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Abstract

Training a neural network on additional auxiliary tasks can
improve learning when data is scarce or the principal task
is highly complex. This idea is primarily inspired by the
improved generalization induced by solving multiple tasks
simultaneously, which leads to a more robust shared rep-
resentation. However, selecting optimal auxiliary tasks of-
ten requires hand-crafted solutions or costly meta-learning
approaches. We propose Detaux, a novel framework that
discovers an auxiliary classification task through weakly
supervised disentanglement in a product manifold. Our
method isolates variation in the data related to the principal
task in a dedicated subspace while producing orthogonal
subspaces with high separability. A clustering procedure
in the most disentangled subspace generates discrete auxil-
iary labels that, along with the original data, can be used
within any Multi-Task Learning (MTL) framework. The-
oretical evidence on the linear independence of task rep-
resentations, alongside experiments on synthetic and real
data, demonstrates the potential to link disentangled repre-
sentations and MTL.

1. Introduction
Human learning is often considered a combination of pro-
cesses (e.g., acquired high-level skills, and evolutionary en-
coded physical perception) that are used together and can
be transferred from one problem to another. Inspired by
this, Multi-Task Learning (MTL) [5] represents the machine
learning paradigm in which multiple tasks are learned to-
gether to improve the generalizability of a model by using
shared knowledge that derives from considering different
aspects of the input. Specifically, this is achieved by jointly
optimizing the model’s parameters across different tasks, al-
lowing the model to learn task-specific and task-shared rep-
resentations simultaneously. As a result, MTL can lead to
better generalization, improved efficiency at inference time,
and improved performance on individual tasks by exploit-
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Figure 1. Overview of our data-driven auxiliary task discovery.
The figure illustrates the difference between Single-Task Learning
(STL) (left) and MTL (right) with Detaux, which uses an auxiliary
task generated from visual concepts in the data to improve perfor-
mance on the principal task.

ing their underlying relationships.
A particular form of this learning approach, referred to

as auxiliary learning, has garnered considerable interest in
recent years [25]. Auxiliary learning consists of using an
additional set of auxiliary tasks that operate on the same
input data and lead to a shared representation that boosts
performance on the principal task, i.e., the only task of in-
terest. In the literature, auxiliary tasks are mainly generated
via meta-learning [28, 39], which requires a prior definition
of the hierarchy of the desired auxiliary tasks and is usu-
ally computationally inefficient. Thus, the question we try
to answer in this work is: Can we discover, with no prior
knowledge, an additional auxiliary task directly from the
data structure in order to improve the performance of the
principal task?

We explore this problem by proposing Detaux, a weakly
supervised strategy that discovers auxiliary classification
tasks that allow solving a STL classification problem in a
MTL fashion, as shown in Figure 1. Specifically, Detaux is
capable of individuating unrelated auxiliary tasks. Unrelat-
edness in MTL means having tasks whose features have no
semantic intersection and has been proven to be effective in
learning multiple tasks simultaneously [20, 27, 42, 49, 52,
53]. Our method takes root in the idea of [42], where two
groups of tasks, the principal task and the auxiliary tasks,
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Figure 2. Detaux involves two steps: 1) First, we use weakly supervised disentanglement to isolate the structural features specific to the
principal task in one subspace (red rectangle at the top). 2) Next, we identify the subspace with the most disentangled factor of variation
related to the principal task, and through a clustering module, we obtain new labels (blue rectangle in the bottom left). These can be used
to create a new classification task that can be combined with the principal task in any MTL model (bottom right). Best viewed in color.

are known to be unrelated, and assumes the claim that joint
learning of unrelated tasks can improve the performance on
the principal task. They propose to generate a shared low-
dimensional representation for both tasks, forcing these rep-
resentations to be orthogonal. The procedure from [42] ex-
ploits a linear classifier and requires the knowledge of the
labels for both the principal task and the auxiliary tasks.
Our method extends this process, bypassing the need for su-
pervision, and parametrizing the problem using neural net-
works. Specifically, it generates auxiliary tasks so that their
labels implicitly drive an MTL network to understand the
unrelatedness between the tasks. Our idea is to work in a
specific representation space, a product manifold, to reveal
the auxiliary tasks for a given principal task. We get inspi-
ration from [13], who discovered the product manifold as a
convenient representation basis for disentanglement. In par-
ticular, as shown in Figure 2, we first extract task-specific
features using a weakly supervised disentanglement proce-
dure that implements projections in orthogonal subspaces
of the latent representation. Then, we identify a subspace
where the respective projections are maximally separated.
Finally, we generate new labels via a clustering module to
enable integration with the principal task through any MTL
model, as shown in the bottom right of Figure 2. In this way,
any MTL model can be chosen depending on several factors
in addition to performance, such as efficiency or scalability.
The rest of the manuscript provides both a general explana-
tion of our method and experimental evidence on four real
datasets with three different MTL models. Finally, we pro-
vide theoretical and additional experimental evidence in the
Appendix to support our claims.

2. Methodology
2.1. Mathematical Preliminaries
In this section, we provide a high-level overview of the
mathematical formalization of disentanglement used in this
work. Due to space constraints, we provide an extended
explanation in Section 6 of the Appendix, with more ex-
tensive treament of all the varous formulas. Disentan-
gled representation learning aims to learn a representation
of the data where different latent factors, i.e., visual con-
cepts, are represented independently of the others. In this
work, we rely on the definition of disentanglement pro-
posed by [13]. Under the manifold assumption and assum-
ing that independent factors generate the data, it becomes
reasonable to see the data manifold as a product manifold:
M = M1×M2× . . .×Mk where each Mi, i ∈ {1 . . . k},
can be intuitively considered orthogonal to the others and
represent one latent visual concept. As a result, given a
pair of data (x1, x2) known to differ in the h-th latent factor
only, their learned representations are considered fully dis-
entangled if they have fixed projections in all the submani-
folds {Mi}ki=1, except for the h-th. Consider, for example,
a product manifold composed of k 1D, connected subman-
ifolds (without boundary). This structure can be embedded
in the latent space as Rk, with each axis displaying a visual
concept. In general, the main advantage of this approach
is that each submanifold can have different dimensionali-
ties, with the sum of the dimensions of the submanifolds
equal to that of the product manifold. Thus, we can gen-
eralize the intuitive idea of an “axis of variation” and look
for auxiliary tasks in a higher-dimensional space instead of
being limited to 1D axes as in VAE-based methods [17, 21].



In practice, we consider a finite-dimensional normed vec-
tor space Z ⊆ Rd, containing the disentangled latent rep-
resentation, obtained as the output of an encoder network
f : M → Z . Therefore, our latent representation takes the
form of a Cartesian product space Z = S1×S2× . . . ×Sk,
such that ∀i, j ∈ {1 . . . k}, Si ∩ Sj = {0} if i ̸= j. Finally,
the aggregated latent code is fed into a decoder g that ap-
proximates the inverse of f . To wrap up, the representation
framework operates in the following way:

x
f−→ z

{pi}−−−−→
i=1...k

{si}
∑

i−−−−→
i=1...k

z̃
g−→ x̃ , (1)

where the pi’s are nonlinear operators, and z̃ and x̃ are the
aggregated latent representation and the reconstructed in-
put, respectively.

The visual representation of this process is shown in Fig-
ure 2, within the red rectangle. Given a data pair, this frame-
work can be made equivalent to solving the following opti-
mization problem:

L = Lrec + β1(Ldist +Lspar)+ β2Lcons + β3Lreg , (2)

where β1, β2, and β3 are Lagrange multipliers controlling
the influence of the constraints. Lrec is a reconstruction
loss to learn the global manifold. Ldist is a contrastive loss
based on an oracle O, which selects the subspace Si with
maximal separation for the given image pair while encour-
aging similarity in the remaining subspaces. Lspar is an
L1 sparsity term that promotes orthogonality among sub-
spaces, enforcing a direct sum structure, Lcons encourages
each projector pi to be invariant to variations in other sub-
spaces Sj , for j ̸= i. Finally, Lreg is a regularization term
that ensures that the oracle O distributes the choices uni-
formly across subspaces to prevent collapse.

2.2. Auxiliary Task Discovery
We assume the existence of a labeled image dataset D =
{ (x(i), y(i)) | ∀i ∈ {1 . . . N}, x(i) ∈ Rw×h×c, y(i) ∈ N},
where w is the width, h the height, c the number of chan-
nels, and N the number of tuples (image, label). We con-
sider a classification task whose objective is to learn a map-
ping x(i) → y(i) that maps each image to its corresponding
label. To discover auxiliary tasks from new visual concepts,
we must have a way to accommodate the (known) varia-
tion related to the principal task in one subspace and fix
it there. To achieve this, we define a principal task oracle
Ô : Z× Z → {1, . . . , k}, which ensures that the α-th sub-
space will contain all the variation in the data corresponding
to pairs (x(1), x(2)) that differ in their principal task label.
Note that we do not inject direct knowledge of these labels,
but only whether or not they differ, as follows:

Ô(z(1), z(2)) =

α if y(1) ̸= y(2)

argmax
i∈{1,...,k}\α

d(s
(1)
i , s

(2)
i ) otherwise

(3)

where α ∈ {1 . . . k} is the index for the subspace of choice
and d(s

(1)
i , s

(2)
i ) is the distance between the projections of

(z(1), z(2)) in the i-th subspace Si. The variation in the data
is encoded in Sα if y(1) ̸= y(2), and in a different subspace
otherwise.

We set α = 1, but any other value in {1...k} is perfectly
suitable. The choice of the subspace for the case y(1) = y(2)

is made by looking at where the distance between the pro-
jections is maximal, as this is where the difference between
the pair in that latent factor will be encoded.

In practice, we approximate the argmax operator in
Equation 3 by applying a softmax at low temperature to the
normalized pairwise Euclidean distances. This produces a
discrete probability distribution over the distances, which
can then be used to weigh the contributions of the projec-
tions in each subspace.

After this step, we can find new auxiliary tasks in the
remaining {1 . . . k} \ α subspaces. Let Sj be the sub-
space where the distances are maximally preserved (mini-
mal Ldist in Equation 8). We apply a clustering algorithm
to the latent representation found in Sj , as shown inside the
blue rectangle of Figure 2. This gives rise to a set of dis-
crete pseudo-labels, determining the new auxiliary classifi-
cation task. Given that the disentanglement procedure al-
ready forces each subspace to cluster embeddings (through
Ldist and Lcons, Equation 10), choosing subspace Sj pro-
vides a great advantage for the clustering procedure.

Although it is possible to use an arbitrary clustering al-
gorithm, one would prefer it to support clusters of arbitrary
shapes and not to specify directly the number of clusters.
Therefore, we utilize HDBSCAN [4] because it allows us
to group data points based on their density without explic-
itly specifying the number of groups. Finally, HDBSCAN
can associate points that cannot be assigned to any clus-
ter to a “noise” cluster, which we can retain as an addi-
tional label of the auxiliary task, making it more robust.
If HDBSCAN finds only one cluster, we denote the run
as unsuccessful and stop the procedure, as training in it
would lead to MTL trivial results. Otherwise, we have dis-
covered a novel task and its corresponding labels y′ ∈ N,
which can be used with any MTL model alongside the prin-
cipal task, as shown in the blue rectangle of Figure 2. In
this work, we limit ourselves to finding only one auxiliary
task, as this is common practice [24] and because the use of
multiple auxiliary tasks increases the computational load of
MTL. Scaling on more tasks is the subject of future work.
At this stage, we have enriched our dataset with an ad-
ditional set of labels, obtaining D′ = { (xi, yi, y

′
i) | ∀i ∈

{1 . . . N}, xi ∈ Rw×h×c, yi, y
′
i ∈ N}. In Section 7 of the

Appendix, we present a theoretical analysis as to why this
setup provides uncorrelated representations that ultimately
lead HDBSCAN to produce different and uncorrelated clus-
tering.



Table 1. Classification accuracy on the FACES [11], CIFAR-
10 [23], SVHN [40], and Cars [22] datasets. (*) indicates results
reported in the original paper due to reproducibility challenges
with the available code. In bold, the best results. Underlined the
second best.

Learning Paradigm FACES ↑ CIFAR-10 ↑ SVHN ↑ Cars ↑
STL 0.915 0.844 0.956 0.711

MAXL [28] 0.933 0.868 0.953 0.638
AuxiLearn [39] 0.915 0.811 0.943 0.644*

MTL-HPS [5] + Detaux 0.951 0.848 0.954 0.789
NDDR [14] + Detaux 0.932 0.872 0.952 0.712
MTI [48] + Detaux 0.978 0.910 0.961 0.807

3. Experiments

Due to lack of space, we provide implementation details in
Section 8 of the Appendix. As mentioned previously, the
image pairs are sampled based on the principal task labels.
For the FACES [11] dataset, this corresponds to the per-
son’s facial expression. For CIFAR-10 [23], SVHN [40],
and Cars [22], it corresponds to the only available task.
We used a ResNet-18 [16] encoder-decoder architecture for
the disentanglement phase (Figure 2 (1)) to obtain a high-
fidelity reconstruction. We compare our approach with two
different auxiliary learning methods, i.e., MAXL [28] and
AuxiLearn [39]. Unlike these approaches based on meta-
learning, our discovered auxiliary task can be exploited in-
terchangeably with any MTL model. To have an evalua-
tion that is as fair as possible and focuses on the benefits of
the auxiliary task, we choose parameter-sharing MTL net-
works. This enforces the idea that the gains are due to the
new task and not advanced learning dynamics, a dichotomy
also discussed in [26]. We select three different models: the
standard Hard Parameter Sharing for MTL (MTL-HPS) [5],
NDDR [14], and MTI [48]. The main loss term in all these
models is a summation of each task’s classification loss.

Table 1 summarizes the results. MTI, with our gener-
ated auxiliary labels, displays the best performance. Fur-
thermore, even simple ConvNet-based models, such as
MTL-HPS and NDDR, achieve superior results compared
to MAXL and AuxiLearn. Most notably, we outperform
STL with at least one of the MTL+Detaux models in all
the datasets, while MAXL and AuxiLearn have perfor-
mance discrepancies. For fairness, we report that we ex-
ploit pre-trained backbones for the MTL models on Cars,
which contains very complex images and is categorized as
a fine-grained classification dataset. For the disentangle-
ment phase, we change the encoder f so that it does not
produce a dense representation in the bottleneck layer but a
compressed feature map via 1 × 1 convolution. Finally, to
show the ideal scenarios of our method, we provide addi-
tional results with a synthetic setup in the Appendix 8.

How does Detaux extract auxiliary visual concepts?
This experiment aims to show how disentanglement effec-
tively extracts task labels from the underlying data struc-
ture. On the FACES dataset, we compare the auxiliary task
generated by Detaux with the auxiliary task resulting from
the clustering in the latent space of an autoencoder that only
learns to reconstruct. Without disentanglement, MTL-HPS
can only reach 0.9 accuracy, worse than the 0.915 obtained
by STL. This reveals that performing an auxiliary task min-
ing on the entangled autoencoder space provides a less in-
formative auxiliary task to the MTL network compared to
our approach. We provide further qualitative evidence of
this observation in Figure 5 of the Appendix.

Is it possible to use other clustering algorithms? One im-
mediate question that may come to mind with regard to
Detaux is its flexibility w.r.t. the clustering method. As
mentioned in Section 2.2, we rely on HDBSCAN due to its
nice properties. We aim to show that our pipeline can im-
prove downstream performance even with other (and sim-
pler) clustering algorithms. In particular, we use two ver-
sions of the KMeans algorithm [1, 29], which assume a
flat geometry, and MeanShift [8], which works well even
in non-flat geometries. The results are presented in Table 2
and clearly show that our method is flexible to the choice
of the clustering algorithm, improving performance in all
cases when compared to STL.

Are the generated labels correlated? To empirically ver-
ify that our pipeline design is aligned with the underly-
ing theoretical analysis, we calculate the Normalized Mu-
tual Information (NMI) and Adjusted Mutual Information
(AMI) between the principal task and the auxiliary task la-
bels generated by Detaux. These metrics are used in the
clustering literature to measure the agreement between two
label assignments, independently of the order [43]. The re-
sults in Table 3 indicate that the two sets of labels are al-
most uncorrelated, with the labels of FACES showing min-
imal correlation. To further confirm our claim, we run
a contingency-based test χ2 with the null hypothesis that
the two groups have no significant differences. For all
datasets, the p-values are essentially 0 (the largest one being
9.06×10−17), allowing us to reject the null hypothesis with
high confidence.

4. Conclusion
In this paper, we propose a novel outlook on the utility of
disentangled representations, utilizing them as a proxy for
auxiliary learning in order to improve the accuracy of a prin-
cipal task, originally solvable only in a STL fashion. Our
proposed pipeline facilitates the weakly supervised discov-
ery of a new classification task from a factorized representa-
tion, which can be incorporated into any MTL framework,
offering better performance w.r.t. the principal task.
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hard Schölkopf, Olivier Bachem, and Michael Tschan-
nen. Weakly-Supervised Disentanglement Without Compro-
mises. In International Conference on Machine Learning
(ICML), 2020. 1

[33] Francesco Locatello, Michael Tschannen, Stefan Bauer,
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Appendix

5. Related Work

5.1. MTL and Auxiliary Learning
Multi-Task Learning (MTL), i.e., the procedure through
which we can solve multiple learning problems at the same
time [5], can help us reduce the inference time, improve the
precision, and increase the efficiency of the data [46]. When
the adopted dataset contains annotation for multiple tasks,
the challenges to face concern which tasks may work well
together [12, 46, 51] or how to weigh the losses of differ-
ent tasks [7] to create a better joint optimization objective.
Numerous methods have recently emerged that address the
simultaneous resolution of multiple tasks [5, 14, 48].

A different problem arises when we would like to use
a MTL method, but the given dataset contains annotations
for only one task. The learning of additional tasks aims
to maximize the prediction performance on a principal task
by supervising the model to learn other tasks, as shown
in [28, 39]. Therefore, auxiliary tasks are tasks of minor
interest, or even irrelevant compared to the principal task
we want to solve, and thus can be seen as regularizers if
learned simultaneously with the task of interest [25]. For
example, [42] suggests that the use of two unrelated groups
of tasks, where one of them hosts the principal task, can
lead to better performance, where unrelated means that an
orthogonal set of features defines the two groups of tasks.
In [25], the authors use seemingly unrelated tasks to help
the learning on one principal task, this time without impos-
ing any constraint on the feature structure. With Detaux,
we are working in the product manifold space, which has
already been shown by [13] to be effective for separating
embedding subspaces that are orthogonal by design.

Moreover, recent emerging techniques leverage meta-
learning to select the most appropriate auxiliary tasks
or even autonomously create novel ones. Both [28]
and [24] train two neural networks simultaneously: a label-
generation model to predict the auxiliary labels and a multi-
task model to train the primary task alongside the auxil-
iary task. In contrast with our approach, these require the
a priori definition of a hierarchy binding the auxiliary la-
bels to the principal task labels and present conflicting ideas
on the possible semantic interpretation of the generated la-
bels. Furthermore, they are computationally inefficient:
meta-learning is a resource-intensive technique that requires
retraining the entire architecture to change the employed
multi-task method. [38] also used meta-learning, present-
ing a novel framework to generate new auxiliary objectives
to address the niche problem of few-shot semi-supervised
tabular learning. Finally, [9] proposes to deconstruct exist-

ing natural language processing objectives within a unified
taxonomy, identifying connections between them, and gen-
erating new ones by selecting the best combinations from
a Cartesian product of the available options. To the best
of our knowledge, we are not aware of any other method
that proposes a systematic approach to generate new labels
from a disentangled latent space to enable MTL classifica-
tion when only the annotations for one task are given in the
considered dataset; thus Detaux represents the first effort in
this sense.

5.2. Learning Disentangled Representations
Representing data in a space where different components
are independent is a long-standing research topic in ma-
chine learning. The rise of deep learning, which is based on
learning representations, has made this concept even more
relevant and useful in understanding the latent space [2].

Recent literature has proposed several characterizations
of disentanglement, whether that is in terms of group the-
ory [18], metric and product spaces [13], or permutations of
element-wise, nonlinear functions [19]. [17] demonstrates
that variational auto-encoders could learn to disentangle by
enforcing the ELBO objective, while [6] relies on genera-
tive adversarial networks and an information-theoretic view
of disentanglement. Later works, such as [10, 41, 45], ex-
tensively explored different directions and use cases. [30]
showed that completely unsupervised disentanglement is
not possible due to the inability of the models to identify
factors of variation. Soon after, the authors proposed weak
supervision and access to few labels to bypass this limita-
tion [32, 33]. In Detaux, we place ourselves in the same
setting of [13] but control and force the disentanglement by
supervision only on the known (principal) task.

5.3. MTL and Disentanglement
[37] reports a connection between disentangled representa-
tions and MTL, showing that disentangled features can im-
prove the performance of multi-task networks, especially on
data with previously unseen properties. Disentanglement is
obtained by adversarial learning, forcing the encoded fea-
tures to be minimally informative about irrelevant tasks. In
this case, the tasks to be disentangled are known a priori,
while in our case, only the principal task task is known.

[50] proposes a novel concept called “Knowledge Fac-
torization”. Exploiting the knowledge contained in a pre-
trained multi-task network (called teacher), the idea is to
train disentangled single-task networks (called students) to
reduce the computational effort required by the final single-
task network. The factorization of the teacher knowledge is



dual: they provide structural factorization and representa-
tion factorization. In structural factorization, they split the
net into a common-knowledge network and a task-specific
network based on mutual information.

Finally, [36] explores the degree of disentanglement of
MTL models in a controlled, semi-synthetic setting. Ini-
tially, a set of task labels is created using a randomly initial-
ized Multi-Layer Perceptron (MLP) starting from the latent
factors of parametric disentanglement datasets [3, 15, 35].
The authors successively train a separate neural network to
solve these artificially created tasks and understand how dis-
entangled the representations are, w.r.t. the original latent
factors. The reported results may be seen as inconclusive,
as they do not clearly indicate how disentangled representa-
tions directly impact MTL performance.

In this work, we show that disentanglement in a repre-
sentation space can be used as a general prior for MTL.
After using disentanglement to mine for auxiliary tasks, an
MTL model extracts a model-specific embedding that takes
advantage of the combination of the principal and newly
discovered labels, improving downstream performance on
the principal task.

6. Detailed Mathematical Background
6.1. Disentanglement Framework
At a high level, disentangled representation learning aims
to learn a representation of the data where different latent
factors are represented independently of the others; that is,
we have a factorization (a.k.a. disentanglement) of the rep-
resentation. There are different ways to properly formalize
this general concept. In this work, we rely on the definition
and approach of disentanglement proposed by [13].

The primary assumption behind this framework is the
manifold hypothesis, i.e., that high-dimensional data lies
near a lower-dimensional manifold. Building upon this idea
and assuming that independent factors generate the data, it
becomes reasonable to see the manifold as a product mani-
fold: M = M1 ×M2 × . . . ×Mk. In such a topological
structure, each Mi, i ∈ {1 . . . k}, is orthogonal to the oth-
ers, and thus, we would like it to represent at most one latent
factor of the data. This concept is adequately formalized by
relying on the topological construct of a metric space and
employing what we call a weak isometry between the data
and the learned product manifolds, defined as follows.

Definition 6.1 (Product Manifold Disentanglement [13]).
Let M = M1 × M2 × . . . × Mk be the data product
manifold, embedded in a high-dimensional space X . Fur-
thermore, let us assume that we have access to some met-
ric that endows these two spaces with the properties of a
metric space. A representation z in some product space
Z = S1 × . . . × Sk, such that dim(Z) ≪ dim(X ), is
disentangled with respect to M if there exists a diffeomor-

phism (a bijection with a smooth inverse) g̃ : Z → M such
that ∀x1, x2 ∈ M;∀i ∈ 1, . . . , k:

dMi
(xi

1, x
i
2) > 0 =⇒ dSi

(si1, s
i
2) > 0 ,

dMi
(xi

1, x
i
2) = 0 =⇒ dSi

(si1, s
i
2) = 0 =⇒ si1 = si2 ,

where xi
j is the projection of xj on Mi and sijΠig̃

−1(xj)
with Πi being the projection onto the subspace Si ⊂ Z .

As a result, according to Definition 6.1, given a pair of
data (x1, x2) known to differ in the h-th latent factor only,
their learned representations are considered fully disentan-
gled if they have fixed projections in all the submanifolds
{Mi}ki=1, except for the h-th.

To provide a pictorial understanding of the above defini-
tion, we provide the following example to the reader: Con-
sider the simple case where the data live in M = R2 =
R × R, embedded in an ambient space X of arbitrary (but
finite) dimension. We can see this data manifold as the
Cartesian plane and label the two submanifolds as the well-
known x and y axes. Given that both are diffeomorphic to
open subsets of the real number line, our goal is to learn
a latent representation where the x-coordinate is embedded
into one subspace and the y coordinate into the other, such
that they remain separate. In this simple example, the dis-
entangled representation would correspond to an intuitive
change of basis in R2. Very similarly, any product manifold
composed of n 1D, connected, non-compact submanifolds
without boundary, could be represented in latent space as
Rn while respecting Definition 6.1. This approach comes
with a great advantage when it comes to its application in
generating auxiliary tasks, which is that each submanifold
can have a different dimensionality. Therefore, we can gen-
eralize the intuitive idea of an “axis of variation” and look
for auxiliary tasks in a higher-dimensional space instead of
being limited to 1D representation axes as in Variational
Auto-Encoders (VAE)-based methods [17, 21].

6.2. Disentanglement Training Procedure
In practice, we consider a finite-dimensional normed vec-
tor space Z ⊆ Rd, containing the disentangled latent rep-
resentation, obtained as the output of an encoder network
f : M → Z . Note that Z is a particular case of a manifold.
Therefore, our latent disentangled representation takes the
form of a Cartesian product space Z = S1×S2× . . . ×Sk,
such that ∀i, j ∈ {1 . . . k}, with i ̸= j, Si ∩ Sj = {0}.
As mentioned above, each subspace encodes a generalized
notion of a “axis of variation”. The representations in each
subspace are then aggregated, and a decoder g maps the re-
sulting vectors back to the input data space. More specifi-
cally, each Si ⊆ Rd is defined in such a way that it has the
same ambient dimensionality as the product space Z. Using
a specific regularization (defined in Equation 9), each sub-
space will have only a few non-zero entries, and the non-
zero entries in one subspace will be zero in the others. This



encourages orthogonal and sparse representations for each
Si, which can then be summed to produce a latent code.
Subsequently, this latent code is fed into a decoder g that
approximates the inverse of f . Thus, the decoder is the ap-
proximation of the function g̃ in Definition 6.1.

To wrap up, the representation framework operates in the
following way:

x
f−→ z

{pi}−−−−→
i=1...k

{si}
∑

i−−−−→
i=1...k

z̃
g−→ x̃ , (4)

where the pi’s are nonlinear operators, and z̃ and x̃ are the
aggregated latent representation and the reconstructed in-
put, respectively. The visual representation of this process
is shown in Figure 2, within the red rectangle. In the fol-
lowing, we describe how it is possible to parameterize this
framework with neural networks and train it end-to-end.

The maps f and g are approximated using an autoen-
coder architecture. The encoder f receives non-i.i.d data
pairs (x(1), x(2)) and produces the latent representations
(z(1), z(2)), with the decoder g that approximates the in-
verse of f . The reason for training with input pairs is to
have a sampling procedure designed to induce weak super-
vision, requiring a pair of images known to vary in at least
one latent factor (this is crucial to later isolate the change
from x(1) to x(2) in one subspace). Additionally, a set of
k neural networks pi, i ∈ {1 . . . k} called projectors are
trained simultaneously to map the latent codes in the sub-
spaces {Si}ki=1, each of which contains the corresponding
submanifold {Mi}ki=1.

An initial warm-up phase trains f and g only to mini-
mize the data reconstruction error, which is needed to learn
the global data manifold M. After this warm-up phase, four
differentiable constraints that regard different aspects of the
desiderata defined in Section 6.1 are added, posing the fol-
lowing optimization problem:

L = Lrec + β1(Ldist +Lspar)+ β2Lcons + β3Lreg , (5)

where β1, β2, and β3 are Lagrange multipliers. Lrec cor-
responds to a reconstruction loss, implemented in prac-
tice as the squared error between the input and the recon-
structed images following the aggregation operation of the
subspaces in the latent space. It is defined as:

Lrec = ∥x− x̄∥22 , (6)

x̄ = g

(∑
(p1(f(x)), . . . , pk(f(x))

)
. (7)

This term is necessary to learn the global structure of the
manifold M.

The distance loss, Ldist, is a contrastive loss term that
follows the oracle O, defined in Section 6.1, which calcu-
lates the subspace Si where the projections of the images

in the pair (x1, x2) differ the most and encourages the pro-
jection representation of the two input images onto the sub-
spaces not selected by O to be as close as possible. It is
defined as:

Ldist =

k∑
i=1

(1− λi)δ
2
i + λi max(m− δi, 0)

2 , (8)

where λi = 1 if O(z(1), z(2)) = i and 0 otherwise, while m
is a hyperparameter that constrains the points to be at least
at a distance m from each other.

Lspar is a L1 constraint which promotes sparsity and or-
thogonality between the subspaces. It is defined as:

Lspar =

k∑
i=1

∥pi(f(x))⊙
k∑

j ̸=i

pj(f(x))∥1 . (9)

This constraint allows the disentanglement framework to
use the sum operation to aggregate the subspaces. The min-
imization of Lspar promotes sparsity and orthogonality be-
tween the subspaces, encouraging each one to have a few
non-zero entries that will be zero in the others. In our finite-
dimensional setting, this loss is equivalent to imposing that
the product space is a direct sum of the subspaces.

Lcons, namely the consistency loss, encourages each
projector pi to be invariant to changes in subspaces Sj , j ̸=
i. It is defined as:

Lcons =

k∑
i=1

||pi(fθ(x̂si))− si||22 , (10)

with si = pif(x1) and x̂si = g(
∑

(pif(x1), pj ̸=if(x2))).
Along with Ldist, this constraint encourages a metric defi-
nition of disentanglement, i.e., given a pair of images that
are different in image space w.r.t. to a particular factor, they
should be equally different in the latent representation of
that attribute, hosted only in one submanifold which com-
poses the global, product manifold of the latent representa-
tion.

Finally, the regularization loss Lreg introduces a penalty
that ensures the choice of the oracle O is uniformly dis-
tributed among the subspaces to avoid the collapse of infor-
mation. This is necessary given the initial warm-up period
with only the reconstruction loss being active, as there is no
guarantee that information will be equally spread out among
the subspaces. It is defined as:

Lreg =

k∑
j=1

(
1

N

N∑
n=1

An,j −
1

k

)2

, (11)

with A ∈ RN×k being the practical implementation of the
oracle indicator variables of Equation 8 in a batch of N
pairs, obtained by applying a weighted softmax to the dis-
tance matrix of pairs in each of the k subspaces.



7. Theoretical analysis

Under the assumption that tasks living in orthogonal spaces
help increase MTL performance [42], we now show why
our method regularizes the learning procedure and implic-
itly guides it towards orthogonal feature spaces for each
task. For the rest of the paragraphs, we assume perfect
disentanglement i.e., L = 0 in Equation 5, to study the
behavior of the system at a minima of the problem. Let
X ∈ RN×d be the vectorized representation of the dataset
(d = w×h× c), Sα ∈ RN×h be the subspace that contains
the representation of the principal task, forced by Equa-
tion 3, and Sj ∈ RN×h be the subspace that contains the
representation of the auxiliary task, as described previously.
We then obtain the following results:

Proposition 7.1. The representations Sα and Sj are not
correlated. Furthermore, given the respective distance ma-
trices ∆α

ab = ||s(a)α − s
(b)
α ||2, ∆j

ab = ||s(a)j − s
(b)
j ||2,

a, b ∈ {1, . . . , N}, and some scalar γ ∈ R, we have
∆j ̸= γ∆α.

Proof. The uncorrelatedness of the representations is a di-
rect consequence of the complete minimization of the spar-
sity and orthogonality constraint Lspar (Equation 9). For
any vector x ∈ X, we have that:

∥pα(f(x))⊙ pj(f(x))∥1 = 0 , (12)

which directly implies that ⟨Sα, Sj⟩F = 0. Assuming
without loss of generality that the representations are cen-
tered at 0, this leads to the conclusion that the two represen-
tations are uncorrelated as they have 0 covariance.

Similarly, the second part of the proposition is a direct
consequence of the complete minimization Lspar and the
consistency constraint Lcons (Equation 10). The complete
minimization of Lcons makes the non-linear operator pi in-
variant to changes in the subspaces Sj ,∀j ̸= i. [13]. Now,
we proceed by contradiction. Assume that the two dis-
tance matrices are proportional to each other’s scalar mul-
tiple. Then, having proportional pairwise distances would
imply that there exists a linear function ω : Z −→ Z
pj(f(x)) = ω(pα(f(x))), implying that the vector in the
auxiliary subspace is a function of pα(f(x)). A straight-
forward example of this would be a permutation followed
by scaling. If this were the case, pj(·) would not be invari-
ant to the changes in Sα, as it directly depends on it, so by
contradiction, we can conclude that ∆j ̸= γ∆α.

Proposition 7.2. Let the overlap matrix of two square ma-
trices A and B be defined as VAB = ATB. Then, the over-
lap matrix between the eigenvectors of the Gram matrices
Gα = SαST

α and Gj = SjST
j is different from the Identity

matrix In, i.e., they have different eigenvectors.

Proof. From Proposition 7.1, we have that Gα ̸∝ Gj , mean-
ing that the pairwise similarities in both spaces are not pro-
portional (intended as equal or different up to a scalar fac-
tor). Given that both Gram matrices are Symmetric and Pos-
itive Semi-Definite, by the Spectral Theorem [47], we can
diagonalize them and obtain a set of n orthonormal eigen-
vectors with real eigenvalues:

Gα = UαΛαUT
α , (13)

Gj = UjΛjUT
j . (14)

The reason why we are interested in these eigenvectors
is that they contain orthogonal directions of pairwise simi-
larity, thus indicating the pairwise groupings present in the
dataset. By simply calculating the overlap matrix on the
above eigendecomposition, it is straightforward to see that:

VGαGj
= (UαΛαUT

α )TUjΛjUT
j .

= UαΛαUT
α UjΛjUT

j .

̸= In .

Therefore, the eigenvectors do not perfectly align, and thus,
the fixed directions of pairwise similarities are different in
the two subspaces.

Proposition 7.1 implies that the relationship between
d(s

(a)
α , s

(b)
α ) will not influence the one between d(s

(a)
j , s

(b)
j ),

given that the information encoded in each subspace is dif-
ferent. Furthermore, due to Proposition 7.2, the structure of
the pairwise similarity between points (given by the eigen-
vectors of the Gram matrices) is different in the two sub-
spaces. Thus, a clustering algorithm that relies on pairwise
similarity, such as HDBSCAN, will produce different clus-
terings.

8. Additional Experiments
Implementation details. Our code is written within the
PyTorch Lightning framework. We fix the batch size to 32
and the learning rate to 0.0005 for all the experiments and
use the AdamW [34] optimizer. The disentanglement model
is trained for 40 epochs on 3D Shapes [3] and 400 epochs
on FACES [11], CIFAR-10 [23], SVHN [40], and Cars [22].
The first quarter of the epochs is used as a warm-up period
where only Lrec is active. The multipliers β1, β2, β3 follow
an exponential warm-up routine after the reconstruction-
only phase, such that the constraints they modulate are gen-
tly introduced in the optimization procedure. The projectors
pi, i ∈ {1 . . . k} are implemented as two layers MLPs. Fi-
nally, all the MTL models were trained for 150 epochs. All
experiments were performed on NVIDIA RTX 3090 GPUs.

Synthetic data. To showcase the capabilities of Detaux,
we begin our experimental validation with the 3D Shapes



dataset, a common benchmark in the disentanglement lit-
erature [13, 21, 31]. 3D Shapes comprises six generative
factors: hue of the floor, hue of the wall, hue of the object,
scale, shape, and orientation. It is parametrically generated
through the Cartesian product between these factors, result-
ing in 480,000 images. To adapt it to our case, we treat the
classification of one generative factor as principal task and
pretend that we do not know the others.

Due to the synthetic nature of the images in 3D Shapes,
the execution of classification tasks with a neural network
can be excessively easy, leaving a limited possibility for
improvement through MTL. Specifically, using a simple
VGG16 [44] model, we achieve perfect accuracy in each of
the six possible tasks. Thus, to render this setting slightly
more complicated, we add salt-and-pepper noise to 15% of
the image pixels. With the presence of noise, the classifi-
cation of the object scale (4 classes) becomes challenging.
Hence, we have chosen it as the primary task for our exper-
iments. The number of subspaces k is set to 10 as in [13].

As described in Section 2.2, we cluster the most disen-
tangled subspace (not considering the one dedicated to prin-
cipal task) according to the loss of disentanglement. The
HDBSCAN minimum cluster size hyperparameter is set to
2% of the number of data points N . In this experiment, the
subspace chosen for the clustering coincides with the one
encoding the information regarding the hue of the object (10
classes). Given the optimal disentanglement on 3D Shapes,
the auxiliary labels generated by the clustering procedure
almost perfectly match the ground-truth object hue labels,
having homogeneity and completeness scores of 0.999.

We feed the noisy 3D Shapes images and the enriched
label set into an MTL hard parameter-sharing architecture
with a VGG16 [44] as the backbone and compare Single-
Task Learning (STL) vs MTL. For this comparison, we need
to perform a train-test split on 3D Shapes, which is non-
trivial since the possible combinations of the latent factors
in the dataset are present exactly once. Therefore, we split
the dataset based on the floor and wall hue labels, allocating
the images that contain 5 of the 10 values for both factors
only to the test set, resulting in a 75-25 train-test split. On
the principal task, MTL achieves an accuracy of 0.889, out-
performing the 0.125 obtained by STL by a large margin,
i.e. +0.746.

Why return to image space for MTL? One may ask why
we did not work directly in the latent feature space found by
the disentanglement procedure. We did some preliminary
experiments in this direction, but they yielded inconclusive
results and raised implementation issues that are beyond the
scope of this paper. The reason is that most MTL frame-
works for image classification require convolution, which
is not well-defined for feature vectors living in the latent
space. Another reason is that Detaux works at a represen-

tation level, regardless of any classification aim induced by
a specific classification framework. Its sole purpose is to
reveal, together with the subspace dedicated to the princi-
pal task determined by the initial labels, other orthogonal
complementary subspaces, which can be assumed as tasks if
they admit clustering. The output of Detaux is an enriched
set of labels that can be exploited with any MTL model. In
addition, Detaux allows us to visualize and interpret the dis-
entangled subspaces since it reconstructs the images. This
procedure allowed us to understand that, in the toy exam-
ple in 3D Shapes [3], the additional task corresponds to the
hue of the object (one of the generative factors). Unfortu-
nately, in more complex real cases, clear interpretation be-
comes more challenging, barely revealing the gender as an
additional task in the FACES [11] benchmark. In the other
cases, we had no clue. However, it should be noted that we
focused on producing a framework that transforms a single
task classification problem into a MTL one. We left even-
tual interpretability analyses for future work.

Why only use a single auxiliary task? In our experiments,
we always use a single auxiliary task extracted from the
most disentangled subspace (excluding the one allocated for
the principal task). We made this choice to be able to test
our research question - can disentanglement help us dis-
cover at least one subspace from which to extract a good
auxiliary task? - while keeping the presentation of the var-
ious stages of the pipeline as straightforward as possible.
Furthermore, the number of additional tasks places a non-
trivial computational burden on the parameter-sharing mod-
els we implement for MTL. The scalability of such models
is an interesting research direction, which we believe is be-
yond the scope of this work. Hence, the use of more auxil-
iary tasks is deferred to future work.

Are the MTL results statistically significant? To empiri-
cally validate if the results presented in Table 1 are statisti-
cally significant, we focus on the SVHN [40] dataset, where
only MTI + Detaux outperforms the STL baseline. There-
fore, we compare with the best competitor, MAXL [28],
over five different seeds. For comparison, we conducted a
two-sample t-test on the results to check if the means are
significantly different from each other. Considering a sig-
nificance level of 0.05, we obtain a p-value of 0.0004, which
confirms that the results are significant. On average (over
these five runs), MTI + Detaux reports a 1.1% gain in ac-
curacy compared to MAXL.

What does disentanglement look like from a qualitative
perspective? Figure 3 and Figure 4 provide a qualita-
tive perspective of the disentanglement on the 3D Shapes
and FACES datasets. In both visualizations, the outermost
columns (far left and far right) represent the two images



Figure 3. Visual interpretation of the disentanglement procedure
on 3D Shapes with noisy input. The disentanglement model fac-
torizes the representation and forces the principal task (i.e., the
object scale) in the first subspace, albeit with other factors of vari-
ation. The remaining factors (floor, wall, and object hues) are all
disentangled in different subspaces and can be used to discover
additional auxiliary tasks. Best viewed in color.

composing an input image pair, respectively. The adjacent
columns (near the outermost) depict the reconstruction of
the images. The three central columns display variations
corresponding to specific factors encoded in individual sub-
spaces. This is done by linearly interpolating between the
representations of the pair and then reconstructing the re-
sult. Each row highlights a distinct subspace, showcasing
how different generative factors are disentangled and iso-
lated for targeted analysis.

In Figure 3, we can see how the disentanglement model
factorizes the representation and forces the principal task
(i.e., the scale of the object) in the first subspace, although
with other factors of variation. Furthermore, we can see that
setting a higher number of subspaces than generative factors
is not an issue, since it is possible for the model to collapse
the variation in certain subspaces.

Figure 4 shows how the disentanglement procedure be-
haves when used on real data. Specifically, it becomes clear

Figure 4. Visual interpretation of the disentanglement on FACES.
With real data, it becomes more difficult to factorize and visualize
true generative factors. The naked eye can definitely realize that
the variations between the image pair are contained in different
subspaces. The first row shows the effect of our supervised oracle,
which forces the principal task (i.e., the person’s facial expression)
in the first subspace. At the same time, other variations arise in the
other subspaces, allowing us to mine for auxiliary tasks.

that it is more difficult to factorize and visualize true gener-
ative factors. One can notice how only the eyes and mouth,
related to smiling and being happy, are altered, while the
rest of the face remains almost identical. In the second
row, we can see a candidate auxiliary task, where the sub-
ject’s gender seems to change and display different traits.
These traits are indeed diverse from the ones dealing with
the change in emotion, isolated in the first subspace, show-
ing how we can extract orthogonal auxiliary tasks.

Is disentanglement crucial for auxiliary task discovery?
(cont.d) Figure 5 highlights from a qualitative point of
view the significance of disentanglement for discovering
auxiliary tasks. The visualizations show the feature spaces
of the FACES dataset in two different settings. Subfigure
(a) illustrates the entangled feature space, where representa-
tions remain highly mixed, leading to less discernible clus-
ters. Conversely, subfigure (b) depicts the most disentan-
gled subspace, where the features are clearly grouped into
distinct and interpretable groups. The high-dimensional
feature representations are reduced to 3D space using PCA,
and the clusters are identified using the HDBSCAN [4] al-
gorithm. The evident separation in the disentangled sub-
space underscores its importance for auxiliary task min-



Figure 5. 3D visualization of the discovered auxiliary task in the
entangled autoencoder feature space (a) and the most disentangled
subspace (b), on the FACES dataset. The high-dimensional repre-
sentations are projected to 3D space using Principal Component
Analysis (PCA). Different colors mean different clusters found by
HDBSCAN. The representation in (a) is highly entangled, while
the one in the disentangled representation space (b) displays a clear
and reasonable grouping. Best viewed in color.

Table 2. Classification accuracy on the FACES and Cars datasets
when using different clustering algorithms to generate the aux-
iliary task labels of Detaux. MTL results are obtained using
HPS [5]. In parentheses, the change in performance over STL.

Clustering FACES [11] ↑ Cars [22] ↑
STL – 0.915 0.711
MTL HDBSCAN [4] 0.951 0.789

MTL KMeans [29] 0.953 (+0.038) 0.789 (+0.078)
MTL KMeans++ [1] 0.934 (+0.019) 0.790 (+0.079)
MTL MeanShift [8] 0.963 (+0.048) 0.783 (+0.072)

Table 3. Normalized and Adjusted Mutual Information between
the principal and auxiliary task labels generated using Detaux.

Dataset Normalized MI ↓ Adjusted MI ↓
FACES [11] 0.1405 0.1390
CIFAR-10 [23] 0.0033 0.0031
SVHN [40] 0.0033 0.0030
Cars [22] 0.0311 0.0085

ing. These results also emphasize from a qualitative point
of view that disentanglement not only simplifies represen-
tation learning but also facilitates structured auxiliary task
discovery.
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