
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

CoBERL: Contrastive BERT for Reinforcement Learning

Anonymous Authors1

Abstract
Many reinforcement learning (RL) agents require
a large amount of experience to solve tasks. We
propose Contrastive BERT for RL (COBERL),
an agent that combines a new contrastive loss
and a hybrid LSTM-transformer architecture to
tackle the challenge of improving data efficiency.
COBERL enables efficient, robust learning from
pixels across a wide range of domains. We use
bidirectional masked prediction in combination
with a generalization of recent contrastive meth-
ods to learn better representations for transformers
in RL, without the need of hand engineered data
augmentations. We find that COBERL consis-
tently improves performance across the full Atari
suite, a set of control tasks and a challenging 3D
environment.

1. Introduction
Developing sample efficient reinforcement learning (RL)
agents that only rely on raw high dimensional inputs is
challenging. Specifically, it is difficult since it often requires
to simultaneously train several neural networks based on
sparse environment feedback and strong correlation between
consecutive observation. This problem is particularly severe
when the networks are large and densely connected, like
in the case of the transformer (Vaswani et al., 2017) due to
noisy gradients often found in RL problems. Outside of the
RL domain, transformers have proven to be very expressive
(Brown et al., 2020) and, as such, they are of particular
interest for complex domains like RL.

In this paper, we propose to tackle this shortcoming by tak-
ing inspiration from Bidirectional Encoder Representations
for Transformers (BERT; Devlin et al., 2019), and its suc-
cesses on difficult sequence prediction and reasoning tasks.
Specifically we propose a novel agent, named Contrastive
BERT for RL (COBERL), that combines a new contrastive
representation learning objective with architectural improve-
ments that effectively combine LSTMs with transformers.

For representation learning we take inspiration from previ-
ous work showing that contrastive objectives improve the
performance of agents (Fortunato et al., 2019; Srinivas et al.,

2020b; Kostrikov et al., 2020; Mitrovic et al., 2021). Specif-
ically, we combine the paradigm of masked prediction from
BERT (Devlin et al., 2019) with the contrastive approach
of Representation Learning via Invariant Causal Mecha-
nisms (RELIC; Mitrovic et al., 2021). Extending the BERT
masked prediction to RL is not trivial; unlike in language
tasks, there are no discrete targets in RL. To circumvent this
issue, we extend RELIC to the time domain and use it as a
proxy supervision signal for the masked prediction. Such a
signal aims to learn self-attention-consistent representations
that contain the appropriate information for the agent to
effectively incorporate previously observed knowledge in
the transformer weights. Critically, this objective can be
applied to different RL domains as it does not require any
data augmentations and thus circumvents the need for much
domain knowledge.

In terms of architecture, we base COBERL on Gated
Transformer-XL (GTrXL; Parisotto et al., 2020) and Long-
Short Term Memories (LSTMs; Hochreiter & Schmidhuber,
1997). GTrXL is an adaptation of a transformer architecture
specific for RL domains. We combine GTrXL with LSTMs
using a gate trained using RL gradients. This allows the
agent to learn to exploit the representations offered by the
transformer only when an environment requires it, and avoid
the extra complexity when not needed.

We extensively test our proposed agent across a widely
varied set of environments and tasks ranging from 2D plat-
form games to 3D first-person and third-person view tasks.
Specifically, we test it in the control domain using Deep-
Mind Control Suite (Tassa et al., 2018) and probe its mem-
ory abilities using DMLab-30 (Beattie et al., 2016). We also
test our agent on all 57 Atari games (Bellemare et al., 2013).
Our main contributions are:

• A novel contrastive representation learning objective
that combines the masked prediction from BERT with
a generalization of RELIC to the time domain; with
this we learn self-attention consistent representations
and extend BERT-like training to RL and contrastive
objectives, without the need of hand-engineered aug-
mentations.

• An improved architecture that, using a gate, allows
COBERL to flexibly combine transformer and an

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

CoBERL: Contrastive BERT for Reinforcement Learning

LSTM.

• Improved performance on a varied set of environments
and tasks both in terms of absolute performance and
data efficiency. Also, we show that individually both
our contrastive loss and the architecture improvements
play a role in improving performance.

2. Method
To tackle the problem of data efficiency in deep reinforce-
ment learning, we propose two modifications to the status
quo. First, we introduce a novel representation learning
objective aimed at learning better representations by enforc-
ing self-attention consistency in the prediction of masked
inputs. Second, we propose an architectural improvement
to combine the strength of LSTMs and transformers.

2.1. Representation Learning

In RL the agent uses a batch of trajectories in order to opti-
mize its RL objective. As part of this process, the observa-
tions in the trajectory are encoded into representations from
which RL quantities of interest (e.g. value) are computed.
Thus, learning informative representations is important for
successfully solving the RL task at hand. Unlike in the su-
pervised or unsupervised setting, learning representations in
RL is complicated by (high) correlation between subsequent
observations which we need to encode. Furthermore, given
the often sparse reward signal coming from the environment
learning representations in RL has to be achieved with little
to no supervision.

To tackle these two issues, we propose to combine two
approaches which have been successfully used in different
domains, namely BERT (Devlin et al., 2019) and contrastive
learning (Oord et al., 2018; Chen et al., 2020; Mitrovic et al.,
2021). Here we borrow from BERT the combination of bidi-
rectional processing in transformers (rather than left-to-right
or right-to-left, as is common with RNN-based models such
as LSTMs) with a masked prediction setup. The bidirec-
tional processing allows the agent to learn the context of
a particular state based on all of its temporal surroundings.
On the other hand, predicting inputs at masked positions
mitigates the issue of correlated inputs by reducing the prob-
ability of predicting subsequent time steps. Note that unlike
in BERT where the input is a discrete vocabulary for lan-
guage learning and we have targets available, in RL our
inputs consist of images, rewards and actions that do not
form a finite or discrete set and we are not given any targets.
Thus, we must construct proxy targets and the correspond-
ing proxy tasks to solve. For this we use contrastive learning.
While many contrastive losses such as SimCLR (Chen et al.,
2020) rely on data augmentations to create groupings of
data that can be compared, we do not need to utilize these

hand-crafted augmentations to construct proxy tasks. In-
stead we rely on the sequential nature of our input data
to create the necessary groupings of similar and dissimilar
points needed for contrastive learning and do not need to
only rely on data augmentations (e.g. cropping, pixel vari-
ation) on image observations. As our contrastive loss, we
use RELIC (Mitrovic et al., 2021) and adapt it to the time
domain; we create the data groupings by aligning the input
and output of the GTrXL transformer. We use RELIC as its
KL regularization improves performance over approaches
such as SimCLR (Chen et al., 2020) both in the domain of
image classification as well as RL domains such as Atari as
shown in (Mitrovic et al., 2021).

In a batch of sampled sequences, before feeding embed-
dings into the transformer stack, 15% of the embeddings
are replaced with a fixed token denoting masking. Then,
let the set T represent indices in the sequence that have
been randomly masked and let t ∈ T . For the i-th training
sequence in the batch, for each index t ∈ T , let xit be the
output of the GTrXL and yit the corresponding input to the
GTrXL from the encoder (see Fig 1B). Let φ(·, ·) be the
inner product defined on the space of critic embeddings,
i.e. φ(x, y) = g(x)T g(y), where g is a critic function. The
critic provides separation between the embeddings used for
the contrastive proxy task and the downstream RL task. De-
tails of the critic function are in App. B. This separation is
needed since the proxy and downstream tasks are related
but not identical, and as such the appropriate representations
will likely not be the same. As a side benefit, the critic can
be used to reduce the dimensionality for the dot-product. To
learn the embedding xit at mask locations t, we use yit as a
positive example and the sets {ybt}Bb=0,b6=i and {xbt}Bb=0,b6=i
as the negative examples with B the number of sequences
in the minibatch. We model qtx as

qtx =
exp(φ(xit, y

i
t))∑B

b=0 exp(φ(x
i
t, y

b
t)) + exp(φ(xit, x

b
t))

(1)

with qtx denoting qtx
(
xit|{ybt}Bb=0, {xbt}Bb=0,b6=i

)
; qty is com-

puted analogously (see Fig 1C). In order to enforce self-
attention consistency in the learned representations, we ex-
plicitly regularize the similarity between the pairs of trans-
former embeddings and inputs through Kullback-Leibler
regularization from RELIC. Specifically, we look at the
similarity between appropriate embeddings and inputs, and
within the sets of embeddings and inputs separately. To this
end, we define

ptx =
exp(φ(xit, y

i
t))∑B

b=0 exp(φ(x
i
t, y

b
t))

(2)

and

stx =
exp(φ(xit, x

i
t))∑B

b=0 exp(φ(x
i
t, x

b
t))

(3)

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

CoBERL: Contrastive BERT for Reinforcement Learning

ENCODER

TRANSFORMER

GATE

LSTM

V

Yt

Xt

RL Loss

ENCODER

TRANSFORMER

GATE

LSTM

V

ENCODER

TRANSFORMER

GATE

LSTM

V

Y1

X1 X2

Y2

ENCODER

TRANSFORMER

GATE

LSTM

V

XN

YN

...

RL Loss RL Loss RL Loss

CONTRASTIVE
LOSS

CROSS
ENTROPY

CROSS
ENTROPY

A B

C D

Figure 1. COBERL. A) General Architecture. We use a residual network to encode observations into embeddings Yt. We feed Yt through
a causally masked GTrXL transformer, which computes the predicted masked inputs Xt and passes those together with Yt to a learnt gate.
The output of the gate is passed through a single LSTM layer to produce the values that we use for computing the RL loss. B) Contrastive
loss. We also compute a contrastive loss using predicted masked inputs Xt and Yt as targets. For this, we do not use the causal mask of
the Transfomer. For details about the contrastive loss, please see Section 2.1. C) Computation of qtx and qty (from Equation 1) with the
round brackets denoting the computation of the similarity between the entries D) Regularization terms from Eq. 4 which explicitly enforce
self-attention consistency.

with ptx and stx shorthand for ptx(x
i
t|{ybt}Bb=0) and

stx(x
i
t|{xbt}Bb=0), respectively; pty(y

i
t|{xbt}Bb=0) and

sty(y
i
t|{ybt}Bb=0) defined analogously (see Fig 1D). Putting

together the individual contributions, the final objective
takes the form

L(X,Y) = −
∑
t∈T

(log qtx + log qty)

+α
∑
t∈T

[
KL(stx, sg(sty)) +KL(ptx, sg(pty))

+KL(ptx, sg(sty)) +KL(pty, sg(stx))
]
(4)

with sg(·) indicating a stop-gradient.

Identically to our RL objective, we use the full batch of
sequences that are sampled from the replay buffer to opti-
mize this contrastive objective. In practice, we optimize a
weighted sum of the RL objective and L(X,Y).

2.2. Architecture of COBERL.

While transformers have proven very effective at connecting
long-range data dependencies in natural language process-

ing (Vaswani et al., 2017; Brown et al., 2020; Devlin et al.,
2019) and computer vision (Carion et al., 2020; Dosovitskiy
et al., 2021), in the RL setting they are difficult to train and
are prone to overfitting (Parisotto et al., 2020). In contrast,
LSTMs have long been demonstrated to be useful in RL. Al-
though less able to capture long range dependencies due to
their sequential nature, LSTMs capture recent dependencies
effectively. We propose a simple but powerful architectural
change: we add an LSTM layer on top of the GTrXL with
an extra gated residual connection between the LSTM and
GTrXL, modulated by the input to the GTrXL (see Fig 1A).
Finally we also have a skip connection from the transformer
input to the LSTM output.

More concretely, let Yt be the output of the encoder network
at time t, then the additional module can be defined by the
following equations (see Fig 1A, Gate(), below, has the
same form as other gates internal to GTrXL):

Xt = GTrXL(Yt) (5)
Zt = Gate(Yt, Xt) (6)

Outputt = concatenate(LSTM(Zt), Yt) (7)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

CoBERL: Contrastive BERT for Reinforcement Learning

These modules are complementary as the transformer has
no recency bias (Ravfogel et al., 2019), whilst the LSTM is
biased to represent more recent inputs - the gate in equation
6 allows this to be a mix of encoder representations and
transformer outputs. This memory architecture is agnostic to
the choice of RL regime and we evaluate this architecture in
both the on and off-policy settings. For on-policy, we use V-
MPO(Song et al., 2019) as our RL algorithm. V-MPO uses
a target distribution for policy updates, and partially moves
the parameters towards this target subject to KL constraints.
For the off-policy setting, we use R2D2 (Kapturowski et al.,
2018) which adapts replay and the RL learning objective for
agents with recurrent architectures, such as LSTMs, GTrXL,
and COBERL.

R2D2 Agent Recurrent Replay Distributed DQN (R2D2;
Kapturowski et al., 2018) demonstrates how replay and
the RL learning objective can be adapted to work well for
agents with recurrent architectures. Given its competitive
performance on Atari-57 and DMLab-30, we implement our
CoBERL architecture in the context of Recurrent Replay
Distributed DQN (Kapturowski et al., 2018). We effectively
replace the LSTM with our gated transformer and LSTM
combination and add the contrastive representation learning
loss. With R2D2 we thus leverage the benefits of distributed
experience collection, storing the recurrent agent state in
the replay buffer, and "burning in" a portion of the unrolled
network with replayed sequences during training.

V-MPO Agent Given V-MPO’s strong performance on
DMLab-30, in particular in conjunction with the GTrXL ar-
chitecture (Parisotto et al., 2020) which is a key component
of CoBERL, we use V-MPO and DMLab-30 to demonstrate
CoBERL’s use with on-policy algorithms. V-MPO is an
on-policy adaptation of Maximum a Posteriori Policy Opti-
mization (MPO) (Abdolmaleki et al., 2018). To avoid high
variance often found in policy gradient methods, V-MPO
uses a target distribution for policy updates, subject to a
sample-based KL constraint, and gradients are calculated
to partially move the parameters towards the target, again
subject to a KL constraint. Unlike MPO, V-MPO uses a
learned state-value function V (s) instead of a state-action
value function.

3. Related Work
Transformers in RL. The transformer architecture
(Vaswani et al., 2017) has recently emerged as one of the
best performing approaches in language modelling (Dai
et al., 2019; Brown et al., 2020) and question answering
(Dehghani et al., 2018; Yang et al., 2019). More recently it
has also been successfully applied to computer vision (Doso-
vitskiy et al., 2021). Given the similarities of sequential data
processing in language modelling and reinforcement learn-

ing, transformers have also been successfully applied to
the RL domain, where as motivation for GTrXL, (Parisotto
et al., 2020) noted that extra gating was helpful to train trans-
formers for RL due to the high variance of the gradients
in RL relative to that of (un)supervised learning problems.
In this work, we build upon GTrXL and demonstrate that,
perhaps for RL: attention is not all you need, and by com-
bining GTrXL in the right way with an LSTM, superior
performance is attained. We reason that this demonstrates
the advantage of both forms of memory representation: the
all-to-all attention of transformers combined with the se-
quential processing of LSTMs. In doing so, we demonstrate
that care should be taken in how LSTMs and transformers
are combined and show a simple gating is most effective in
our experiments. Also, unlike GTrXL, we show that using
an unsupervised representation learning loss that enforces
self-attention consistency is a way to enhance data efficiency
when using transformers in RL.

Contrastive Learning. Recently contrastive learning
(Hadsell et al., 2006; Gutmann & Hyvärinen, 2010; Oord
et al., 2018) has emerged as a very performant paradigm for
unsupervised representation learning, in some cases even
surpassing supervised learning (Chen et al., 2020; Caron
et al., 2020; Mitrovic et al., 2021). These methods have also
been leveraged in an RL setting with the hope of improv-
ing performance. Apart from MRA (Fortunato et al., 2019)
mentioned above, one of the early examples of this is CURL
(Srinivas et al., 2020a) which combines Q-Learning with a
separate encoder used for representation learning with the
InfoNCE loss from CPC (Oord et al., 2018). More recent ex-
amples use contrastive learning for predicting future latent
states (Schwarzer et al., 2020; Mazoure et al., 2020), defin-
ing a policy similarity embeddings (Agarwal et al., 2021)
and learning abstract representations of state-action pairs
(Liu et al., 2021). The closest work to our is M-CURL (Zhu
et al., 2020). Like our work, it combines mask prediction,
transformers, and contrastive learning, but there are a few
key differences. First, unlike M-CURL who use a separate
policy network, COBERL computes Q-values based on the
output of the transformer. Second, COBERL combines the
transformer architecture with GRUs to produce the input for
the Q-network, while M-CURL uses the transformer as an
additional embedding network (critic) for the computation
of the contrastive loss. Third, while COBERL uses an ex-
tension of RELIC (Mitrovic et al., 2021) to the time domain
and operates on the inputs and outputs of the transformer,
M-CURL uses CPC (Oord et al., 2018) with a momentum
encoder as in (Srinivas et al., 2020a) and compares encod-
ings from the transformer with the separate momentum
encoder.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

CoBERL: Contrastive BERT for Reinforcement Learning

4. Experiments
We provide empirical evidence to show that COBERL i)
improves performance across a wide range of environments
and tasks, and ii) needs all its components to maximise its
performance. In our experiments, we demonstrate perfor-
mance on Atari57 (Bellemare et al., 2013), the DeepMind
Control Suite (Tassa et al., 2018), and the DMLab-30 (Beat-
tie et al., 2016). Recently, Dreamer V2 (Hafner et al., 2020b)
has emerged as a strong model-based agent across Atari57
and DeepMind Control Suite; we therefore include it as
a reference point for performance on these domains. All
results are averaged over three seeds, with standard error
reported on mean performance (see App. A.1 for details).

For the experiments in Atari57 and the DeepMind Control
suite, COBERL uses the R2D2 distributed setup. We use
512 actors for all our experiments. We do not constrain
the amount of replay done for each experience trajectory
that actors deposit in the buffer. However, we have found
empirical replay frequency per data point to be close among
all our experiments (with an expected value of 1.5 samples
per data point). We use a separate evaluator process that
shares weights with our learner in order to measure the
performance of our agents. We report scores at the end of
training. A more comprehensive description of the setup
of this distributed system is found in App. A.1. COBERL
and the baselines that we used in Atari57 and the DeepMind
Control suite employ the same 47-layer ResNet to encode
observations. Details on the parts and size of all the compo-
nents of the architecture of COBERL, including the sizes
used for the transformer and LSTM parts, are described in
App. B. The hyperparameters and architecture we choose
for these two domains are the same with two exceptions: i)
we use a shorter trace length for Atari (80 instead of 120)
as the environment does not require a long context to in-
form decisions, and ii) we use a squashing function on Atari
and the Control Suite to transform our Q values (as done
in (Kapturowski et al., 2018)) since reward structures vary
highly in magnitude between tasks. We use Peng’s Q(λ) as
our loss. To ensure that this is comparable to R2D2, we also
run an R2D2 baseline with this loss. All results are shown
as the average over 3 seeds. A comprehensive enumeration
of the hyperparameters we use are shown in App. C.

For DMLab-30 we use V-MPO(Song et al., 2019) to directly
compare COBERL with (Parisotto et al., 2020) and also
demonstrate how COBERL may be applied to both on and
off-policy learning. The experiments were run using a Po-
dracer setup (Hessel et al., 2021), details of which may be
found in App. A.2. COBERL is trained for 10 billion steps
on all 30 DMLab-30 games at the same time, to mirror the
exact multi-task setup presented in (Parisotto et al., 2020).
Compared to (Parisotto et al., 2020) we have two differences.
Firstly, all the networks run without pixel control loss (Jader-

berg et al., 2016) so as not to confound our contrastive loss
with the pixel control loss. Secondly all the models used a
fixed set of hyperparameters with 3 random seeds, whereas
in (Parisotto et al., 2020) the results were averaged across
hyperparameters. Here the hyperparameters were chosen to
maximise the performance of the GTrXL baseline, please
see App. C for more details.

4.1. COBERL as a General Agent

To test the generality of our approach, we analyze the perfor-
mance of our model on a wide range of environments. We
show results on the Arcade Learning Environment (Belle-
mare et al., 2013), DeepMind Lab (Beattie et al., 2016), as
well as the DeepMind Control Suite (Tassa et al., 2018). To
help with comparisons, in Atari-57 and DeepMind Control
we introduce an additional baseline, which we name R2D2-
GTrXL. This baseline is a variant of R2D2 where the LSTM
is replaced by GTrXL. R2D2-GTrXL has no unsupervised
learning. This way we are able to observe how GTrXL
is affected by the change to an off-policy agent (R2D2),
from its original V-MPO implementation in (Parisotto et al.,
2020). We also perform an additional ablation analysis
by removing the contrastive loss from COBERL (see Sec.
4.2.1). With this baseline we demonstrate the importance
of contrastive learning in these domains, and we show that
the combination of an LSTM and transformer is superior to
either alone.

Atari As commonly done in literature (Mnih et al., 2015;
Hessel et al., 2018; Machado et al., 2018; Hafner et al.,
2020b), we measure performance on all 57 Atari games
after running for 200 million frames. As detailed in App. C,
we use the standard Atari frame pre-processing to obtain
the 84x84 gray-scaled frames that are used as input to our
agent. We do not use frame stacking.

> h. Mean Median 25th Pct 5th Pct
COBERL 49 1424.9%± 43.30% 276.6% 149.3% 17.0%

R2D2-GTrXL 48 1201.6% ± 16.63% 313.7% 139.6% 3.7%
R2D2 47 1024.2% ± 40.11% 272.6% 138.1% 3.3%

Rainbow 43 874.0% 231.0% 101.7% 4.9%
Dreamer V2* 37 631.1% 162.0% 76.6% 2.5%

Table 1. The human normalized scores on Atari-57. > h indicates
the number of tasks for which performance above average human
was achieved. ∗ indicates that it was run on 55 games with sticky
actions; Pct refers to percentile.

Tab. 1 shows the results of all the agents where published
results are available. COBERL shows the most games
above average human performance and significantly higher
overall mean performance. Interestingly, the performance
of R2D2-GTrXL shows that the addition of GTrXL is not
sufficient to obtain the improvement in performance that
COBERL exhibits–below we will demonstrate through ab-

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

CoBERL: Contrastive BERT for Reinforcement Learning

lations that both the contrastive loss and LSTM contribute
to this improvement. R2D2-GTrXL also exhibits slightly
better median than COBERL, showing that R2D2-GTrXL
is indeed a powerful variant on Atari. Additionally, we
observe that the difference in performance in COBERL is
higher when examining the lower percentiles. This suggests
that COBERL causes an improvement in data efficiency,
since, as shown in experiments in (Kapturowski et al., 2018)
which are run for billions of frames, these results are far
from the final performance of R2D2.

Control Suite We also perform experiments on the Deep-
Mind Control Suite (Tassa et al., 2018). While the action
space in this domain is typically treated as continuous, we
discretize the action space in our experiments and apply
the same architecture as in Atari and DMLab-30. For more
details on the number of actions for each task see App. C.4.
We do not use pre-processing on the frames received from
the environment. Finally, COBERL is trained only from
pixels without state information.

We include six tasks popular in current literature:
ball_in_cup catch, cartpole swingup,
cheetah run, finger spin, reacher easy, and
walker walk. Most previous work on these specific
tasks has emphasized data efficiency as most are trivial
to solve even with the baseline—D4PG-Pixels—in the
original dataset paper (Tassa et al., 2018). We thus
include 6 other tasks that are difficult to solve with
D4PG-Pixels and are relatively less explored: acrobot
swingup, cartpole swingup_sparse, fish
swim, fish upright, pendulum swingup, and
swimmer swimmer6. We show our results in Table 2.
We show results on COBERL, R2D2-gTRXL, R2D2,
CURL (Srinivas et al., 2020a), Dreamer (Hafner et al.,
2020a), Soft Actor Critic (Haarnoja et al., 2018) on
pixels as demonstrated in (Srinivas et al., 2020a), and
D4PG-Pixels (Tassa et al., 2018). CURL, DREAMER,
and Pixel SAC are for reference only as they represent the
state the art for low-data experiments (500K environment
steps). These three are not perfectly comparable baselines;
however, D4PG-Pixels is run on a comparable scale with
100 million environment steps. Because COBERL relies on
large scale distributed experience, we have a much larger
number of available environment steps per gradient update.
We run for 100M environment steps as with D4PG-Pixels,
and we compute performance for our approaches by taking
the evaluation performance of the final 10% of steps. Across
the majority of tasks, COBERL outperforms D4PG-Pixels.
The increase in performance is especially apparent for the
more difficult tasks. For most of the easier tasks, the perfor-
mance difference between the COBERL, R2D2-GTrXL,
and R2D2 is negligible. For ball_in_cup catch,
cartpole swingup, finger spin and reacher

easy, even the original R2D2 agent performs on par with
the D4PG-Pixels baseline. On more difficult tasks such
as fish swim, and swimmer swimmer6, there is a
very large, appreciable difference between COBERL,
R2D2, and R2D2-GTrXL. The combination of the LSTM
and transformer specifically makes a large difference here
especially compared to D4PG-Pixels. Interestingly, this
architecture is also very important for situations where the
R2D2-based approaches underperform. For cheetah
run and walker walk, the COBERL architecture
dramatically narrows the performance gap between the
R2D2 agent and the state of the art.

DMLab-30. To test COBERL in a challenging 3 dimen-
sional environment we run it in DmLab-30 (Beattie et al.,
2016). The agent was trained at the same time on all the
30 tasks, following the setup of GTrXl (Parisotto et al.,
2020), which we use as our baseline. In Figure 2A we
show the final results on the DMLab-30 domain. If we
look at all the 30 games, COBERL reaches a substantially
higher score than GTrXL (COBERL=113.39% ± 3.64%,
GTrXL=102.40% ± 0.23%, Figure 2A). We also analysed
the number of steps required to reach 100% human nor-
malised score, a measure for data efficiency. In this respect,
COBERL requires considerably fewer environment frames
than GTrXL (COBERL=2.96 ± 0.35 Billion, GTrXL=3.64
± 0.43 Billion, see Figure 2B).

4.2. Ablations

In Sec. 1, we explained contributions that are essential to
COBERL, the new contrastive learning loss, and the ar-
chitectural changes. We now explore the effects of these
two separate contributions, disentangling the added benefit
of each separately. Moreover, we run a set of ablations to
understand the role of model size on the results. Ablations
are run on 7 Atari games chosen to match the ones in the
original DQN publication (Mnih et al., 2013), and on all the
30 DMLab games.

4.2.1. IMPACT OF AUXILIARY LOSSES

In Table 3 we show that our contrastive loss contributes to a
significant gain in performance, both in Atari and DMLab-
30, when compared to COBERL without it. Also, in chal-
lenging environments like DmLab-30, COBERL without
extra loss is still superior to the relative baseline. The only
case where we do not see and advantage of using the auxil-
iary loss is if we consider the median score on the reduced
ablation set of Atari games. However in the case of the
DmLab-30, where we consider a larger set of levels (7 vs.
30), there is a clear benefit of the auxiliary loss.

Moreover, Table 4 reports a comparison between our loss,
SimCLR (Chen et al., 2020) and CURL (Srinivas et al.,

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

CoBERL: Contrastive BERT for Reinforcement Learning

DM Suite COBERL R2D2-GTrXL R2D2 D4PG-Pixels CURL Dreamer Pixel SAC
acrobot swingup 359.75 ± 3.47 215.39 ± 122.82 327.16 ± 5.35 81.7 ± 4.4 - - -

fish swim 624.40 ± 54.91 91.32 ± 277.15 345.63 ± 227.44 72.2 ± 3.0 - - -
fish upright 942.33 ± 6.12 849.52 ± 23.01 936.09 ± 11.58 405.7 ± 19.6 - - -

pendulum swingup 836.63 ± 9.77 743.65 ± 52.44 831.86 ± 61.54 680.9 ± 41.9 - - -
swimmer swimmer6 447.60 ± 51.51 225.97 ± 60.67 329.61 ± 26.77 194.7 ± 15.9 - - -

finger spin 985.05 ± 1.58 977.41 ± 8.91 980.85 ± 0.67 985.7 ± 0.6 926 ± 45 796 ± 183 179 ± 166
reacher easy 983.05 ± 2.47 981.64 ± 1.99 982.28 ± 9.30 967.4 ± 4.1 929 ± 44 793 ± 164 145 ± 30
cheetah run 525.06 ± 44.59 115.15 ± 133.95 365.45 ± 50.40 523.8 ± 6.8 518 ± 28 570 ± 253 197 ± 15
walker walk 780.54 ± 26.48 595.96 ± 77.59 687.18 ± 18.15 968.3 ± 1.8 902 ± 43 897 ± 49 42 ± 12

ball in cup catch 978.28 ± 6.56 975.21 ± 1.77 980.54 ± 1.94 980.5 ± 0.5 959 ± 27 879 ± 87 312 ± 63
cartpole swingup 798.66 ± 7.72 837.31 ± 4.15 816.23 ± 2.93 862.0 ± 1.1 841 ± 45 762 ± 27 419 ± 40

cartpole swingup sparse 732.51 ± 18.60 747.94 ± 8.61 762.57 ± 6.71 482.0 ± 56.6 - - -

Table 2. Results on tasks in the DeepMind Control Suite. CoBERL, R2D2-GTrXL, R2D2, and D4PG-Pixels are trained on 100M frames,
while CURL, Dreamer, and Pixel SAC are trained on 500k frames. We show these three other approaches as reference and not as a directly
comparable baseline.

A BA B

H
um

an
 N

or
m

al
is

ed
 S

co
re

N
um

be
r o

f E
nv

. F
ra

m
es

Coberl gTrXL Coberl gTrXL

Figure 2. DMLab-30 experiments. a) Human normalised returns in DMLab-30 across all the 30 levels. b) Average number of steps to
reach 100% human normalised score across all the 30 levels. Results are over 3 seeds and the final 5% of training.

2020a). Although simpler than both SimCLR - which in its
original implementation requires handcrafted augmentations
- and CURL - which requires an additional network - our
contrastive method shows improved performance. These ex-
periments where run only on Atari to reduce computational
costs while still being sufficient for the analysis.

4.2.2. IMPACT OF ARCHITECTURAL CHANGES

Table 5 shows the effects of removing the LSTM from
COBERL (column “w/o LSTM”), as well as removing the
gate and its associated skip connection (column “w/o Gate”).
In both cases COBERL performs substantially worse show-
ing that both components are needed. Finally, we also exper-
imented with substituting the learned gate with either a sum
or a concatenation. The results, presented in Appendix D,
show that in most occasions these alternatives decrease per-
formance, but not as substantially as removing the LSTM,
gate or skip connections. Our hypothesis is that the learned
gate should give more flexibility in complex environments,
we leave it open for future work to do more analysis on this.

4.2.3. IMPACT OF NUMBER OF PARAMETERS

Table 6 compares the models in terms of the number of
parameters. For Atari, the number of parameters added
by COBERL over the R2D2(GTrXL) baseline is very lim-
ited; however, COBERL still produces a significant gain
in performance. We also tried to move the LSTM before

the transformer module (column “COBERL with LSTM
before”). In this case the representations for the contrastive
loss were taken from before the LSTM. Interestingly, this
setting performs worse, despite having the same number
of parameters as COBERL. For DMLab-30, it is worth
noting that COBERL has a memory size of 256, whereas
GTrXL has a memory of size 512 resulting in substantially
fewer parameters. Nevertheless, the discrepancies between
models are even more pronounced, even though the num-
ber of parameters is either exactly the same (“COBERL
with LSTM before”) or higher (GTrXL). This ablation is
of particular interest as it shows that the results are driven
by the particular architectural choice rather than the added
parameters.

5. Limitations and Future Work
A limitation of our method is that it relies on single time
step information to compute its auxiliary objective. Such ob-
jective could naturally be adapted to operate on temporally-
extended patches, and/or action-conditioned inputs. We
regard those ideas as promising future research avenues.

6. Conclusions
We proposed a novel RL agent, Contrastive BERT for RL
(COBERL), which introduces a new contrastive representa-
tion learning loss that enables the agent to efficiently learn

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

CoBERL: Contrastive BERT for Reinforcement Learning

COBERL COBERL w/o aux
loss

GTrXL baseline*

DMLab-30 Mean 113.39%± 3.64% 106.95%± 1.41% 102.40%± 0.23%
Median 112.02% 106.96% 103.40%

Atari Mean 698.01%± 53.84% 578.41%±81.56% 636.59%±44.43%
Median 276.63% 377.68% 368.99%

Table 3. Impact of contrastive loss. Human normalized scores on Atari-57 ablation tasks and DMLab-30 tasks. * for DMLab the baseline
is GTrXL trained with VMPO, for Atari the baseline is GTrXL trained with R2D2.

COBERL COBERL with
CURL

COBERL with Sim-
CLR

Atari Mean 698.01%± 53.84% 507.30%± 72.19% 635.76%±100.45%
Median 276.63% 270.97% 272.46%

Table 4. Comparison with alternative auxiliary losses.

COBERL w/o LSTM w/o Gate

DMLab-30 Mean 113.39%± 3.64% 98.72%± 5.50 84.07%± 5.71%
Median 112.02% 100.35% 104.33%

Atari Mean 698.0%± 53.84 433.92%±13.67% 591.33%±91.25%
Median 276.6% 259.77% 320.09%

Table 5. Impact of Architectural changes. Human normalized scores on Atari-57 ablation tasks and DMLab-30 tasks. * for DMLab-30 the
baseline is GTrXL trained with VMPO, for Atari the baseline is GTrXL trained with R2D2.

COBERL GTrXL* COBERL with
LSTM before

R2D2 LSTM

DMLab-30
Mean 113.39%± 3.64% 102.40%± 5.50% 100.65%± 1.80% N/A

Median 112.02% 103.40% 101.68% N/A
Num. Params. 47M 66M 47M N/A

Atari
Mean 698.0%± 53.84 636.59%±44.43% 508.28%±70.20% 353.99%±26.19%

Median 276.6% 259.77% 271.50% 260.40%
Num. Params. 46M 42M 46M 18M

Table 6. Effect of number of parameters. Human normalized scores on Atari-57 ablation tasks and DMLab-30 tasks. *for DMLab-30 the
baseline is GTrXL trained with VMPO with a memory size of 512, for Atari the baseline is GTrXL trained with R2D2 with a memory
size of 64.

consistent representations. This, paired with an improved
architecture, resulted in better data efficiency and final
scores on a varied set of environments and tasks. On Atari,
COBERL comfortably outperformed competing methods
surpassing the human benchmark in 49 out of the 57 games.
In the the DeepMind Control Suite, COBERL showed sig-
nificant improvement over previous work in 3 out of 6 tasks,
while matching previous state-of-the-art in the remaining
3 tasks. On DMLab-30, COBERL was significantly more
data-efficient than GTrXl and also obtained higher final
scores. Moreover, through an extensive set of ablation ex-
periments we confirmed that all COBERL components are
necessary to achieve the performance of the final agent. To
conclude, we have shown that our auxiliary loss and archi-
tecture provide an effective and general means to efficiently
train large attentional models in RL.

References
Abdolmaleki, A., Springenberg, J. T., Degrave, J., Bohez, S.,

Tassa, Y., Belov, D., Heess, N., and Riedmiller, M. Rela-
tive entropy regularized policy iteration. arXiv preprint
arXiv:1812.02256, 2018.

Agarwal, R., Machado, M. C., Castro, P. S., and Belle-
mare, M. G. Contrastive behavioral similarity embed-
dings for generalization in reinforcement learning. ArXiv,
abs/2101.05265, 2021.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-
wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

CoBERL: Contrastive BERT for Reinforcement Learning

The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In NeurIPS, 2020.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In ECCV, 2020.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P.,
and Joulin, A. Unsupervised learning of visual features by
contrasting cluster assignments. ArXiv, abs/2006.09882,
2020.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In Proceedings of the 37th International
Conference on Machine Learning, pp. 1597–1607, 2020.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
2019.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Fortunato, M., Tan, M., Faulkner, R., Hansen, S., Badia,
A. P., Buttimore, G., Deck, C., Leibo, J. Z., and Blundell,
C. Generalization of reinforcement learners with working
and episodic memory. NeurIPS, 2019.

Gutmann, M. and Hyvärinen, A. Noise-contrastive esti-
mation: A new estimation principle for unnormalized
statistical models. In Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 297–304, 2010.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In ICML, 2018.

Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality
reduction by learning an invariant mapping. In 2006
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 2, pp. 1735–
1742. IEEE, 2006.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
ICLR, 2020a.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020b.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Os-
trovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.,
and Silver, D. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

Hessel, M., Kroiss, M., Clark, A., Kemaev, I., Quan, J.,
Keck, T., Viola, F., and Hasselt, H. v. Podracer architec-
tures for scalable reinforcement learning, 2021.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-
ment learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In International conference on
learning representations, 2018.

Kostrikov, I., Yarats, D., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. arXiv preprint arXiv:2004.13649, 2020.

Liu, G., Zhang, C., Zhao, L., Qin, T., Zhu, J., Jian, L., Yu,
N., and Liu, T.-Y. Return-based contrastive representa-
tion learning for reinforcement learning. In ICLR 2021,
January 2021.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness,
J., Hausknecht, M., and Bowling, M. Revisiting the

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

CoBERL: Contrastive BERT for Reinforcement Learning

arcade learning environment: Evaluation protocols and
open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

Mazoure, B., des Combes, R. T., Doan, T., Bachman, P., and
Hjelm, R. D. Deep reinforcement and infomax learning.
ArXiv, abs/2006.07217, 2020.

Mitrovic, J., McWilliams, B., Walker, J., Buesing, L., and
Blundell, C. Representation learning via invariant causal
mechanisms. In International conference on learning
representations, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C.,
Jayakumar, S., Jaderberg, M., Kaufman, R. L., Clark, A.,
Noury, S., et al. Stabilizing transformers for reinforce-
ment learning. In International Conference on Machine
Learning, pp. 7487–7498. PMLR, 2020.

Ravfogel, S., Goldberg, Y., and Linzen, T. Studying the in-
ductive biases of rnns with synthetic variations of natural
languages. arXiv preprint arXiv:1903.06400, 2019.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville,
A. C., and Bachman, P. Data-efficient reinforcement learn-
ing with momentum predictive representations. ArXiv,
abs/2007.05929, 2020.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark,
A., Soyer, H., Rae, J. W., Noury, S., Ahuja, A., Liu,
S., Tirumala, D., et al. V-mpo: On-policy maximum a
posteriori policy optimization for discrete and continuous
control. arXiv preprint arXiv:1909.12238, 2019.

Srinivas, A., Laskin, M., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In ICML, 2020a.

Srinivas, A., Laskin, M., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
arXiv preprint arXiv:2004.04136, 2020b.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

van Hasselt, H., Guez, A., Hessel, M., Mnih, V., and Silver,
D. Learning values across many orders of magnitude.
arXiv preprint arXiv:1602.07714, 2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In NeurIPS, 2017.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R., and Le, Q. V. Xlnet: Generalized autoregressive
pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Zhu, J., Xia, Y., Wu, L., Deng, J., Zhou, W., Qin, T., and
Li, H. Masked contrastive representation learning for
reinforcement learning. ArXiv, abs/2010.07470, 2020.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

CoBERL: Contrastive BERT for Reinforcement Learning

A. Setup details
A.1. R2D2 Distributed system setup

Following R2D2, the distributed system consists of several
parts: actors, a replay buffer, a learner, and an evaluator.
Additionally, we introduce a centralized batched inference
process to make more efficient use of actor resources.

Actors: We use 512 processes to interact with independent
copies of the environment, called actors. They send the
following information to a central batch inference process:

• xt: the observation at time t.

• rt−1: the reward at the previous time, initialized with
r−1 = 0.

• at−1: the action at the previous time, a−1 is initialized
to 0.

• ht−1: recurrent state at the previous time, is initialized
with h−1 = 0.

They block until they receive Q(xt, a; θ). The l-th actor
picks at using an εl-greedy policy. As R2D2, the value of
εl is computed following:

εl = ε1+α
l

L−1

where ε = 0.4 and α = 8. After that is computed, the actors
send the experienced transition information to the replay
buffer.

Batch inference process: This central batch inference pro-
cess receives the inputs mentioned above from all actors.
This process has the same architecture as the learner with
weights that are fetched from the learner every 0.5 seconds.
The process blocks until a sufficient amount of actors have
sent inputs, forming a batch. We use a batch size of 64 in our
experiments. After a batch is formed, the neural network of
the agent is run to compute Q(xt, a, θ) for the whole batch,
and these values are sent to their corresponding actors.

Replay buffer: it stores fixed-length sequences of transi-
tions T = (ωs)

t+L−1
s=t along with their priorities pT , where

L is the trace length we use. A transition is of the form
ωs = (rs−1, as−1, hs−1, xs, as, hs, rs, xs+1). Concretely,
this consists of the following elements:

• rs−1: reward at the previous time.

• as−1: action done by the agent at the previous time.

• hs−1: recurrent state (in our case hidden state of the
LSTM) at the previous time.

• xs: observation provided by the environment at the
current time.

• as: action done by the agent at the current time.

• hs: recurrent state (in our case hidden state of the
LSTM) at the current time.

• rs: reward at the current time.

• xs+1: observation provided by the environment at the
next time.

The sequences never cross episode boundaries and they
are stored into the buffer in an overlapping fashion, by an
amount which we call the replay period. Finally, concerning
the priorities, we followed the same prioritization scheme
proposed by (Kapturowski et al., 2018) using a mixture of
max and mean of the TD-errors in the sequence with priority
exponent η = 0.9.

Evaluator: the evaluator shares the same network archi-
tecture as the learner, with weights that are fetched from
the learner every episode. Unlike the actors, the experience
produced by the evaluator is not sent to the replay buffer.
The evaluator acts in the same way as the actors, except
that all the computation is done within the single CPU pro-
cess instead of delegating inference to the batch inference
process. At the end of 5 episodes the results of those 5
episodes are average and reported. In this paper we report
the average performance provided by such reports over the
last 5% frames (for example, on Atari this is the average of
all the performance reports obtained when the total frames
consumed by actors is between 190M and 200M frames).

Learner: The learner contains two identical networks called
the online and target networks with different weights θ and
θ′ respectively (Mnih et al., 2015). The target network’s
weights θ′ are updated to θ every 400 optimization steps. θ is
updated by executing the following sequence of instructions:

• First, the learner samples a batch of size 64 (batch
size) of fixed-length sequences of transitions from the
replay buffer, with each transition being of length L:
Ti = (ωis)

t+L−1
s=t .

• Then, a forward pass is done on the online network and
the target with inputs (xis, r

i
s−1, a

i
s−1, h

i
s−1)

t+H
s=t

in order to obtain the state-action values
{(Q(xis, a; θ), Q(xis, a; θ

′)}.

• With {(Q(xis, a; θ), Q(xis, a; θ
′)}, the Q(λ) loss is

computed.

• The online network is used again to compute the auxil-
iary contrastive loss.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

CoBERL: Contrastive BERT for Reinforcement Learning

• Both losses are summed (with by weighting the auxil-
iary loss by 0.1 as described in C), and optimized with
an Adam optimizer.

• Finally, the priorities are computed for the sampled
sequence of transitions and updated in the replay buffer.

A.2. V-MPO distributed setup

For on-policy training, we used a Podracer setup similar to
(Hessel et al., 2021) for fast usage of experience from actors
by learners.

TPU learning and acting: As in the Sebulba setup of (Hes-
sel et al., 2021), acting and learning network computations
were co-located on a set of TPU chips, split into a ratio of 3
cores used for learning for every 1 core used for inference.
This ratio then scales with the total number of chips used.

Environment execution: Due to the size of the recurrent
states used by COBERL and stored on the host CPU, it was
not possible to execute the environments locally. To proceed
we used 64 remote environment servers which serve only to
step multiple copies of the environment. 1024 concurrent
episodes were processed to balance frames per second, la-
tency between acting and learning, and memory usage of
the agent states on the host CPUs.

A.3. Computation used

R2D2 We train the agent with a single TPU v2-based
learner, performing approximately 5 network updates per
second (each update on a mini-batch of 64 sequences of
length 80 for Atari and 120 for Control). We use 512 actors,
using 4 actors per CPU core, with each one performing
∼ 64 environment steps per second on Atari. Finally for the
batch inference process a TPU v2, which allows all actors
to achieve the speed we have described.

V-MPO We train the agent with 4 hosts each with 8 TPU
v2 cores. Each of the 8 cores per host was split into 6 for
learning and 2 for inference. We separately used 64 remote
CPU environment servers to step 1024 concurrent environ-
ment episodes using the actions returned from inference.
The learner updates were made up of a mini-batch of 120
sequences, each of length 95 frames. This setup enabled 4.6
network updates per second, or 53.4k frames per second.

A.4. Complexity analysis

As stated, the agent consists of layers of convolutions, trans-
former layers, and linear layers. Therefore the complexity
is max{O(n2 · d), O(k ·n · d2)}, where k is the kernel size
in the case of convolutions, n is the size of trajectories, and
d is the size of hidden layers.

B. Architecture description
B.1. Encoder

As shown in Fig. 1, observations Oi are encoded using an
encoder. In this work, the encoder we have used is a ResNet-
47 encoder. Those 47 layers are divided in 4 groups which
have the following characteristics:

• An initial stride-2 convolution with filter size 3x3 (1 · 4
layers).

• Number of residual bottleneck blocks (in order):
(2, 4, 6, 2). Each block has 3 convolutional layers with
ReLU activations, with filter sizes 1x1, 3x3, and 1x1
respectively ((2 + 4 + 6 + 2) · 3 layers).

• Number of channels for the last convolution in each
block: (64, 128, 256, 512).

• Number of channels for the non-last convolutions in
each block: (16, 32, 64, 128).

• Group norm is applied after each group, with a group
size of 8.

After this observation encoding step, a final 2-layer MLP
with ReLU activations of sizes (512, 448) is applied. The
previous reward and one-hot encoded action are concate-
nated and projected with a linear layer into a 64-dimensional
vector. This 64-dimensional vector is concatenated with
the 448-dimensional encoded input to have a final 512-
dimensional output.

B.2. Transformer

As described in Section 2, the output of the encoder is fed
to a Gated Transformer XL. For Atari and Control, the
transformer has the following characteristics:

• Number of layers: 8.

• Memory size: 64.

• Hidden dimensions: 512.

• Number of heads: 8.

• Attention size: 64.

• Output size: 512.

• Activation function: GeLU.

For DmLab the transformer has the following characteris-
tics:

• Number of layers: 12.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

CoBERL: Contrastive BERT for Reinforcement Learning

• Memory size: 256.

• Hidden dimensions: 128.

• Number of heads: 4.

• Attention size: 64.

• Output size: 512.

• Activation function: ReLU.

the GTrXL baseline is identical, but with a Memory size of
512.

B.3. LSTM and Value head

For both R2D2 and V-MPO the outputs of the transformer
and encoder are passed through a GRU transform to obtain
a 512-dimensional vector. After that, an LSTM with 512
hidden units is applied. The the value function is estimated
differently depending on the RL algorithm used.

R2D2 Following the LSTM, a Linear layer of size 512 is
used, followed by a ReLU activation. Finally, to compute
the Q values from that 512 vector a dueling head is used,
as in (Kapturowski et al., 2018), a dueling head is is used,
which requires a linear projection to the number of actions of
the task, and another projection to a unidimensional vector.

V-MPO Following the LSTM, a 2 layer MLP with size
512 and 30 (i.e. the number of levels in DMLab) is used.
In the MLP we use ReLU activation. As we are inter-
ested in the multi-task setting where a single agent learns
a large number of tasks with differing reward scales, we
used PopArt (van Hasselt et al., 2016) for the value function
estimation (see Table. 12 for details).

B.4. Critic Function

For DmLab-30 (V-MPO), we used a 2 layer MLP with
hidden sizes 512 and 128. For Atari and Control Suite
(R2D2) we used a single layer of size 512.

C. Hyperparameters
C.1. Atari and DMLab pre-processing

We use the commonly used input pre-processing on Atari
and DMLab frames, shown on Tab. 8. One difference with
the original work of (Mnih et al., 2015), is that we do
not use frame stacking, as we rely on our memory sys-
tems to be able to integrate information from the past,
as done in (Kapturowski et al., 2018). ALE is publicly
available at https://github.com/mgbellemare/
Arcade-Learning-Environment.

Hyperparameter Value
Max episode length 30min
Num. action repeats 4
Num. stacked frames 1
Zero discount on life loss false
Random noops range 30
Sticky actions false
Frames max pooled 3 and 4
Grayscaled/RGB Grayscaled
Action set Full

Table 7. Atari pre-processing hyperparameters.

C.2. Control Suite pre-processing

As mentioned in 4, we use no pre-processing on the frames
received from the control environment.

C.3. DmLab pre-processing

Hyperparameter Value
Num. action repeats 4
Num. stacked frames 1
Grayscaled/RGB RGB
Image width 96
Image height 72
Action set as in (Parisotto et al., 2020)

Table 8. DmLab pre-processing hyperparameters.

C.4. Control environment discretization

As mentioned, we discretize the space assigning two possi-
bilities (1 and -1) to each dimension and taking the Carte-
sian product of all dimensions, which results in 2n possible
actions. For the cartpole tasks, we take a diagonal ap-
proach, utilizing each unit vector in the action space and
then dividing each unit vector into 5 possibilities with the
non-zero coordinate ranging from -1 to 1. The amount of
actions this results in is outlined on Tab. 9.

C.5. Hyperparameters Search Range

The ranges we used to select the hyperparameters of
COBERL are displayed on Tab. 10.

C.6. Hyperparameters Used

We list all hyperparameters used here for completeness.
Those in table 11 are used for all R2D2 experiments, includ-
ing R2D2, R2D2-gTrXL, COBERL, as well as COBERL -
loss. As out of the ones used in the search in C.5, they ap-
peared to consistently be superior for these variants. Table
12 details the parameters used for the V-MPO DMLab-30
setting.

https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

CoBERL: Contrastive BERT for Reinforcement Learning

Task Action space size Total amount of actions
Acrobot 1 2
Cartpole 1 5
Cup 2 4
Cheetah 6 64
Finger 2 4
Fish 5 32
Pendulum 1 2
Reacher 2 4
Swimmer 5 32
Walker 6 64

Table 9. Control discretization action spaces.

Hyperparameter Value
Q’s λ {0.8, 0.9}
Learning rate {0.0001, 0.0003}
Contrastive loss weight {0.01, 0.1, 1.0}

Table 10. Range of hyperparameters sweeps for R2D2.

Hyperparameter Value
Optimizer Adam
Learning rate 0.0003
Contrastive loss weight 0.1
Contrastive loss mask rate 0.15
Adam epsilon 10−7

Adam beta1 0.9
Adam beta2 0.999
Adam clip norm 40

Q-value transform (non-DMLab) h(x) = sign(x)(
√
|x|+ 1− 1) + εx

Q-value transform (DMLab) h(x) = x
Discount factor 0.997
Batch size 32
Trace length (Atari) 80
Trace length (non-Atari) 120
Replay period (Atari) 40
Replay period (non-Atari) 60
Q’s λ 0.8
Replay capacity 80000 sequences
Replay priority exponent 0.9
Importance sampling exponent 0.6
Minimum sequences to start replay 5000
Target Q-network update period 400
Evaluation ε 0.01
Target ε 0.01

Table 11. Hyperparameters used in all experiments.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

CoBERL: Contrastive BERT for Reinforcement Learning

Hyperparameter Value
Batch Size 120
Unroll Length 95
Discount 0.99
Target Update Period 50
Action Repeat 4
Initial η 1.0
Initial α 5.0
εη 0.1
εα 0.002
Popart Step Size 0.001
RELIC Cost 1.0

Table 12. Hyperparameters used in V-MPO experiments.

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

CoBERL: Contrastive BERT for Reinforcement Learning

D. Additional ablations
Table 13 shows the results of several gating mechanisms
that we have investigated. As we can observe the GRU
gate is a clear improvement especially on DMLab, only
being harmful in median on the reduced ablation set of Atari
games.

COBERL ’Sum’ gate ’Concat’ gate w/o Gate

DMLab Mean 113.39%± 3.64% 108.70%± 3.23% 106.31%± 5.37% 84.07%± 5.71%
Median 112.02% 108.95% 108.54% 104.33%

Atari Mean 698.0%± 53.84% 548.66%±11.16% 653.20%±59.13% 591.33%±91.25%
Median 276.6% 437.85% 325.96% 320.09%

Table 13. Gate ablations. Human normalized scores on Atari-57
ablation tasks and DMLab tasks. For the mean we include standard
error over seeds.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

CoBERL: Contrastive BERT for Reinforcement Learning

E. Game scores

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

CoBERL: Contrastive BERT for Reinforcement Learning

Atari (ablation games) COBERL R2D2-gTrXL R2D2 COBERL-auxiliary loss
beam rider 22246.68 ± 7078.73 61478.38 ± 27336.64 34708.13 ± 11513.28 16318.78 ± 12438.73

enduro 2312.58 ± 35.59 2173.92 ± 135.85 2346.15 ± 12.69 2300.61 ± 75.25
breakout 421.88 ± 1.50 393.88 ± 31.14 336.19 ± 119.23 420.72 ± 9.86

pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00
qbert 36932.00 ± 5498.71 21616.94 ± 3377.11 25129.37 ± 7139.03 50362.28 ± 14109.22

seaquest 167183.79 ± 112932.87 326714.40 ± 51904.47 124417.45 ± 128759.58 174867.68 ± 123876.30
space invaders 34112.19 ± 10216.42 21669.97 ± 6219.26 3712.64 ± 82.30 20192.85 ± 20815.81

Atari (ablation games) COBERL COBERL with LSTM before COBERL w/o LSTM
beam rider 22246.68 ± 7078.73 19233.70 ± 9849.79 54345.65 ± 8111.23

enduro 2312.58 ± 35.59 2304.59 ± 47.39 2227.61 ± 110.91
breakout 421.88 ± 1.50 424.05 ± 6.83 422.69 ± 7.58

pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00
qbert 36932.00 ± 5498.71 34773.82 ± 8972.64 33854.14 ± 5762.10

seaquest 167183.79 ± 112932.87 94254.91 ± 57966.74 151011.38 ± 93597.94
space invaders 34112.19 ± 10216.42 16980.01 ± 18410.59 4098.37 ± 938.44

Atari (ablation games) COBERL No Skip Conn. Sum gate Concat
beam rider 22246.68 ± 7078.73 53379.23 ± 6229.05 72882.42 ± 21239.63 51371.38 ± 12560.94

enduro 2312.58 ± 35.59 2083.99 ± 382.91 2247.23 ± 82.22 2288.13 ± 58.59
breakout 421.88 ± 1.50 285.54 ± 181.62 403.36 ± 53.69 357.52 ± 72.63

pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00
qbert 36932.00 ± 5498.71 31786.70 ± 5012.64 33807.00 ± 4294.93 43487.35 ± 14518.46

seaquest 167183.79 ± 112932.87 180119.87 ± 56159.52 294976.55 ± 41827.55 399817.75 ± 36729.78
space invaders 34112.19 ± 10216.42 27620.20 ± 17966.22 10387.59 ± 2858.63 20933.98 ± 13072.95

Atari (ablation games) COBERL with CURL COBERL with SimCLR
beam rider 25998.99 ± 18557.89 27631.98 ± 31908.43

enduro 2331.72 ± 36.46 2344.57 ± 6.37
breakout 328.38 ± 48.22 381.42 ± 46.31

pong 19.31 ± 2.38 21.00 ± 0.00
qbert 16073.04 ± 321.56 18531.50 ± 3906.27

seaquest 145340.79 ± 31778.00 233181.04 ± 146617.39
space invaders 21621.09 ± 15373.01 28785.96 ± 18516.74

Control Suite COBERL gTrXL R2D2
acrobot swingup 359.75 ± 3.47 215.39 ± 122.82 327.16 ± 5.35

fish swim 624.40 ± 54.91 91.32 ± 277.15 345.63 ± 227.44
fish upright 942.33 ± 6.12 849.52 ± 23.01 936.09 ± 11.58

pendulum swingup 836.63 ± 9.77 743.65 ± 52.44 831.86 ± 61.54
swimmer swimmer6 447.60 ± 51.51 225.97 ± 60.67 329.61 ± 26.77

finger spin 985.05 ± 1.58 977.41 ± 8.91 980.85 ± 0.67
reacher easy 983.05 ± 2.47 981.64 ± 1.99 982.28 ± 9.30
cheetah run 525.06 ± 44.59 115.15 ± 133.95 365.45 ± 50.40
walker walk 780.54 ± 26.48 595.96 ± 77.59 687.18 ± 18.15

ball in cup catch 978.28 ± 6.56 975.21 ± 1.77 980.54 ± 1.94
cartpole swingup 798.66 ± 7.72 837.31 ± 4.15 816.23 ± 2.93

cartpole swingup sparse 732.51 ± 18.60 747.94 ± 8.61 762.57 ± 6.71

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

CoBERL: Contrastive BERT for Reinforcement Learning

Atari-57 COBERL R2D2-gTrXL R2D2
alien 10229.89 ± 7932.26 9655.65 ± 1819.53 10718.62 ± 4599.62

amidar 2656.00 ± 966.37 3883.37 ± 640.23 2142.70 ± 241.96
assault 5469.38 ± 2607.77 10242.96 ± 4234.94 13817.82 ± 1503.31
asterix 980283.74 ± 25765.32 666449.34 ± 173208.21 724279.78 ± 195506.02

asteroids 108985.96 ± 66922.29 104932.39 ± 26450.55 74148.67 ± 49306.65
atlantis 1091347.38 ± 37782.18 979337.34 ± 8121.73 983110.27 ± 41978.78

bank heist 1117.91 ± 790.60 1318.51 ± 48.90 1328.12 ± 456.18
battle zone 77501.43 ± 39229.60 98554.44 ± 43709.86 94385.32 ± 13045.67
beam rider 22246.68 ± 7078.73 61478.38 ± 27336.64 34708.13 ± 11513.28

berzerk 1756.21 ± 278.30 626.60 ± 156.19 1466.54 ± 422.70
bowling 184.32 ± 44.08 42.33 ± 59.86 96.33 ± 30.66
boxing 100.00 ± 0.00 100.00 ± 0.00 99.71 ± 0.40

breakout 421.88 ± 1.50 393.88 ± 31.14 336.19 ± 119.23
centipede 66669.74 ± 6479.47 76325.85 ± 16594.15 74513.40 ± 12696.62

chopper command 506146.56 ± 303260.36 36993.73 ± 35157.10 33945.00 ± 13504.01
crazy climber 120806.63 ± 57107.29 120684.30 ± 6872.59 157946.90 ± 42953.93

defender 410044.34 ± 8847.63 293804.22 ± 72002.55 462135.87 ± 12678.03
demon attack 137934.41 ± 5473.26 131514.55 ± 9979.81 117580.02 ± 21157.45
double dunk 24.00 ± 0.00 19.93 ± 2.89 24.00 ± 0.00

enduro 2312.58 ± 35.59 2173.92 ± 135.85 2346.15 ± 12.69
fishing derby 52.89 ± 2.89 42.41 ± 11.36 49.92 ± 6.79

freeway 34.00 ± 0.00 34.00 ± 0.00 33.67 ± 0.47
frostbite 8723.86 ± 1321.24 7323.81 ± 2407.78 6909.40 ± 747.58
gopher 90684.67 ± 10244.87 104482.57 ± 5853.11 100203.22 ± 20908.66
gravitar 6315.32 ± 223.45 4282.56 ± 1705.21 5643.37 ± 631.75

hero 20786.34 ± 139.43 14010.16 ± 173.98 17996.97 ± 2841.71
ice hockey 19.82 ± 21.47 17.74 ± 11.55 22.90 ± 10.41
jamesbond 5576.58 ± 2595.65 7962.54 ± 873.51 7727.43 ± 2489.21
kangaroo 12173.70 ± 3129.91 13520.79 ± 2068.49 14436.53 ± 116.90

krull 37813.60 ± 18826.63 58459.18 ± 38117.13 12285.18 ± 572.14
kung fu master 126648.43 ± 5685.80 70772.67 ± 28598.85 102387.20 ± 17781.04

montezuma revenge 833.33 ± 1178.51 0.00 ± 0.00 133.33 ± 188.56
ms pacman 11295.44 ± 4623.95 11146.67 ± 902.33 9893.29 ± 1172.58

name this game 25044.23 ± 6659.51 26944.23 ± 1315.96 24348.53 ± 1917.48
phoenix 514890.69 ± 169407.85 322625.85 ± 92449.70 194688.45 ± 178633.63
pitfall 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00

private eye 10520.09 ± 4986.07 15057.95 ± 42.35 4988.65 ± 6938.00
qbert 36932.00 ± 5498.71 21616.94 ± 3377.11 25129.37 ± 7139.03

riverraid 24894.12 ± 3079.76 23368.64 ± 2389.28 28057.87 ± 576.75
road runner 279422.07 ± 223362.40 518566.46 ± 62912.72 0.00 ± 0.00

robotank 82.36 ± 8.68 50.70 ± 33.29 67.41 ± 21.91
seaquest 167183.79 ± 112932.87 326714.40 ± 51904.47 124417.45 ± 128759.58
skiing -29958.52 ± 2.39 -22984.50 ± 9882.73 -29963.55 ± 1.82
solaris 4931.47 ± 2344.05 1661.77 ± 1032.29 2610.71 ± 1573.21

space invaders 34112.19 ± 10216.42 21669.97 ± 6219.26 3712.64 ± 82.30
star gunner 106292.95 ± 29670.23 104395.14 ± 16821.38 93412.15 ± 10284.46
surround 9.30 ± 0.50 9.25 ± 0.54 8.78 ± 0.50

tennis 15.61 ± 11.17 8.00 ± 11.31 0.00 ± 0.00
time pilot 39261.92 ± 7400.70 14303.91 ± 1695.58 23611.05 ± 3357.51
tutankham 38.79 ± 49.73 23.11 ± 16.91 84.30 ± 46.88
up n down 397836.59 ± 111520.35 289177.29 ± 135467.48 422332.40 ± 41201.70

venture 1873.20 ± 30.56 1782.00 ± 83.88 1640.10 ± 141.12
video pinball 276228.36 ± 133392.82 58865.88 ± 51845.02 206756.24 ± 72958.76
wizard of wor 18707.03 ± 21128.79 14862.25 ± 8267.18 16548.31 ± 10862.27
yars revenge 322255.03 ± 171716.17 201576.03 ± 23183.30 316415.89 ± 176059.44

zaxxon 14420.27 ± 10309.48 20132.38 ± 3941.10 31116.74 ± 1966.53

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

CoBERL: Contrastive BERT for Reinforcement Learning

DmLab Levels coberl gtrxl
rooms collect good objects test 9.75± 0.12 9.67± 0.22

rooms exploit deferred effects test 53.56± 4.01 54.87± 0.87
rooms select nonmatching object 64.04± 10.51 58.54± 4.07

rooms watermaze 58.35± 1.65 43.36± 7.11
rooms keys doors puzzle 27.12± 5.62 34.42± 8.53

language select described object 617.55± 0.72 624.50± 14.14
language select located object 614.88± 3.14 578.00± 2.82
language execute random task 195.33± 66.18 191.70± 15.61

language answer quantitative question 330.66± 5.03 293.00± 9.89
lasertag one opponent large 14.16± 4.48 10.50± 4.24

lasertag three opponents large 26.83± 4.48 28.83± 5.89
lasertag one opponent small 29.83± 1.52 27.75± 3.88

lasertag three opponents small 46.0± 1.40 35.0± 0.01
natlab fixed large map 44.66± 7.28 38.66± 13.85

natlab varying map regrowth 28.33± 6.93 21.87± 11.13
natlab varying map randomized 45.88± 9.02 32.08± 12.31

platforms hard 57.53± 7.17 35.00± 25.92
platforms random 73.45± 2.64 86.03± 0.45

psychlab arbitrary visuomotor mapping 57.38± 4.14 32.96± 10.55
psychlab continuous recognition 51.36± 1.94 58.02± 0.71
psychlab sequential comparison 28.11± 1.09 31.83± 0.94

psychlab visual search 79.91± 0.14 79.58± 0.58
explore object locations small 83.71± 6.87 74.10± 7.10
explore object locations large 61.16± 2.11 61.12± 2.65
explore obstructed goals small 260.37± 6.97 234.16± 10.60
explore obstructed goals large 114.44± 2.45 76.25± 8.83
explore goal locations small 370.00± 2.50 339.10± 3.43
explore goal locations large 142.50± 9.34 127.50± 14.14
explore object rewards few 76.93± 13.61 70.23± 0.61

explore object rewards many 105.80± 3.37 95.50± 3.53

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

CoBERL: Contrastive BERT for Reinforcement Learning

F. Licenses
The The Arcade Learning Environment (Bellemare et al.,
2013) is released as free, open-source software under
the terms of the GNU General Public License. The lat-
est version of the source code is publicly available at:
http://arcadelearningenvironment.org

DeepMind Control Suite (Tassa et al., 2018) iis
released as free, open-source software under the
terms of Apache-2.0 License. The latest ver-
sion of the source code is publicly available at:
https://github.com/deepmind/dm_control/
blob/master/dm_control/suite/README.md

DmLab (Beattie et al., 2016) is released as free, open-
source software under the terms of Apache-2.0 License.
The latest version of the source code is publicly available
at: https://github.com/deepmind/lab/tree/
master/game_scripts/levels/contributed/
dmlab30

https://github.com/deepmind/dm_control/blob/master/dm_control/suite/README.md
https://github.com/deepmind/dm_control/blob/master/dm_control/suite/README.md
https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30
https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30
https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

