
exploration, or transfer), our framework is designed to isolate the specific phenomenon of boundary
expansion—what new problems the post-trained model can solve relative to its base model. This
section formalizes this evaluation framework, adapting the nomenclature and definitions from Wu
et al. (2025) into a slightly simplified, empirical version. We apply this framework to our benchmark
MATH-B, which is a “zero-baseline” test. We define this as a setting where a benchmark is
specifically constructed such that the base model empirically fails on all problems (i.e., its observed
pass@k is zero) given a realistic sampling budget.

2.1 THE EMPIRICAL PASs@K METRIC

We evaluate a post-trained policy 7 against its base model g on a dataset D. Our evaluation is based
on the empirical pass@k metric. For a given problem 2 € D and a policy p € {m, ¢} (usually an
LLM), we draw k i.i.d. samples {y1,...,yx}. Let C(x) be the set of all correct completions for .
The empirical success is:

1 if3i e {1,...,k} such thaty; € C(x),

pass@k(p;x) =
0 otherwise.

This binary value—1 for a “pass” and O for a “fail”—is the ground-truth measure of success for a
single problem.

With a slight abuse of notation, the central metric reported in our paper is the average success rate
across the entire dataset D:

1
pass@k(p) = D] Z pass@k(p; ),
zeD

the ratio of problems in D solved by policy p using a k-sample budget.

2.2 DECOMPOSITION AND KEY METRICS

To understand how 7’s performance differs from ¢’s, we first define the Reachable Set R (p, D) as
the set of problems p solves:

Ri(p, D) ={z € D : pass@k(p;z) = 1}.

Comparing the reachable sets of 7 and ¢ allows us to isolate our primary metric and contextualize it.

Expansion (Primary Metric). Our primary focus and sole reported metric is the Expansion Rate.
This measures genuine boundary expansion—new problems 7 solves that ¢ could not. It is defined
based on the Expansion Set &, = Ry (7w, D) \ Ri(q, D):

: |€x|
Expansion Rate = ——.
|D|

Shrinkage. For diagnostic context, we also define Shrinkage (or “forgetting”). This measures
problems ¢ could solve that 7 now fails, defined by the Shrinkage Set S, = Ry (q, D) \ Ri(m, D). It
can be quantified as:

| Skl

Shrinkage Rate = ——.
D]

Preservation. Similarly, Preservation measures the fraction of ¢’s capabilities that 7 retains, defined
by the Preservation Set Py, = Ry, (m, D) N Ry (g, D). It is quantified as:

| Pk

Preservation Rate = ————.
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Consolidation. Finally, Consolidation is a concept for measuring if preserved solutions become
more robust (i.e., solvable at pass@1). It is defined as:
P "N Ry(m, D
Ci(r,q) = PO TT D)L
| Pl

Interpretation. The overall pass rate of 7 decomposes as pass@k(m) = (|€|+ |Pk|)/|D]. While
Shrinkage, Preservation, and Consolidation are crucial concepts for a full diagnosis, our target for
expanding the reasoning boundary is squarely the Expansion Rate. The other concepts serve as a
theoretical guardrail to ensure that measured gains are from genuine expansion, not mere reallocation.

2.3 SpPEcCIAL CASE: THE MATH-B BENCHMARK

The metrics framework in Section 2.2 simplifies cleanly for MATH-B. This benchmark is constructed
as a “zero-baseline” meaning it is composed of problems where the base model g was empirically
observed to fail within the sampling budget k (i.e. pass@k = 0). In our evaluation, this means the
base model’s reachable set is empty::

Under this premise, the decomposition from Section 2.2 collapses:
S, = o, Pr = 2, gk:Rk(ﬂ',D).

Shrinkage and preservation are thus not applicable. Every solve by  is by definition an expansion,
and the single relevant metric becomes:

[Ri(m, D)|
Dl

A “win” on MATH-B is simply a positive Expansion Rate, providing an unambiguous readout of
genuine boundary expansion.

Expansion Rate = = pass@k(m).

3 CREATING THE BENCHMARK

3.1 ON THE PITFALLS OF VERIFICATION

The goal of our work is to identify questions that models fail at high pass@1024 due to genuine
methodological or calculation errors, not because of artifacts in the verification pipeline. Current
rule-based verification methods for math, used both in training and evaluation, are themselves prone
to systematic failures. These failures can mask true performance by penalizing answers where the
reasoning or ground truth is technically correct but formatted poorly, making it appear as though the
model failed when the verifier simply could not handle the formatting or parsing.

To guide our evaluation and benchmark design, and to alert the community to these pitfalls, we sketch
seven distinct failure modes observed across common RL finetuning and evaluation frameworks. We
uncovered these issues through an analysis of reasoning traces produced by DeepSeek-R1-Distill-
Qwen2.5-7B (DeepSeek-Al et al., 2025) when applied to a subset of NuminaMath-1.5 (LI et al.,
2024). Table 1 provides concise but complete examples (problem, ground truth, model output snippet,
and the precise mismatch), and Table 3 in the Appendix summarizes how different frameworks are
affected.

3.2 MATH-B CONSTRUCTION PIPELINE

Our benchmark is the result of a multi-stage filtering pipeline designed to isolate problems that are
(a) correct and unambiguous, (b) novel, and (c) demonstrably unsolvable by a suite of open-source
base models even at a high sampling budget. The process is detailed below and in Figure 1.

3.2.1 BASE DATASET SOURCING

Our construction begins by sourcing a large pool of candidate problems. The primary goal, as stated,
is to find problems that defeat open-source models at high sampling budgets (pass@1024). This



Under review as a conference paper at ICLR 2026

Table 1: Common failure modes in rule-based math answer verification. These failures often
stem from rigid heuristics, such as reading only the first or last boxed answer, requiring specific text
anchors (e.g., "Answer:"), or other parsing failures. Each row shows the ground truth (GT), a model
snippet, and the resulting verifier error.

Mode GT Model snippet Verifier behavior

F1: Multiple valid 5 or 13 ...x= or Expected: accept both values.
Actual: only first/last boxed
read; one valid ignored.

F2: Late correct 150 ; ; Expected: final value only. Ac-

tual: early intermediate cap-
tured.

F3: Early correct 42 ... later Expected: accept any correct
boxed answer. Actual: later
wrong overrides early correct.

F4: Corrections 25 e , then correcting Expected: use corrected value.
Actual: first match persists;
“last-only” works, “first-only”
fails.

FS: Unordered tuple 3,4,5 , , Expected: order-agnostic
match. Actual: order-sensitive;
heuristics misgrade.

F6: Missing anchors 4 o242 = (no “Answer:”  Expected: accept boxed nu-
prefix) meral alone. Actual: anchor re-
quired; otherwise wrong.
F7: MCQ partial C)1000 ... “The answer is .” Expected: accept label-only
(C). Actual: requires exact
“C)1000”.

requirement immediately disqualifies many common datasets. For instance, DeepMath103K (He
et al., 2025b) and Big-Math (Albalak et al., 2025) are explicitly designed to be solvable (e.g., for
GRPO training), and indeed, models like Llama-3.1-8B solve them with few attempts. We also
sought to minimize data contamination, ruling out datasets like NuminaMath which have been seen
in pretraining by models like Qwen2.5-Math (Yang et al., 2024) and consequently DeepSeek-R1.

We therefore selected two base datasets: DAPO-Math-17K (Yu et al., 2025a), which satisfies our
criteria for both high difficulty (not verified by open-source models) and novelty (released after
DeepsSeek-R1), and DeepScaleR (Luo et al., 2025), which, while potentially seen, provides a large
corpus of problems that also lack open-source verification. This combined set forms our initial
candidate pool of 53,682 problems.

3.2.2 QUALITY FILTERS

We then apply an array of quality filters as described in the following paragraphs.

Question and Answer-Type Filtering To mitigate the verification pitfalls detailed in Section 3.1,
we apply several deterministic filters. First, to avoid ambiguity from failure modes like F1 (Multiple
valid answers), and F5 (Unordered Tuples), we filter DeepScaleR to include only problems with
integer-based ground truths (DAPO-Math-17K already meets this criterion). Second, using regex-
based filters, we remove all multiple-choice questions (to prevent F7 parsing failures) and any
questions containing Chinese characters. Finally, to ensure all problems are self-contained, we
remove any questions referencing external figures or images. This filtering process reduced the pool
to 34,515 datapoints.

Pre-screening and Random Sampling The problems from the previous step still represent a
computationally prohibitively large set for large-scale evaluation. To reduce this pool, we first perform
a difficulty pre-screening step. We evaluate Deepseek-R1-Distill-Qwen2.5-7B on all problems,
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keeping only those that it could not solve within a pass@16 budget. In addition to the screening, we
randomly sample a portion of this dataset for further processing.

Ground-Truth Answer Verification A critical step is to ensure that these problems are unsolved
due to their intrinsic challenge, not because their provided ground-truth answers are incorrect. While
our source datasets are generally reliable (e.g., DeepScaleR is derived from AIME (MAA) and
AMC (MAA, 2023) competitions (Luo et al., 2025)), we took an additional step to ensure the ground-
truth answers are correct. We evaluate (pass@2) this pre-screened subset using two frontier-class
models, 04-mini-high and GPT-5-Mini(Balunovic et al., 2025). For each problem, we prompt the
models to "Think step-by-step and put your final answer in \boxed." and check if the extracted
answer matches the dataset’s ground truth. We retain only the problems where at least one of these
frontier models successfully reproduced the ground-truth answer.

Deduplication Against Standard Benchmarks To ensure the novelty of our dataset, we first
perform an exact string-match deduplication of our candidate problems against several common
test sets, including MATH-500 (Hendrycks et al., 2021), MinervaMath (Lewkowycz et al., 2022),
OlympiadBench (He et al., 2024), AMC23 (MAA, 2023), AIME-2024, and AIME-2025 (MAA). We
confirmed that no question from our set is present in these benchmarks. At the end of this stage, a
collection of 184 problems remain.

3.2.3 FINAL BENCHMARK CONSTRUCTION (P2ass@1024 FILTERING)

The final step in our benchmark’s construction is to filter the candidate problems using a diverse suite
of representative open-source models. The definition of a ‘base model’ is contextual; it typically
refers to a model intended for further fine-tuning. Keeping in mind the models the community
often uses for post-training research, we select a suite of models categorized as either ‘base’ or
‘supplementary’ models. As we will detail, these two groups are used to construct different subsets of
our final benchmark.

Base Models This set is used to define the most challenging subset of our benchmark. It includes:
Qwen2.5-1.5B, Qwen2.5-7B (Qwen et al., 2025), Qwen2.5-Math-1.5B, Qwen2.5-Math-7B (Yang
et al., 2024), Qwen3-4B-Base, Qwen3-8B-Base (Yang et al., 2025), DeepSeek-R1-Distill-Qwen?2.5-
1.5B, DeepSeek-R1-Distill-Qwen2.5-7B (DeepSeek-Al et al., 2025), OLMo-7B (Groeneveld et al.,
2024), OLMo-2-7B (OLMo et al., 2025), and Llama-3.1-8B (Grattafiori et al., 2024).

Supplementary Models This group is combined with the base models to define the full benchmark.
It includes: Qwen2.5-1.5B-Instruct, Qwen2.5-7B-Instruct (Qwen et al., 2025), Qwen2.5-Math-1.5B-
Instruct, Qwen2.5-Math-7B-Instruct (Yang et al., 2024), Qwen3-4B, Qwen3-8B (Yang et al., 2025),
DeepScaler-1.5B (Luo et al., 2025), Nemotron-Research-Reasoning-Qwen-1.5B(v1 and v2) (Liu
et al., 2025a), and Skywork-OR1-7B (He et al., 2025a).

The deduplicated and pre-screened candidate set is then subjected to our final filtering stage. We
evaluate the problems against all listed models generating 1024 samples for each. During this
evaluation, we apply our robust verification logic (see Table | for failure modes) to ensure we were
measuring genuine reasoning failures. Our experiments and analyses required over 20 000 A100
GPU hours. Please refer to Appendix A.2 for more details on the evaluation parameters.

This comprehensive evaluation allows us to define our final benchmark, MATH-B, which comprises
three broad subsets for targeted analysis:

* MATH-Beyond-Union Set (MATH-B-U): The full benchmark of 181 problems, containing
any problem that at least one model from our entire suite (both base and post-trained) failed
to solve within 1024 attempts.

* MATH-Beyond-Intersection Set (MATH-B-I): A more challenging core subset of 41
problems, that all of our considered base models failed to solve. This is a hard subset of
MATH-B-U (see Table 5 for the QA pairs).

* Model-Specific Sets: For any given model in our suite, this is the collection of all problems
in the Union Set that it failed to solve (see Table 4). These sets enable fine-grained testing
of RL finetuned models derived from one of the evaluated base models.
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Overall, our MATH-B datasets serve as benchmarks of reasoning capability expansion (see Section 2).
3.3 DATA CHARACTERISTICS AND KEY REMARKS

Domain Distribution

Number Theory _ 15.5% (n=28) DeepScaleR

Applied Mathematics - 14.4% (n=26)
Hacbre) 1o e " DAPO-Math-17k
Precalculus - 2.8% (n=5)

Statistics 1 0.6% (n=1)

0 10 20 30 40

Percentage of Problems (%)

Figure 2: Characteristics of the MATH-B-U dataset. Left subplot shows the distribution of math
domains. Right subplot show the distribution of source datasets.

Domain and Difficulty Annotation To analyze the characteristics of the MATH-B dataset, we
annotate each problem for its mathematical domain and human-perceived difficulty. We adapt the
procedure from Omni-MATH (Gao et al., 2024a), using GPT-5 to perform the labeling based on
a contrastive prompting strategy (see supplementary material for the full prompt). This method
leverages labeled examples from various math datasets to contextualize and assign scores to new
problems and has shown to be aligned well with human judgment (Gao et al., 2024a). A selection of

annotated problems from MATH-B-I is provided in Table 5. We also plot the distribution of ground
truth answers in Figure 4.
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Figure 3: Difficulty distribution. The left subplot shows the difficulty distribution of the MATH-
Beyond-Union set, while the right subplot shows that of the MATH-Beyond-Intersection set. The
wide spread of difficulty levels highlights a key mismatch: the problems that models find challenging
are not necessarily those that humans typically struggle with.

Distribution Analysis As shown in Figure 2, the topic distribution of MATH-B consists entirely of
standard high-school mathematics subjects, ensuring topical relevance. The difficulty distribution,
plotted in Figure 3, reveals a wide range for both the Union and Intersection sets, with a median
human-difficulty rating of 4 out of 10. Notably, even for the challenging MATH-B Intersection set,
the maximum difficulty score is only 6.5. This suggests a significant disconnect between human-
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perceived difficulty and model failure modes; problems that are not considered exceptionally hard for
humans can still be robustly unsolvable by current models.

Benchmark Justification A strong benchmark should be realistic, difficult, and efficient (Nie et al.,
2025). MATH-B meets these with (i) realism: problems drawn from standard high-school curricula;
(ii) difficulty: base models perform poorly even with a large sampling budget (i.e. pass@1024);
and (iii) efficiency: the small suite enables potentially rapid, low-cost evaluation, and—as shown in
Section 4—post-trained models exhibit only marginal gains at pass@1024, making MATH-B a
perfect test bed for research.

Benchmark Usage We expect researchers to use MATH-B with the base models and their cor-
responding splits specified in Section 3.2.3: (1) evaluate the base model to estimate its pass@k
for reasonably large k (e.g., k = 1024, expected to be nearly 0); (2) apply some RL method of
interest; (3) re-estimate pass@k for the post-trained policy, which indicates the Expansion Rate per
Section 2. The benchmark is intended specifically for methods that aim to expand the listed base
model’s reasoning boundary. While this is a research benchmark, we hope the methods that people
come up with scales to larger scales and other scenarios

4 EVALUATING EXPANSION ACROSS FINETUNING METHODS

We evaluate several post-trained models on MATH-B to measure their ability to expand beyond
their base model’s reasoning capabilities (i.e. Expansion Rate Section 2). Our analysis of mod-
els finetuned with reinforcement learning (RL) reveals that current methods achieve only modest
expansion. As shown in Table 2, the three RL models based on DeepSeek-R1-Distill-Qwen1.5B
(r1-1.5b) (DeepSeek-Al et al., 2025) solve fewer than 10% of the test problems. In contrast, Skywork-
OR1-7B (skywork_orl) (He et al., 2025a) reaches a more promising 21% expansion; notably, its
training involves adaptive entropy control and a higher temperature, likely affording a greater scope
for exploration. Keep in mind that these are pass@1024 evaluations. This result suggests that
RL techniques designed to explicitly encourage exploration may indeed result in higher Expansion
Rates. We also observe that while prolonged training (i.e. more RL compute) can offer marginal
gains—as seen in the slight improvement from Nemotron-Research-Reasoning-Qwen-1.5B ver-
sion 1 (nemotron_v1) to Nemotron-Research-Reasoning-Qwen-1.5B version 2 (nemotron_v2) (Liu
et al., 2025a)—the rather small 1.5% increase underscores the need for more efficient and effective
exploration methods. See also the evolution of Expansion Rate in Figure 5.

Table 2: Expansion Rates of post-trained models using either RL or SFT/Distillation. The
Expansion Rate measures the percentage of previously unsolvable problems (from the base model’s
perspective) that the post-trained model can now solve We additionally add AIME24 (pass@1)
numbers of the post-trained models to illustrate the difficulty of our dataset (He et al., 2025a; Yang
et al., 2025; Liu et al., 2025a).

Base Expansion Rate = AIME24

Base model Post-trained Method unsolved (%, pass@1024) (pass@1)

Reinforcement Learning (RL) models

rl-1.5b nemotron_vl RL 115 7.83 48.13
rl-1.5b nemotron_v2 RL 115 9.57 49.58
rl-1.5b DeepScaleR  RL 115 5.22 40.21
rl-7b skywork_orl RL 99 21.2 70.2
Supervised Fine-Tuning (SFT) models

Qwen3-4B-base Qwen3-4B Long CoT Dist. 112 58.93 73.3
Qwen3-8B-base Qwen3-8B Long CoT Dist. 116 66.38 76.0

As an illustrative contrast, we evaluated Qwen3-4B and Qwen3-8B. These models are the result of
finetuning their respective base versions (Qwen3-4B-Base and Qwen3-8B-Base) by distilling long
Chain-of-Thought (CoT) reasoning trajectories from a more capable teacher model. They demonstrate
substantially higher Expansion Rates of 58.93% and 66.38%, respectively. While this is not a direct
apples-to-apples comparison due to differing training setups, the result is highly informative: it
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shows that significant expansion is achievable when a model is exposed to the correct distribution of
reasoning steps, an overlap that long CoT distillation provides (Yang et al., 2025).

This contrast highlights that the primary limitation of current RL techniques may not be an inherent
inability of the base models to learn, but rather the failure of the exploration process to find these
effective reasoning pathways on its own. Developing RL methods that can discover these pathways
without a teacher model remains a key challenge for reaching frontier capabilities and is the central
motivation for our work.

5 DISCUSSION AND RELATED WORK

On the Choice of k = 1024 Our selection of k = 1024 for all passQ@k evaluations is a deliberate
choice to ensure our benchmark is challenging, stable, and efficient. Firstly, a large sampling budget
is necessary to probe the true reasoning boundary of a model. Many popular benchmarks become
saturated at this scale, with base models solving a high percentage of problems and leaving no room to
measure improvement (Yue et al., 2025). We chose k = 1024 precisely because it represents a budget
where MATH-B remains difficult, creating a meaningful testbed for genuine expansion. Secondly,
this choice is strongly supported by our empirical analysis. While overall pass@k performance
shows a consistent log-linear increase with the sampling budget (Figure 6), the marginal gains for
each additional sample diminish considerably (Figure 7). Most importantly, the Expansion Rate for
RL-finetuned models—our core metric for progress—Ilargely plateaus as the budget approaches 1024
(Figure 5). Therefore, k = 1024 represents a principled trade-off: it is large enough to push models
beyond their comfort zone on a challenging benchmark, yet provides a stable and computationally
feasible point to reliably measure the expansion of the reasoning boundary.

Limitations of Existing Benchmarks and Metrics In mathematical reasoning, progress is often
measured by pass@k. For k > 1, this metric is taken to be indicative of a model’s exploratory
potential. However, pass@k is an incomplete measure of exploratory potential, as it conflates the
sharpening of existing solutions (Consolidation) with the discovery of entirely new ones (Expan-
sion) (Wu et al., 2025). As detailed in Section 2, our work is concerned with Expansion. Many
existing benchmarks are now saturated by strong open-source base models, making it impossible
to measure new boundary expansion (Yue et al., 2025; Balunovi¢ et al., 2025; Wu et al., 2025).
Furthermore, these benchmarks are targets of hyper-optimization, potentially rewarding spurious
correlations (Shao et al., 2025). MATH-B addresses this by serving as a diagnostic tool. It comprises
problems that are topically standard high-school math but are constructed to expose the subtle failures
and brittleness of the dominant open-source research paradigm.

Our Empirical Contribution in Context Building on the framework of Wu et al. (2025), we
instantiate these ideas in a concrete, reusable benchmark. their work introduces and analyzes
Expansion within a specific setting, whereas we put forth a zero-baseline dataset (i.e., pass@1024 =~
0 for the base models) that operationalizes the concept and scales evaluation across a wide range of
open-weight models. This offers a practical path to shift community focus from merely improving
pass@k on saturated suites to demonstrably expanding the reasoning boundary. Further, while
MATH-B is instantiated for a specific set of open-weight base models, we expect a subset of items
to remain zero-baseline for larger open-weight models. We did not evaluate those due to resource
constraints. Since MATH-B is intended to drive RL methods that expand a given base model’s
reasoning boundary (rather than chase model-specific quirks), we expect the resulting methods and
insights to transfer across model families and scales.

6 CONCLUSION

Our findings indicate that current post-training methods in the open-source ecosystem, particularly
for models up to 8B parameters, primarily refine pre-existing reasoning abilities rather than creating
new ones. The poor performance of these post-trained models on MATH-B empirically confirms that
they struggle to expand their capabilities to problems that lie just beyond their base model’s reach.
We introduce MATH-B as a precise diagnostic tool to address this issue. Its purpose is to catalyze
research into post-training methods that achieve genuine exploration, providing a clear and reliable
signal for when a model has truly expanded the boundaries of machine reasoning.
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7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All code required to reproduce the
experiments is provided in the supplementary material. Detailed derivations are included in the
main text (Section 2). Experimental settings and hyperparameters are described in the main paper
(Section 3.2) and supplementary sections (Appendix A.2).
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A APPENDIX
A.1 VERIFICATION ISSUES IN DIFFERENT FRAMEWORKS

Table 3: Verification failure mode vulnerabilities across frameworks. v'= vulnerable, — = resilient,
v'/- = partial. Frameworks: TRL (Transformers RL) (von Werra et al., 2024), VERL (Sheng et al.,
2024), LM-Eval (hendrycks/minerva) (Gao et al., 2024b), LightEval (Habib et al., 2023), SCORE
(LM-Eval SCORE math) (Gao et al., 2024b), evalchemy (ZeroEval) (Raoof et al., 2025), HMMT
(evalchemy matharena) (Raoof et al., 2025), Math-V (Math-Verify) (Kydlicek, 2024). Methods:
First# = first number in string; Right = rightmost priority; Ltd. = limited support (<5 expressions).
FI1-F7: See Table | for detailed descriptions.

Failure Mode TRL | VERL | LightEval | LM-Eval | SCORE | evalchemy | HMMT | Math-V
F1: Multiple solutions (OR) v v Vi- v v v vV/- vV/i-
F2: Late correct v = = = - v - vi-
F3: Early correct - v v v - — v v
F4: Answer corrections v - v - - v - v
F5: Unordered sets v v v v v v - v
F6: Missing anchors v - - - - - v -
F7: MCQ partial match v v v v v v v v
Method First Last Right Last All First# Last/All Right
Anchors Yes No No No No No No Yes
Multi-Answer No No Ltd. No Partial No Yes Ltd.

A.2 INFERENCE PARAMETERS FOR EVALUATION

All models were run with nucleus sampling at a t op_p of 0.95. Other parameters were set according
to model-specific recommendations:
* OLMo Models: Temperature of 1.0, with max_tokens set to 2048 (v1) and 4096 (v2).
* Qwen2.5-Math Models: Temperature of 0.6 and max_tokens of 4096.
* All Other Models: Temperature of 0.6 and max_tokens of 32,768.

A.3 MATH-B DETAILS

In Figure 4, we show the distribution of final answers for MATH-B-U, which spans a broad range of
integer values.

A.3.1 LOOKING AT SOME SAMPLES FROM MATH-B

In Tables 5 and 6, we list ten randomly sampled MATH-B-I questions—the base split and the full
set, respectively.

A.4 ANALYSIS OF pAss@K PERFORMANCE SCALING

To further justify our evaluation methodology, we analyze the performance scaling of all 21 models
from Table 4 on the MATH-B Union set.

In Figure 6, we plot the complete pass@k evolution as the sampling budget k increases up to 1024.
The performance curves for nearly all models exhibit a characteristic log-linear growth, indicating
that improvement is consistent but not linear with computational effort. While this trend suggests
continued gains with more sampling, it also shows initial signs of plateauing at higher values of k.

To better quantify this observation, Figure 7 visualizes the marginal gain in performance. Specifically,
it plots the average increase in the pass@k rate for each successive 64-sample increment. This plot
clearly illustrates the principle of diminishing returns: the most significant gains are concentrated at
lower sampling budgets, and the rate of improvement slows considerably as the budget approaches
1024. Together, these figures provide strong empirical support for our choice of £ = 1024 as a
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Distribution of Final Answer Values (n=181)
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Figure 4: Distribution of ground truth (final-answers) in MATH-B-U. We use the log-scale for
better readability.

practical and stable point for evaluation, beyond which brute-force sampling becomes an increasingly
inefficient path to solving the remaining hard problems.
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Figure 5: Evolution of Expansion Rate for RL. Models. Models are evaluated on the MATH-B
problems failed by their respective base models (115 for R1-Qwen2.5-1.5B; 99 for R1-Qwen2.5-7B).

A.5 LLM USAGE

The authors of this submission use IDEs with built-in LLM support, so LLMs have been used to
help with menial coding tasks. Further, we used models like GPT-5, Gemini for rephrasing several
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Table 4: Models’ number of unsolved questions at pass@1024. Models are grouped into Base
vs. Supplementary. “Intersection (base)” and “Intersection (all)” indicate the overlap of unsolved
problems across models.

Model # Unsolved Type Notes
Qwen2.5-1.5B 145 Base

Qwen2.5-7B 120 Base

Qwen2.5-Math-1.5B 115 Base

Qwen2.5-Math-7B 101 Base

Qwen3-4B-Base 112 Base

Qwen3-8B-Base 116 Base

DeepSeek-R1-Qwen2.5-1.5B 115 Base Distill
DeepSeek-R1-Qwen2.5-7B 99 Base Distill
OLMo-7B 158 Base

OLMo-2-7B 132 Base

Llama-3.1-8B 151 Base

Qwen2.5-1.5B-Instruct 124 Supplementary

Qwen?2.5-7B-Instruct 131 Supplementary
Qwen2.5-Math-1.5B-Instruct 139 Supplementary
Qwen2.5-Math-7B-Instruct 117 Supplementary

Qwen3-4B 67 Supplementary

Qwen3-8B 52 Supplementary

DeepScaler-1.5B 142 Supplementary

Nemotron-1.5B-v1 137 Supplementary

Nemotron-1.5B-v2 142 Supplementary

Skywork-OR1-7B 103 Supplementary

Intersection (base) 41 - Shared failures across all base models
Intersection (all) 13 - Shared failures across all models

Models: 1-4B Models: 7-8B Parameters

Solve Rate (%)
A 1
1\
b
%
%
\
L
4
Y
L
\ !
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si2 T 1024 6 128 si2 T o

§ 256
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Figure 6: Evolution of pass@k for all models on MATH-B-U.

paragraphs in this manuscript. In addition to that, we used GPT-5-mini and o4-mini-high to label the
difficulty and topics of the benchmark we create (Section 3.2).
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Table 5: Question texts (verbatim) from MATH-B-I (base). Each question includes the sentence
“Let’s think step by step and output the final answer within \boxed{ }.” appended.

ID

Question (wrapped to fit)

Difficulty

Final Answer

1

Fisica and Ritmo discovered a piece of Notalium shaped like a rectan-
gular box, and wanted to find its volume. To do so, Fisica measured
its three dimensions using a ruler with infinite precision, multiplied the
results and rounded the product to the nearest cubic centimeter, getting
a result of 2017 cubic centimeters. Ritmo, on the other hand, measured
each dimension to the nearest centimeter and multiplied the rounded
measurements, getting a result of V' cubic centimeters. Find the positive
difference between the least and greatest possible positive values for V.

4.5

7174

Let N denote the natural numbers. Compute the number of functions
f:N — {0,1,...,16} such that f(x + 17) = f(x) and f(z?) =
f(z)? + 15 (mod 17) for all integers = > 1.

6.0

12066

Each of the distinct letters in the following subtraction problem repre-
sents a different digit. Find the number represented by the word TEAM.
PURPLE — COMET = TEAM.

35

6852

Find the sum of all positive integers n such that there exists an integer b
with |b| # 4 such that the base —4 representation of 7 is the same as the
base b representation of n.

4.0

1026

Let S be a set of size 11. A random 12-tuple (s1, ..., s12) of elements
of S is chosen uniformly at random. Moreover, let 7 : S — S be
a permutation of .S chosen uniformly at random. The probability that
Si+1 # mw(s;) forall 1 <4 < 12 (where s13 = s1) can be written as ¢
where a and b are relatively prime positive integers. Compute a.

6.0

1000000000004

Let N denote the natural numbers. Compute the number of functions
f:N — {0,1,...,16} such that f(x + 17) = f(z) and f(z?) =
f(x)* 4+ 15 (mod 17) for all integers = > 1.

4.5

12066

A unicorn is tethered by a 20-foot rope to the base of a cylindrical tower
of radius 8 feet. The rope is attached to the tower at ground level and to
the unicorn at a height of 4 feet. The rope is taut, its end is 4 feet from
the nearest point on the tower, and the length of rope touching the tower

is “%‘/E feet, where a, b, c are positive integers and c is prime. Find
a+b+c.

3.5

813

For which maximal N does there exist an N-digit number such that
among any sequence of consecutive decimal digits some digit is present
only once?

6.0

1023

Let P = {(z,y) | 0 < z,y < 25, z,y € Z}. Let T be the set of trian-
gles formed by picking three distinct points in P (rotations, reflections,
and translations count as distinct). Compute the number of triangles in 7'
with area larger than 300.

L5

436

10

Katie has a chocolate bar that is a 5-by-5 grid of square pieces, but she
only wants to eat the center piece. She repeatedly (i) chooses a gridline
and splits the bar, (ii) discards the part not containing the center, (iii)
repeats until only the center piece remains. Compute the number of
possible sequences of operations.

3.0

6384
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Table 6: Question texts (verbatim) from MATH-B-I (all) set of all considered models in Sec-
tion 3.2.3. Each question includes the sentence “Let’s think step by step and output the final answer
within \boxed{ }.” appended.

ID

Question (wrapped to fit)

Difficulty

Final Answer

1

Bob is writing a sequence of letters of the alphabet, each of which can be
either uppercase or lowercase, according to the following two rules: If he
had just written an uppercase letter, he can either write the same letter
in lowercase after it, or the next letter of the alphabet in uppercase. If
he had just written a lowercase letter, he can either write the same letter
in uppercase after it, or the preceding letter of the alphabet in lowercase.
For instance, one such sequence is aAaABC DdcbBC. How many
sequences of 32 letters can he write that start at (lowercase) a and end at
(lowercase) z?

L5

376

Let V = {1,...,8}. How many permutations ¢ : V' — V are auto-
morphisms of some tree? (A graph consists of some set of vertices and
some edges between pairs of distinct vertices. It is connected if every
two vertices in it are connected by some path of one or more edges. A
tree G on V is a connected graph with vertex set V' and exactly |V| — 1
edges, and an automorphism of G is a permutation o : V' — V such that
vertices ¢, j € V are connected by an edge iff o(¢) and o(j) are.)

55

30212

Find the sum of all positive integers n such that there exists an integer b
with |b| # 4 such that the base —4 representation of n is the same as the
base b representation of n.

4.0

1026

A unicorn is tethered by a 20-foot silver rope to the base of a magician’s
cylindrical tower whose radius is 8 feet. The rope is attached to the tower
at ground level and to the unicorn at a height of 4 feet. The rope is taut,
the end of the rope is 4 feet from the nearest point on the tower, and

the length of the rope touching the tower is “‘T‘/E feet, where a, b, c are
positive integers and c is prime. Find a + b + c.

35

813

A 16x16 square sheet of paper is folded once in half horizontally and
once in half vertically to make an 8x8 square. This square is again folded
in half twice to make a 4x4 square. This square is folded in half twice
to make a 2x2 square. This square is folded in half twice to make a 1x1
square. Finally, a scissor is used to make cuts through both diagonals of
all the layers of the 1x1 square. How many pieces of paper result?

6.0

544

Matt writes a permutation of {1,2, 3, ..., 10} across his paper with the
leftmost number equal to 1 and the rightmost equal to 10. Exactly one
interior number (not including 1 or 10) is less than both its immediate
left and right neighbors. How many such permutations are there?

6.0

1636

Let N denote the natural numbers. Compute the number of functions
f:N = {0,1,...,16} such that f(z + 17) = f(z) and f(2?) =
f(z)* + 15 (mod 17) for all integers z > 1.

4.5

12066

Sir Alex plays the following game on a row of 9 cells. Initially all cells
are empty. In each move he either (1) chooses any number of the form 27
(nonnegative 7) and puts it into an empty cell, or (2) chooses two cells
with the same number 27, replaces the number in one cell with 27*1 and
erases the number in the other cell. At the end, one cell contains 2™ and
the others are empty. Determine the maximum number of moves possible
in terms of n. Provide the value when n = 10.

5.0

2025

Alice and Bob play on a board of one row of 2022 consecutive squares.
They take turns placing domino tiles that cover two adjacent squares;
Alice goes first. A tile must not cover a square already covered. The
game ends when no tile can be placed. Alice wants to maximize the
number of uncovered squares at the end; Bob wants to minimize it. What
is the greatest number of uncovered squares Alice can ensure, no matter
how Bob plays?

4.0

290

10

(Caos) A cao [sic] has 6 legs, 3 on each side. A walking pattern is an
ordered sequence of raising and lowering each of the legs exactly once
(total 12 actions), starting and ending with all legs on the ground. The
pattern is safe if at any point he has at least 3 legs on the ground and
not all three legs are on the same side. Estimate IV, the number of safe
patterns.

4.0

1416528

18
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Figure 7: Average gains in pass@k relative to the size of MATH-B-U. Averaged over 21 models,

the rate of solving new problems per 64-sample increment decreases as the total budget k& grows,
demonstrating diminishing returns.
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