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Abstract
In book search, relevant book information should be returned in
response to a query. Books contain complex, multi-faceted informa-
tion such as metadata, outlines, and main text, where the outline
provides hierarchical information between chapters and sections.
Generative retrieval (GR) is a new retrieval paradigm that consoli-
dates corpus information into a single model to generate identifiers
of documents that are relevant to a given query. How can GR be
applied to book search? Directly applying GR to book search is a
challenge due to the unique characteristics of book search: (i) The
model needs to retain the complex, multi-faceted information of
the book, which increases the demand for labeled data. (ii) Splitting
book information and treating it as a collection of separate segments
for learning might result in a loss of hierarchical information.

We propose an effective Generative retrieval framework for Book
Search (GBS) that features two main components: (i) data augmen-
tation and (ii) outline-oriented book encoding. For data augmen-
tation, GBS constructs multiple query-book pairs for training; it
constructs multiple book identifiers based on the outline, various
forms of book contents, and simulates real book retrieval scenar-
ios with varied pseudo-queries. This includes coverage-promoting
book identifier augmentation, allowing the model to learn to index
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effectively, and diversity-enhanced query augmentation, allowing
the model to learn to retrieve effectively. Outline-oriented book
encoding improves length extrapolation through bi-level positional
encoding and retentive attention mechanisms to maintain context
over long sequences. Experiments on a proprietary Baidu dataset
demonstrate that GBS outperforms strong baselines, achieving a
9.8% improvement in terms of MRR@20, over the state-of-the-art
RIPOR method. Experiments on public datasets confirm the ro-
bustness and generalizability of GBS, highlighting its potential to
enhance book retrieval.
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1 Introduction
Search engines have become fundamental tools for accessing in-
formation in our daily lives. As a service offered by generic search
engines, book search [37, 41, 42] often provides crucial resources for
various downstream tasks, including question answering [14, 22]
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and entity retrieval [5, 9], since books are likely to contain high-
quality, authoritative, and comprehensive information. The increas-
ing demand for book search underscores its importance in meeting
user needs effectively [11].

Book search differs significantly from generic web search in two
respects [16]: (i) Books contain more complex information than
web pages, including metadata, outlines, and main text; making
effective use of book information requires extensive annotated data.
(ii) Books present extended content with intricate structural rela-
tionships. The outline reveals hierarchical relationships between
chapters and sections, highlighting a complex interplay of text
segments that must be understood for effective retrieval.

Generative retrieval (GR) [19, 36] is an emerging retrieval par-
adigm that integrates all corpus information into a consolidated
model that is capable of directly generating relevant document
identifiers (docids) for queries. To achieve this, GR involves two
fundamental learning tasks: (i) indexing, which includes learning
associations between books and docids, and (ii) retrieval, which
maps queries to their corresponding docids. GR has garnered in-
creasing attention for its robust performance in document, passage,
and entity retrieval tasks [6, 9, 34, 35, 46, 47].

Directly applying GR to book search is a challenge due to the
unique characteristics of books, as described in the abstract. Simply
splitting book content into multiple independent segments for GR
learning may result in a loss of hierarchical relationships inherent
in book structures, thereby affecting retrieval quality. The use of
GR for book search remains a complex and unresolved problem.

Our objective is to develop an effective GR framework for book
search, called GBS, that can accurately return relevant book identi-
fiers for given queries. To accomplish this, we need to address two
key challenges.

First, how to achieve data augmentation under the GR framework?
Considering the two learning tasks of GR (indexing and retrieval),
we propose a data augmentation method that constructs various
training data pairs for indexing and retrieval. This method includes:
(i) Coverage-promoting book identifier augmentation for indexing,
which aims to improve the coverage of book identifiers by using
the outline information to design hierarchical book identifiers and
various forms of book content, namely book-, chapter- and sec-
tion-level identifiers. We further train a model to learn the mapping
between these diverse content forms and their corresponding hier-
archical book identifiers, ensuring that the model comprehensively
understands the structure and content of the books. (ii) Diversity-en-
hanced query augmentation for retrieval, which considers queries
of varying difficulty levels, from those that can be answered by a
single chapter to those requiring content across multiple chapters.
To generate high-quality queries that meet these criteria, we design
different types of prompts using large language models (LLMs) with
strong text generation capabilities. These prompts help in creating a
rich and varied set of pseudo-queries, enhancing the training data’s
diversity and quality. These queries are then paired with book-level
identifiers used in learning the retrieval.

Second, how to improve length extrapolation for long book input?
If the book content is input sequentially, it is likely to lose the
hierarchical relationships between chapters and sections provided
by the outline. Additionally, there is a limitation on the length of
input that the model is able to handle. To address these issues, it is
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Figure 1: Books mainly consist of three types of information:
(1) metadata, which includes details like the title, author,
and publisher; (2) the main text, which constitutes the core
content of the book; and (3) the outline, which shows the hi-
erarchical structure and relationships between the chapters
and sections.

crucial to incorporate outline information. Not only does the out-
line provide hierarchical context, but it also structures the content,
which can help manage the length of information input. Therefore,
we propose an outline-oriented book encoding that hierarchically
distinguishes the chapter and section content of a book based on
its outline structure. This approach includes: (i) Outline-oriented
bi-level positional encoding, which applies hierarchical positional
encodings to chapter-level and section-level texts based on the
book’s outline. This method better captures the relationships be-
tween different chapters and sections, reflecting their structural
hierarchy. (ii) Outline-oriented retentive attention, which intro-
duces an additional memory module into the traditional multi-head
attention mechanism. This module stores important history infor-
mation from the input text, helping the attention mechanism to
more effectively filter and integrate critical information from long
texts. This enhancement allows the model to maintain context over
longer sequences, which is essential for accurately processing the
extensive content within books.

Experiments on a proprietary Baidu dataset demonstrate that
our proposed method GBR significantly outperforms the state-of-
the-art GR baseline, RIPOR, with a 9.8% improvement in terms of
MRR@20. Additionally, we validate the effectiveness of our method
on public datasets, WhatsThatBook [18], confirming its robust-
ness and generalizability. These results underscore the potential
of our GBS to revolutionize book search by addressing its unique
challenges and using the full scope of available information.
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Figure 2: Based on an encoder-decoder architecture, GBS comprises two components: (1) Data augmentation (orange dashed
rectangles), which includes coverage-promoting book identifier augmentation for indexing and diverse-enhanced query
augmentation for retrieval, generating multiple data pairs. (2) Outline-oriented book encoding, which includes outline-oriented
bi-level positional encoding (green dashed rectangles) and outline-oriented retentive attention (blue dashed rectangles), to
encode the long book contents based on hierarchical information. (The figure should be viewed in color.)

2 Methodology
2.1 Problem statement
Books are complex and rich information sources, comprising di-
verse elements. We denote the book set as B = {𝑏1, . . . , 𝑏 | B | },
where 𝑏𝑖 is the 𝑖-th book in B. As shown in Figure 1, a book in-
cludes:
• Metadata: This consists of essential information about the book,
such as title, author, publisher, and other bibliographic details.
Metadata provides a quick reference to identify books.
• Outline: This represents structural information about the book,
detailing the organization of the contents into chapters and sec-
tions. It offers a hierarchical view of the book’s contents, helping
to understand the flow and structure of information.
• Main text: This contains the detailed text, across various chap-
ters and sections. It is where the substantial information resides,
providing the comprehensive material covered by the book.

We aim to develop an autoregressive GR model 𝑀 that returns
relevant book identifiers given a query 𝑞𝑖 in the query set Q =

{𝑞1, . . . , 𝑞 | Q |}.𝑀 needs to accurately understand and interpret the
query, using themetadata, main text of books and outline, to identify
and return the most relevant book identifiers.

2.2 Model architecture
Similar to previous generative retrieval (GR) research [9, 36, 39,
46], we employ a transformer-based model comprising two main
components: (i) An encoder: A bidirectional encoder equipped with

our specially designed multi-head retentive-attention mechanism
to encode book contents or pseudo-queries. We provide a detailed
explanation of this multi-head retentive-attention mechanism in
Section 2.4. (ii) An identifier decoder: This component operates
through a sequential generation process to produce book identifiers.

2.3 Data augmentation
The core idea is to simulate diverse queries in real book retrieval
scenarios and to ensure that book identifiers comprehensively rep-
resent book information. This allows us to construct multiple train-
ing data pairs, thereby fully using book information. The method
includes coverage-promoting book identifier augmentation for in-
dexing and diversity-enhanced query augmentation for retrieval.

2.3.1 Coverage-promoting book identifier augmentation for index-
ing. Given the extensive length of book content, we design multiple
forms of book information as input and hierarchical identifiers as
output to help the GRmodel better remember the mapping between
book content and identifiers.

We use five types of book content based on the degree of infor-
mation compression:
• Keywords: A set of words containing key information, directly
helping the model to learn the most critical information of a book.
These words are extracted from the leading chapter’s text using
an existing keyword extractor, considering that the leading part
of a book usually contains important information.
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• Summary: Similar to keywords but providing a more coherent
and information-rich summary. This is generated by a summa-
rizer from the leading chapter’s text.
• Section text: The content of a section is relatively complete and
contains more details. To minimize information loss, the model
needs to learn the fine-grained section text.
• Chapter text: Compared to section text, chapters include multiple
sections, capturing the relationships between sections and more
comprehensive details.
• Whole text: The entire text of the book, providing higher-level
connections between chapters.

For book identifiersU𝑖 for book 𝑏𝑖 , we design three hierarchical
levels based on the book’s outline structure:
• Book-level identifier (book-id): It is composed of the book title,
author, and publisher, separated by “#”.
• Chapter-level identifier (chapter-id): Built on the book-id, we
add the chapter title and a chapter-level semantic structured
number, separated by “#”, to form the chapter-id. Inspired by
[36], this chapter-level semantic structured number is obtained
by applying a hierarchical K-means clustering algorithm to the
text of all chapters in 𝑏𝑖 .
• Section-level identifier (section-id): Built on the chapter-id of the
chapter to which the section belongs, we add the section title and
a section-level semantic structured number, separated by “#”, to
form the section-id. Similarly, this section-level semantic struc-
tured number is obtained by applying a hierarchical K-means
clustering algorithm to the text of all sections within the current
chapter.

Some books might contain finer-grained subsections, but compared
to sections, the information in subsections is too fragmented, so
we do not consider them here. Additionally, some books may only
include the highest-level chapters, in which case we only consider
chapter-level identifiers.

Using the methods described above, we can construct multiple
data pairs of book content and identifier for learning the indexing
task, where the book content is used as the input, and the identi-
fier is used as the output. Specifically, the whole text, keywords,
and summaries correspond to book-id; section text corresponds to
section-id; and chapter text corresponds to chapter-id. The training
methodology is described in Section 2.5.

2.3.2 Diversity-enhanced query augmentation for retrieval. Accord-
ing to actual retrieval needs, we classify queries into two categories:
(i) Single-chapter answerable queries, which focus only on the
details of a single chapter, and (ii) Multiple-chapter answerable
queries, which require the context from multiple chapters to an-
swer comprehensively. To generate high-quality queries that meet
these criteria, we use LLMs with strong text generation capabilities,
designing specific prompts to guide the LLMs in the generation
process. The two types of prompts are as follows:
• The prompt for single-chapter answerable queries: “Given the
following chapter from a book, generate {X} pseudo
queries that can be answered using the information
contained within this single chapter. The queries
should focus on key themes, events, characters, and
any specific details provided in the chapter. A single
chapter content: {chapter texts}.”

• The prompt for multiple-chapter answerable queries: “Given
the following chapters from a book, where they are
separated by a token “#”, generate {X} complex pseudo
queries that require synthesizing information from
multiple chapters to answer. Each query should be
clear, specific, and necessitate the integration of
information across different chapters. Multiple chapter
contents: {chapter texts}.”

{X} and {chapter texts} denote the number of pseudo queries and
chapter texts, respectively. Based on this strategy, we can construct
multiple data pairs of pseudo-query and relevant book identifier
for the retrieval task.

2.4 Outline-oriented book encoding
The core idea is to use the structural information provided by the
book outline to encode the long book content, especially the whole
text, as a complete unit. We enhance the positional encoding and
the attention mechanism in the transformer encoder by designing
outline-oriented bi-level positional encoding and outline-oriented
retentive attention.

2.4.1 Outline-oriented bi-level positional encoding. The key idea is
to encode the whole text input into the model according to the out-
line, highlighting the relationships between different chapters and
sections, through bi-level positional encoding, including section-
and chapter-level positional encoding.
Section-level positional encoding. In an input book’s complete
text sequence 𝐿 = [𝑤1, . . . ,𝑤 |𝐿 | ], each section is viewed as an in-
dependent segment unit. The section-level positional encoding is
used to pinpoint the position of each token within the section, facil-
itating the capture of semantic information. Formally, within each
section 𝐿𝑙 = [𝑤𝑎𝑙 ,𝑤𝑎𝑙+1, . . . ,𝑤𝑏𝑙 ] where 𝑙 ∈ |𝐿 | and 𝑎𝑙 and 𝑏𝑙 are
the starting and ending indices, we encode the (local) position 𝑗
for token 𝑤𝑎𝑙+𝑗 , with 1 ≤ 𝑗 ≤ 𝑏𝑙 − 𝑎𝑙 + 1. Typically, the number
of tokens within a section is limited, making the original absolute
positional encoding sufficient [38]. Each token 𝑤𝑎𝑙+𝑗 in 𝐿𝑙 is as-
signed a real-valued embedding 𝑒 𝑗 , which is then added to the input
token embedding. This embedding 𝑒 𝑗 is consistent across tokens at
the same local position 𝑗 in different sections 𝐿𝑙 . The section-level
positional encoding is combined with the input embedding, helping
to maintain the structural and contextual integrity within the book.
Chapter-level positional encoding. Although the section-level
positional encoding pinpoints token locations within individual
sections, it does not differentiate locations across different sec-
tions, failing to capture inter-sectional contextual relationships.
To address this, we further introduce chapter-level positional en-
coding, which specifies the section each token belongs to, en-
hancing the handling of longer sequences that are not present
during training. This chapter-level encoding uses relative posi-
tional encodings based on the distance between section indexes
[30, 32]. We adopt rotary position encoding [32] as our chapter-
level positional encoding. For a pair of tokens (𝑤𝑙1 ,𝑤𝑙2 ) located
in the 𝑛-th and 𝑚-th sections respectively, we assign two rota-
tion matrices 𝑅𝑓 ,𝑛 and 𝑅𝑓 ,𝑚 , where 𝑓 represents the predefined
parameters of the rotation matrix [32]. Given an attention query-
key pair 𝑞𝑙1 and 𝑘𝑙2 in R𝑑 , the attention score is calculated as
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(𝑞𝑙1𝑅𝑓 ,𝑛 (𝑘𝑙2𝑅𝑓 ,𝑚)𝑇 ) · (
√
𝑑)−1 = (𝑞𝑙1𝑅𝑓 ,𝑛−𝑚𝑘𝑇𝑙2 ) · (

√
𝑑)−1. Here, 𝑞 is

the attention query, distinct from the constructed pseudo-query
used as the model’s input, and 𝑑 is the dimension and scaling fac-
tor of 𝑘 . This chapter-level positional encoding is integrated into
the original standard multi-head attention (MHA) module in the
transformer encoder [38].

2.4.2 Outline-oriented retentive attention. We introduce an addi-
tional retentivememorymodule into the encoder of the transformer-
based backbone [25, 38]. This module stores crucial information
from the input text, which is then aggregated with the original stan-
dard MHA. This helps the attention mechanism more effectively
filter and integrate important information from long texts.
Standard multi-head attention. For an individual head in the
standard MHA, the attention context 𝐶 ∈ R𝑁×𝑑 is calculated by
scaled dot-product attention, which is derived from a sequence of
input texts 𝐿 ∈ R𝑁×𝑑 using the formula 𝐶 = softmax((�̂�𝐾𝑇 ) ·
(
√
𝑑)−1)𝑉 . In this context, �̂� = 𝐿𝜉𝑄 , 𝐾 = 𝐿𝜉𝐾 , and𝑉 = 𝐿𝜉𝑉 , where

𝜉𝑄 , 𝜉𝐾 , and 𝜉𝑉 are trainable projection matrices. In MHA, we gen-
erate 𝐻 attention context vectors for each element in the sequence
simultaneously, concatenate these vectors along the second dimen-
sion, and project the concatenated vector back to the model space
to produce the final attention output.
Retentive memory. In retentive attention, rather than generating
new memory entries, we reuse the query, key, and value states (�̂� ,
𝐾 , and 𝑉 ) obtained from the dot-product attention process. This
reuse of states between dot-product attention and retentive memory
facilitates efficient adaptation to long contexts and enhances both
training and inference speed. The aim is to store the key-value pairs
in the retentive memory and retrieve them using query vectors,
following [21]. The retentive memory is parameterized with an
associative matrix [29], allowing the update and retrieval process
to be framed as a linear attention mechanism [31]. This method
benefits from stable training techniques applied in similar methods.
We specifically use the update and retrieval approach from [15] due
to its simplicity and effectiveness.

Retentive memory retrieval. The new content𝐶new from the
retentive memory𝑀𝑀𝑠−1 is computed using �̂� as 𝐶new = (𝜎 (�̂�) ·
𝑀𝑀𝑠−1) · (𝜎 (�̂�) · 𝑧𝑠−1)−1. Here, 𝜎 denotes an element-wise ELU +
1 activation function [7], and 𝑧𝑠−1 represents a normalization term
that is the sum over all keys, following [15].

Retentivememory update.After retrieval, we update themem-
ory and normalization term with the new key-value entries. The
updated states are calculated as follows:

𝑀𝑀𝑠 ← 𝑀𝑀𝑠−1 + 𝜎 (𝐾)𝑇𝑉 , (1)

𝑧𝑠 ← 𝑧𝑠−1 +
𝑁∑︁
𝑡=1

𝜎 (𝐾𝑡 ) . (2)

The newly computed memory states,𝑀𝑀𝑠 and 𝑧𝑠 , are then passed
to the subsequent segment unit 𝑠 + 1, establishing a recurrence
within each attention layer.

History context injection. We combine the local attention
state 𝐶 and the retrieved memory content 𝐶𝑛𝑒𝑤 using a learned
gating scalar 𝛼 as follows:

𝐶𝑡𝑜𝑡𝑎𝑙 = sigmoid(𝛼) ⊙ 𝐶𝑛𝑒𝑤 + (1 − sigmoid(𝛼)) ⊙ 𝐶. (3)

In multi-head retentive attention, we compute 𝐻 context states
in parallel. These states are then concatenated and projected to
produce the final attention output:𝐴 = [𝐶1

total ; . . . ;𝐶
𝐻
total]𝜉𝐴 , where

𝜉𝐴 represents the trainable weights.

2.5 Training
Following [36, 39], for the constructed training data pairs in Section
2.3, we adopt a maximum likelihood estimation (MLE) [43] to learn
the indexing and retrieval tasks. For the indexing task, given various
forms of book as input, the model maximizes the likelihood of the
corresponding identifiers as output. Keywords, summaries, and the
whole text correspond to book-id; section text corresponds to the
section-id; and chapter text corresponds to the chapter-id. This task
can be formalized as:

L𝑖𝑛𝑑 (B,Y;𝜃 ) = −
|𝐵 |∑︁

𝑏𝑖 ∈𝐵,𝑦𝑖,𝑗 ∈Y𝑖 ,𝑜𝑖,𝑗 ∈O𝑖
log 𝑃 (𝑜𝑖, 𝑗 |𝑦𝑖, 𝑗 ), (4)

where 𝑦𝑖, 𝑗 ∈ Y𝑖 can be any form of input for book 𝑏𝑖 , and 𝑜𝑖, 𝑗 ∈ O𝑖
is the corresponding identifier for 𝑦𝑖, 𝑗 .

For the retrieval task, given pseudo-queries as input, the model
maximizes the likelihood of the corresponding book identifiers as
output, formalized as:

L𝑟𝑒𝑙 (B,Q;𝜃 ) = −
|𝐵 |× |Q |∑︁

𝑏𝑖 ∈𝐵,𝑞𝑖,𝑗 ∈Q
log 𝑃 (𝑢𝑡𝑖 |𝑞𝑖, 𝑗 ), (5)

where 𝜃 represents the model parameters, and 𝑢𝑡
𝑖
is the relevant

book-id corresponding to book 𝑏𝑖 , of query 𝑞𝑖, 𝑗 .
We employ a multi-task learning approach to train these two

tasks together, following [36, 52]. The overall optimization objective
can be formalized as:

L(B,Y,Q;𝜃 ) = L𝑖𝑛𝑑 (B,Y;𝜃 ) + L𝑟𝑒𝑙 (B,Q;𝜃 ) . (6)

2.6 Inference
After training the model, we proceed with inference when a query
is input. Following [9], to ensure that the generated identifiers are
valid, we constrain the model’s generation using prefix trees. To
integrate different levels of identifiers, we consider book-level and
chapter-level identifiers. Given the excessive number of section-
level identifiers for a single book, which could confuse the model
during inference, we temporarily exclude this level. We (i) first use
the identifiers to construct prefix trees, then (ii) perform decoding
using parallel or serial methods, and aggregate the inference results
from both levels to obtain the relevance score between the book
and the input query.
Prefix tree construction. For the prefix tree, nodes are annotated
with tokens from the predefined candidate set. Each node’s chil-
dren represent all allowed continuations from the prefix defined by
traversing the tree from the root to it [9]. We construct three types
of tree:
• Book-level prefix tree: It includes all book-ids in 𝐵.
• Individual book prefix tree: We construct an individual tree for
each book’s chapter-ids.
• Chapter-level prefix tree: We construct a tree from all books’
chapter-ids together.
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Parallel decoding and aggregation. First, we decode using the
book-level prefix tree and the chapter-level prefix tree separately
to obtain the book-level identifier list (book-id list) and the chapter-
level identifier list (chapter-id list). Each book’s book-level relevance
score is its corresponding probability likelihood value, denoted
as 𝑠𝑏 (𝑞,𝑏𝑖 ). Each book’s chapter-level relevance score is the total
number of its chapter-ids covered in the generated chapter-id list,
denoted as 𝑠𝑐 (𝑞,𝑏𝑖 ).

Second, following [17], the chapter-level relevance score acts as a
weight for the book-level relevance score. We aggregate the overall
relevance score between a query 𝑞 and a book 𝑏𝑖 as the product of
the two scores, formalized as 𝑠𝑐𝑜𝑟𝑒 (𝑞,𝑏𝑖 ) = 𝑠𝑏 (𝑞,𝑏𝑖 ) × 𝑠𝑐 (𝑞,𝑏𝑖 ).
Serial decoding and aggregation. First, we perform constrained
decoding using the book-level prefix tree to obtain the relevant
book-id list. Each book’s book-level relevance score is as in parallel
decoding, denoted as 𝑠𝑏 (𝑞,𝑏𝑖 ).

Next, within the scope of the relevant book-id list, we perform
further fine-grained inference for each book using its individual
book prefix tree to obtain the relevant chapter-id list. Each book’s
chapter-level relevance score is the sum of the likelihood values of
all its chapter-ids in the list, denoted as 𝑠𝑐 (𝑞,𝑏𝑖 ).

Finally, we aggregate the overall relevance score between 𝑞 and
𝑏𝑖 as theweighted sumof the two scores, formalized as 𝑠𝑐𝑜𝑟𝑒 (𝑞,𝑏𝑖 ) =
𝛽𝑠𝑏 (𝑞,𝑏𝑖 ) + 𝛾𝑠𝑐 (𝑞,𝑏𝑖 ), where 𝛽 and 𝛾 are the weights.

2.7 GBS
GBS is defined as follows: first, we construct data pairs for books
using the data augmentation described in Section 2.3. For each pair,
we encode the input based on the model structure described in
Section 2.2 using the outline-oriented book encoding described in
Section 2.4, and then predict the identifier through the decoder.
This process is optimized using the training objective described in
Section 2.5. After training, the model is used for inference with any
decoding method (parallel or serial) described in Section 2.6. We
consider two variants of GBS, GBS𝑃 (which uses parallel decoding)
and GBS𝑆 (which uses serial decoding).

3 Experimental Settings
Datasets.We use both a proprietary dataset and a public dataset for
our experiments. (i) Baidu book search (BBS) dataset: This dataset
is from Baidu’s real-world scenario and includes a library of books
with metadata, outlines, and main text. The dataset contains both
Chinese and English books. We sampled three datasets of different
scales, namely 10K, 20K, and 40K. On average, each book contains
about 225K words. We construct pseudo-queries for each book for
training and evaluation using the method described in Section 2.3.
Specifically, we generated five single-chapter answerable queries
and five multiple-chapter answerable queries for each book, i.e.,
𝑋 = 5. (ii) WhatsThatBook [18]: This dataset consists of tip-of-the–
tongue queries for book searches, collected from user interactions
on the GoodReads1 community forum. This dataset contains only

1https://www.goodreads.com/

Table 1: Statistics of datasets. #Book denotes the number
of books. #Train denotes the number of the queries in the
training set. #Test denotes the number of queries for testing.

Dataset #Book #Train #Test

BBS 10K 10K 1M 1K
BBS 20K 20K 2M 1K
BBS 40K 40K 4M 1.5K
WhatsThatBook 14K 1.5M 1.45K

English books and queries. The queries include the forum discus-
sions, and the documents are books with their corresponding meta-
data. On average, each book contains about 131K words. Note that
the original training queries in this dataset total 11.6K, with an av-
erage of one annotated query per book. Additionally, we generate
4 pseudo-queries of each of the two types for every book.

The dataset statistics are provided in Table 1.
Evaluation metrics. In line with the GR work by [17, 34, 36], we
adopt hit ratio (Hits@𝐾 ) with 𝐾 = {10} and mean reciprocal rank
(MRR@𝐾 ) with 𝐾 = {20} as our evaluation metrics.
Baselines. Following existing GR research [36, 40, 46], we consider
three types of baselines as follows: (i) Sparse retrieval baselines:
BM25 [27], and DocT5Query [23]. (ii) Dense retrieval baselines: Rep-
BERT [48], and DPR [14]. (iii) GR baselines: DSI [36], GENRE [9],
SEAL [3], DSI-QG [52], NCI [39], Corpusbrain [6], Ultron [50],
GenRet [33], NOVO [40], ASI [44] and RIPOR [46]. For the dense
retrieval and GR baselines, we split the text of a book into multiple
segments, and then form multiple data pairs of the book segment
and query for training.

Additionally, for the GR baselines, we also construct multiple
pairs of the book segment the corresponding identifier for the
indexing task. All GR baselines are optimized with an encoder-
decoder architecture using MLE. For more details on our baselines,
please refer to Appendix A.

3.1 Implementation details
Backbone. For the Baidu book retrieval dataset, which contains
both Chinese and English books, we adopt Mengzi-T5-base [49], a
language model pretrained on both Chinese and English corpora,
as the backbone. For the WhatsThatBook dataset, since it is entirely
in English, we used the T5-base model [25], which is widely used in
the GR research [36, 39, 46], as the backbone. For both models, the
hidden size is 768, the feed-forward layer size is 3072, the number
of self-attention heads is 12, and the number of transformer layers
is 12. Decoder-only architectures, such as the GPT series models
[24], will be explored in future research.
Hyperparameters. Regarding chapter- and section-level semantic
structured numbers, following [36], we encode the text using a
small 8-layer BERT model and set the number of clusters to 10,
with a maximum threshold of 100 for each layer. And for serial
decoding, we set 𝛽 as 1 and 𝛾 as 0.5.
Training and inference. GBS is implemented with PyTorch 1.9.0
and HuggingFace transformers 4.16.2; we re-implement DSI, and
use open-source code for other baselines. For the model that ex-
tracts book keywords and summaries, we use the TextRank model,

https://www.goodreads.com/
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Table 2: Retrieval performance on BBS and WhatsThatBook. The best results are shown in bold. ∗ indicates statistically
significant improvements over the best performing GR baseline RIPOR (𝑝 ≤ 0.05).

Method BBS 10K BBS 20K BBS 40K WhatsThatBook

Hits@10 MRR@20 Hits@10 MRR@20 Hits@10 MRR@20 Hits@10 MRR@20

Sp
ar
se BM25 41.8 30.5 40.6 30.1 40.1 29.8 45.3 41.6

DocT5query 46.6 39.3 42.5 35.4 37.5 30.7 48.2 42.8

D
en
se RepBERT 53.1 46.4 48.3 41.9 45.6 37.3 56.8 48.1

DPR 51.3 43.6 46.4 40.3 42.1 35.9 54.2 45.7

G
en
er
at
iv
e

DSI 20.7 13.4 18.5 11.6 13.5 7.2 22.6 15.4
GENRE 26.5 22.1 24.5 19.3 19.3 15.6 29.1 24.7
SEAL 27.8 23.6 25.7 20.6 20.5 16.2 30.5 24.8
DSI-QG 40.3 35.7 36.8 28.9 32.1 23.7 44.6 25.9
NCI 42.8 36.8 37.2 29.4 32.8 24.2 45.2 39.4
Corpusbrain 48.9 43.1 42.4 37.5 36.3 31.5 52.3 45.7
Ultron 48.6 44.5 41.3 36.3 35.7 30.1 51.9 45.2
GenRet 51.3 46.6 47.2 42.1 41.4 37.8 55.8 49.3
NOVO 52.7 47.3 47.6 42.8 41.8 38.4 56.5 49.7
ASI 58.4 53.6 53.5 44.6 46.6 40.1 56.2 49.5
RIPOR 62.5 52.8 56.8 46.2 52.9 42.7 66.7 55.4

O
ur
s GBS𝑆 66.4 54.1 61.3 49.5 56.3 46.5 70.4 58.1

GBS𝑃 66.7† 54.4† 61.6† 49.8† 56.7† 46.9† 70.7† 58.6†

implemented via the summa API [2]. The whole text in the (whole
text, book-id) pairs used for training consists of the first 100 chap-
ters of the book. During inference We employ the Adam optimizer
with a linear warm-up over the initial 10% of steps. The learning
rate is set to 5e-5, with a label smoothing of 0.1, weight decay of
0.01, a maximum of 5M training steps, and a batch size of 128. We
set the input length to 128K, truncating any portion of the book
that exceeds this limit. Our model is trained on eight NVIDIA Tesla
A100 80GB GPUs. , we use constrained beam search with 20 beams
to decode the identifiers.

4 Experimental Results
This section presents the experimental findings.

4.1 Main results
A comparison between the proposed GBS and baselines on the BBS
and WhatsThatBook datasets is shown in Table 2.
Performance of sparse retrieval and dense retrieval baselines.
(i) BM25 shows stable performance across the three scales of the BBS
dataset. However, performance slightly declines as the number of
books increases. This decline might be due to the fact that dividing
a book into multiple segments for indexing increases the number of
thematically similar fragments, making retrieval more challenging.
(ii) DocT5query performs better overall than BM25. This may be
because the generated pseudo-queries are based on the leading
chapters of the books, potentially including more key information
from the books. (iii) The two dense retrieval baselines, RepBERT
and DPR, outperform the sparse retrieval baselines. This is likely
because dense embeddings capture more semantic information.
Performance of GR baselines. (i) DSI performs worse than sparse
retrieval baselines, possibly because the information in books is too
rich. Using only a semantically structured number as identifiers may

lose too much information. Although GENRE improves over DSI, it
still performs relatively poorly, likely because using book titles as
identifiers, while containing more information than a semantically
structured number, still represents only one identifier, leading to in-
formation loss. (ii) DSI-QG and NCI show significant improvements
over the aforementioned GR baselines. These improvements may be
due to their use of additional generated pseudo-queries during train-
ing. (iii) Corpusbrain and Ultron achieve further improvements due
to pre-training of the models. (iv) GenRet, NOVO, and ASI perform
similarly to dense retrieval baselines, with ASI even achieving bet-
ter results. This is likely because these three baselines specifically
learn suitable identifiers for the retrieval. (v) RIPOR outperforms
other baselines, possibly because its multi-stage learning and nega-
tive sampling strategies enhance the model’s understanding of the
book corpus and relevance.
Performance of GBS. (i) Both variants, GBS𝑆 and GBS𝑃 , achieve
better results than the baselines. Specifically, GBS𝑃 outperforms the
best baseline, RIPOR, by 9.8% in theMRR@20metric on the BBS 40K
dataset, and by 6% in the Hits@10 metric on the WhatsThatBook
dataset. This indicates the effectiveness of our method for book
search. (ii) GBS𝑃 performs slightly better than GBS𝑆 . This might
be due to differences in the generated chapter-level identifiers. The
serial decoding in GBS𝑆 maintains the relative order of chapter-level
identifiers with respect to the book-level identifier list, whereas
parallel decoding does not. If the book-level identifier list is not
ideal, parallel decoding can compensate for some of this.

4.2 Ablation study
To validate the effectiveness of each component in GBS, we conduct
an ablation study on the BBS 40K and WhatsThatBook datasets. We
focus on GBS𝑃 , with its retrieval performance shown in Table 3; ab-
lation results based on GBS𝑆 are shown in Table 4 and show similar
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Table 3: Ablation study of GBS𝑃 on BBS 40K and WhatsThat-
Book.

Method BBS 40K WhatsThatBook

Hits@10 Hits@10

1 GBS𝑃 56.7 70.7

2 w/o query augmentation 50.6 64.9
3 w/o identifier augmentation 45.3 60.8
4 w/o bi-level positional encoding 52.8 65.2
5 w/o retentive attention 53.5 67.3

Table 4: Ablation study of GBS𝑆 on BBS 40K and WhatsThat-
Book.

Method BBS 40K WhatsThatBook

Hits@10 Hits@10

1 GBS𝑆 56.3 70.4

2 w/o query augmentation 50.2 64.5
3 w/o identifier augmentation 45.1 60.6
4 w/o bi-level positional encoding 52.4 64.8
5 w/o retentive attention 53.3 67.1

trends. Our findings are as follows: (i) When not using diversity-en-
hanced query augmentation (i.e., 2nd row), wherein the model does
not learn the retrieval task, there is a significant decline in retrieval
performance compared to GBS𝑃 (i.e., 1st row) on both datasets.
This highlights the importance of generated pseudo-queries for
the model’s learning of relevance. For analysis of their quantities,
please refer to Section 4.4. (ii) When not using coverage-promoting
book identifier augmentation, during the learning of each book’s
content, the book is divided into multiple segments, and pairs of the
segment and the book-level identifier are learned. This variant (i.e.,
the 3rd row) exhibits a pronounced performance drop compared to
GBS𝑃 on both datasets. This indicates that relying solely on sim-
ple book segments and identifier pairs for indexing is insufficient
for the model to fully learn book information, thus validating the
necessity and effectiveness of coverage-promoting book identifier
augmentation. (iii) When omitting outline-oriented bi-level posi-
tional encoding, using only the backbone model’s original relative
positional encoding, this variant (i.e., the 4th row) shows some
performance decline compared to GBS𝑃 on both datasets. This
demonstrates that a single layer of positional encoding is inade-
quate for representing book information, thereby confirming the
need for our outline-oriented bi-level positional encoding for book
encoding. (iv) When removing outline-oriented retentive attention,
using the transformer’s default standard MHA in the encoder, this
variant (i.e., the 5th row) shows a slight performance drop compared
to GBS𝑃 on both datasets. This indicates that our outline-oriented
retentive attention is indeed beneficial for capturing longer input
information. Table 4 shows the ablation results based on GBS𝑆 . The
trends are the same as those reported for GBS𝑃 .
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Figure 3: The performance, in terms of Hits@10, of GBS𝑃 and
RIPOR with different input lengths on the BBS 40K dataset.
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Figure 4: The performance, in terms of Hits@10, of GBS𝑃

with different numbers of diversity-enhanced pseudo-
queries, i.e., 𝑋 , on the BBS 40K dataset.

4.3 Analysis on the input length
To examine how the length of the input text impacts the effective-
ness of book search, we vary the input length. We set input lengths
of 2K, 4K, 16K, 32K, 64K, 128K, and 256K on the BBS 40K dataset,
and the Hits@10 results for GBS𝑃 and RIPOR are shown in Figure
3. We found that: (i) When the input length is between 4K and 32K,
RIPOR performs better than our method. This might be because
RIPOR’s multi-stage optimization and negative sampling strategies
allow it to learn important information from the leading parts of
the book. Additionally, RIPOR’s performance starts to decline once
the input length exceeds 4K, and it stabilizes thereafter, indicating
that RIPOR has limited capacity for handling extremely long texts
like books. (ii) When the input length is between 64K and 128K,
our method outperforms RIPOR, with performance improvements
increasing as the input length grows. This suggests that more input
content helps the model learn more comprehensive information
about the book. We also observed weaker retrieval performance at
input lengths of 2K and 4K, which further confirms the complexity
of book information and the need for specially designed learning
approaches. (iii) When the input length exceeds 128K, the retrieval
performance of GBS𝑃 slightly decreases. This may be because the
semantics of the tail parts of some books are included in the leading
parts, leading to redundancy and no additional gain.
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4.4 Impact of the number of pseudo-queries
Our proposed diversity-enhanced query augmentation strategy
generates 𝑋 pseudo-queries of two types, and the number of these
queries is an important factor influencing retrieval performance.
Therefore, we analyze the impact of varying 𝑋 . Specifically, on the
BBS 40K dataset, we set 𝑋 to integer values from 1 to 6, and the
Hit@10 performance of GBS𝑃 is shown in Figure 4. We observe the
following: (i) When 𝑋 is 5 or less, increasing 𝑋 leads to a larger
improvement in retrieval performance. This indicates that pseu-
do-queries for books help the model better learn relevance and
enhance the connections between queries, book information, and
identifiers. (ii) When 𝑋 is set to 6, there is almost no additional gain
in retrieval performance. This may be due to model capacity limita-
tions or the fact that 𝑋 = 5 already provides sufficient information
for the model to effectively learn book details.

4.5 Case study
To provide a more detailed analysis of the performance of our
proposed GBS, we conduct a case study. Specifically, we sample a
single-chapter answerable query and one multiple-chapter answer-
able query from the test set of the BBS 40K dataset and analyze the
identifier lists generated by GBS𝑃 and the best baseline, RIPOR. As
shown in Table 5 in Appendix B: (i) For the single-chapter answer-
able query, our GBS𝑃 successfully ranks the relevant identifiers
at both the book-level and chapter-level in the top position, while
RIPOR only ranks them second. This indicates that our method is
more effective for handling this type of query. (ii) For the multi-
ple-chapter answerable query, GBS𝑃 also performs well, whereas
RIPOR fails to predict the correct identifier in the top 50 identifiers
generated. This highlights that book search is more difficult than
general web search, and further validates that our method is more
adept at addressing book retrieval tasks.

5 Related Work
Book search. It involves locating and retrieving books based on
user queries. Unlike general web search, which handles diverse
documents, book search must navigate complex structures within
books, including metadata, outlines, and main text, to match user
needs accurately [16]. Traditional methods often rely on term-based
matching [12, 42] and indexing to connect queries with book meta-
data. More advanced techniques use natural language processing
(NLP) to understand and interpret both queries and book content,
improving relevance [4, 26].
Generative retrieval. GR is a new search paradigm, which inte-
grates the entire corpus into a consolidated model, enabling it to
generate relevant docids directly from queries [19, 36]. To achieve
this, it involves two core operations [36]: indexing, which learns
the relationship between document and their docids, and retrieval,
which maps queries to relevant docids. GR has gained increasing
attention for its strong performance in various retrieval tasks [9, 34–
36, 46, 47]. In this work, we attempt to apply GR to book search,
which is a challenging and unexplored task due to the unique char-
acteristics of books.
Long-text modelling. Long text modeling [10] is essential for
processing extensive documents like academic articles and reports,

which present challenges due to their length and complexity. Tra-
ditional RNNs [45], including LSTMs [8] and GRUs [45], struggle
with capturing long-range dependencies, while transformer-based
models [38], especially pretrained language models (PLMs), have
shown promise but face issues with fixed input lengths and high
computational costs. Adapting these models to handle long texts
involves addressing preprocessing to fit the context length and
designing efficient architectures to manage long-term dependen-
cies and hierarchical structures effectively. Some research improves
long text modeling by enhancing positional encoding to capture in-
trinsic relationships [13, 28, 51]. Other work focuses on enhancing
backbone models, such as introducing additional memory module
in transformers to retain crucial long-range information [20].

6 Conclusion
Wehave introduced and evaluated GBS, a generative retrieval frame-
work designed specifically for book search. Our approach tackles
the unique challenges of books by incorporating data augmentation
strategies and outline-oriented encoding techniques. Experiments
on both the industry Baidu dataset and public dataset, show that
GBS significantly outperforms existing state-of-the art methods.
This confirms the effectiveness of our method in enhancing book
search.

However, there are some limitations that could be improved in
the future: (i) Due to the length of books, we construct multiple
data pairs to learn book information effectively, which results in
high training costs. In the future, we will explore ways to balance
performance and learning costs. (ii) Model capacity is also a factor
affecting performance. In the future, we will explore the effects on
larger capacity backbones.
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Appendix
A Baseline Details
The baseline methods are described as follows:

Sparse retrieval baselines: (i) BM25 [27] is a commonly used effec-
tive term-based method. We use the Anserini toolkit [1] to im-
plement it. We split the book into multiple segments to index.
(ii) DocT5Query [23] expands a document with pseudo-queries
predicted by a fine-tuned T5 [25] conditioned on the original docu-
ment. And then we perform the BM25 retrieval. Here, we take the
leading 10 chapters as the input to generate pseudo-queries, since
this baseline is difficult to encode the whole text of a book.

Dense retrieval baselines: (i) RepBERT [48] is a dual-encoder
model with brute force searching; (ii) DPR [14] is a classic BERT-based
dual-encoder model using dense embeddings for the input texts.

GR baselines: (i) DSI [36] is the first GR work, which uses se-
mantically structured numbers as docids via a k-means clustering
algorithm. (ii) GENRE [9] uses book titles as docids. It learns the
document-docid pairs. (iii) SEAL [3] uses n-grams as identifiers,
and generates identifiers based on FM-index. BART-large is used
as the backbone. (iv) DSI-QG [52] generates pseudo-queries con-
ditioned on the book contents using docT5query [23] and pairs

them with identifiers for training. It uses unique integer strings as
identifiers. (v) NCI [39] employs semantically structured numbers
as identifiers. It trains the model using pairs of pseudo-queries and
identifiers, and designs a prefix-aware decoder. (vi) Corpusbrain [6]
employs unique book titles as identifiers for Wikipedia during pre–
training. (vii) Ultron [50] employs the product quantization code
as identifiers. It starts with pre-training using book piece-docid
pairs, followed by supervised fine-tuning with annotated queries
and generated pseudo-queries on downstream tasks. (viii) GenRet
[33] uses an autoencoder to generate identifiers for books, which
compress book contents into identifiers and to reconstruct docids
back into book contents. It learns jointly with the retrieval task.
(ix) NOVO [40] selects important words from the book as identifiers.
The model is trained through supervised learning with annotated
information. (x) ASI [44] introduces an additional linear layer to
assist in document generation of docids, and introduces negative
sample augmentation. (xi) RIPOR [46] uses a multi-stage optimiza-
tion strategy and negative mining technique to train the GR model.

B Case Study
Table 5 shows the generated top-3 identifiers produced by GBS𝑃
and RIPOR, given two types of queries.

Table 5: Given the query, GBS𝑃 and RIPOR return the top-3 beam. Correct results are displayed in italics.

Single-chapter answerable query: Who is the author of the book “The Heart of a Boy”?

Method GBS𝑃 RIPOR

Rank Book-level identifier Chapter-level identifier Book identifier

1 The Heart of a Boy#Edmondo De Ami-
cis#Laird & Lee

The Heart of a Boy#Edmondo De Ami-
cis#Laird & Lee#October#068834

17-3-8-11-3-24-6-3-12-76-37-37-43-87-
33-68-44-174-38-96-221-56-43-78-43-
83-7-8-238-1-44-123

2 Pig Heart Boy#Malorie Black-
man#Penguin Random House Chil-
dren’s UK

The Heart of a Boy#Edmondo De Ami-
cis#Laird & Lee#March#068815

17-3-8-33-75-32-123-65-168-38-63-183-
211-48-95-63-58-168-43-67-83-65-128-
46-37-98-68-43-16-43-76-32

3 The Boy with a Broken Heart#Durjoy
Datta #Penguin Metro Reads

The Heart of a Boy#Edmondo De Ami-
cis#Laird & Lee#November#068753

17-3-8-11-67-127-39-105-18-35-15-207-
48-53-8-178-157-47-36-85-43-17-43-87-
9-4-178-164-105-36-41-38

Multiple-chapter answerable query: Introducing Enrico

1 The Heart of a Boy#Edmondo De Ami-
cis#Laird & Lee

The Heart of a Boy#Edmondo De Ami-
cis#Laird & Lee#October#068834

17-3-8-11-67-127-39-105-18-35-15-207-
48-53-8-178-157-47-36-85-43-17-43-87-
9-4-178-164-105-36-41-38

2 An Introduction to the Basics of Reliabil-
ity and Risk Analysis#Enrico Zio#World
Scientific Pub Co Inc

The Heart of a Boy#Edmondo De Ami-
cis#Laird & Lee#November#068883

17-3-8-11-3-24-6-3-12-76-37-37-43-87-
33-68-44-174-38-96-221-56-43-78-43-
83-7-8-238-1-44-123

3 Enrico Baj: The Artist’s Home#Michael
Reynolds#Skira Rizzoli

The Heart of a Boy#Edmondo De Ami-
cis#Laird & Lee#December#068659

17-3-8-11-53-62-58-107-38-95-157-23-
52-21-230-68-54-89-167-208-32-57-14-
58-3-9-54-16-37-48-61-97
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