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Abstract
Many reinforcement learning (RL) agents require
a large amount of experience to solve tasks. We
propose Contrastive BERT for RL (COBERL),
an agent that combines a new contrastive loss
and a hybrid LSTM-transformer architecture to
tackle the challenge of improving data efficiency.
COBERL enables efficient, robust learning from
pixels across a wide range of domains. We use
bidirectional masked prediction in combination
with a generalization of recent contrastive meth-
ods to learn better representations for transformers
in RL, without the need of hand engineered data
augmentations. We find that COBERL consis-
tently improves performance across the full Atari
suite, a set of control tasks and a challenging 3D
environment.

1. Introduction
Developing sample efficient reinforcement learning (RL)
agents that only rely on raw high dimensional inputs is
challenging. Specifically, it is difficult since it often requires
to simultaneously train several neural networks based on
sparse environment feedback and strong correlation between
consecutive observation. This problem is particularly severe
when the networks are large and densely connected, like
in the case of the transformer (Vaswani et al., 2017) due to
noisy gradients often found in RL problems. Outside of the
RL domain, transformers have proven to be very expressive
(Brown et al., 2020) and, as such, they are of particular
interest for complex domains like RL.

In this paper, we propose to tackle this shortcoming by tak-
ing inspiration from Bidirectional Encoder Representations
for Transformers (BERT; Devlin et al., 2019), and its suc-
cesses on difficult sequence prediction and reasoning tasks.
Specifically we propose a novel agent, named Contrastive
BERT for RL (COBERL), that combines a new contrastive
representation learning objective with architectural improve-
ments that effectively combine LSTMs with transformers.

For representation learning we take inspiration from previ-
ous work showing that contrastive objectives improve the
performance of agents (Fortunato et al., 2019; Srinivas et al.,

2020b; Kostrikov et al., 2020; Mitrovic et al., 2021). Specif-
ically, we combine the paradigm of masked prediction from
BERT (Devlin et al., 2019) with the contrastive approach
of Representation Learning via Invariant Causal Mecha-
nisms (RELIC; Mitrovic et al., 2021). Extending the BERT
masked prediction to RL is not trivial; unlike in language
tasks, there are no discrete targets in RL. To circumvent this
issue, we extend RELIC to the time domain and use it as a
proxy supervision signal for the masked prediction. Such a
signal aims to learn self-attention-consistent representations
that contain the appropriate information for the agent to
effectively incorporate previously observed knowledge in
the transformer weights. Critically, this objective can be
applied to different RL domains as it does not require any
data augmentations and thus circumvents the need for much
domain knowledge.

In terms of architecture, we base COBERL on Gated
Transformer-XL (GTrXL; Parisotto et al., 2020) and Long-
Short Term Memories (LSTMs; Hochreiter & Schmidhuber,
1997). GTrXL is an adaptation of a transformer architecture
specific for RL domains. We combine GTrXL with LSTMs
using a gate trained using RL gradients. This allows the
agent to learn to exploit the representations offered by the
transformer only when an environment requires it, and avoid
the extra complexity when not needed.

We extensively test our proposed agent across a widely
varied set of environments and tasks ranging from 2D plat-
form games to 3D first-person and third-person view tasks.
Specifically, we test it in the control domain using Deep-
Mind Control Suite (Tassa et al., 2018) and probe its mem-
ory abilities using DMLab-30 (Beattie et al., 2016). We also
test our agent on all 57 Atari games (Bellemare et al., 2013).
Our main contributions are:

• A novel contrastive representation learning objective
that combines the masked prediction from BERT with
a generalization of RELIC to the time domain; with
this we learn self-attention consistent representations
and extend BERT-like training to RL and contrastive
objectives, without the need of hand-engineered aug-
mentations.

• An improved architecture that, using a gate, allows
COBERL to flexibly combine transformer and an
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LSTM.

• Improved performance on a varied set of environments
and tasks both in terms of absolute performance and
data efficiency. Also, we show that individually both
our contrastive loss and the architecture improvements
play a role in improving performance.

2. Method
To tackle the problem of data efficiency in deep reinforce-
ment learning, we propose two modifications to the status
quo. First, we introduce a novel representation learning
objective aimed at learning better representations by enforc-
ing self-attention consistency in the prediction of masked
inputs. Second, we propose an architectural improvement
to combine the strength of LSTMs and transformers.

2.1. Representation Learning

In RL the agent uses a batch of trajectories in order to opti-
mize its RL objective. As part of this process, the observa-
tions in the trajectory are encoded into representations from
which RL quantities of interest (e.g. value) are computed.
Thus, learning informative representations is important for
successfully solving the RL task at hand. Unlike in the su-
pervised or unsupervised setting, learning representations in
RL is complicated by (high) correlation between subsequent
observations which we need to encode. Furthermore, given
the often sparse reward signal coming from the environment
learning representations in RL has to be achieved with little
to no supervision.

To tackle these two issues, we propose to combine two
approaches which have been successfully used in different
domains, namely BERT (Devlin et al., 2019) and contrastive
learning (Oord et al., 2018; Chen et al., 2020; Mitrovic et al.,
2021). Here we borrow from BERT the combination of bidi-
rectional processing in transformers (rather than left-to-right
or right-to-left, as is common with RNN-based models such
as LSTMs) with a masked prediction setup. The bidirec-
tional processing allows the agent to learn the context of
a particular state based on all of its temporal surroundings.
On the other hand, predicting inputs at masked positions
mitigates the issue of correlated inputs by reducing the prob-
ability of predicting subsequent time steps. Note that unlike
in BERT where the input is a discrete vocabulary for lan-
guage learning and we have targets available, in RL our
inputs consist of images, rewards and actions that do not
form a finite or discrete set and we are not given any targets.
Thus, we must construct proxy targets and the correspond-
ing proxy tasks to solve. For this we use contrastive learning.
While many contrastive losses such as SimCLR (Chen et al.,
2020) rely on data augmentations to create groupings of
data that can be compared, we do not need to utilize these

hand-crafted augmentations to construct proxy tasks. In-
stead we rely on the sequential nature of our input data
to create the necessary groupings of similar and dissimilar
points needed for contrastive learning and do not need to
only rely on data augmentations (e.g. cropping, pixel vari-
ation) on image observations. As our contrastive loss, we
use RELIC (Mitrovic et al., 2021) and adapt it to the time
domain; we create the data groupings by aligning the input
and output of the GTrXL transformer. We use RELIC as its
KL regularization improves performance over approaches
such as SimCLR (Chen et al., 2020) both in the domain of
image classification as well as RL domains such as Atari as
shown in (Mitrovic et al., 2021).

In a batch of sampled sequences, before feeding embed-
dings into the transformer stack, 15% of the embeddings
are replaced with a fixed token denoting masking. Then,
let the set T represent indices in the sequence that have
been randomly masked and let t ∈ T . For the i-th training
sequence in the batch, for each index t ∈ T , let xit be the
output of the GTrXL and yit the corresponding input to the
GTrXL from the encoder (see Fig 1B). Let �(·; ·) be the
inner product defined on the space of critic embeddings,
i.e. �(x; y) = g(x)T g(y), where g is a critic function. The
critic provides separation between the embeddings used for
the contrastive proxy task and the downstream RL task. De-
tails of the critic function are in App. B. This separation is
needed since the proxy and downstream tasks are related
but not identical, and as such the appropriate representations
will likely not be the same. As a side benefit, the critic can
be used to reduce the dimensionality for the dot-product. To
learn the embedding xit at mask locations t, we use yit as a
positive example and the sets {ybt}Bb=0;b6=i and {xbt}Bb=0;b6=i
as the negative examples with B the number of sequences
in the minibatch. We model qtx as

qtx =
exp(�(xit; y

i
t))PB

b=0 exp(�(xit; y
b
t )) + exp(�(xit; x

b
t))

(1)

with qtx denoting qtx
�
xit|{ybt}Bb=0; {xbt}Bb=0;b6=i

�
; qty is com-

puted analogously (see Fig 1C). In order to enforce self-
attention consistency in the learned representations, we ex-
plicitly regularize the similarity between the pairs of trans-
former embeddings and inputs through Kullback-Leibler
regularization from RELIC. Specifically, we look at the
similarity between appropriate embeddings and inputs, and
within the sets of embeddings and inputs separately. To this
end, we define

ptx =
exp(�(xit; y

i
t))PB

b=0 exp(�(xit; y
b
t ))

(2)

and

stx =
exp(�(xit; x

i
t))PB

b=0 exp(�(xit; x
b
t))

(3)
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CoBERL: Contrastive BERT for Reinforcement Learning

Figure 1.COBERL. A) General Architecture. We use a residual network to encode observations into embeddingsYt . We feedYt through
a causally masked GTrXL transformer, which computes the predicted masked inputsX t and passes those together withYt to a learnt gate.
The output of the gate is passed through a single LSTM layer to produce the values that we use for computing the RL loss. B) Contrastive
loss. We also compute a contrastive loss using predicted masked inputsX t andYt as targets. For this, we do not use the causal mask of
the Transfomer. For details about the contrastive loss, please see Section 2.1. C) Computation ofqt

x andqt
y (from Equation 1) with the

round brackets denoting the computation of the similarity between the entries D) Regularization terms from Eq. 4 which explicitly enforce
self-attention consistency.

with pt
x and st

x shorthand for pt
x (x i

t jf yb
t gB

b=0 ) and
st

x (x i
t jf xb

t gB
b=0 ), respectively; pt

y (yi
t jf xb

t gB
b=0 ) and

st
y (yi

t jf yb
t gB

b=0 ) de�ned analogously (see Fig 1D). Putting
together the individual contributions, the �nal objective
takes the form

L(X; Y ) = �
X

t 2T

(log qt
x + log qt

y )

+ �
X

t 2T

h
KL (st

x ; sg(st
y )) + KL (pt

x ; sg(pt
y ))

+ KL (pt
x ; sg(st

y )) + KL (pt
y ; sg(st

x ))
i

(4)

with sg(�) indicating a stop-gradient.

Identically to our RL objective, we use the full batch of
sequences that are sampled from the replay buffer to opti-
mize this contrastive objective. In practice, we optimize a
weighted sum of the RL objective andL (X; Y ).

2.2. Architecture of COBERL.

While transformers have proven very effective at connecting
long-range data dependencies in natural language process-

ing (Vaswani et al., 2017; Brown et al., 2020; Devlin et al.,
2019) and computer vision (Carion et al., 2020; Dosovitskiy
et al., 2021), in the RL setting they are dif�cult to train and
are prone to over�tting (Parisotto et al., 2020). In contrast,
LSTMs have long been demonstrated to be useful in RL. Al-
though less able to capture long range dependencies due to
their sequential nature, LSTMs capture recent dependencies
effectively. We propose a simple but powerful architectural
change: we add an LSTM layer on top of the GTrXL with
an extra gated residual connection between the LSTM and
GTrXL, modulated by the input to the GTrXL (see Fig 1A).
Finally we also have a skip connection from the transformer
input to the LSTM output.

More concretely, letYt be the output of the encoder network
at timet, then the additional module can be de�ned by the
following equations (see Fig 1A,Gate() , below, has the
same form as other gates internal to GTrXL):

X t = GTrXL(Yt ) (5)

Z t = Gate(Yt ; X t ) (6)

Outputt = concatenate(LSTM(Z t ); Yt ) (7)
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These modules are complementary as the transformer has
no recency bias (Ravfogel et al., 2019), whilst the LSTM is
biased to represent more recent inputs - the gate in equation
6 allows this to be a mix of encoder representations and
transformer outputs. This memory architecture is agnostic to
the choice of RL regime and we evaluate this architecture in
both the on and off-policy settings. For on-policy, we use V-
MPO(Song et al., 2019) as our RL algorithm. V-MPO uses
a target distribution for policy updates, and partially moves
the parameters towards this target subject to KL constraints.
For the off-policy setting, we use R2D2 (Kapturowski et al.,
2018) which adapts replay and the RL learning objective for
agents with recurrent architectures, such as LSTMs, GTrXL,
and COBERL.

R2D2 Agent Recurrent Replay Distributed DQN (R2D2;
Kapturowski et al., 2018) demonstrates how replay and
the RL learning objective can be adapted to work well for
agents with recurrent architectures. Given its competitive
performance on Atari-57 and DMLab-30, we implement our
CoBERL architecture in the context of Recurrent Replay
Distributed DQN (Kapturowski et al., 2018). We effectively
replace the LSTM with our gated transformer and LSTM
combination and add the contrastive representation learning
loss. With R2D2 we thus leverage the bene�ts of distributed
experience collection, storing the recurrent agent state in
the replay buffer, and "burning in" a portion of the unrolled
network with replayed sequences during training.

V-MPO Agent Given V-MPO's strong performance on
DMLab-30, in particular in conjunction with the GTrXL ar-
chitecture (Parisotto et al., 2020) which is a key component
of CoBERL, we use V-MPO and DMLab-30 to demonstrate
CoBERL's use with on-policy algorithms. V-MPO is an
on-policy adaptation of Maximum a Posteriori Policy Opti-
mization (MPO) (Abdolmaleki et al., 2018). To avoid high
variance often found in policy gradient methods, V-MPO
uses a target distribution for policy updates, subject to a
sample-based KL constraint, and gradients are calculated
to partially move the parameters towards the target, again
subject to a KL constraint. Unlike MPO, V-MPO uses a
learned state-value functionV (s) instead of a state-action
value function.

3. Related Work

Transformers in RL. The transformer architecture
(Vaswani et al., 2017) has recently emerged as one of the
best performing approaches in language modelling (Dai
et al., 2019; Brown et al., 2020) and question answering
(Dehghani et al., 2018; Yang et al., 2019). More recently it
has also been successfully applied to computer vision (Doso-
vitskiy et al., 2021). Given the similarities of sequential data
processing in language modelling and reinforcement learn-

ing, transformers have also been successfully applied to
the RL domain, where as motivation for GTrXL, (Parisotto
et al., 2020) noted that extra gating was helpful to train trans-
formers for RL due to the high variance of the gradients
in RL relative to that of (un)supervised learning problems.
In this work, we build upon GTrXL and demonstrate that,
perhaps for RL: attention is not all you need, and by com-
bining GTrXL in the right way with an LSTM, superior
performance is attained. We reason that this demonstrates
the advantage of both forms of memory representation: the
all-to-all attention of transformers combined with the se-
quential processing of LSTMs. In doing so, we demonstrate
that care should be taken in how LSTMs and transformers
are combined and show a simple gating is most effective in
our experiments. Also, unlike GTrXL, we show that using
an unsupervised representation learning loss that enforces
self-attention consistency is a way to enhance data ef�ciency
when using transformers in RL.

Contrastive Learning. Recently contrastive learning
(Hadsell et al., 2006; Gutmann & Hyvärinen, 2010; Oord
et al., 2018) has emerged as a very performant paradigm for
unsupervised representation learning, in some cases even
surpassing supervised learning (Chen et al., 2020; Caron
et al., 2020; Mitrovic et al., 2021). These methods have also
been leveraged in an RL setting with the hope of improv-
ing performance. Apart from MRA (Fortunato et al., 2019)
mentioned above, one of the early examples of this is CURL
(Srinivas et al., 2020a) which combines Q-Learning with a
separate encoder used for representation learning with the
InfoNCE loss from CPC (Oord et al., 2018). More recent ex-
amples use contrastive learning for predicting future latent
states (Schwarzer et al., 2020; Mazoure et al., 2020), de�n-
ing a policy similarity embeddings (Agarwal et al., 2021)
and learning abstract representations of state-action pairs
(Liu et al., 2021). The closest work to our is M-CURL (Zhu
et al., 2020). Like our work, it combines mask prediction,
transformers, and contrastive learning, but there are a few
key differences. First, unlike M-CURL who use a separate
policy network,COBERL computes Q-values based on the
output of the transformer. Second,COBERL combines the
transformer architecture with GRUs to produce the input for
the Q-network, while M-CURL uses the transformer as an
additional embedding network (critic) for the computation
of the contrastive loss. Third, whileCOBERL uses an ex-
tension ofRELIC (Mitrovic et al., 2021) to the time domain
and operates on the inputs and outputs of the transformer,
M-CURL uses CPC (Oord et al., 2018) with a momentum
encoder as in (Srinivas et al., 2020a) and compares encod-
ings from the transformer with the separate momentum
encoder.
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4. Experiments

We provide empirical evidence to show thatCOBERL i)
improves performance across a wide range of environments
and tasks, and ii) needs all its components to maximise its
performance. In our experiments, we demonstrate perfor-
mance on Atari57 (Bellemare et al., 2013), the DeepMind
Control Suite (Tassa et al., 2018), and the DMLab-30 (Beat-
tie et al., 2016). Recently, Dreamer V2 (Hafner et al., 2020b)
has emerged as a strong model-based agent across Atari57
and DeepMind Control Suite; we therefore include it as
a reference point for performance on these domains. All
results are averaged over three seeds, with standard error
reported on mean performance (see App. A.1 for details).

For the experiments in Atari57 and the DeepMind Control
suite,COBERL uses the R2D2 distributed setup. We use
512 actors for all our experiments. We do not constrain
the amount of replay done for each experience trajectory
that actors deposit in the buffer. However, we have found
empirical replay frequency per data point to be close among
all our experiments (with an expected value of1:5 samples
per data point). We use a separate evaluator process that
shares weights with our learner in order to measure the
performance of our agents. We report scores at the end of
training. A more comprehensive description of the setup
of this distributed system is found in App. A.1.COBERL
and the baselines that we used in Atari57 and the DeepMind
Control suite employ the same 47-layer ResNet to encode
observations. Details on the parts and size of all the compo-
nents of the architecture ofCOBERL, including the sizes
used for the transformer and LSTM parts, are described in
App. B. The hyperparameters and architecture we choose
for these two domains are the same with two exceptions: i)
we use a shorter trace length for Atari (80 instead of120)
as the environment does not require a long context to in-
form decisions, and ii) we use a squashing function on Atari
and the Control Suite to transform ourQ values (as done
in (Kapturowski et al., 2018)) since reward structures vary
highly in magnitude between tasks. We use Peng'sQ(� ) as
our loss. To ensure that this is comparable to R2D2, we also
run an R2D2 baseline with this loss. All results are shown
as the average over3 seeds. A comprehensive enumeration
of the hyperparameters we use are shown in App. C.

For DMLab-30 we use V-MPO(Song et al., 2019) to directly
compareCOBERL with (Parisotto et al., 2020) and also
demonstrate howCOBERL may be applied to both on and
off-policy learning. The experiments were run using a Po-
dracer setup (Hessel et al., 2021), details of which may be
found in App. A.2.COBERL is trained for 10 billion steps
on all 30 DMLab-30 games at the same time, to mirror the
exact multi-task setup presented in (Parisotto et al., 2020).
Compared to (Parisotto et al., 2020) we have two differences.
Firstly, all the networks run without pixel control loss (Jader-

berg et al., 2016) so as not to confound our contrastive loss
with the pixel control loss. Secondly all the models used a
�xed set of hyperparameters with 3 random seeds, whereas
in (Parisotto et al., 2020) the results were averaged across
hyperparameters. Here the hyperparameters were chosen to
maximise the performance of the GTrXL baseline, please
see App. C for more details.

4.1. COBERL as a General Agent

To test the generality of our approach, we analyze the perfor-
mance of our model on a wide range of environments. We
show results on the Arcade Learning Environment (Belle-
mare et al., 2013), DeepMind Lab (Beattie et al., 2016), as
well as the DeepMind Control Suite (Tassa et al., 2018). To
help with comparisons, in Atari-57 and DeepMind Control
we introduce an additional baseline, which we name R2D2-
GTrXL. This baseline is a variant of R2D2 where the LSTM
is replaced by GTrXL. R2D2-GTrXL has no unsupervised
learning. This way we are able to observe how GTrXL
is affected by the change to an off-policy agent (R2D2),
from its original V-MPO implementation in (Parisotto et al.,
2020). We also perform an additional ablation analysis
by removing the contrastive loss fromCOBERL (see Sec.
4.2.1). With this baseline we demonstrate the importance
of contrastive learning in these domains, and we show that
the combination of an LSTM and transformer is superior to
either alone.

Atari As commonly done in literature (Mnih et al., 2015;
Hessel et al., 2018; Machado et al., 2018; Hafner et al.,
2020b), we measure performance on all 57 Atari games
after running for200million frames. As detailed in App. C,
we use the standard Atari frame pre-processing to obtain
the84x84 gray-scaled frames that are used as input to our
agent. We do not use frame stacking.

> h. Mean Median 25th Pct5th Pct
COBERL 49 1424:9% � 43:30% 276.6% 149.3% 17.0%

R2D2-GTrXL 48 1201.6%� 16.63% 313.7% 139.6% 3.7%
R2D2 47 1024.2%� 40.11% 272.6% 138.1% 3.3%

Rainbow 43 874.0% 231.0% 101.7% 4.9%
Dreamer V2* 37 631.1% 162.0% 76.6% 2.5%

Table 1. The human normalized scores on Atari-57.> h indicates
the number of tasks for which performance above average human
was achieved.� indicates that it was run on 55 games with sticky
actions; Pct refers to percentile.

Tab. 1 shows the results of all the agents where published
results are available.COBERL shows the most games
above average human performance and signi�cantly higher
overall mean performance. Interestingly, the performance
of R2D2-GTrXL shows that the addition of GTrXL is not
suf�cient to obtain the improvement in performance that
COBERL exhibits–below we will demonstrate through ab-
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lations that both the contrastive loss and LSTM contribute
to this improvement. R2D2-GTrXL also exhibits slightly
better median thanCOBERL, showing that R2D2-GTrXL
is indeed a powerful variant on Atari. Additionally, we
observe that the difference in performance inCOBERL is
higher when examining the lower percentiles. This suggests
that COBERL causes an improvement in data ef�ciency,
since, as shown in experiments in (Kapturowski et al., 2018)
which are run for billions of frames, these results are far
from the �nal performance of R2D2.

Control Suite We also perform experiments on the Deep-
Mind Control Suite (Tassa et al., 2018). While the action
space in this domain is typically treated as continuous, we
discretize the action space in our experiments and apply
the same architecture as in Atari and DMLab-30. For more
details on the number of actions for each task see App. C.4.
We do not use pre-processing on the frames received from
the environment. Finally,COBERL is trained only from
pixels without state information.

We include six tasks popular in current literature:
ball_in_cup catch , cartpole swingup ,
cheetah run , finger spin , reacher easy , and
walker walk . Most previous work on these speci�c
tasks has emphasized data ef�ciency as most are trivial
to solve even with the baseline—D4PG-Pixels—in the
original dataset paper (Tassa et al., 2018). We thus
include 6 other tasks that are dif�cult to solve with
D4PG-Pixels and are relatively less explored:acrobot
swingup , cartpole swingup_sparse , fish
swim, fish upright , pendulum swingup , and
swimmer swimmer6 . We show our results in Table 2.
We show results onCOBERL, R2D2-gTRXL, R2D2,
CURL (Srinivas et al., 2020a), Dreamer (Hafner et al.,
2020a), Soft Actor Critic (Haarnoja et al., 2018) on
pixels as demonstrated in (Srinivas et al., 2020a), and
D4PG-Pixels (Tassa et al., 2018). CURL, DREAMER,
and Pixel SAC are for reference only as they represent the
state the art for low-data experiments (500K environment
steps). These three are not perfectly comparable baselines;
however, D4PG-Pixels is run on a comparable scale with
100 million environment steps. BecauseCOBERL relies on
large scale distributed experience, we have a much larger
number of available environment steps per gradient update.
We run for 100M environment steps as with D4PG-Pixels,
and we compute performance for our approaches by taking
the evaluation performance of the �nal 10% of steps. Across
the majority of tasks,COBERL outperforms D4PG-Pixels.
The increase in performance is especially apparent for the
more dif�cult tasks. For most of the easier tasks, the perfor-
mance difference between theCOBERL, R2D2-GTrXL,
and R2D2 is negligible. Forball_in_cup catch ,
cartpole swingup , finger spin and reacher

easy , even the original R2D2 agent performs on par with
the D4PG-Pixels baseline. On more dif�cult tasks such
as fish swim , and swimmer swimmer6 , there is a
very large, appreciable difference betweenCOBERL,
R2D2, and R2D2-GTrXL. The combination of the LSTM
and transformer speci�cally makes a large difference here
especially compared to D4PG-Pixels. Interestingly, this
architecture is also very important for situations where the
R2D2-based approaches underperform. Forcheetah
run and walker walk , the COBERL architecture
dramatically narrows the performance gap between the
R2D2 agent and the state of the art.

DMLab-30. To testCOBERL in a challenging 3 dimen-
sional environment we run it in DmLab-30 (Beattie et al.,
2016). The agent was trained at the same time on all the
30 tasks, following the setup of GTrXl (Parisotto et al.,
2020), which we use as our baseline. In Figure 2A we
show the �nal results on the DMLab-30 domain. If we
look at all the 30 games,COBERL reaches a substantially
higher score than GTrXL (COBERL=113.39%� 3.64%,
GTrXL=102.40%� 0.23%, Figure 2A). We also analysed
the number of steps required to reach 100% human nor-
malised score, a measure for data ef�ciency. In this respect,
COBERL requires considerably fewer environment frames
than GTrXL (COBERL=2.96� 0.35 Billion, GTrXL=3.64
� 0.43 Billion, see Figure 2B).

4.2. Ablations

In Sec. 1, we explained contributions that are essential to
COBERL, the new contrastive learning loss, and the ar-
chitectural changes. We now explore the effects of these
two separate contributions, disentangling the added bene�t
of each separately. Moreover, we run a set of ablations to
understand the role of model size on the results. Ablations
are run on 7 Atari games chosen to match the ones in the
original DQN publication (Mnih et al., 2013), and on all the
30 DMLab games.

4.2.1. IMPACT OF AUXILIARY LOSSES

In Table 3 we show that our contrastive loss contributes to a
signi�cant gain in performance, both in Atari and DMLab-
30, when compared toCOBERL without it. Also, in chal-
lenging environments like DmLab-30,COBERL without
extra loss is still superior to the relative baseline. The only
case where we do not see and advantage of using the auxil-
iary loss is if we consider the median score on the reduced
ablation set of Atari games. However in the case of the
DmLab-30, where we consider a larger set of levels (7 vs.
30), there is a clear bene�t of the auxiliary loss.

Moreover, Table 4 reports a comparison between our loss,
SimCLR (Chen et al., 2020) and CURL (Srinivas et al.,
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CoBERL: Contrastive BERT for Reinforcement Learning

DM Suite COBERL R2D2-GTrXL R2D2 D4PG-Pixels CURL Dreamer Pixel SAC
acrobot swingup 359.75� 3.47 215.39� 122.82 327.16� 5.35 81.7� 4.4 - - -

�sh swim 624.40� 54.91 91.32� 277.15 345.63� 227.44 72.2� 3.0 - - -
�sh upright 942.33� 6.12 849.52� 23.01 936.09� 11.58 405.7� 19.6 - - -

pendulum swingup 836.63� 9.77 743.65� 52.44 831.86� 61.54 680.9� 41.9 - - -
swimmer swimmer6 447.60� 51.51 225.97� 60.67 329.61� 26.77 194.7� 15.9 - - -

�nger spin 985.05� 1.58 977.41� 8.91 980.85� 0.67 985.7� 0.6 926� 45 796� 183 179� 166
reacher easy 983.05� 2.47 981.64� 1.99 982.28� 9.30 967.4� 4.1 929� 44 793� 164 145� 30
cheetah run 525.06� 44.59 115.15� 133.95 365.45� 50.40 523.8� 6.8 518� 28 570� 253 197� 15
walker walk 780.54� 26.48 595.96� 77.59 687.18� 18.15 968.3� 1.8 902� 43 897� 49 42 � 12

ball in cup catch 978.28� 6.56 975.21� 1.77 980.54� 1.94 980.5� 0.5 959� 27 879� 87 312� 63
cartpole swingup 798.66� 7.72 837.31� 4.15 816.23� 2.93 862.0� 1.1 841� 45 762� 27 419� 40

cartpole swingup sparse 732.51� 18.60 747.94� 8.61 762.57� 6.71 482.0� 56.6 - - -

Table 2.Results on tasks in the DeepMind Control Suite. CoBERL, R2D2-GTrXL, R2D2, and D4PG-Pixels are trained on 100M frames,
while CURL, Dreamer, and Pixel SAC are trained on 500k frames. We show these three other approaches as reference and not as a directly
comparable baseline.

Figure 2.DMLab-30 experiments. a) Human normalised returns in DMLab-30 across all the 30 levels. b) Average number of steps to
reach 100% human normalised score across all the 30 levels. Results are over 3 seeds and the �nal 5% of training.

2020a). Although simpler than both SimCLR - which in its
original implementation requires handcrafted augmentations
- and CURL - which requires an additional network - our
contrastive method shows improved performance. These ex-
periments where run only on Atari to reduce computational
costs while still being suf�cient for the analysis.

4.2.2. IMPACT OF ARCHITECTURAL CHANGES

Table 5 shows the effects of removing the LSTM from
COBERL (column “w/o LSTM”), as well as removing the
gate and its associated skip connection (column “w/o Gate”).
In both casesCOBERL performs substantially worse show-
ing that both components are needed. Finally, we also exper-
imented with substituting the learned gate with either a sum
or a concatenation. The results, presented in Appendix D,
show that in most occasions these alternatives decrease per-
formance, but not as substantially as removing the LSTM,
gate or skip connections. Our hypothesis is that the learned
gate should give more �exibility in complex environments,
we leave it open for future work to do more analysis on this.

4.2.3. IMPACT OF NUMBER OF PARAMETERS

Table 6 compares the models in terms of the number of
parameters. For Atari, the number of parameters added
by COBERL over the R2D2(GTrXL) baseline is very lim-
ited; however,COBERL still produces a signi�cant gain
in performance. We also tried to move the LSTM before

the transformer module (column “COBERL with LSTM
before”). In this case the representations for the contrastive
loss were taken from before the LSTM. Interestingly, this
setting performs worse, despite having the same number
of parameters asCOBERL. For DMLab-30, it is worth
noting thatCOBERL has a memory size of256, whereas
GTrXL has a memory of size512resulting in substantially
fewer parameters. Nevertheless, the discrepancies between
models are even more pronounced, even though the num-
ber of parameters is either exactly the same (“COBERL
with LSTM before”) or higher (GTrXL). This ablation is
of particular interest as it shows that the results are driven
by the particular architectural choice rather than the added
parameters.

5. Limitations and Future Work

A limitation of our method is that it relies on single time
step information to compute its auxiliary objective. Such ob-
jective could naturally be adapted to operate on temporally-
extended patches, and/or action-conditioned inputs. We
regard those ideas as promising future research avenues.

6. Conclusions

We proposed a novel RL agent, Contrastive BERT for RL
(COBERL), which introduces a new contrastive representa-
tion learning loss that enables the agent to ef�ciently learn


