
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GNNGuard: A Fingerprinting Framework for Verifying
Ownerships of Graph Neural Networks

Anonymous Author(s)

Submission Id: 1091
∗

ABSTRACT
Graph neural networks (GNNs) have emerged as the state of the

art for a variety of graph-related tasks and have been widely com-

mercialized in real-world scenarios. Behind its revolutionary repre-

sentation capability, the huge training costs also expose GNNs to

the risks of potential model piracy attacks which threaten the intel-

lectual property (IP) of GNNs. In this work, we design a novel and

effective ownership verification framework for GNN called GNN-
Guard to safeguard the IP of GNNs. The key design of the proposed

framework is two-fold: graph fingerprint construction and robust

verification module. With GNNGuard, a GNN model owner can

verify if a deployed model is stolen from the source GNN simply by

querying with graph inputs. Besides, GNNGuard could be applied

to various GNN models and graph-related tasks. We extensively

evaluate the proposed framework on various GNNs designed for

multiple graph-related tasks including graph classification, graph

matching, node classification, and link prediction. Our results show

that GNNGuard can robustly distinguish post-processed surrogate

GNNs from irrelevant GNNs, e.g., GNNGuard achieves 100% true

positives and 100% true negatives on the test of 200 suspect GNNs

of both graph classification and node classification tasks.

CCS CONCEPTS
• Security and privacy→Privacy-preserving protocols; •Com-
puting methodologies→Machine learning.

KEYWORDS
Graph Neural Networks, Model Intellectual Property Protection,

Model Fingerprinting

ACM Reference Format:
Anonymous Author(s). 2018. GNNGuard: A Fingerprinting Framework for

Verifying Ownerships of Graph Neural Networks. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 19 pages. https://doi.

org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In the ever-evolving landscape of artificial intelligence and machine

learning, the rapid advancements in deep learning techniques have

propelled the field into new frontiers of innovation. Among these

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

advancements, Graph Neural Networks (GNNs) have emerged as a

potent tool for modeling and analyzing complex data represented

as graphs [4, 10–13, 18, 31, 34, 42]. From social network analysis to

recommendation systems and drug discovery, GNNs have found

widespread applications in diverse domains, revolutionizing the

way we understand and manipulate graph-structured data [20, 42].

As the research community and industry sectors invest heavily

in the development of innovative GNN models and training tech-

niques, there arises a compelling need to protect these intellectual

assets from unauthorized utilization [29], replication [29], or model

piracy attacks [3, 22, 24–27, 29, 47], i.e., protecting the intellectual

property (IP) of GNNs
1
.

Strides have been made to safeguard the intellectual property of

deep learning models, where the keystone is to verify the owner-

ship of the model [33, 45]. Given a suspect model, the verification

of ownership is to determine whether it is a pirated model or an

irrelevant model. Once piracy occurs, the model owner can take

follow-up actions, e.g., collecting other evidence and filing a lawsuit

[24, 33], to protect their innovations. Generally, existing approaches

rely on marking the model ownership by model outputs [24, 33, 37].

If specific inputs can obtain predefined outputs, the suspect model

is verified to be a pirated version. Existing ownership verification

methods have been effective in traditional deep learning models

[32, 33], facing formidable challenges when applied to GNNs due

to their unique structure and inherent complexity. In the follow-

ing, we elaborate on the inherent limitations of applying existing

approaches to safeguard GNNs:

• Model watermarking approaches mark the model ownership by

embedding hidden functionalities into the protected model dur-

ing training or fine-tuning [37, 45]. This can be achieved by

assigning specific labels to predefined watermark data and mix-

ing them into the training dataset [37], backdoor techniques

[45] and other adversarial forgery techniques [19]. The model

owner can then utilize the watermark data to identify whether a

suspected model is a pirated version by matching its prediction

results. Recent studies transfer this to mark GNN ownership by

graph backdoor attack [37, 45] which negatively impacts the

performance of watermarked GNN [46]
2
. This is mainly because

triggers in terms of subgraphs added to the graph data will in-

fluence the prediction of other nodes due to the effect of node

interaction and coalition [43].

• Model fingerprinting has emerged as a promising approach for

intellectual property (IP) protection. Given a protected model, a

set of input samples, i.e., fingerprints, are found to have specific

1Relevance: Unauthorized use of graph algorithms and infringement on model IP,

especially in the context of web data, raises significant ethical and legal concerns.

Verifying ownership of GNNs acts as a deterrent against unauthorized usage and

makes web-related graph learning applications more robust and secure.

2
We validate this and report the empirical results in Section A.4.2

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1091

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

outputs that serve as a digital signature of ownership encapsulat-

ing its architecture, training graph, and parameters [5, 33].Unlike

watermarking, model fingerprinting does not require any mod-

ifications to the model parameters, thus preserving its normal

utility, which has become a hot-line of IP protection in recent

years [5, 32, 33]. However, existing fingerprinting approaches

only consider traditional deep learning models such as image

classification and text generation, leaving graph-related tasks

untouched. As a result, they hardly approach the multiple down-

stream tasks and the intrinsic complexity of GNNs. To the best

of our knowledge, no effort has been made to tailor the model

fingerprinting for GNNs.

To fill this gap, in this work, we propose a unified model fin-

gerprinting framework to verify the ownership of GNNs, which

is agnostic to the multiple downstream applications and is effi-

cient in searching for unique fingerprints. Specifically, we present

a unified framework of fingerprinting GNNs which is agnostic to

multiple downstream tasks, with two essential modules: Graph
Fingerprint and a Unified Verification Mechanism (dubbed

Univerifier). With the graph fingerprint as inputs of the suspect

GNN, the Univerifier will justify if it is a pirated one according to

the concatenated outputs of the suspect GNN. Then, considering

that the unique fingerprint of a GNN encapsulates its architecture,

training graph, and parameters, we construct a set of GNNs to imi-

tate the behavior of pirated GNNs and irrelevant GNNs by different

model obscuring techniques [37, 45]. After this by jointly optimiz-

ing the graph fingerprint and the Univerifier on such models, the

Univerifier will learn to match the outputs between the protected

GNN and the pirated ones and distinguish them from the irrele-

vant GNNs’ outputs, with graph fingerprint as inputs. Considering

the discrete input structure of GNNs, we propose an effective opti-

mization strategy to generate a valid graph fingerprint. Especially,

after the random initialization of graph fingerprint nodes and ad-

jacencies, they are updated according to the exclusively predicted

outputs of the Univerifier and then are projected into the original

space respectively. To summarize, our contributions are as follows,

• We propose a novel framework for protecting the IP of GNNs

based on model fingerprinting, which could effectively verify

the ownership of a GNN without degrading its normal utility.

• One advantage of the proposed framework is task-agnostic. With

the aid of the learnable verifier, the framework could be applied

to various GNN tasks such as graph classification, node classifi-

cation, and link prediction.

• We extensively evaluate the performance of the proposed GNN

fingerprinting on two graph-level tasks, one node-level task, and

one edge-level task. GNNGuard achieve noticeable verification

performance on various tasks. For instance, GNNGuard achieves

100% true positive and 100% true negative on both graph classifi-

cation and node classification tasks.

2 BACKGROUND & RELATEDWORK
2.1 Graph Neural Networks
Let 𝐺 = {𝑉 ,𝐴,𝑋 } ∈ G denote a graph with node set 𝑉 , adjacency

matrix 𝐴, and attribute matrix 𝑋 . There are | 𝑉 | nodes in the node-

set 𝑉 and each node 𝑣 ∈ 𝑉 has an attribute 𝑥 ∈ 𝑋 ∈ R |𝑉 |×𝑑 and

𝑑 is the dimension of the attribute. Adjacency matrix 𝐴 contains

information of graph topology as𝐴𝑣,𝑢 = 1 denotes an edge between

𝑣 ∈ 𝑉 and 𝑢 ∈ 𝑉 . Graph Neural Networks (GNNs) such as graph

convolutional network (GCN) [13] and Graphsage [10] take the

graph data as input of which the objective is to capture both the

topology and attribute information of graphs. A GNN denoted as

𝐹 takes an input 𝐼 and produces an output 𝑂 such that 𝐹 (𝐼) = 𝑂 .
Specifically, we denote 𝑂𝑢 as the output of node-level tasks, 𝑂𝑔 as

the output of graph-level tasks, and 𝑂𝑒 as the output of edge-level

tasks. If not specified otherwise, we utilize 𝑂 to denote all kinds of
GNNs’ outputs. To train GNNs to capture accurate representations

at different levels of tasks, both graph data and ground-truth labels

of specific tasks will be provided which are denoted as D. Then,

using labeled training data D, the parameters of GNN 𝐹 will be

optimized by the loss calculated between predicted results and

ground truth. After training, the GNN will be released to users for

further utilization [16, 38], or deployed as an online service [16]

where users can leverage the learned GNN to obtain predictions

in corresponding graph tasks. Existing GNN tasks are categorized

into three types:

• Graph-level tasks. Graph classification and graph matching are

two representative sub-tasks of graph-level tasks. The input of

graph classification is a single graph where 𝐼 = 𝐺 and the output

is the prediction label 𝑂=𝑦 ∈ Y; whereas the inputs of graph
matching are two graphs where 𝐼 = (𝐺1,𝐺2) and the outputs is

a value of similarity, i.e., 𝑂 = 𝑜 ∈ R1.
• Edge-level tasks. Link prediction is an edge-level task in which

the input is a whole graph 𝐼 = 𝐺 and the output is a probability

matrix 𝑂 = 𝐴 ∈ R |𝑉 |× |𝑉 | .
• Node-level tasks.Node classification takes a whole graph 𝐼 = 𝐺

as input and outputs predictive labels for all nodes𝑂 = 𝑌 ∈ R |𝑉 | .

2.2 Intellectual Property Protection of Graph
Neural Networks

2.2.1 Intellectual Property Infringement of GNNs. As Graph Neural

Networks (GNNs) are disseminated to users for further utilization

or deployed as online services (hereafter referred to as target GNNs),

the threat of model piracy against GNNs is garnering increasing

attention. Malicious attackers may exploit systemic or algorithmic

vulnerabilities to steal the parameters or functionality of these

target GNNs. For instance, attackers can engage in model piracy

through software/hardware vulnerabilities [24, 28], enabling them

to pilfer the parameters of the protected model directly from the

server owned by the model creators.

Furthermore, given the API service of the target GNNs, malicious

attackers can act as normal users and query the API service to

implement model stealing attacks [28, 30]. The objective of model

stealing attacks is to build a surrogate model that matches the

accuracy of the target model with fewer training resources. For

instance, in studies like [6, 28, 36], attackers prepare original graphs

which are sampled from a similar domain with the target GNN’s

dataset and learn the surrogate GNN with outputs from the target

GNN. Unlike conventional model stealing attacks, extracting GNNs

presents an additional challenge due to the discreteness involved

in constructing query samples. Some studies make assumptions

on the attacker’s knowledge, e.g., the attacker is able to obtain the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GNNGuard: A Fingerprinting Framework for Verifying Ownerships of Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Framework overview of GNNGuard.
whole graph structure or partial structure in node classification

tasks [28], and is able to know the attribute set of all nodes [36].

Then use this knowledge to construct graphs for querying. Some

works assume that the attackers have no knowledge of the training

dataset, and thus utilize graph reconstruction techniques [44] to

first construct discrete graph structure and node attributes from

the target GNNs and then use them in the following stealing.

Consequently, malicious attackers deploy these pirated GNNs as

new services or redistribute them to customers for financial gain

[5]. This not only infringes upon the intellectual property rights of

GNN owners but also obstructs the cultivation of a responsible AI

research and development culture.

2.2.2 Ownership Obfuscation. To obfuscate ownership, the attacker
would apply a variety of post-processing techniques such as fine-

tuning, pruning, and distillation, on the pirated GNNs. We mainly

illustrate the following classes of obfuscation techniques that the

attacker is likely to apply to obfuscate the ownership of GNNs.

• Fine-tuning & Partial Retraining: To obfuscate the ownership
of a pirated model, attackers may resume the training data of the

stolen model on public data collected from a similar domain of

training data, and fine-tune several layers of the model. Specifi-

cally, in the settings of GNNs, the attacker can fine-tune 𝐾 GNN

layers according to the learning objective with the other layers

fixed. In comparison, during partial retraining, the parameters of

selected 𝐾 layers are first randomly initialized before training is

resumed. After this, the pirated GNN can fall into a different local

optimum, preserving the original utility, but exhibiting divergent

output behaviors [9].

• Distillation: Distillation-based obfuscation adopts knowledge

distillation techniques by viewing the pirated model as a teacher

model and the model of different architecture as a student model.

In the settings of GNNs, the learned graph topology information

is distilled from the pirated GNN to a new GNN with different

architectures, e.g., different graph convolution architectures by

matching their outputs. Distillation exacerbates the obfuscation

of model ownership due to the transformed model architecture

resulting in altered predictive behaviors [33].

2.2.3 Ownership Verification. IP protection aims to prevent mali-

cious attackers from infringing the innovations of model owners.

IP encompasses various components of a model, including its archi-

tecture, training data, and weights, making it inherently complex to

represent through conventional signatures. Model ownership veri-

fication leverages deep learning models, as their output behaviors

are intricately linked to factors such as architectures, training data,

and model weights [5, 15]. As a result, model ownership verification

now become the keystone of model IP protection. In the context of

suspect models, a model ownership verification mechanism aims to

query the model and ascertain whether it is a pirated version or an

unrelated GNN, based on its outputs. Existing model ownership ver-

ification approaches can be categorized into model watermarking

[37, 45] and model fingerprinting [5, 15, 33, 39].

GNNWatermarking.Model watermarking involves active mod-

ifications to a model’s architecture, training data, or weights to

elicit specific outputs with predefined input data. However, this

inevitably influences the normal utility of the protected model.

Very recently, there has been some work discussing model water-

marking on GNNs [37], which rely on targeted poisoning attacks

against graph classification models to embed watermarks. Such a

performance degradation of watermarking is also discovered in

watermarked GNNs.

GNN Fingerprinting. Therefore, in this paper, we resort to model

fingerprinting, which generates specific inputs to query represen-

tative outputs and requires no modifications on models. Generally,

GNN fingerprinting determines whether a suspect GNN 𝐹 is pirated

from the target GNN in the two stages:

• Fingerprints Construction. At this stage, fingerprints encod-
ing the essential characteristics of the target GNN, which is

named graph fingerprint, are constructed.
• Fingerprints Verification.At the verification stage, the suspect

GNN is attested via the black-box access, to determine whether

and what confidence the graph fingerprint is also present in the

suspect GNN. Additionally, considering that GNNs are applied

to multiple applications, the verification mechanism should be

agnostic to the downstream tasks.

3 METHODOLOGY
3.1 Overview of GNNGuard
One of the obstacles to fingerprinting GNNs is the various down-

stream tasks. In this paper, we for the first time propose a unified

fingerprinting framework named GNNGuard for GNNs. The frame-

work has two essential modules: graph fingerprint and a unified

verification mechanism.

• Graph Fingerprint is denoted as I = {𝐼𝑝 }𝑃
𝑝=1

, 𝐼𝑝 ∈ G, which
are used to query the suspect GNN and obtain O = {𝑂𝑝 }𝑃

𝑝=1
.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1091

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

• Unified Verification Mechanism, is denoted asV : O → S2
and is implemented by a binary deep neural network (DNN) clas-

sifier, named Univerifier. It leverages the concatenated outputs O
as input and predicts whether the suspect GNN is pirated or irrele-

vant. Specifically, the output of the Univerifier is a 2-dimensional

probability simplex {(𝑜+, 𝑜−) | 𝑜− + 𝑜+ = 1, 0 ≤ 𝑜−, 𝑜+ ≤ 1}.
If 𝑜+ > 𝜆 the suspect GNN is determined as a pirated version

where 𝜆 is a threshold to determine.

As illustrated in Fig 1, the general pipeline of GNNGuard mainly

consists of the following three keystones:

• Key1. (Anti-Obfuscation GNN Preparation) To train Univerifier

to distinguish pirated GNNs from irrelevant GNNs, we first craft

a set of suspect models based on the target GNN with the aid of

public data from the same domain of the owner’s training data.

After this, the obtained positive and negative models denoted as

F+ and F− will be used to search for graph fingerprint and train

the Univerifier.

• Key2. (Graph Fingerprint Construction.) As Fig 1 shows, we define
the patterns of graph fingerprint for different levels of GNN tasks,

i.e., I. After this, we obtain the initialized graph fingerprint for

the following optimization.

• Key3. (Jointly Learning for Graph Fingerprint and Univerifier).)
We jointly optimize the graph fingerprint and Univerifier with

the objective: Univerifier can accurately classify the outputs of

pirated GNNs and the target GNN as positive (𝑜+ > 𝜆) while the

irrelevant GNNs as negative (𝑜+ < 𝜆).

3.2 Anti-Obfuscation GNN Preparation
There are two objectives of ownership verification: (i) Robustness:
accurately recognize the pirated GNNs. (ii) Uniqueness: do not rec-

ognize independently trained GNNs as pirated GNNs. However,

with only the target GNN, it is difficult to achieve robustness and

uniqueness. First, to evade detection, the attackers will post-process

the pirated GNNs resulting in significantly different behavioral pat-

terns from the target GNN [24]. Second, the architecture of GNNs

is also determined by the training graph, and if the distributions

of the training graph used for training irrelevant GNNs are similar

to the target GNNs, the behavioral patterns of these GNNs will be

similar. To tackle these, we propose to first craft a set of GNNs to

imitate the behaviors of different GNNs.

• Prepare Pirated GNNs, named Positive GNNs. We derive

a representative set of pirated suspect GNNs based on the tar-

get GNN by applying the obfuscation techniques mentioned in

Section 2.2.2. The obfuscation covers a wide range of hyperpa-

rameter configurations. For instance, we apply fine-tuning on

different GNN layers and partial retraining with different ini-

tialization points. The set of positive GNNs is denoted as F+
with each suspect GNN 𝐹+ in the set being applied one or more

obfuscation techniques.

• Prepare Irrelevant GNNs, named Negative GNNs. There are
two kinds of irrelevant GNNs: (i) GNNs independently trained

on different domains; (ii) GNNs independently trained on similar

domains. To achieve IP protection, it is reasonable to download a

number of pre-trained models from online sources (e.g., Hugging

Face and Pytorch Hub) that belong to the first kind of irrelevant

GNNs. To produce the second kind of irrelevant GNNs having

similar behaviors to the target GNN, the downloaded models are

fine-tuned on the domain-relevant public data (e.g., the subset of

training data). We denote the prepared irrelevant suspect GNNs

as F− and the set contains both kinds of irrelevant GNNs.

After the preparation, the remaining problems are how to lever-

age the prepared positive GNNs and negative GNNs to optimize the

verifier and the fingerprints to achieve robustness and uniqueness.

3.3 Graph Fingerprint Construction
In the context of generating fingerprints for GNNs, we divide the

generation into two key phases: (i) Initializing; (ii) Optimizing

(which is detailed in Section 3.4).

For each graph (or the single graph) of graph fingerprint, there

are three components to be initialized: (i) Node set 𝑉 𝑝 ∈ 𝐼𝑝 ; (ii) the
adjacency matrix 𝐴𝑝 ∈ 𝐼𝑝 ; (iii) Node attributes 𝑋𝑝 ∈ 𝐼𝑝 . First, we
initialize the node set with a uniform number 𝑛 of nodes. Second,

the adjacency matrix is initialized by randomly selecting a very

low fraction 𝑟 of nodes to be linked, i.e., 𝐴
𝑝
𝑣𝑖 ,𝑣𝑗 ∼ B(1, 𝜖). Third, for

each node, each dimension of the attribute is uniformly initialized

in the ranges. As illustrated in Fig 1(a), we specialize the samples

of graph fingerprint to different GNN tasks as follows.

• Node-level samples. In node-level tasks like node classification,

the output is the predicted vector of an individual node. graph

fingerprint is defined as a single graph I = {𝐼 }, 𝐼 ∈ G. To achieve
efficient verification, we sample the outputs of𝑚 nodes that are

used to verify the ownership, i.e., O = {𝑂𝑣𝑖𝑛 }𝑚𝑖=1, 𝑣𝑖 ∈ 𝑉 .
• Edge-level samples. The outputs of GNNs in these tasks repre-

sent edge information. Link prediction is one of the representa-

tive edge-level tasks [41]. graph fingerprint is defined as a single

graph I = {𝐼 }, 𝐼 ∈ G, and we sample the output𝑚 node pair, i.e.,

O = {𝑂𝑣𝑖 ,𝑣𝑗𝑒 }, (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸.
• Graph-level samples. In graph-level tasks like graph classifica-

tion, the output is the predicted vector of the whole graph, while

in tasks like graph matching, the output is the matching vector of

the whole graph. Graph fingerprint are defined as several graphs

I = {𝐼𝑝 }𝑃
𝑝=1

, 𝐼𝑝 ∈ G. The outputs used to verify ownership are

the prediction results of these input graphs, i.e., O = {𝑂𝑝𝑔 }𝑃𝑝=1.

3.4 Jointly Learning for Graph Fingerprint and
Univerifier

3.4.1 Unified Verification Mechanism. Existing fingerprinting veri-

ficationmechanisms are often tailored for classification tasks, which

focus onmatching the output labels of fingerprints with pre-defined

labels [33] and are not applicable to various GNN tasks, such as

link prediction [41] and graph matching [2]. Different GNN tasks

have varying input and output formats, causing significant differ-

ences in the definition and value of 𝑂 on different tasks (Section

2.1). For instance, for node classification task, model outputs are

prediction vectors; while for other GNN tasks, such as link pre-

diction [41] and graph matching [2], where the outputs represent

continuous similarity values. To this date, we introduce the Uni-

verifier V : O → S2. Univerifier takes the concatenated outputs

of suspect models on fingerprints as inputs, and its output is a

probability simplex {(𝑜+, 𝑜−) | 𝑜− + 𝑜+ = 1, 0 ≤ 𝑜−, 𝑜+ ≤ 1}. To
determine ownership, we only have to set a threshold 𝜆 for 𝑜+. That

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GNNGuard: A Fingerprinting Framework for Verifying Ownerships of Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

is, if 𝑜+ > 𝜆 the suspect GNN is determined as positive where 𝜆

is a hyperparameter. With the graph fingerprint and the prepared

GNNs, we train the Univerifier with the following objective.

argmax

V
log𝑜+ (𝐹) +

∑︁
𝐹+∈F+

log𝑜+ (𝐹+) +
∑︁

𝐹−∈F−
log𝑜− (𝐹−) (1)

where 𝑜+ (𝐹+) denotes the prediction result 𝑜+ of Univerifier on
model 𝐹+’s output.

3.4.2 Joint Learning. We propose a joint learning framework to

learn both parameters of the Univerifier and graph fingerprint.

In a word, the objective of the joint learning framework can be

formulated as follows.

argmax

V,I
Ljoint =

∑︁
𝐼𝑝 ∈I

log𝑜+ (𝐹 (𝐼𝑝))+
∑︁
𝐼𝑝 ∈I

∑︁
𝐹+∈F+

log𝑜+ (𝐹+ (𝐼𝑝))

(2)

+
∑︁
𝐼𝑝 ∈I

∑︁
𝐹−∈F−

log𝑜− (𝐹− (𝐼𝑝)) .

Different from existing studies focusing on the image domain, the

adversarial techniques of updating images can not be directly ap-

plied to data in graph space [24].We resort to adversarial techniques

to generate adversarial examples of graph data [48]. In the follow-

ing, we elaborate on how to update the individual graph 𝐼𝑝 of graph

fingerprint I. Since many graph datasets lack node attributes, our

approach focuses on updating the adjacency matrix. If the dataset

includes node attributes, we also update the matrix accordingly.

• Update Adjacency Matrix. We first propose to compute the gradi-

ent of the adjacencymatrix according to Eq 2, i.e.,𝑔𝑝 = ∇𝐴𝑝Ljoint.

However, the gradient from continuous space can hardly be used

to update the discrete adjacency matrix. After this, we propose

to discretize the gradient 𝑔𝑝 . Each entry of gradient 𝑔
𝑝
𝑢,𝑣 repre-

sent the significance of edge connecting node 𝑖 and node 𝑗 on

Ljoint. The edge having larger 𝑎𝑏𝑠 (𝑔
𝑝
𝑢,𝑣) will have a significant

impact on the verification result. Therefore, we rank a set of

edges denoted as 𝐸𝑝 = {𝑒𝑝
𝑖
}𝐾
𝑖=1

having the top-𝐾 large value of

𝑎𝑏𝑠 (𝑔𝑝𝑒), 𝑒 = (𝑢, 𝑣). We use 𝑔𝑝 as the new gradient after ranking.

To decide whether an edge should be added or deleted, we follow

these rules: (i) if the edge 𝑒 is actually on the graph and 𝑔
𝑝
𝑒 ≤ 0

the edge will be deleted; (ii) if the edge 𝑒 does not exist on the

graph and 𝑔
𝑝
𝑒 ≥ 0 the edge will be added. The illustration of

updating adjacency matrix is presented in Fig 1.

• Update Node Attributes. The key to update node attributes is to

project the node attributes in their domain. For instance, one

of the attributes is the age of user nodes, and after updating

the age should be a discrete value. Therefore, before updat-

ing, we first collect the ranges or the labels of each attribute

which will be used to project the updated node attributes, de-

noted as C. Then we update the attribute matrix 𝑋𝑝 as 𝑋𝑝 ←
clip(𝑋𝑝 +𝛼∇𝑋𝑝Ljoint). The function clip(·) is a row-wise opera-
tion according to C. Specifically, (i) If the attribute is continuous
but has a value range we will project the value exceeding the

range to the minimum or maximum. (ii) If the attribute is discrete

we will project the value to its closest label.

3.5 Scalable and Theoretical Guarantee
3.5.1 Scalable Guarantee. The training complexity of GNNGuard

consists of two main components. First, we consider obtaining the

outputs on graph fingerprint. Assuming that we have 𝑁 graph

fingerprint, the complexity of obtaining the outputs for a suspect

GNN is O(𝐶𝐸𝑁) where 𝐶 is a constant and 𝐸 is the number of

edges. Second, we conduct verification using Univerifier. The input

dimension of the Univerifier is 𝑁𝑑 , where 𝑑 represents the dimen-

sion of the GNN output. Univerifier is implemented as a multi-layer

fully connected neural network with hidden layer sizes [𝑑1, ..., 𝑑ℓ].
Consequently, the time complexity of verification using Univerifier

is O(𝑁𝑑𝑂𝑀), where𝑂𝑀 = 𝑑1× ...×𝑑ℓ . Finally, the total complexity

of training is O(𝐶𝐸𝑁𝑚 + 𝑁𝑑𝑂𝑚), taking into account the size of

the model set F+ ∪ F− , the number of edges on graph fingerprint

and the number of fingerprints. To scale our framework to large

graphs, we recommend reducing the size of the positive/negative

GNNs set and the number of graph fingerprint.

3.5.2 Theoretical Guarantee. We provide a theoretical analysis of

the robustness, i.e., the probability of correctly identifying an in-

deed stolen suspect GNN as a negative GNN. It is important to note

that we focus on the node classification task for the purpose of

presenting theoretical analysis
3
. The theoretical guarantees of ro-

bustness are presented as follows. First, we introduce the following

Lemma from [17].

Lemma 3.1. Suppose that a GNN 𝑓𝑤 , of which the parameters are
denoted as {𝑊𝑖 }ℓ𝑖=1. Pertubations {𝑈𝑖 }

ℓ
𝑖=1

are added on 𝑓𝑤 to obtain
its surrogate GNN 𝑓𝑤+𝑢 (positive GNN). The differences in outputs of
𝑓𝑤 and 𝑓𝑤+𝑢 given the same input graph can be bounded as follows,

| 𝑓𝑤+𝑢 (𝑋,𝐴) − 𝑓𝑤 (𝑋,𝐴) |≤ 𝑒𝐵𝑑
ℓ−1
2

𝑚𝑎𝑥

(ℓ∏
𝑖=1

∥𝑊𝑖 ∥2
) ℓ∑︁
𝑘=1

∥𝑈𝑘 ∥2
∥𝑊𝑘 ∥2

= B (3)

Note that 𝑑𝑚𝑎𝑥 is the largest node degree on the input graph.

We derive the following theoretical guarantees of robustness,

Theorem 3.2. Denote that the output distribution of the target
GNN is defined as a normal distribution N(𝜇0, 𝜎2). According to the
bound B, the output distribution of a positive GNNs can be defined
as N(𝜇0 + B, 𝜎2) and N(𝜇0 − B, 𝜎2). Then the probability of the
differences in outputs of the above two GNNs being smaller than 𝜆
can be, i.e., the robustness,

𝑃 (𝐷𝑖𝑓 𝑓 < 𝜆) = Φ(𝜆 + B
𝜎
) + Φ(𝜆 − B

𝜎
) . (4)

Note that Φ(𝑥−𝜇𝜎) =
1

𝜎
√
𝜋
𝑒𝑥𝑝− (𝑥−𝜇)

2

2𝜎2
.

The omitted proof is presented in Appendix. The robustness is

related to (i) the maximum node degree of graph fingerprint and

(ii) the perturbations on parameters. With a larger maximum node

degree, the absolute value of B will be larger which will decrease

the probability of recognizing positive GNN resulting in worse

robustness. We aim to utilize this to guide the construction of graph

fingerprint to have nodes with the largest degrees.

3
Additional analyses on other tasks are provided in the Appendix.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1091

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Mean test accuracies of various GNN tasks on different datasets. "-" means not applicable. The best results are in bold.

Task Dataset

Model

Schemes

DeepFool IPGuard GNNGuard

Graph Classification

ENZYMES

GCNMean 0.711 0.507 1.00
GCNDiff 0.544 0.498 1.00

GraphsageMean 0.651 0.508 1.00
GraphsageDiff 0.757 0.493 1.00

PROTEIN

GCNMean 0.574 0.513 0.967
GCNDiff 0.597 0.503 0.961

GraphsageMean 0.581 0.5 0.989
GraphsageDiff 0.529 0.508 0.984

Graph Matching

AIDS

GCNMean 0.894 - 0.952
GCNDiff 0.935 - 0.925

SimGNN 0.892 - 0.943

LINUX

GCNMean 0.733 - 0.933
GCNDiff 0.74 - 0.797
SimGNN 0.653 - 0.752

Node Classification

Cora

GCN 0.895 0.478 1.00
Graphsage 0.963 0.529 1.00

Citeseer

GCN 0.891 0.451 0.986
Graphsage 0.957 0.483 0.992

Link Prediction

Cora

GCN 0.807 - 0.838
Graphsage 0.808 - 0.823

Citeseer

GCN 0.855 - 0.844

Graphsage 0.859 - 0.873

4 EVALUATION RESULTS
In this section, we study GNNGuard by answering the following

research questions. (RQ1): How is the verification accuracy of

GNNGuard in different GNN tasks? (RQ2): How is the robustness

and uniqueness of GNNGuard? (RQ3): How do different settings

impact GNNGuard’ effectiveness?

4.1 Experiment Setup
4.1.1 Tasks and Datasets. We consider two graph-level tasks, graph

classification [40] and graphmatching [2], one node-level task, node

classification [13] and one edge-level task, link prediction [41]. The

overview of the dataset of each task is provided in Table A.2. EN-
ZYMES is a protein graph dataset for 6-class classification task

[4]; PROTEINS is a protein graph dataset, where nodes represent

the amino acids[8]; AIDS is a collection of chemical compounds

from antivirus screens and has been used in several existing works

on graph similarity search [2]; LINUX consists of program de-

pendency graphs (PDGs) generated from the Linux kernel[2, 35];

Cora and CiteSeer are single graphs in which the nodes and edges

correspond to documents and citation links[1]. Note that for each

data set, we split the dataset into train/validation/test by the ra-

tio of 7/1/2. The training set is used to train the target GNN, the

validation set is used to determine hyper-parameters, and the test

set is used to measure the performance of the target GNN. If node

attributes are missing in the dataset, we assign random values to

all nodes and the graph fingerprint. These attributes remain fixed

during the optimization of the graph fingerprint.

4.1.2 GNN Preparation. The GNN architectures used for different

graph tasks are presented in Appendix. Here we detail the training

strategies of these GNNs and the strategies of post-process. For each

type target GNN, we construct positive GNNs and negative GNNs

for learning. Following the existing fingerprinting framework [5,

33], we apply the mentioned obfuscation techniques with different

configurations on the target GNNs to derive the positive models:

(1) Fine-tuning & Partial Retraining. We consider four types of

fine-tuning and partial retraining, i.e., fine-tuning/partial retraining

the last layer or all layers of GNNs, and we set the number of epochs

of both fine-tuning and retraining as 10. (2) Graph distillation.
For each target GNN we select all other GNNs having different

architectures as the student models. We follow the graph distillation

technique in study [7], and use the outputs of the last layers to

implement distillation. As for the data used to query the teacher

model, we sample 50% ∼ 80% subgraph from the original graph

to query the outputs of the teacher model. To construct negative

models, we use different random seeds to initialize different GNNs of

different architectures and train them from scratch on the training

dataset. For each task, we construct 200 positive/negative GNNs;

we split them randomly by 1: 1 into the training and test set.

4.1.3 Baselines. We compare GNNGuard with two fingerprinting

baselines for conventional deep neural networks, which are Deep-

Fool [33] and IPGuard [5]. We modify their fingerprint construction

to the graph fingerprint optimization strategies. Note that these

two methods are only applicable to classification tasks, i.e., node

classification and graph classification.
4

4.1.4 Evaluation Metrics. (1) Robustness - measures the propor-

tion of positive suspect model being accurately recognized, i.e. True
positive; (2) Uniqueness - measures the proportion of negative sus-

pect model being accurately recognized, i.e., True negative [5]. (3)

4
we also compare the proposed fingerprinting framework with watermarking ap-

proaches to protect the IP of GNNs, which is presented in the Appendix.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GNNGuard: A Fingerprinting Framework for Verifying Ownerships of Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 2: Curves of robustness and uniqueness of different GNN tasks, GNN architectures, and datasets, where the ARUC is
reported in the figure title. Update both 𝑋 and 𝐴.
ARUC - Area under the Robustness-Uniqueness Curves (ARUC) -

measures the area of the intersection region under the robustness

and uniqueness curve when the threshold varies in (0, 1). (4) Mean

Test Accuracy - The fraction of accurately recognized positive mod-

els and negative models, and is calculated by
#𝑇𝑃+#𝑇𝑁

#𝑆𝑢𝑠𝑝𝑒𝑐𝑡 𝑚𝑜𝑑𝑒𝑙𝑠
. It is

reported on the average of the different thresholds.

4.1.5 Other Settings. With no further specifications, we set the

size of the fingerprints of our framework and two baselines as

𝑁 = 64, and the number of nodes as 𝑛 = 32. For all GNNs, we

set the depth of the neighborhood aggregation mechanism as 3 to

avoid over-smoothing or under-smoothing [15]. The learning rate

is set as 0.001 and the number of iterations as 1000. The Univerifier

is implemented as a three-layer fully-connected neural network

with the Leaky-ReLU and the hidden layer size list is [128, 64, 32].
We use the PyTorch Geometric

5
library to implement all models.

4.2 RQ1: Overall Comparison
We compare the effectiveness of GNNGuard with two baselines

as shown in Table 1. As we can see, the mean test accuracy of

GNNGuard is up to 1.00 on the ENZYMES dataset of the graph

5
https://github.com/rusty1s/pytorch_geometric

classification task, and on the Cora dataset of the node classifica-

tion task. This means that in 𝜏 ∈ (0, 1), GNNGuard can recognize

100% of positive models and negative models. On other datasets and

tasks, the lowest mean test accuracy is 75.2% of the Cora dataset of

Link prediction, which means that in the worst case, the proposed

fingerprinting framework can accurately recognize more than 70%

of positive models and negative models. It is similar to the per-

formance of fingerprinting traditional DNN models. As for two

baselines, the best accuracy of DeepFool is 95.7% but is often lower

than 70% or even 50%. IPGuard aims at characterizing the decision

boundary of target GNNs, which is not applicable to tasks like

matching and link prediction. Nevertheless, the largest accuracy of

IPGuard is lower than 60%, and is around 50%. This demonstrates

that this verification rule is not efficient in fingerprinting GNNs. The

performance of DeepFool and IPGuard demonstrates the advantage

of introducing a learnable verifier.

Among four different GNN tasks, the verification accuracy of

graph classification and node classification is better than graph

matching and link prediction. We infer the main reason is that

graphmatching and link prediction tasks aremore complicated than

graph classification and node classification [2, 13]. Therefore, the

target model’s behaviors are more difficult to characterize. Besides,

we also infer that this phenomenon is related to the performance of

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1091

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 3: (a)-(c) The number of fingerprint examples/training models vs. ARUC. (d) Different settings of graph fingerprint
construction vs. ARUC. The performance of different settings is represented as "Update both"≈ "Update X">"Update A".

Figure 4: Fingerprint construction time of different fin-
gerprinting frameworks.

Figure 5: KL-divergence of the surrogate (irrelevant)
GNNs and the target GNN calculated by Univerifier.

the target GNN itself. GNNs perform better on graph classification

and node classification than graph matching and link prediction,

which makes the graph construction module utilize more accurate

information about the GNNs to construct fingerprints. As for differ-

ent datasets, dataset like LINUX has more labels, and thus of which

the verification accuracy is lower.

4.3 RQ2: Robustness & Uniqueness
Except for mean test accuracy, it is important to verify the robust-

ness, uniqueness, and ARUC, shown in Fig 2. We can see from the

figure, the robustness and uniqueness of GNNGuard are promised,

and the ARUCs are up to 0.95. The metrics are better on graph

classification and node classification (e.g., ARUC is up to 0.95) than

graph matching and link prediction. When verifying on the LINUX

dataset of graph matching, the lowest ARUC is 0.544. Besides, the

model is not good at recognizing positive models in this case. We

infer the main reason is that on the LINUX dataset there are 1m

labels which makes the model’s outputs extremely complicated.

Then a slight model modification can largely influence the outputs

of such models. Therefore, it is more difficult to verify such models

by models’ outputs. One efficient way to alleviate this is to utilize an

additional validation set to choose an appropriate threshold to bal-

ance the uniqueness and robustness [5]. Robustness and uniqueness

curves of DeepFool and IPGuard are shown in Appendix (A.4).

4.4 RQ3: Study of GNNGuard
4.4.1 Hyper-parameter Sensitivity. First, we study different settings
of graph fingerprint generation, i.e., only updating the adjacency

matrix or only updating the node attribute matrix (shown in Fig. 3).

Updating both of them can bring the best performance while updat-

ing the adjacency matrix can also achieve significant performance.

Second, we study how important settings influence verification

performance, in Fig 3 (a)-(b). With more ensembles composed of

positive and negative GNNs, the ARUC is higher. But training these

models needs computational resources thus it is better to choose

an appropriate amount by balancing the budget and performance.

Third, in Fig 3 (c), in graph classification, increasing the number of

fingerprint examples will not significantly influence the verifica-

tion performance; while in node classification, #Fingerprints = 64

achieves the best ARUC.

4.4.2 Time Complexity. Furthermore, we empirically study the

fingerprint construction time complexity of our framework and

baseline models. As Fig. 5 shows, GNNGuard is the either second

or the first slow method. The root reason is the joint-learned mech-

anism, which takes more time to converge. On large datasets like

Citeseer or LINUX, the running time of GNNGuard is shorter, but

DeepFool takes a long time to converge especially on Citeseer.

4.4.3 Study of Univerifier. First, we visualize the KL divergence

between suspect GNNs and target GNN in Fig 5. As we can see, in

the proposed framework, the surrogate GNNs are consistent with

the target GNN while the irrelevant GNNs are largely different

from the target GNN. Second, we aim to verify that the learned

Univerifier can accurately recognize suspect GNNs that it does not

see during the training stage, the results are shown in Table A.5

and Table A.4.

5 CONCLUSION
In this paper, we present GNNGuard, the first GNN fingerprinting

framework which is able to construct fingerprints in the form of

graphs and be applicable to GNNs for multiple downstream tasks.

Extensive experiments validate that GNNGuard is effective in pro-

tecting GNNs from model stealing, and bring noticeable improve-

ment over several state-of-the-art IP protection methods. Besides,

the normal utility of the model will not be influenced. In future

work, we are going to validate and evaluate GNNGuard on other

typical tasks such as graph clustering. Moreover, it would be mean-

ingful to deploy and validate GNNGuard on real-world platforms

to defend against model piracy.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

GNNGuard: A Fingerprinting Framework for Verifying Ownerships of Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. Alemi. 2017. Watch Your Step:

Learning Node Embeddings via Graph Attention. (2017).

[2] Y. Bai, H. Ding, S. Bian, T. Chen, andW.Wang. 2019. SimGNN: A Neural Network

Approach to Fast Graph Similarity Computation. In the Twelfth ACM International
Conference.

[3] James Beetham, Navid Kardan, Ajmal Mian, and Mubarak Shah. 2023. Dual

Student Networks for Data-Free Model Stealing. arXiv preprint arXiv:2309.10058
(2023).

[4] K.M. Borgwardt, O. C. Soon, S. Stefan, Svn Vishwanathan, A. J. Smola, and Kriegel

Hans-Peter. 2005. Protein function prediction via graph kernels. Bioinformatics
suppl_1 (2005), i47.

[5] X. Cao, J. Jia, and N. Z. Gong. 2019. IPGuard: Protecting the Intellectual Property

of Deep Neural Networks via Fingerprinting the Classification Boundary. (2019).

[6] David DeFazio and Arti Ramesh. 2019. Adversarial model extraction on graph

neural networks. arXiv preprint arXiv:1912.07721 (2019).
[7] Xiang Deng and Zhongfei Zhang. 2021. Graph-free knowledge distillation for

graph neural networks. arXiv preprint arXiv:2105.07519 (2021).
[8] Paul D Dobson and Andrew J Doig. 2003. Distinguishing enzyme structures from

non-enzymes without alignments. Journal of molecular biology 330, 4 (2003).

[9] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-

edge distillation: A survey. International Journal of Computer Vision 129 (2021),

1789–1819.

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. NeuralPS 30 (2017).
[11] Adrián Javaloy, Pablo Sanchez-Martin, Amit Levi, and Isabel Valera. 2022. Learn-

able graph convolutional attention networks. arXiv preprint arXiv:2211.11853
(2022).

[12] Mingxuan Ju, Tong Zhao, Qianlong Wen, Wenhao Yu, Neil Shah, Yanfang Ye, and

Chuxu Zhang. 2022. Multi-task self-supervised graph neural networks enable

stronger task generalization. arXiv preprint arXiv:2210.02016 (2022).
[13] T. N. Kipf and M. Welling. 2016. Semi-Supervised Classification with Graph

Convolutional Networks.

[14] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.

Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016).
[15] Q. Li, Z. Han, and X. M. Wu. 2018. Deeper Insights into Graph Convolutional

Networks for Semi-Supervised Learning. (2018).

[16] Yue Li, Hongxia Wang, and Mauro Barni. 2021. A survey of deep neural network

watermarking techniques. Neurocomputing 461 (2021), 171–193.

[17] Renjie Liao, Raquel Urtasun, and Richard Zemel. 2020. A pac-bayesian ap-

proach to generalization bounds for graph neural networks. arXiv preprint
arXiv:2012.07690 (2020).

[18] Lu Lin, Jinghui Chen, and Hongning Wang. 2022. Spectral augmentation for

self-supervised learning on graphs. arXiv preprint arXiv:2210.00643 (2022).
[19] Hanwen Liu, Zhenyu Weng, and Yuesheng Zhu. 2021. Watermarking Deep

Neural Networks with Greedy Residuals. In ICML.
[20] Qi Liu, Maximilian Nickel, and Douwe Kiela. 2019. Hyperbolic graph neural

networks. Advances in Neural Information Processing Systems 32 (2019).
[21] Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. 2019. Graph convo-

lutional networks with eigenpooling. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining. 723–731.

[22] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff nets:

Stealing functionality of black-box models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. 4954–4963.

[23] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.

2018. Adversarially regularized graph autoencoder for graph embedding. IJCAI
(2018).

[24] Xudong Pan, Yifan Yan, Mi Zhang, and Min Yang. 2022. MetaV: A Meta-Verifier

Approach to Task-Agnostic Model Fingerprinting.

[25] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan.

2022. Deepsteal: Advanced model extractions leveraging efficient weight stealing

in memories. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 1157–
1174.

[26] Robert Nikolai Reith, Thomas Schneider, and Oleksandr Tkachenko. 2019. Effi-

ciently stealing your machine learning models. In Proceedings of the 18th ACM
Workshop on Privacy in the Electronic Society. 198–210.

[27] Sunandini Sanyal, Sravanti Addepalli, and R Venkatesh Babu. 2022. Towards

data-free model stealing in a hard label setting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 15284–15293.

[28] Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. 2022. Model stealing attacks

against inductive graph neural networks. In S & P.
[29] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.

2016. Stealing machine learning models via prediction {APIs}. In USENIX.
[30] Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas Papernot.

2021. Data-free model extraction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 4771–4780.

[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[32] Shuo Wang, Sidharth Agarwal, Sharif Abuadbba, Kristen Moore, Surya Nepal,

and Salil Kanhere. 2022. Integrity Fingerprinting of DNN with Double Black-box

Design and Verification. arXiv preprint arXiv:2203.10902 (2022).
[33] S. Wang and C. H. Chang. 2021. Fingerprinting Deep Neural Networks - a

DeepFool Approach. In International Symposium on Circuits and Systems.
[34] Shen Wang and Philip S Yu. 2022. Graph neural networks in anomaly detection.

Graph Neural Networks: Foundations, Frontiers, and Applications (2022), 557–578.
[35] Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin.

2012. An efficient graph indexing method. In ICDE.
[36] Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. 2022. Model Extrac-

tion Attacks on Graph Neural Networks: Taxonomy and Realisation. In AsiaCCS.
337–350.

[37] Jing Xu and Stjepan Picek. 2021. Watermarking Graph Neural Networks based

on Backdoor Attacks. arXiv preprint arXiv:2110.11024 (2021).
[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
[39] Kang Yang, Run Wang, and Lina Wang. [n. d.]. MetaFinger: Fingerprinting the

Deep Neural Networks with Meta-training. ([n. d.]).

[40] R. Ying, J. You, C. Morris, X. Ren, William L Hamilton, and J. Leskovec. 2018.

Hierarchical Graph Representation Learning with Differentiable Pooling.

[41] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural

Networks. ArXiv abs/1802.09691 (2018).

[42] Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. 2021. Graph neural

networks and their current applications in bioinformatics. Frontiers in genetics
12 (2021).

[43] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2021. Back-

door attacks to graph neural networks. In Proceedings of the 26th ACM Symposium
on Access Control Models and Technologies. 15–26.

[44] Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu,

and Enhong Chen. 2021. Graphmi: Extracting private graph data from graph

neural networks. arXiv preprint arXiv:2106.02820 (2021).
[45] Xiangyu Zhao, Hanzhou Wu, and Xinpeng Zhang. 2021. Watermarking graph

neural networks by random graphs. In 2021 9th International Symposium on
Digital Forensics and Security (ISDFS). IEEE, 1–6.

[46] Zhendong Zhao, Xiaojun Chen, Yuexin Xuan, Ye Dong, Dakui Wang, and Kaitai

Liang. 2022. DEFEAT: Deep Hidden Feature Backdoor Attacks by Impercepti-

ble Perturbation and Latent Representation Constraints. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 15213–15222.

[47] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. 2021. Hermes

attack: Steal {DNN} models with lossless inference accuracy. In 30th USENIX
Security Symposium (USENIX Security 21).

[48] Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann.

2020. Adversarial attacks on graph neural networks: Perturbations and their

patterns. ACM Transactions on Knowledge Discovery from Data (TKDD) 14, 5
(2020), 1–31.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1091

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A TECHNICAL APPENDIX
A.1 More Descriptions
The following are more descriptions of datasets Tabel A.2, model

extraction strategies and post-processing techniques.

Table A.2: Statistics of datasets.

#Graphs /Nodes #pairs/labels Graph Meaning

ENZYMES 600 6 Macromolecules

PROTEINS 1113 2 Bioinformatics

AIDS 700 490k Chemical Compounds

LINUX 1000 1m Program Dependence

Cora 2708 7 Documents Citation

Citeseer 3327 6 Documents Citation

To imitate the behavior of attackers in the wild, we consider

different model extraction attacks and other post-processing tech-

niques, i.e., model extraction by distillation [7], fine-tuning [5], and

pruning [14], and regard these models as positive models. For fine-

tuning, we fine-tune the target GNN on a leaved-out dataset of the

original dataset; for pruning, we set a certain number of parameters

with the smallest absolute values to zero; as for distillation, we

utilize different GNN architectures as stolen models. The stolen

models utilize similar training data to distill knowledge from the

source GNN. The epoch of fine-tuning is set as 20; while the epoch

of distillation is set as 1000. Note that the positive models used to

achieve robust verification are different from the positive models

used in the testing phase. For instance, we generate 400 positive

models with the aforementioned strategies and split them by 1 : 1

into training and test set.

For negative GNNs, we utilize the same dataset to train GNNs

with different or the same architectures. Note that we also generate

400 negative models and randomly split them by 1 : 1 into training

and test set.

A.2 Theoretical Proofs
We first present the theoretical analyses on node classification.

Before introducing our theoretical guarantee of robustness, we first

present Lemma 3.1 to describe the relationship between the outputs

of target GNN and surrogate GNN.

Proof. Proof of Lemma 3.1.

Note that the proof is based on proof in [17]. Given the GNN

model 𝑓𝑤 , we use 𝐻 𝑗 to represent the 𝑗-th layer output, and utilize

𝐻 ′
𝑗
to represent the 𝑗-th layer output of surrogate GNN 𝑓𝑤+𝑢 . We

also define these,Δ 𝑗 = 𝐻
′
𝑗
−𝐻 𝑗 ,Ψ𝑗 = max𝑗 | Δ 𝑗 [𝑖, :] |2,Φ𝑗 = max𝑗 |

𝐻 𝑗 [𝑖, :] |2, 𝑢∗𝑗 = argmax | Δ 𝑗 [𝑖, :] |2, and 𝑣∗𝑗 = argmax | 𝐻 𝑗 [𝑖, :] |2.
Derive the upper bound of node representations. For any layer
𝑗 , we are going to derive the upper bound of the ℓ2 norm of node

representation as follows,

Φ𝑗 = max

𝑗
| 𝐻 𝑗 [𝑖, :] |2= max

𝑖
| 𝜎 𝑗 (�̃�𝐻 𝑗−1𝑊𝑗) [𝑖, :] |2= | 𝜎 𝑗 (�̃�𝐻 𝑗−1𝑊𝑗) [𝑣∗𝑗 , :] |2

(5)

≤ | (�̃�𝐻 𝑗−1𝑊𝑗) [𝑣∗𝑗 , :] |2 (Lipschitz property of ReLU under vector 2-norm.)

(6)

= | (�̃�𝐻 𝑗−1) [𝑣∗𝑗 , :]𝑊𝑗 |2≤ | (�̃�𝐻 𝑗−1) [𝑣∗𝑗 , :] |2 ∥𝑊𝑗 ∥2 (7)

≤ | (
∑︁

𝑘∈𝑁𝑣∗
𝑗

�̃�[𝑣∗𝑗 , 𝑘]𝐻 𝑗−1 [𝑘, :]) |2 ∥𝑊𝑗 ∥2 (8)

≤
∑︁

𝑘∈𝑁𝑣∗
𝑗

�̃�[𝑣∗𝑗 , 𝑘]Φ𝑗−1 ∥𝑊𝑗 ∥2 ≤ 𝑑1/2Φ𝑗−1 ∥𝑊𝑗 ∥2 (9)

≤ 𝑑 𝑗/2𝐵
𝑗∏

𝑖=1

∥𝑊𝑖 ∥2 (Unroll to Φ0 = 𝐵.) (10)

Derive the upper bound on the change of node representa-
tions after perturbations. For any layer 𝑗 (except the output

layer), we derive the difference between the target GNN and surro-

gate GNN by bounding the change of their node representations’

ℓ2 norm as follows.

Ψ𝑗 = max

𝑖
| 𝐻 ′𝑗 − 𝐻 𝑗 |2= | 𝜎 𝑗 (�̃�𝐻 ′𝑗−1 (𝑊𝑗 +𝑈 𝑗)) [𝑢∗𝑗 , :] − 𝜎 𝑗 (�̃�𝐻 𝑗−1𝑊𝑗) [𝑢∗𝑗 , :] |2

(11)

≤ | (�̃�𝐻 ′𝑗−1 (𝑊𝑗 +𝑈 𝑗)) [𝑢∗𝑗 , :] − (�̃�𝐻 𝑗−1𝑊𝑗) [𝑢∗𝑗 , :] |2 (12)

= | (�̃�𝐻 ′𝑗−1) [𝑢∗𝑗 , :] (𝑊𝑗 +𝑈 𝑗) − (�̃�𝐻 𝑗−1) [𝑢∗𝑗 , :]𝑊𝑗 |2 (13)

≤ | �̃�𝐻 ′𝑗−1 [𝑢∗𝑗 , :] − �̃�𝐻 𝑗−1) [𝑢∗𝑗 , :] |2 ∥𝑊𝑗 +𝑈 𝑗 ∥2+ | (�̃�𝐻 𝑗−1) [𝑢∗𝑗 , :] |2 ∥𝑈 𝑗 ∥2
(14)

≤ 𝑑1/2Ψ𝑗−1 ∥𝑊𝑗 +𝑈 𝑗 ∥2 + 𝑑1/2Φ𝑗−1 ∥𝑈 𝑗 ∥2 . (15)

Given 𝑑1/2Ψ𝑗−1∥𝑊𝑗 +𝑈 𝑗 ∥2+𝑑1/2Φ𝑗−1∥𝑈 𝑗 ∥2, we can unroll them
to Ψ0 and Φ0. As Ψ0 = 0, then we have,

Ψ𝑗 ≤
𝑗∑︁

𝑘=0

−1𝑑
𝑗−𝑘
2 Φ𝑘 ∥𝑈𝑘+1∥2 (

𝑗∏
𝑖=𝑘+2

∥𝑊𝑖 +𝑈𝑖 ∥2) (16)

≤
𝑗−1∑︁
𝑘=0

𝑑
𝑗−𝑘
2 (𝑑𝑘/2𝐵

𝑘∏
𝑖=1

∥𝑊𝑖 ∥2)∥𝑈𝑘+1∥2 (
𝑗∏

𝑖=𝑘+2
∥𝑊𝑖 +𝑈𝑖 ∥2) (17)

≤
𝑗−1∑︁
𝑘=0

𝑑 𝑗/2𝐵
𝑗∏
𝑖=1

∥𝑊𝑖 ∥2
𝑗∑︁

𝑘=1

∥𝑈𝑘 ∥2
∥𝑊𝑘 ∥2

(1 + 1

ℓ
) 𝑗−𝑘 (18)

Derive the upper bound on change of output layer after per-
turbations.After this, we can derive the upper bound for the output
layer. Specifically, for different graph tasks, the upper bounds of

output layers are different. For node classification, the upper bound

is the maximum change of a node representation. We first derive

the upper bound for node classification as follows.

| Δℓ |2 ≤| Δℓ [𝑢∗ℓ , :] |2=| 𝐻
′
ℓ−1 (𝑊ℓ +𝑈ℓ) − 𝐻ℓ−1𝑊ℓ |2 (19)

≤ ∥𝑊ℓ +𝑈ℓ ∥2 | Δℓ−1 | +∥𝑈ℓ ∥2 | 𝐻ℓ−1 |2, (20)

≤ 𝑒𝐵𝑑
ℓ−1
2 (

ℓ∏
𝑖=1

∥𝑊𝑖 ∥2) [
ℓ∑︁
𝑘=1

∥𝑈𝑘 ∥2
∥𝑊𝑘 ∥2

] (21)

End the proof. □

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

GNNGuard: A Fingerprinting Framework for Verifying Ownerships of Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table A.3: Clean performance of different graph-based tasks, including target GNN, negative GNNs and positive GNNs.

Node Classification Link Prediction Graph Classification Graph Matching (P@20)

Target GNN 0.7525 0.908 0.600 0.331

Positive GNNs 0.731 0.900 0.565 0.342

Negative GNNs 0.735 0.900 0.557 0.341

Proof. Proof of Theorem 3.2. The purpose of the verification is

to determine whether the difference between the output distribu-

tions of a suspect GNN and the source GNN is larger than threshold

𝜆, which can be formulated as follows.

𝑃 (Δ1 < 𝜆) = 𝑃 (𝑥 > 𝜆 | 𝑥 ∼ N(𝜇0 − (𝜇0 + B), 𝜎2)) (22)

= 𝑃 (𝑥 < 𝜆 | 𝑥 ∼ N(−B, 𝜎2)) = Φ(𝜆 + B
𝜎
)

𝑃 (Δ2 < 𝜆) = 𝑃 (𝑥 > 𝜆 | 𝑥 ∼ N(𝜇0 − (𝜇0 − B), 𝜎2)) (23)

= 𝑃 (𝑥 < 𝜆 | 𝑥 ∼ N(B, 𝜎2)) = Φ(𝜆 − B
𝜎
) .

Note that Δ = ∥ 𝑓𝑤 − 𝑓𝑤+𝑢 ∥. Therefore, the total probability can be

derived as follows.

𝑃 (Diff < 𝜆) = 𝑃 (Δ1 < 𝜆) + 𝑃 (Δ2 < 𝜆) = Φ(𝜆 − B
𝜎
) + Φ(𝜆 + B

𝜎
) .
(24)

End the proof. □

After this, we present a theoretical analysis of the robustness

guarantee of the graph classification task. The difference between

node classification and graph classification is the derivation of the

upper bound on GNN outputs, i.e., B𝑔𝑐𝑙𝑠 . Then after this, the bound

can be used in Theorem 3.2 to derive the robustness guarantee of

graph classification.

Lemma A.1. Suppose that a GNN 𝑓𝑤 , of which the parameters are
denoted as {𝑊𝑖 }ℓ𝑖=1. Pertubations {𝑈𝑖 }

ℓ
𝑖=1

are added on 𝑓𝑤 to obtain
its surrogate GNN 𝑓𝑤+𝑢 (positive GNN). The differences of graph
classification task in outputs of 𝑓𝑤 and 𝑓𝑤+𝑢 given the same input
graph can be bounded as follows,

| 𝑓𝑤+𝑢 (𝑋,𝐴)−𝑓𝑤 (𝑋,𝐴) |≤ 𝑒𝐵 (𝑛)𝑑
ℓ−1
2

𝑚𝑎𝑥

(ℓ∏
𝑖=1

∥𝑊𝑖 ∥2
) ℓ∑︁
𝑘=1

∥𝑈𝑘 ∥2
∥𝑊𝑘 ∥2

= B𝑔𝑐𝑙𝑠 .

(25)

Note that 𝑑𝑚𝑎𝑥 is the largest node degree on the input graph.

Proof. Proof of Lemma A.1.

For graph classification, the upper bound is the maximum change

of a graph representation, i.e., the pooling results of node repre-

sentations. Therefore, we can utilize the results in Eq 21 to derive

the output bound for graph classification with different pooling

operations, which can be formulated as follows.

| Δℓ |2 ≤| Δℓ [𝑢∗ℓ , :] |2=|
1

𝑛
1𝑛𝐻

′
ℓ−1 (𝑊ℓ +𝑈ℓ) −

1

𝑛
1𝑛𝐻ℓ−1𝑊ℓ |2,Mean pooling

(26)

≤ ∥𝑊ℓ +𝑈ℓ ∥2 | Δℓ−1 | +∥𝑈ℓ ∥2 | 𝐻ℓ−1 |2, (27)

≤ 𝑒𝐵𝑑
ℓ−1
2 (

ℓ∏
𝑖=1

∥𝑊𝑖 ∥2) [
ℓ∑︁
𝑘=1

∥𝑈𝑘 ∥2
∥𝑊𝑘 ∥2

] (28)

| Δℓ |2 ≤| Δℓ [𝑢∗ℓ , :] |2=| 1𝑛𝐻
′
ℓ−1 (𝑊ℓ +𝑈ℓ) − 1𝑛𝐻ℓ−1𝑊ℓ |2, Sum pooling

(29)

≤ ∥𝑊ℓ +𝑈ℓ ∥2 | Δℓ−1 | +∥𝑈ℓ ∥2 | 𝐻ℓ−1 |2, (30)

≤ 𝑒𝐵𝑛𝑑
ℓ−1
2 (

ℓ∏
𝑖=1

∥𝑊𝑖 ∥2) [
ℓ∑︁
𝑘=1

∥𝑈𝑘 ∥2
∥𝑊𝑘 ∥2

] (31)

| Δℓ |2 ≤| Δℓ [𝑢∗ℓ , :] |2=| 𝐻
′
ℓ−1 [𝑢

∗
𝑗 , :] (𝑊ℓ +𝑈ℓ) − 𝐻ℓ−1 [𝑢∗𝑗 , :]𝑊ℓ |2,Max pooling

(32)

≤ ∥𝑊ℓ +𝑈ℓ ∥2 | Δℓ−1 | +∥𝑈ℓ ∥2 | 𝐻ℓ−1 |2, (33)

≤ 𝑒𝐵𝑑
ℓ−1
2 (

ℓ∏
𝑖=1

∥𝑊𝑖 ∥2) [
ℓ∑︁
𝑘=1

∥𝑈𝑘 ∥2
∥𝑊𝑘 ∥2

] (34)

End the proof. □

Algorithm 1 Algorithm of GraphFingers.

1: Input: Trained target model 𝑓 , positive model set F+, negative
model set F− , epochs 𝑒1,𝑒2, learning rate 𝛼, 𝛽 ,initialized finger-

prints I, initialized FPVerifierV𝜔 , update signal flag.
2: Return: Fingerprint I = {𝐼𝑝 }𝑃

𝑝=1
, FPVerifierV𝜔 .

3: while not converge do
4: L = 0

5: for ˆ𝑓 ∈ {𝑓 } ∪ F+ ∪ F− do
6: if

ˆ𝑓 ∈ {𝐹 } ∪ F+:
7: L+ = log(V𝜔 (Concat({ ˆ𝑓 (𝐼𝑝)}𝑃𝑝=1)),
8: else:

9: L+ = log(1 −V𝜔 (Concat({ ˆ𝑓 (𝐼𝑝)}𝑃𝑝=1)).
10: end for
11: if flag == 0 then
12: for 𝑒 = 0, ..., 𝑒1 do
13: Update 𝐼𝑝 ∈ I according to strategies in Section 3.1.

14: end for
15: flag = 1.

16: else
17: for 𝑒 = 0, ..., 𝑒2 do
18: Update 𝜔 by 𝛽∇𝜔L.
19: end for
20: flag = 0.

21: end if
22: end while

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1091

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

A.3 Algorithms of implementing GraphFingers
on different tasks

We present the overall algorithm for GraphFingers in Algorithm

1. Besides, we present different implementations of GraphFingers

on different tasks. The graph construction of GNN for the graph

classification task is shown in Algorithm 2; while graph matching

is shown in Algorithm 3.

Algorithm 2 Graph fingerprint construction of GNN for a graph

classification task.

1: Input: Loss L, graph fingerprint I𝑡 , learning rate 𝛼 .

2: Return: Updated graph fingerprint I𝑡+1.
3: for 𝐼𝑝 ∈ I𝑡 do
4: (𝑋𝑝𝑡 , 𝐴

𝑝
𝑡) ← 𝐼𝑝

5: 𝑋 𝑖
𝑡+1 ← 𝑋 𝑖𝑡 + 𝛼∇𝑋 𝑖L

6: 𝐴𝑖
𝑡+1 ← Flip

(
𝐴𝑖𝑡 , Rank

(
∇𝐴𝑖L

))
7: end for

Algorithm 3 Graph fingerprint construction of GNN for a graph

matching task.

1: Input: Loss L, graph fingerprint I𝑡 , learning rate 𝛼 .

2: Return: new graph fingerprint I𝑡 .
3: for 𝐼𝑝 ∈ I𝑡 do
4: for 𝐺𝑖,𝑝 ∈ 𝐼𝑝 do
5: 𝑋

𝑖,𝑝

𝑡+1 ← 𝑋
𝑖,𝑝
𝑡 + 𝛼∇𝑋 𝑖,𝑝L

6: 𝐴
𝑖,𝑝

𝑡+1 ← Flip

(
𝐴
𝑖,𝑝
𝑡 , Rank

(
∇𝐴𝑖,𝑝L

))
7: end for
8: end for

Algorithm 4 Graph fingerprint construction of GNN for a node

classification task/Link prediction task.

1: Input: Loss L, graph fingerprint I𝑡 , learning rate 𝛼 .

2: Return: new graph fingerprint I𝑡 .
3: 𝑋𝑡+1 ← 𝑋𝑡 + 𝛼∇𝑋L
4: 𝐴𝑡+1 ← Flip

(
𝐴𝑡 , Rank

(
∇𝐴L

))
A.4 More Evaluation Results
First, more results of different settings on the switch are shown

in Fig. A.6, Fig. A.7, Fig. A.8, Fig. A.9, Fig. A.10 and Fig. A.11. In

summary, the verification performance is ’Update A+X>Update

X>Update A’. Note that different from graph classification, the input

of the graph matching task is a pair of graphs. If the number of the

fingerprint is 64, there are 64 graphs used as fingerprint examples

for the graph classification task; while there are 32 pairs of graphs

used as the fingerprint examples for the graph matching task.

A.4.1 Different architectures of the dynamic verification mechanism.
Besides, we instantiate different architectures of the dynamic verifi-

cationmechanism, i.e., Logistic regression andConvolutional neural

network. As we can see from Fig. A.12, DNN classifier achieves the

best performance. We postulate that the main reason is that DNN

classifier is more accurate in classifying continuous features.

A.4.2 Results of GNN watermarking. To verify the effectiveness

of GNN watermarking, we also validate the GNN watermarking

[45] on the graph classification dataset. This method uses a set of

random graphs and pre-defined labels as watermarks and embeds

the watermark into the source GNN by fine-tuning it with a new

regularization loss and a clean training loss. In Fig. A.13, we can

see that GNNGuard can achieve much better performance than

GNN watermarking. The robustness of GNN watermarking is poor

because the random graphs are not as transferable as the adversarial

examples of the image domain. Furthermore, the clean performance

of GNN after watermarking drops by 3% − 5%, i.e., Fig. A.14. The
ACC is measured on a clean test set by the original source model

and the watermarking source model. The accuracy loss is less than

the accuracy loss reported in the original paper because we utilize

additional training data to maintain the normal utility. GNNGuard

can achieve 100% true negative and true positive without incurring

accuracy loss.

A.4.3 Generalization of GNNGuard on Different Positive Models.
We use different architectures for distillation on the training and

test set, i.e., for the training model set, we utilize GIN and GCN

to distill the source GNN, while for the test model set, we use

GraphSage and GAT to distill the source GNN. Besides, we leave

out existing distilled GNNs from the training model set, i.e., in

the training model set, there are only post-processing techniques

including finetuning and pruning. Finally, we test our fingerprints

framework on a new distillation technique, i.e., data-free model

distillation [7]. All these results are shown in Table A.4.

Besides, we also test the proposed fingerprinting framework on

verifying GNN model with new pooling techniques, e.g., eigenpool-

ing [21], and new graph-based task, e.g., graph generative tasks

[23]. The results are shown in Table A.5.

A.4.4 More Time Complexity Analyses of GNNGuard. We present

time complexity analyses on the number of edges on graph finger-

print in Fig A.15. The number of edges is set as the ratio of the

original graph fingerprint. On different levels of graph-based tasks,

the mean test accuracy is higher than 85% or 95%, demonstrating

that even with small graph fingerprint, effectiveness can still be

promised.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

GNNGuard: A Fingerprinting Framework for Verifying Ownerships of Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Figure A.6: Curves of robustness and uniqueness of different GNN tasks, GNN architectures and datasets of GNNGuard, where
the ARUC is reported in the figure title. Update only the attribute matrix.

Table A.4: Generalization of GNNGuard on unseen architectures and post-processing operations.

Graph classification (Proteins) Node classification (Cora)

New architectures 0.93 1.00

Leave-out post-processing 0.83 1.00

New post-processing 0.97 1.00

Table A.5: Verification effectiveness on new architectures and new tasks.

ARUC Robustness Uniqueness Accuracy

JKNet+eigenpooling 0.93 1.00 0.98 0.94

GAT+eigenpooling 0.88 1.00 0.92 0.90

Cora (generative model) 0.83 1.00 0.87 0.90

Citeseer (generative model) 0.87 1.00 0.89 0.95

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1091

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Figure A.7: Curves of robustness and uniqueness of different GNN tasks, GNN architectures and datasets of GNNGuard, where
the ARUC is reported in the figure title. Update only the adjacency matrix.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

GNNGuard: A Fingerprinting Framework for Verifying Ownerships of Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Figure A.8: Curves of robustness and uniqueness of different GNN tasks, GNN architectures and datasets of DeepFool, where
the ARUC is reported in the figure title. Update only the attribute matrix.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1091

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Figure A.9: Curves of robustness and uniqueness of different GNN tasks, GNN architectures and datasets of DeepFool, where
the ARUC is reported in the figure title. Update only the adjacency matrix.

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

GNNGuard: A Fingerprinting Framework for Verifying Ownerships of Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Figure A.10: Curves of robustness and uniqueness of different GNN tasks, GNN architectures and datasets of IPGuard, where
the ARUC is reported in the figure title. Update only the attribute matrix.

Figure A.11: Curves of robustness and uniqueness of different GNN tasks, GNN architectures and datasets of IPGuard, where
the ARUC is reported in the figure title. Update only the adjacency matrix.

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 1091

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Figure A.12: Different instantiations of the Univerifier, i.e., Logistic regression and Convolutional neural network (Conv1d).

Figure A.13: Curves of robustness and uniqueness of GNN watermarking on ENZYMES of the graph classification task, where
the ARUC is reported in the figure title. Update both 𝑋 and 𝐴.

Figure A.14: Classification accuracy of the source GNN before/after model watermarking.

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

GNNGuard: A Fingerprinting Framework for Verifying Ownerships of Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Figure A.15: Verification accuracy and Time complexity vs. Size of graph fingerprint.

19

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Graph Neural Networks
	2.2 Intellectual Property Protection of Graph Neural Networks

	3 Methodology
	3.1 Overview of GNNGuard
	3.2 Anti-Obfuscation GNN Preparation
	3.3 Graph Fingerprint Construction
	3.4 Jointly Learning for Graph Fingerprint and Univerifier
	3.5 Scalable and Theoretical Guarantee

	4 Evaluation Results
	4.1 Experiment Setup
	4.2 RQ1: Overall Comparison
	4.3 RQ2: Robustness & Uniqueness
	4.4 RQ3: Study of GNNGuard

	5 Conclusion
	References
	A Technical Appendix
	A.1 More Descriptions
	A.2 Theoretical Proofs
	A.3 Algorithms of implementing GraphFingers on different tasks
	A.4 More Evaluation Results

