CoBERL: Contrastive BERT for Reinforcement Learning

Anonymous Authors'

Abstract

Many reinforcement learning (RL) agents require
a large amount of experience to solve tasks. We
propose Contrastive BERT for RL (COBERL),
an agent that combines a new contrastive loss
and a hybrid LSTM-transformer architecture to
tackle the challenge of improving data efficiency.
COBERL enables efficient, robust learning from
pixels across a wide range of domains. We use
bidirectional masked prediction in combination
with a generalization of recent contrastive meth-
ods to learn better representations for transformers
in RL, without the need of hand engineered data
augmentations. We find that COBERL consis-
tently improves performance across the full Atari
suite, a set of control tasks and a challenging 3D
environment.

1. Introduction

Developing sample efficient reinforcement learning (RL)
agents that only rely on raw high dimensional inputs is
challenging. Specifically, it is difficult since it often requires
to simultaneously train several neural networks based on
sparse environment feedback and strong correlation between
consecutive observation. This problem is particularly severe
when the networks are large and densely connected, like
in the case of the transformer (Vaswani et al., 2017) due to
noisy gradients often found in RL problems. Outside of the
RL domain, transformers have proven to be very expressive
(Brown et al., 2020) and, as such, they are of particular
interest for complex domains like RL.

In this paper, we propose to tackle this shortcoming by tak-
ing inspiration from Bidirectional Encoder Representations
for Transformers (BERT; Devlin et al., 2019), and its suc-
cesses on difficult sequence prediction and reasoning tasks.
Specifically we propose a novel agent, named Contrastive
BERT for RL (COBERL), that combines a new contrastive
representation learning objective with architectural improve-
ments that effectively combine LSTMs with transformers.

For representation learning we take inspiration from previ-
ous work showing that contrastive objectives improve the
performance of agents (Fortunato et al., 2019; Srinivas et al.,

2020b; Kostrikov et al., 2020; Mitrovic et al., 2021). Specif-
ically, we combine the paradigm of masked prediction from
BERT (Devlin et al., 2019) with the contrastive approach
of Representation Learning via Invariant Causal Mecha-
nisms (RELIC; Mitrovic et al., 2021). Extending the BERT
masked prediction to RL is not trivial; unlike in language
tasks, there are no discrete targets in RL. To circumvent this
issue, we extend RELIC to the time domain and use it as a
proxy supervision signal for the masked prediction. Such a
signal aims to learn self-attention-consistent representations
that contain the appropriate information for the agent to
effectively incorporate previously observed knowledge in
the transformer weights. Critically, this objective can be
applied to different RL domains as it does not require any
data augmentations and thus circumvents the need for much
domain knowledge.

In terms of architecture, we base COBERL on Gated
Transformer-XL (GTrXL; Parisotto et al., 2020) and Long-
Short Term Memories (LSTMs; Hochreiter & Schmidhuber,
1997). GTrXL is an adaptation of a transformer architecture
specific for RL domains. We combine GTrXL with LSTMs
using a gate trained using RL gradients. This allows the
agent to learn to exploit the representations offered by the
transformer only when an environment requires it, and avoid
the extra complexity when not needed.

We extensively test our proposed agent across a widely
varied set of environments and tasks ranging from 2D plat-
form games to 3D first-person and third-person view tasks.
Specifically, we test it in the control domain using Deep-
Mind Control Suite (Tassa et al., 2018) and probe its mem-
ory abilities using DMLab-30 (Beattie et al., 2016). We also
test our agent on all 57 Atari games (Bellemare et al., 2013).
Our main contributions are:

e A novel contrastive representation learning objective
that combines the masked prediction from BERT with
a generalization of RELIC to the time domain; with
this we learn self-attention consistent representations
and extend BERT-like training to RL and contrastive
objectives, without the need of hand-engineered aug-
mentations.

e An improved architecture that, using a gate, allows
COBERL to flexibly combine transformer and an

CoBERL: Contrastive BERT for Reinforcement Learning

LSTM.

e Improved performance on a varied set of environments
and tasks both in terms of absolute performance and
data efficiency. Also, we show that individually both
our contrastive loss and the architecture improvements
play a role in improving performance.

2. Method

To tackle the problem of data efficiency in deep reinforce-
ment learning, we propose two modifications to the status
quo. First, we introduce a novel representation learning
objective aimed at learning better representations by enforc-
ing self-attention consistency in the prediction of masked
inputs. Second, we propose an architectural improvement
to combine the strength of LSTMs and transformers.

2.1. Representation Learning

In RL the agent uses a batch of trajectories in order to opti-
mize its RL objective. As part of this process, the observa-
tions in the trajectory are encoded into representations from
which RL quantities of interest (e.g. value) are computed.
Thus, learning informative representations is important for
successfully solving the RL task at hand. Unlike in the su-
pervised or unsupervised setting, learning representations in
RL is complicated by (high) correlation between subsequent
observations which we need to encode. Furthermore, given
the often sparse reward signal coming from the environment
learning representations in RL has to be achieved with little
to no supervision.

To tackle these two issues, we propose to combine two
approaches which have been successfully used in different
domains, namely BERT (Devlin et al., 2019) and contrastive
learning (Oord et al., 2018; Chen et al., 2020; Mitrovic et al.,
2021). Here we borrow from BERT the combination of bidi-
rectional processing in transformers (rather than left-to-right
or right-to-left, as is common with RNN-based models such
as LSTMs) with a masked prediction setup. The bidirec-
tional processing allows the agent to learn the context of
a particular state based on all of its temporal surroundings.
On the other hand, predicting inputs at masked positions
mitigates the issue of correlated inputs by reducing the prob-
ability of predicting subsequent time steps. Note that unlike
in BERT where the input is a discrete vocabulary for lan-
guage learning and we have targets available, in RL our
inputs consist of images, rewards and actions that do not
form a finite or discrete set and we are not given any targets.
Thus, we must construct proxy targets and the correspond-
ing proxy tasks to solve. For this we use contrastive learning.
While many contrastive losses such as SImCLR (Chen et al.,
2020) rely on data augmentations to create groupings of
data that can be compared, we do not need to utilize these

hand-crafted augmentations to construct proxy tasks. In-
stead we rely on the sequential nature of our input data
to create the necessary groupings of similar and dissimilar
points needed for contrastive learning and do not need to
only rely on data augmentations (e.g. cropping, pixel vari-
ation) on image observations. As our contrastive loss, we
use RELIC (Mitrovic et al., 2021) and adapt it to the time
domain; we create the data groupings by aligning the input
and output of the GTrXL transformer. We use RELIC as its
KL regularization improves performance over approaches
such as SimCLR (Chen et al., 2020) both in the domain of
image classification as well as RL domains such as Atari as
shown in (Mitrovic et al., 2021).

In a batch of sampled sequences, before feeding embed-
dings into the transformer stack, 15% of the embeddings
are replaced with a fixed token denoting masking. Then,
let the set 7 represent indices in the sequence that have
been randomly masked and let t € 7. For the i-th training
sequence in the batch, for each index t € T, let x{ be the
output of the GTrXL and y! the corresponding input to the
GTrXL from the encoder (see Fig 1B). Let (:;-) be the
inner product defined on the space of critic embeddings,
ie. (X;y) =g(X)"g(y), where g is a critic function. The
critic provides separation between the embeddings used for
the contrastive proxy task and the downstream RL task. De-
tails of the critic function are in App. B. This separation is
needed since the proxy and downstream tasks are related
but not identical, and as such the appropriate representations
will likely not be the same. As a side benefit, the critic can
be used to reduce the dimensionality for the dot-product. To
learn the embedding X! at mask locations t, we use y} as a
positive example and the sets {yE}tI?:o;b&i and {x? Fe0:bei
as the negative examples with B the number of sequences
in the minibatch. We model g} as

(D

T

Ox =

exp((x{y1)
B oexp((< yD)) +exp((xk; x2))

with g% denoting qf x}|[{yP}Eo; {x? }t?zo;be,—i ; q;‘, is com-
puted analogously (see Fig 1C). In order to enforce self-
attention consistency in the learned representations, we ex-
plicitly regularize the similarity between the pairs of trans-
former embeddings and inputs through Kullback-Leibler
regularization from RELIC. Specifically, we look at the
similarity between appropriate embeddings and inputs, and
within the sets of embeddings and inputs separately. To this
end, we define

t = o OXPC YD) @
> oexp((xky)
and .
e _ o exp((xkxD)

B oexp((xk; x2))

CoBERL: Contrastive BERT for Reinforcement Learning

Figure 1.CoBERL. A) General Architecture. We use a residual network to encode observations into embatidMégsfeedY; through

a causally masked GTrXL transformer, which computes the predicted maskedXhpatsl passes those together withto a learnt gate.

The output of the gate is passed through a single LSTM layer to produce the values that we use for computing the RL loss. B) Contrastive
loss. We also compute a contrastive loss using predicted masked ¥patredY; as targets. For this, we do not use the causal mask of

the Transfomer. For details about the contrastive loss, please see Section 2.1. C) Computataomigf (from Equation 1) with the

round brackets denoting the computation of the similarity between the entries D) Regularization terms from Eq. 4 which explicitly enforce
self-attention consistency.

with p} and s! shorthand forp}(x!jfy’gE,) and ing (Vaswani et al., 2017; Brown et al., 2020; Devlin et al.,
sk(xiif xPoh,), respectively; pl(yiif xPgh,) and 2019)and computer vision (Carion et al., 2020; Dosovitskiy
s; (y{jf ytbggzo) de ned analogously (see Fig 1D). Putting €t al., 2021), in the RL setting they are dif cult to train and

together the individual contributions, the nal objective are prone to over tting (Parisotto et al., 2020). In contrast,

takes the form LSTMs have long been demonstrated to be useful in RL. Al-
though less able to capture long range dependencies due to
LOXY)= (log d, +log q) their sequential nature, LSTMs capture recent dependencies
x h 21 effectively. We propose a simple but powerful architectural
+ KL (st; sg(sty)) + KL (p;;sg(p‘y)) change: we add an LSTM Iayer_on top of the GTrXL with
toT _ an extra gated residual connection between the LSTM and
. . . . I GTrXL, modulated by the input to the GTrXL (see Fig 1A).
+KL (px;sdsy)) + KL (py;sd(sx)) Finally we also have a skip connection from the transformer

(4) inputtothe LSTM output.

_ o _ More concretely, leY; be the output of the encoder network
with sg() indicating a stop-gradient. at timet, then the additional module can be de ned by the

Identically to our RL objective, we use the full batch of following equations (see Fig 1/Gatd), below, has the

sequences that are sampled from the replay buffer to op@me form as other gates internal to GTrXL):
mize this contrastive objective. In practice, we optimize a
weighted sum of the RL objective ahdX;Y).

2.2. Architecture of COBERL. Xt = GTrXL(V) 5)
While transformers have proven very effective at connecting Ze = GatdYi; Xo) _ (6)
long-range data dependencies in natural language process- Output = concatena@ STM(Z:); V) ()

CoBERL: Contrastive BERT for Reinforcement Learning

These modules are complementary as the transformer hasy, transformers have also been successfully applied to

no recency bias (Ravfogel et al., 2019), whilst the LSTM isthe RL domain, where as motivation for GTrXL, (Parisotto

biased to represent more recent inputs - the gate in equatiat al., 2020) noted that extra gating was helpful to train trans-

6 allows this to be a mix of encoder representations andormers for RL due to the high variance of the gradients

transformer outputs. This memory architecture is agnostic ton RL relative to that of (un)supervised learning problems.

the choice of RL regime and we evaluate this architecture irn this work, we build upon GTrXL and demonstrate that,

both the on and off-policy settings. For on-policy, we use V-perhaps for RL: attention is not all you need, and by com-

MPO(Song et al., 2019) as our RL algorithm. V-MPO useshining GTrXL in the right way with an LSTM, superior

a target distribution for policy updates, and partially movesperformance is attained. We reason that this demonstrates

the parameters towards this target subject to KL constraintthe advantage of both forms of memory representation: the

For the off-policy setting, we use R2D2 (Kapturowski et al.,all-to-all attention of transformers combined with the se-

2018) which adapts replay and the RL learning objective forguential processing of LSTMs. In doing so, we demonstrate

agents with recurrent architectures, such as LSTMs, GTrXLthat care should be taken in how LSTMs and transformers

and GBERL. are combined and show a simple gating is most effective in
our experiments. Also, unlike GTrXL, we show that using

R2D2 Agent Recurrent Replay Distributed DQN (R2D2; an unsupervised representation learning loss that enforces

Kapturowski et al., 2018) demonstrates how replay andelf-attention consistency is a way to enhance data ef ciency

the RL learning objective can be adapted to work well forwhen using transformers in RL.

agents with recurrent architectures. Given its competitive

performance on Atari-57 and DMLab-30, we implement our

CoBERL architecture in the context of Recurrent Replay

Distributed DQN (Kapturowski et al., 2018). We effectively

replace the LSTM with our gated transformer and LSTMContrastive Learning. Recently contrastive learning

combination and add the contrastive representation learningjadsell et al., 2006; Gutmann & Hyvérinen, 2010; Oord
loss. With R2D2 we thus Ieverage the bene ts of diStribUtEdet al., 2018) has emerged as a very performant paradigm for
experience collection, storing the recurrent agent state iinsupervised representation learning, in some cases even
the replay buffer, and "burning in" a portion of the unrolled syrpassing supervised learning (Chen et al., 2020; Caron
network with replayed sequences during training. etal., 2020; Mitrovic et al., 2021). These methods have also
been leveraged in an RL setting with the hope of improv-
V-MPO Agent Given V-MPO's strong performance on ing performance. Apart from MRA (Fortunato et al., 2019)
DMLab-30, in particular in conjunction with the GTrXL ar- mentioned above, one of the early examples of this is CURL
chitecture (Parisotto et al., 2020) which is a key componen({Srinivas et al., 2020a) which combines Q-Learning with a
of CoBERL, we use V-MPO and DMLab-30 to demonstrate separate encoder used for representation learning with the
CoBERL's use with on-policy algorithms. V-MPO is an InfoNCE loss from CPC (Oord et al., 2018). More recent ex-
on-policy adaptation of Maximum a Posteriori Policy Opti- amples use contrastive learning for predicting future latent
mization (MPO) (Abdolmaleki et al., 2018). To avoid high states (Schwarzer et al., 2020; Mazoure et al., 2020), de n-
variance often found in policy gradient methods, V-MPOing a policy similarity embeddings (Agarwal et al., 2021)
uses a target distribution for policy updates, subject to and learning abstract representations of state-action pairs
sample-based KL constraint, and gradients are calculatedliu et al., 2021). The closest work to our is M-CURL (Zhu
to partially move the parameters towards the target, agaiet al., 2020). Like our work, it combines mask prediction,
subject to a KL constraint. Unlike MPO, V-MPO uses atransformers, and contrastive learning, but there are a few
learned state-value functidh(s) instead of a state-action key differences. First, unlike M-CURL who use a separate

value function. policy network, COBERL computes Q-values based on the
output of the transformer. SecomdpBERL combines the
3. Related Work transformer architecture with GRUs to produce the input for

the Q-network, while M-CURL uses the transformer as an
Transformers in RL. The transformer architecture additional embedding network (critic) for the computation
(Vaswani et al., 2017) has recently emerged as one of thef the contrastive loss. Third, whilEOBERL uses an ex-
best performing approaches in language modelling (Daiension ofRELIC (Mitrovic et al., 2021) to the time domain
et al., 2019; Brown et al., 2020) and question answerin@and operates on the inputs and outputs of the transformer,
(Dehghani et al., 2018; Yang et al., 2019). More recently itM-CURL uses CPC (Oord et al., 2018) with a momentum
has also been successfully applied to computer vision (Dos@ncoder as in (Srinivas et al., 2020a) and compares encod-
vitskiy et al., 2021). Given the similarities of sequential dataings from the transformer with the separate momentum
processing in language modelling and reinforcement learrencoder.

CoBERL: Contrastive BERT for Reinforcement Learning

4. Experiments berg et al., 2016) so as not to confound our contrastive loss

i . i) with the pixel control loss. Secondly all the models used a
We provide empirical evidence to show f@OBERL 1) o et of hyperparameters with 3 random seeds, whereas
IMproves perforrnance across a wide range of envw_on.mer.nﬁ‘l (Parisotto et al., 2020) the results were averaged across
and tasks, and ii) needs all its components to maximise 'tﬁyperparameters. Here the hyperparameters were chosen to

performance. I_n our experiments, we demonstrate pe_rfOFhaximise the performance of the GTrXL baseline, please
mance on Atari57 (Bellemare et al., 2013), the DeelendSee App. C for more details

Control Suite (Tassa et al., 2018), and the DMLab-30 (Beat-
tie etal., 2016). Recently, Dreamer V2 (Hafner et al., 2020b)
has emerged as a strong model-based agent across Atari
and DeepMind Control Suite; we therefore include it asTo test the generality of our approach, we analyze the perfor-
a reference point for performance on these domains. Almance of our model on a wide range of environments. We
results are averaged over three seeds, with standard errshiow results on the Arcade Learning Environment (Belle-
reported on mean performance (see App. A.1 for details). mare et al., 2013), DeepMind Lab (Beattie et al., 2016), as

For the experiments in Atari57 and the DeepMind Controlwe” as the DeepMind Control Suite (Tassa et al., 2018). To

suite, COBERL uses the R2D2 distributed setup. We use\t‘vel?n\?:'tz compnarlztd)ir:is,r:nl,?)tarl-ﬁg ar\:\(ljhi[)ﬁifl)Mrl]nc:nCoggglz_
512 actors for all our experiments. We do not constrain € Introcuice an accifional baseline, which we name

. . GTrXL. This baseline is a variant of R2D2 where the LSTM
the amount of replay done for each experience trajector .
that actors deposit in the buffer. However, we have foun s replaced by GTrXL. R2D2-GTrXL has no unsupervised

y . earning. This way we are able to observe how GTrXL
empirical replay frequency per data point to be close amon !
all our experiments (with an expected valueld samples s affected by the change to an off-policy agent (R2D2),

per data point). We use a separate evaluator process thfr rznolts c\)lcglg?slc\)/-MeI:foo rlrr:pallimaeijnc:ﬁitcl)onnallnafglgrclif)zttgneatllaléis
shares weights with our learner in order to measure th)- . P . y
vy removing the contrastive loss froBOBERL (see Sec.

performance of our agents. We report scores at the end . : ; .
training. A more comprehensive description of the setup4'2'1)' With this baseline we demonstrate the importance

of this distributed system is found in App. A.COBERL of contrastive learning in these domains, and we show that
and the baselines that we used in Atari57 and the DeepMinHﬂIe combination of an LSTM and transformer is superior to

Control suite employ the same 47-layer ResNet to encodsIther alone.
observations. Details on the parts and size of all the compo-.
nents of the architecture @oBERL, including the sizes Atari IAS C?m%irg}' lt\j/lonilndhteratulrez(l(\)/lfél? ﬁ't e;l., 2015'|

used for the transformer and LSTM parts, are described i essel et al,, » Machado et al., ; Hainer et al,,

; 020b), we measure performance on all 57 Atari games
App. B. The hyperparameters and architecture we choo . - S
PP yperp fter running for200 million frames. As detailed in App. C,

for these two domains are the same with two exceptions: ij\\/ : . .
e use the standard Atari frame pre-processing to obtain

we use a shorter trace length for Ata8D({instead o0f120) the 84x84 led f that d as input t
as the environment does not require a long context to in- ecaxoagray-scaled frames that are used as input to our

form decisions, and ii) we use a squashing function on Atarf9ent We do not use frame stacking.

and the Control Suite to transform o@rvalues (as done > h.| Mean | Median|25th Pci5th Pet

in (Kapturowski et al., 2018)) since reward structures vary CoBERL| 49 |1424:9% 43:30%|276.6%)| 149.3%|17.0%

highly in magnitude between tasks. We use Pe@{'s) as R2D2-GTrXL| 48 | 1201.6% 16.63% |313.7%|139.6%| 3.7%

our loss. To ensure that this is comparable to R2D2, we also RiDZ 47 |1 1024.2% 40.11% |272.6%) 138.1%, 3.3%

run an R2D2 baseline with this loss. All results are shown __Rainbow 43 874.0% 231.0%101.7%) 4.9%
. . Dreamer V2¥ 37 631.1% 162.0%]| 76.6% | 2.5%

as the average ov8rseeds. A comprehensive enumeration

of the hyperparameters we use are shown in App. C.

9.. CoBERL as a General Agent

Table 1. The human normalized scores on Atari-57h indicates

For DMLab-30 we use V-MPO(Song et al., 2019) to directly the number of tasks for which performance above average human
compareCoBERL with (Parisotto et al., 2020) and also was achieved. indicates that it was run on 55 games with sticky
demonstrate hoWlLoBERL may be applied to both on and actions; Pct refers to percentile.

off-policy learning. The experiments were run using a Po-)
dracer setup (Hessel et al., 2021), details of which may pdab. 1 shows th_e results of all the agents where published
found in App. A.2.COBERL is trained for 10 billion steps "ésults are available COBERL shows the most games
on all 30 DMLab-30 games at the same time, to mirror the2P0ve average human performance and signi cantly higher
exact multi-task setup presented in (Parisotto et al., 20209Verall mean performance. Interestingly, the performance
Compared to (Parisotto et al., 2020) we have two difference®f R2D2-GTrXL shows that the addition of GTrXL is not

Firstly, all the networks run without pixel control loss (Jader-Suf cient to obtain the improvement in performance that
CoBERL exhibits—below we will demonstrate through ab-

CoBERL: Contrastive BERT for Reinforcement Learning

lations that both the contrastive loss and LSTM contributeeasy , even the original R2D2 agent performs on par with
to this improvement. R2D2-GTrXL also exhibits slightly the D4PG-Pixels baseline. On more dif cult tasks such
better median tha@oBERL, showing that R2D2-GTrXL asfish swim , andswimmer swimmer6 , there is a
is indeed a powerful variant on Atari. Additionally, we very large, appreciable difference betwe@oBERL,
observe that the difference in performanc€@BERLis R2D2, and R2D2-GTrXL. The combination of the LSTM
higher when examining the lower percentiles. This suggestand transformer speci cally makes a large difference here
that COBERL causes an improvement in data ef ciency, especially compared to D4PG-Pixels. Interestingly, this
since, as shown in experiments in (Kapturowski et al., 2018architecture is also very important for situations where the
which are run for billions of frames, these results are falR2D2-based approaches underperform. E&oeetah
from the nal performance of R2D2. run and walker walk , the COBERL architecture
dramatically narrows the performance gap between the

R2D2 agent and the state of the art.
Control Suite We also perform experiments on the Deep-

Mind Control Suite (Tassa et al., 2018). While the action

space in this domain is typically treated as continuous, wéMLab-30. To testCOBERL in a challenging 3 dimen-
discretize the action space in our experiments and app'?ional enVironment we run |t in DmLab'SO (Beattie et al.,
the same architecture as in Atari and DMLab-30. For more2016). The agent was trained at the same time on all the
details on the number of actions for each task see App. C.80 tasks, following the setup of GTrXI (Parisotto et al.,
We do not use pre-processing on the frames received frord020), which we use as our baseline. In Figure 2A we

the environment. FinallfCoBERL is trained only from Show the nal results on the DMLab-30 domain. If we
pixels without state information. look at all the 30 game$OBERL reaches a substantially

))) . higher score than GTrXLGOBERL=113.39% 3.64%,
We include six tasks popular in current literature: 51rx|.=102.40% 0.23%, Figure 2A). We also analysed
ball_in_cup catch . cartpole swingup ., the number of steps required to reach 100% human nor-
cheetah run ,finger spin ,reacher easy ,and majised score, a measure for data ef ciency. In this respect,
walker walk . Most previous work on these specic coBERL requires considerably fewer environment frames

tasks has emphasized data ef ciency as most are trivighan gTrxL (COBERL=2.96 0.35 Billion, GTrXL=3.64
to solve even with the baseline—D4PG-Pixels—in the g 43 Billion. see Figure 2B).

original dataset paper (Tassa et al., 2018). We thus

include 6 other tasks tha_lt are dif cult to solve with 4.2 Ablations

D4PG-Pixels and are relatively less exploredrobot

swingup , cartpole swingup_sparse , fish In Sec. 1, we explained contributions that are essential to
swim, fish upright , pendulum swingup , and COBERL, the new contrastive learning loss, and the ar-
swimmer swimmer6 . We show our results in Table 2. chitectural changes. We now explore the effects of these
We show results ortCoBERL, R2D2-gTRXL, R2D2, two separate contributions, disentangling the added bene t
CURL (Srinivas et al., 2020a), Dreamer (Hafner et al.,of each separately. Moreover, we run a set of ablations to
2020a), Soft Actor Critic (Haarnoja et al., 2018) on understand the role of model size on the results. Ablations
pixels as demonstrated in (Srinivas et al., 2020a), anere run on 7 Atari games chosen to match the ones in the
D4PG-Pixels (Tassa et al., 2018). CURL, DREAMER,original DQN publication (Mnih et al., 2013), and on all the
and Pixel SAC are for reference only as they represent th80 DMLab games.

state the art for low-data experiments (500K environment

steps). These three are not perfectly comparable baselineb;2.1. MPACT OF AUXILIARY LOSSES

however, D4PG-Pixels is run on a comparable scale wit . .
L . ; n Table 3 we show that our contrastive loss contributes to a
100 million environment steps. BecauSeBERL relies on — L i .
signi cant gain in performance, both in Atari and DMLab-

large scale distributed experience, we have a much Iarg%'0 when compared 80BERL without it. Also, in chal-
number of available environment steps per gradient updatfzén’ging environments like DmLab-SO;oE;ERL,Without

We run for 100M environment steps as with D4PG-Pixels o . : :
. extra loss is still superior to the relative baseline. The only
and we compute performance for our approaches by takin . .
. ase where we do not see and advantage of using the auxil-
the evaluation performance of the nal 10% of steps. Across. S .)

o ; lary loss is if we consider the median score on the reduced
the majority of tasksCOBERL outperforms D4PG-Pixels. : . .

. . . . ablation set of Atari games. However in the case of the
The increase in performance is especially apparent for th !

. . mLab-30, where we consider a larger set of levels (7 vs.
more dif cult tasks. For most of the easier tasks, the perfor-30) there is a clear bene t of the auxiliary loss
mance difference between ti@oBERL, R2D2-GTrXL, ' Y
and R2D2 is negligible. Foball _in_cup catch ., Moreover, Table 4 reports a comparison between our loss,
cartpole swingup , finger spin and reacher SIMCLR (Chen et al., 2020) and CURL (Srinivas et al.,

CoBERL: Contrastive BERT for Reinforcement Learning

DM Suite COBERL R2D2-GTrXL R2D2 DAPG-Pixels CURL Dreamer Pixel SAC
acrobot swingup 359.75 3.47 215.39 122.82 327.16 5.35 817 4.4 - - -

sh swim 624.40 5491 91.32 277.15 345.63 227.44 722 3.0

sh upright 942.33 6.12 849.52 23.01 936.09 11.58 405.7 19.6

pendulum swingup 836.63 9.77 743.65 52.44 831.86 61.54 680.9 41.9
swimmer swimmer6 447,60 51.51 225.97 60.67 329.61 26.77 1947 159

nger spin 985.05 1.58 977.41 891 980.85 0.67 985.7 0.6 926 45 | 796 183 | 179 166
reacher easy 983.05 2.47 981.64 1.99 982.28 9.30 967.4 4.1 929 44 | 793 164 145 30
cheetah run 525.06 44.59 | 115.15 133.95 365.45 50.40 523.8 6.8 518 28 | 570 253 197 15
walker walk 780.54 26.48 595.96 77.59 687.18 18.15 968.3 1.8 902 43 897 49 42 12

ball in cup catch 978.28 6.56 975.21 1.77 980.54 1.94 980.5 05 959 27 879 87 312 63
cartpole swingup 798.66 7.72 837.31 4.15 816.23 2.93 862.0 1.1 841 45 762 27 419 40
cartpole swingup sparsg 732.51 18.60 747.94 8.61 76257 6.71 482.0 56.6 - - -

Table 2.Results on tasks in the DeepMind Control Suite. COBERL, R2D2-GTrXL, R2D2, and D4PG-Pixels are trained on 100M frames,

while CURL, Dreamer, and Pixel SAC are trained on 500k frames. We show these three other approaches as reference and not as a directly
comparable baseline.

Figure 2.DMLab-30 experiments. a) Human normalised returns in DMLab-30 across all the 30 levels. b) Average number of steps to
reach 100% human normalised score across all the 30 levels. Results are over 3 seeds and the nal 5% of training.

2020a). Although simpler than both SImCLR - which in its the transformer module (columCOBERL with LSTM
original implementation requires handcrafted augmentationsefore”). In this case the representations for the contrastive
- and CURL - which requires an additional network - our loss were taken from before the LSTM. Interestingly, this
contrastive method shows improved performance. These egetting performs worse, despite having the same number
periments where run only on Atari to reduce computationalof parameters a€oBERL. For DMLab-30, it is worth

costs while still being suf cient for the analysis. noting thatCoBERL has a memory size @56, whereas
GTrXL has a memory of sizB12resulting in substantially
4.2.2. MPACT OF ARCHITECTURAL CHANGES fewer parameters. Nevertheless, the discrepancies between

. models are even more pronounced, even though the num-
Table 5 shows the effects of removing the LSTM from ber of parameters is either exactly the sam@qBERL

COBERI‘. (column_ wlo L.STM), as yvell as remt:vmg the »With LSTM before”) or higher (GTrXL). This ablation is
gate and its associated skip connection (column “w/o Gate”)

In both case€oBERL performs substantially worse show- of particular interest as it shows that the results are driven
) P Haty by the particular architectural choice rather than the added
ing that both components are needed. Finally, we also exper-:

. . o A arameters.

imented with substituting the learned gate with either a su

or a concatenation. The results, presented in Appendix D, = = |

show that in most occasions these alternatives decrease pe-Limitations and Future Work

formance, but not as substantially as removing the LSTM
gate or skip connections. Our hypothesis is that the learne
gate should give more exibility in complex environments,
we leave it open for future work to do more analysis on this

limitation of our method is that it relies on single time

tep information to compute its auxiliary objective. Such ob-

jective could naturally be adapted to operate on temporally-

extended patches, and/or action-conditioned inputs. We
regard those ideas as promising future research avenues.

4.2.3. MPACT OF NUMBER OF PARAMETERS

Table 6 compares the models in terms of the number o Conclusions

parameters. For Atari, the number of parameters added

by COBERL over the R2D2(GTrXL) baseline is very lim- We proposed a novel RL agent, Contrastive BERT for RL

ited; however,CoBERL still produces a signi cant gain (CoBERL), which introduces a new contrastive representa-

in performance. We also tried to move the LSTM beforetion learning loss that enables the agent to ef ciently learn

