
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GAMA: A Neural Neighborhood Search Method
with Graph-aware Multi-modal Attention for Ve-
hicle Routing Problem

Anonymous authors
Paper under double-blind review

Abstract

Recent advances in neural neighborhood search methods have shown potential
in tackling Vehicle Routing Problems (VRPs). However, most existing approaches
rely on simplistic state representations and fuse heterogeneous information via
naive concatenation, limiting their ability to capture rich structural and semantic
context. To address these limitations, we propose GAMA, a neural neighborhood
search method with Graph-aware Multi-modal Attention model in VRP. GAMA
encodes the problem instance and its evolving solution as distinct modalities
using graph neural networks, and models their intra- and inter-modal interac-
tions through stacked self- and cross-attention layers. A gated fusion mecha-
nism further integrates the multi-modal representations into a structured state,
enabling the policy to make informed and generalizable operator selection deci-
sions. Extensive experiments conducted across various synthetic and benchmark
instances demonstrate that the proposed algorithm GAMA significantly outper-
forms the recent neural baselines. Further ablation studies confirm that both the
multi-modal attention mechanism and the gated fusion design play a key role in
achieving the observed performance gains.

1 Introduction

In recent years, Learning to Optimize (L2O) Kool et al. (2018); Joshi et al. (2019); Hottung et al.
(2021) has emerged as a promising paradigm for solving combinatorial problems like VRP by
training data-driven models to learn optimization strategies from experience. Unlike traditional
hand-designed heuristics, L2O approaches can adapt to new problem instances, generalize across
distributions, and leverage structural patterns in data, making them an attractive alternative for
scalable and automatic optimization. Within the L2O framework, a growing body of work focuses
on Learning to Improve (L2I) Wang et al. (2024); Kong et al. (2024); Sultana et al. (2024) methods,
which iteratively refine a given (possibly suboptimal) solution through the application of prede-
fined local search operators. Compared to end-to-end construction policies (L2C) Bi et al. (2024);
Lin et al. (2024); Mozhdehi et al. (2024); Liu et al. (2025), this approach naturally aligns with the VRP
search process, where the solution quality is typically improved through iterative local modifica-
tions. By mimicking this improvement-based strategy, L2I enables the agent to effectively navigate
the solution space and escape from poor local optima.
In this work, we focus on the L2I framework with operator selection, a type of neural neighborhood
search method for VRP, where each policy decision involves selecting the most suitable operator
to apply to the current solution. This formulation treats the operator as the atomic action in a
reinforcement learning framework, and the policy is trained to select operators that maximize
long-term solution quality. While this approach holds strong potential, its effectiveness hinges on
two crucial components: the quality of the learned state representation and the capability of the
policy to make informed operator selection decisions.
However, most existing neural neighborhood search methods rely on simplistic or coarse-grained
features extracted from high-level signals such as objective values of the current solution Choong
et al. (2018), the last applied operator Qi et al. (2022), or static instance descriptors Yi et al. (2022).
These representations often fail to capture the structural and spatial characteristics embedded

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

within the evolving solution, which are critical for accurately understanding the current search
state. Furthermore, although some studies attempt to incorporate diverse features (e.g., historical
trajectories, instance characteristics, and solution metrics), these heterogeneous inputs are typi-
cally combined via simple concatenation Lu et al. (2019); Guo et al. (2025). Such an approach fails
to capture the underlying semantic relationships among the inputs, potentially causing represen-
tational entanglement and scale inconsistency. These limitations can degrade the learned policy’s
ability to generalize across different instances and search scenarios.
To overcome the limitations mentioned above, we propose GAMA, a novel graph-aware
multimodal attention model for neural neighborhood search in VRP. GAMA captures semantic
interactions between the problem instance and its current solution through structured GNN en-
coding and attention-based fusion. T he learned representation offers informative context to guide
the selection of effective neighborhood operators. Our main contributions are summarized as fol-
lows:

1. We present an effective neural neighborhood search method for VRP that adaptively se-
lects search operators based on the current search state, enabling dynamic and informed
solution improvement.

2. We design a graph-aware multimodal attention encoder that independently encodes the
VRP instance and current solution as distinct semantic modalities using graph convolu-
tional networks. Intra-modality and inter-modality dependencies are modeled through
stacked self-attention and cross-attention mechanisms.

3. We incorporate a gated fusion module to integrate the multimodal representations, pro-
viding the policy network with rich, structured state features that improve generalization
and decision-making quality across diverse problem instances.

2 Related Work

Recently, learning-based approaches have emerged as a promising alternative by enabling data-
driven, adaptive decision-making. Within the Learning-to-Optimize (L2O) paradigm, three main
sub-fields have gained prominence: learning-to-construct (L2C), learning-to-predict (L2P) solvers,
and learning-to-improve (L2I). Related literature can be found in the appendix A.1.
Adaptive Operator Selection (AOS) aims to automatically choose the most suitable operator at
each decision point to guide the search process effectively. With the rise of machine learning,
particularly reinforcement learning (RL) Guo et al. (2025); Liao et al. (2025), learning-based AOS
has emerged as a promising direction that formulates operator selection as a sequential decision-
making problem Aydin et al. (2024). This paradigm aligns with the broader Learning to Improve
(L2I) framework, where learning agents are trained to iteratively refine solutions.
Despite its potential, learning-based AOS faces several critical challenges:
(1) How to construct informative state representations:
A key to effective operator selection lies in how the state of the search process is represented. Most
existing approaches use macro-level handcrafted features, such as objective values Lu et al. (2019),
operator usage history Qi et al. (2022), solution diversity Handoko et al. (2014), and computational
resources consumed/left Dantas & Pozo (2022). These features offer abstract insights but often
fail to reflect the fine-grained structural details of the current solution. Especially for combina-
torial problems like VRP or TSP, where the solution space is graph- or sequence-structured, such
high-level features are insufficient. While macro features are relatively easy to design, micro-level
features—such as solution structure, partial tours, or local neighborhoods—offer a more direct and
fine-grained view of the ongoing search. For problems with fixed-length solution encodings (e.g.,
continuous optimization or knapsack), vector-based representation is effective Tian et al. (2022).
However, in routing or scheduling problems, where solutions are inherently combinatorial and
dynamic, micro-level representation is less explored due to its complexity. Although some efforts
encode static problem structures using GNNs or attention mechanisms Duan et al. (2020); Lei et al.
(2022), they typically overlook how solutions evolve and how operators transform them, which
limits their effectiveness in adaptive decision-making.
(2) How to integrate heterogeneous information sources effectively:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Some Learning-based methods attempt to incorporate diverse types of input features—such as so-
lution embeddings, operator identity, historical usage, and search trajectory. A common practice
is direct feature concatenation Guo et al. (2025); Lu et al. (2019), but this approach ignores the
semantic heterogeneity among these inputs. Such naive integration may result in feature redun-
dancy or conflict, thereby degrading the quality of learned policies. A principled fusion mechanism
is needed to resolve semantic inconsistencies and encourage synergy across modalities.
As a result, while existing learning-based AOS frameworks have demonstrated promising results,
they still face limitations in state encoding granularity, operator-context modeling, and semantic
feature fusion.

3 Methodology

We now present the details of our Graph-Aware Multimodal Attention model (GAMA), designed
to enable adaptive neural neighborhood search for VRP through structured learning and RL-based
operator selection.

3.1 Overall Framework

The proposed GAMA framework is built upon a local search-based optimization process, aiming
to adaptively select operators during the search, such as 2-opt, swap, insertion and so on. Unlike
traditional methods that rely on fixed or handcrafted operator sequences, GAMA leverages struc-
tural representations of both the problem instance, evolving solution, and optimization history to
guide operator selection dynamically. The details of the operators are presented in supplementary
material. Once an operator is selected, it is applied exhaustively in the neighborhood of the current
solution, the best improving move is then adopted to update the solution. Figure 1 illustrates the
overall architecture of GAMA, and Algorithm 1 summarizes the procedural flow.
For each episode m, the m-th problem instance is loaded, and the initial solution δ is constructed
(line 4). Given the current policy, the solution is then iteratively refined over T steps. At each
iteration step t, the current state st, together with the corresponding problem instance, is encoded
by the GAMA encoder into a unified representation st. Given this representation, the RL agent
parameterized by θ selects an operator at ∼ π(·|st; θ) from a set of low-level local search operators.
The selected operator at is applied to transform the current solution into a new solution δt+1. This
transition ⟨δt, at, δt+1⟩ is stored in an experience memory buffer B, which is then used to update
the policy network after T steps. To escape local optima, GAMA monitors the progress of the
best-found solution. If no improvement is observed for L consecutive iterations, a shake procedure
Mladenović & Hansen (1997) is triggered to perturb the current solution using a randomly selected
operator, enhancing long-term exploration (lines 15-16). The iteration continues until a termination
condition is met, such as reaching the maximum number of steps T . This process is repeated across
multiple problem instances for NoE episodes. Upon completion, the policy πθ(·) is trained and
ready for deployment.

3.2 Markov Decision Process (MDP)

The agents’ selection procedure can be modeled as a Markov Decision Process (MDP), where the
action space consists of operator choices, and the environment transitions are defined by applying
the best move in the selected operator’s neighborhood:
State. At time t, the state is defined to include 1) problem features, 2) features of the current
solution, and 3) optimization history, i.e.,

st = {Gdis,Gsol,Xt, a, e,∆, η} (1)

where Gdis denotes the distance graph, whose edge weights represent the Euclidean distance be-
tween customer nodes; Gsol denotes the solution graph, indicating the current solution topology;
Xt represents the node features at time t; the full definition of Gdis, Gsol, and Xt is deferred to the
supplementary material; a denotes the operator (action) selected at the previous step; e ∈ {−1, 1}
is a binary indicator representing whether the previous action a was effective (i.e., whether it led
to an improved solution). ∆ is the gap between the current solution and the current best solution,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: GAMA Learning Process
Input : Maximum episodes NoE, maximum timesteps T , max no improvement threshold L
Output : the learned policy πθ(·).

1 Randomly initialize the policy πθ(·)
2 for episodem = 1 to NoE do
3 // Initialization
4 Load instance and construct initial solution δ
5 Initialize experience memory buffer B ← ∅
6 // Iterative local search process
7 for timestep t = 1 to T do
8 k = 0; Extract the state feature and set state st from GAMA encoder.
9 Select the next operator: at ← πθ(st))

10 Apply operator and update solution: δt+1 ← Local Search(δt, at)
11 Save experience ⟨δt, at, δt+1⟩ to B
12 if f(δt+1) < f(δ∗) then
13 Update δ∗ = δt CnotI ← 0
14 else
15 CnotI ← CnotI + 1
16 t = t+ 1
17 if CnotI ≥ L then
18 k = k + 1

19 Compute the phase reward: r(k) = f(δ(0))− f(δ∗(k))

20 Assign r(k) to all transitions of this phase in B
21 Apply shake: δt ← Shake (δt)
22 // Policy learn and update
23 Sample random mini-batch of experiences from B and Update πθ using mini-batch.
24 END

i.e., ∆ = f(δ)− f(δ∗), where δ is the current solution and δ∗ is the current best solution so far; η
measures the change in objective value caused by the last action, defined as the difference between
the current solution cost and that of the previous step.
Action. The action a ∈ A refers to the selection of a specific local search operator at iteration step
t, where A is the predefined operator set.
Reward. Let a single improvement phase k be defined as the sequence of operator applications
between two consecutive shake operations. The reward function is defined as rt = f(δ0) −
f(δ∗(k)), ∀t ∈ Tk , which is computed at the end of each improvement phase k. δ(0) is the initial
solution of the phase and δ(k) is the best solution obtained within this phase. All operators used
in the same iteration will receive the same reward Lu et al. (2019), calculated as the cost difference
between the initial and current best solution found during this improvement phase k.
Policy. The policy πθ governs the selection of local search operators based on the current state st,
which is parameterized by the proposed GAMA model with parameters θ.
State Transition. The next state st+1 is originated from st by performing the selected opera-
tor at on the current solution, i.e., P : st

at←− st+1, which is tied to the solution transformation.
Specifically, the solution transformation under the search policy is defined as ∆search : δ

a−→ δ′ =
LocalSearch(δ), where δ′ denotes the best neighbor obtained by exhaustively evaluating all candi-
date neighbors of the current solution δ within the defined neighborhood.

3.3 GAMA Encoder

In GAMA, the encoder plays a critical role in transforming the raw input—comprising the problem
instance, the current solution, and the search dynamics—into a compact, informative representa-
tion that guides the reinforcement learning (RL) agent.
Unlike traditional encoders that focus solely on static problem structure or solution states, our
encoder is designed to integrate three complementary sources of information (as illustrated in Fig-
ure 1) : 1) the problem instance graph, 2) the solution graph, and 3) the optimization trajectory

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1

5

2

6

4

3

Problem Instance &

Current Solution

(State at time 𝑻)

Distance graph

𝓖𝒅𝒊𝒔

Node feature

𝓧t

Solution graph

𝓖𝒔𝒐𝒍

Node feature

𝓧t

Self

Cross

Cross

Self

·

·

Gate

Gate

A
d

d
 &

 N
o

rm

F
e
ed

F
o
r
w

a
r
d

A
d

d
 &

 N
o

rm

A
d

d
 &

 N
o

rm

F
e
ed

F
o
r
w

a
r
d

A
d

d
 &

 N
o

rm

L×

M
e
a
n

p
o

o
lin

g

G
_

G
C

N

M
L

P

G
_

G
C

N

M
L

P

+ 1

5

2

6

4

3

New Solution

(State at time 𝑻 + 𝟏)

M
L

P+

M
L

P

concat concat

Select

Operator

 𝑎

Optimization

history

Optimization-based

features

Replace and Update

Current Solution State Representation Operator Selection New Solution

Self-attention

Self-attention

Cross-attention

GCN encoding Attention-based fusion

Policy 𝝅𝜽

GAMA

Figure 1: Illustration of iteration step within the proposed GAMA method.

features. To achieve this, the GAMA encoder is composed of a Dual-GCN module followed by
L = 3 stacked attention-based fusion layers. Specifically, the Dual-GCN independently processes
the instance-level topology and the dynamic solution-specific structure, generating two sets of
node-level embeddings that reflect both the global problem layout and the local search status.
These two modalities are then passed into the attention-based fusion encoder, which models both
inter- and intra-graph interactions via multi-head cross-and self-attention, allowing the model to
adaptively highlight salient structural and behavioral patterns. In parallel, we embed handcrafted
optimization features into a compact global context vector that reflects the current progress of the
search process. Finally, the fused graph features are concatenated with the optimization context
vector to form the final state embedding. This embedding serves as the input to the policy network,
enabling the RL agent to make informed, context-aware operator selections. By jointly capturing
problem geometry, solution evolution, and search trajectory context, the resulting representation
provides a rich and adaptive state encoding tailored for effective adaptive operator selection. De-
tails are introduced as follows.

3.3.1 Dual-GCN Module

To simultaneously capture both the static structure of the VRP instance and the evolving dynam-
ics of the current solution, we design a Dual-GCN module, which contains two separate graph
convolutional encoders: one for the original problem instance graph Gdis, and one for the current
solution graph Gsol. These two branches operate in parallel, encoding different but complementary
aspects of the optimization state.

Given a shared input node feature matrix Xt ∈ R|V |×d at time step t (including node coordinates,
demands, vehicle load, etc.), we apply a standard graph convolutional network (GCN) to encode
the structural information of the problem instance and the current solution separately:

Hdis = σ
(
D̃

− 1
2

dis G̃disD̃
− 1

2

dis XtWdis

)
Hsol = σ

(
D̃

− 1
2

sol G̃solD̃
− 1

2

sol XtWsol

)
(2)

Here, σ(·) stands for the activation function; G̃ = G + I is the adjacency matrix with added self-
loops; D̃ is the corresponding diagonal degree matrix of G̃; Wdis,Wsol are learnable weight matrices
for each GCN stream.

3.3.2 Attention-based Fusion Module

After obtaining the dual node-level representations Hdis, Hsol ∈ R|V |×dhid from the Dual-GCN
module, we employ a multi-layer attention-based fusion encoder to model both intra- and inter-
modality interactions between the problem instance structure and the evolving solution status.
This allows the encoder to dynamically align and refine the two information streams to form a
unified and context-aware representation. At each fusion layer, we apply the following operations:

(1) Self-Attention: Intra-Graph Encoding To capture the internal dependencies within each
graph modality, we apply a multi-head self-attention mechanism to both the distance graph em-
beddings Hdis and the solution graph embeddings Hsol.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Let the input embedding of a given modality at time step t be H ∈ R|V |×d, where |V | is the number
of nodes and d is the embedding dimension. For each attention head m ∈ {1, . . . ,M}, we compute

Qm = HWQ
m , Km = HWQ

m Vm = HWV
m , (3)

where WQ
m ,WK

m ,WV
m ∈ Rd×dk are learnable projection matrices and dk = d/M is the dimension

per head. The attention output for head m is

headm = softmax
(
QmK⊤

m√
dk

)
Vm, headm ∈ R|V |×dk . (4)

The outputs of all M heads are concatenated along the feature dimension and projected back to d:
Hs = Concat(head1, . . . , headM)WO, WO ∈ RMdk×d. (5)

Thus, Hs ∈ R|V |×d preserves the original dimensionality.
This step allows the model to emphasize locally salient patterns such as customer clusters or over-
congested sub-routes. We denote the outputs of two self-attention modules in Figure 1 as Hs

dis and
Hs

sol, respectively.

(2) Cross-Attention: Inter-Graph Alignment The cross-attention module is designed to cap-
ture inter-modal interactions between problem features and current solution features. The core
idea behind this module is to learn pairwise associations between the two modalities and then
propagate information from one to the other accordingly. In the following part, we introduce the
cross-attention mechanism in detail.
To model the associations between the problem and solution feature sequences, we first transform
each modality into three components — query, key, and value — through learned linear projections.
For convenience, we use the single-head attention mechanism to describe this process.Then, the
outputs are calculated as:

Hc
dis = softmax

(
QdisK

T
sol√

dk

)
Vsol Hc

sol = softmax
(
QsolK

T
dis√

dk

)
Vdis (6)

These operations allow each node in the distance graph to attend to the solution structure and vice
versa, learning how current routing decisions relate to the underlying problem geometry.

(3) Gated Fusion: Adaptive Feature Integration To balance the retained modality-specific
features and the cross-enhanced signals, we introduce a gating mechanism to adaptively fuse the
self- and cross-attention outputs:

H̃ = α⊙Hs + (1− α)⊙Hc where α = σ
(
[Hs;Hc]Wg

)
. (7)

Here, [Hs;Hc] ∈ R|v|×2d denotes the concatenation along the feature dimension; Wg ∈ R2d×d is
a learnable projection, ⊙ is element-wise multiplication; and σ is the sigmoid function.

We denote the two outputs of gate layers in Figure 1 by H̃dis and H̃sol, respectively. This gating
unit enables the model to control how much cross-modal information should influence each node
representation, mitigating potential negative interference from noisy alignment.
The resulting fused embeddings are first processed by residual connections He et al. (2016) and layer
normalization (LN) Ba et al. (2016), and then passed through a standard feed-forward network (FFN)
sub-layer. This sub-layer is likewise followed by residual connections and layer normalization, in
alignment with the original Transformer architecture.

H(l) = LN
(
H ′ + FFN(l)(H ′)

)
H ′ = LN

(
H(l−1) + H̃(l)

)
(8)

where H(l) ∈ R|V |×d denotes the output of the l-th encoder layer. After L layers of gated fusion
and Transformer blocks, the the final modality-specific node embeddings are denoted as H(L)

dis and
H

(L)
sol . Then, the fused node embeddings are obtained by concatenating the final-layer outputs:

Hfuse = Concat
(
H

(L)
dis , H

(L)
sol

)
(9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.3.3 Final State Representation

To construct the final state representation, we perform mean pooling over the fused node embed-
dings to obtain a graph-level feature vector. This pooled representation is then concatenated with
the optimization-based features to form a Unified Representation.

3.4 Policy πθ : Decision Module

After obtaining the final state representation from the encoder, we feed it into a lightweight deci-
sion module to produce the action distribution over candidate operators. Specifically, as illustrated
in Fig. 1, the decision module consists of two fully connected (FC) layers to produce a vector of
action probabilities. In our work, we adopt the proximal policy optimization Schulman et al. (2017)
algorithm to learn the policy πθ .

4 Experiments

In this section, we perform an in-depth analysis of the experimental results to assess its perfor-
mance across various problem sizes.

4.1 Setup

As recommended, we generate three benchmark datasets with different problem sizes, where the
number of customers N ∈ {20, 50, 100}. Each instance consists of a depot and N customers, all lo-
cated within a two-dimensional Euclidean space [0, 1]2. Customer locations are sampled uniformly
at random. Demands for each customer are independently drawn from the set {1, 2, 3, ..., 9}, the
vehicle capacities are set to 20, 40, and 50, when N = 20, 50, 100 respectively. For our GAMA, the
initial solution δ0 is randomly generated. Table 5 in the appendix gives the parameter settings of
the proposed GENIS, including the GNN model architecture and other algorithm parameters.
In our experiments, evaluation was conducted on 500 unseen instances, and the performance was
measured by the average total distance across all test cases, calculated as the following objective:

min f =
1

M

M∑
m=1

d(Im) (10)

where d(Im) represents the total distance of the solution for the m-th test instance.

4.2 Compared Algorithms

To comprehensively assess the effectiveness of our proposed method, we compare it against a
diverse set of baseline algorithms, including classical solvers, learning-based construction methods,
and learning-based improvement methods. These baselines represent the current state of the art
in both traditional and neural combinatorial optimization for CVRP. (1) Classical Heuristic and
Metaheuristic Solvers, including LKH3 Helsgaun (2019), HGS Vidal (2022), and VNS Amous et al.
(2017). (2) learning to construct methods, including POMO Kwon et al. (2020) and LEHD Luo et al.
(2023), ReLD Huang et al. (2025). (3) Learning to improve methods, including L2I Lu et al. (2019)
and DACT Ma et al. (2021). To evaluate the contribution of the self-and-cross attention mechanism,
we compare our GAMA encoder with GENIS Guo et al. (2025).
Each neural baseline is trained using its publicly available official implementation, with hyperpa-
rameters set according to the original paper’s recommendations. Each algorithm is executed 30
times independently on each dataset. Our experiments were conducted on a server equipped with
2× AMD EPYC 7713 CPUs @ 2.0GHz and 2× NVIDIA A100 GPU cards.

4.3 Results and Discussions

The result is average total distance over 500 test instances, which is calculated as Eq.equation 10,
and the value is the smaller the better. Table 1 presents the performance comparison of all algo-
rithms on CVRP instances of sizes 20, 50, and 100. We report the best objective value, average
objective value over 30 independent runs, and total wall-clock time for each method.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison results for solving CVRP instances of sizes: |V | = 20, 50, and 100.
CVRP20 CVRP50 CVRP100

Best Cost Avg. Cost Time Best Cost Avg. Cost Time Best Cost Avg. Cost Time

LKH3 6.0867 2h 10.3879 7h 15.6752 12h
HGS 6.0807 6.0812 45m 10.3515 10.3548 2h 15.6590 15.6994 4.5h
VNS 6.0827 6.0844 1.5h 10.4140 10.4199 13.5h 15.8843 15.8940 2.6d

POMO (gr.) 6.1111 6.1768 1s 10.5062 10.5702 4s 15.7936 15.8451 20s
POMO (A=8) 6.0904 6.1413 5s 10.4472 10.4930 30s 15.7337 15.7863 2m
LEHD (gr.) 6.3823 6.3946 3s 10.7617 10.7785 13s 17.3004 17.3188 40s

LEHD (RRC=1000) 6.0904 6.0915 30m 10.4771 10.4856 1.1h 15.8419 15.8514 2.9h
ReLD (gr.) 6.1309 6.1401 1s 10.4547 10.4676 3s 15.7558 15.7728 15s

ReLD (A=8) 6.1001 6.1041 5s 10.3877 10.3958 30s 15.6493 15.6593 2m

DACT (T=5k) 6.0811 6.0817 1m 10.3966 10.4038 3m 15.7906 15.8030 8m
DACT (T=10k) 6.0808 6.0813 2m 10.3662 10.3735 6m 15.7321 15.7410 16m
DACT (T=20k) 6.0808 6.0811 4m 10.3513 10.3542 9m 15.6853 15.6925 33m

L2I (T=5k) 6.0831 6.0864 4h 10.4012 10.4310 9.1h 15.8003 15.8914 1.6d
L2I (T=10k) 6.0815 6.0835 8h 10.3803 10.4006 18.3h 15.7207 15.8008 3.2d
L2I (T=20k) 6.0810 6.0820 16.5h 10.3607 10.3787 1.52d 15.6663 15.7334 6.5d

GAMA (T=5k) 6.0823 6.0836 4.5h 10.3966 10.4057 10h 15.7339 15.7389 1.6d
GAMA (T=10k) 6.0810 6.0818 9h 10.3711 10.3742 19h 15.6512 15.7054 3.3d
GAMA (T=20k) 6.0806 6.0810 19h 10.3512 10.3533 1.6d 15.6178 15.6510 6.6d

In the first group, we compare GAMA against classical optimization-based solvers, i.e., LKH3, HGS
and VNS. While these methods remain strong baselines, especially on small-scale problems, their
performance deteriorates as the problem size increases. In contrast, GAMA maintains superior
solution quality across all instance sizes. In the second group, we include POMO, LEHD, and ReLD,
which represent L2C methods. Although these methods offer fast inference, they struggle to reach
high-quality solutions, particularly for larger instances. GAMA consistently outperforms them by
leveraging operator-level adaptation and expressive state representations. The third group consists
of recent L2I methods, including L2I and DACT, which are most closely related to our approach,
their performance degrades as the problem scale increases. Compared with L2I, GAMA achieves
lower objective values with fewer steps. Although GAMA incurs a longer inference time due to
its iterative nature, this trade-off results in significantly better solution quality and more stable
performance across diverse datasets.

4.4 Ablation Evaluation

To verify the effectiveness of various components within GAMA, we systematically remove or
replace different elements and conduct an ablation study. All experiments were run 30 times inde-
pendently. Statistical significance is assessed using the Wilcoxon rank-sum test at a significance
level of 0.05, which ’↑’, ’↓’ and ’≈’ denote that the algorithm is significantly worse than, better
than, and is equal to GAMA, respectively.

4.4.1 Effectiveness of self-and-cross attention

Table 2: Effects of different encoding methods.
CVRP20 CVRP50 CVRP100

best 6.0807 10.3576 15.7306
GENIS mean 6.0814 (↑) 10.3604 (↑) 15.7441 (↑)

std 0.0004 0.0018 0.0053
best 6.0809 10.3551 15.6897

GAMA NG mean 6.0813 (↑) 10.3590 (↑) 15.7001 (↑)
std 0.0003 0.002 0.0042
best 6.0806 10.3512 15.6178

GAMA mean 6.0810 10.3533 15.6510
std 0.0002 0.0012 0.0215

To evaluate the contribution of the
self-and-cross attention mechanism,
we compare our GAMA encoder
with GENIS Guo et al. (2025), which
encodes the problem and solution
graphs separately using dual GCNs
without explicit cross-modal interac-
tion.
As shown in Table 2, although GENIS
performs acceptably on smaller in-
stances (e.g., CVRP20 and CVRP50),
but its mean performance deteri-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

orates significantly on larger in-
stances (CVRP100: 15.7441), likely due to its limited capacity to capture inter-graph dependencies.
In contrast, GAMA leverages self-and-cross attention to model cross-modal dependencies, leading
to consistent improvements across all instance sizes.

4.4.2 Effectiveness of the Gated Fusion Module

T=5k T=10k T=20k
10.35

10.36

10.37

10.38

10.39

10.40

10.41

Va
lu

e

GENIS
GAMA_NG
GAMA

Figure 2: Solution quality distribution of GENIS,
GAMA NG, and GAMA under different inference
budgets (T = 5k, 10k, 20k) on CVRP50.

We further compare GAMA with its ablated
version GAMA NG, which removes the gated
fusion and directly sums attended embeddings.
While GAMA NG outperforms GENIS, it still
underperforms GAMA (e.g., CVRP100 mean:
15.7001 vs. 15.6510), showing that naive fu-
sion limits expressiveness. The gating mecha-
nism adaptively balances modal contributions,
yielding better performance. We further illus-
trate this effect in Fig. 2. GAMA exhibits no-
tably lower variance and better median perfor-
mance across all time budgets.

4.4.3 Generalization Evaluation

We further evaluate the generalization ability
of our GAMA on the classical CVRP bench-
mark proposed by Uchoa et al. Uchoa et al. (2017), which contains diverse instances with cus-
tomer sizes ranging from 100 to 1000. To ensure a comprehensive assessment across varying scales
and distributions, we systematically select several representative instances by randomly sampling.
These benchmark instances exhibit substantial distributional shifts from the training set, both in
terms of problem size and structural characteristics.

Table 3: Generalization performance on
CVRP benchmark instances.

Avg. Gap Best Gap
LEHD 9.111% 6.696%
ReLD 5.018% 4.011%
DACT 25.305% 20.527%

L2I 13.557% 10.67%
GAMA 4.956% 3.709%

In Table 3, we report the best and average optimality
gaps over 30 independent runs for each compared
method, measured against the known optimal solu-
tions. Detailed experimental results, including per-
instance performance, are provided in the supple-
mentary materials.
Without re-training or any adaptation, GAMA
achieves consistently better generalization perfor-
mance than other neural baselines across all scales.
This result underscores the robustness of our graph-
aware multi-modal attention framework when de-
ployed on out-of-distribution, large-scale CVRP in-
stances.

5 Conclusion

In this paper, we propose GAMA, a novel Learning-to-Improve framework for the Capacitated Ve-
hicle Routing Problem (CVRP), which formulates the operator selection process as a Markov De-
cision Process. By jointly encoding the problem and solution graphs through graph-aware cross-
and self-attention mechanisms, and integrating their representations via a gated fusion module,
GAMA effectively captures the interaction between instance structure and search dynamics. Ex-
tensive experiments on synthetic and benchmark datasets demonstrate that GAMA consistently
outperforms strong neural baselines in both optimization quality and stability. Moreover, GAMA
exhibits strong zero-shot generalization to out-of-distribution instances of significantly larger sizes
and different spatial distributions, without retraining. In future work, we will (1)introduce data
augmentation technique to further improve GAMA. (2) modeling complex operator interactions
to capture dependencies and synergy among local search operators. (3) learn how to speed up the
GAMA through diverse rollouts or model compression techniques.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement

All algorithmic details (c.f., Section 3 and Appendix A.3), training protocols (c.f., Section 4), and
evaluation metrics (c.f., Section 4 and Section A.4) are described in the main paper and further
elaborated in the Appendix. For empirical studies, we provide a detailed description of the datasets
(c.f., Section 4). Hyperparameters and implementation details for all baselines are also reported in
Section 4 and Appendix A.4. Upon acceptance, we will release our code and scripts for reproducing
our experiments, including instructions for running data preparation. Together, these resources
enable independent researchers to replicate our results and build upon our contributions.

References
Marwa Amous, Said Toumi, Bassem Jarboui, and Mansour Eddaly. A variable neighborhood search

algorithm for the capacitated vehicle routing problem. Electronic Notes in Discrete Mathematics,
58:231–238, 2017.

Mehmet Emin Aydin, Rafet Durgut, Abdur Rakib, and Hisham Ihshaish. Feature-based search
space characterisation for data-driven adaptive operator selection. Evolving Systems, 15(1):99–
114, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang. Learning
to handle complex constraints for vehicle routing problems. Advances in Neural Information
Processing Systems, 37:93479–93509, 2024.

Shin Siang Choong, Li-Pei Wong, and Chee Peng Lim. Automatic design of hyper-heuristic based
on reinforcement learning. Information Sciences, 436:89–107, 2018.

Augusto Dantas and Aurora Pozo. The impact of state representation on approximate q-learning
for a selection hyper-heuristic. In Brazilian Conference on Intelligent Systems, pp. 45–60. Springer,
2022.

Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu.
Efficiently solving the practical vehicle routing problem: A novel joint learning approach. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 3054–3063, 2020.

Tong Guo, Yi Mei, Wenbo Du, Yisheng Lv, Yumeng Li, and Tao Song. Emergency scheduling of
aerial vehicles via graph neural neighborhood search. IEEE Transactions on Artificial Intelligence,
2025.

Stephanus Daniel Handoko, Duc Thien Nguyen, Zhi Yuan, and Hoong Chuin Lau. Reinforcement
learning for adaptive operator selection in memetic search applied to quadratic assignment prob-
lem. In Proceedings of the companion publication of the 2014 annual conference on genetic and
evolutionary computation, pp. 193–194, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778, 2016.

Keld Helsgaun. LKH-3 (version 3.0.6). http://webhotel4.ruc.dk/keld/research/
LKH-3/, 2019. Accessed: July 2025.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representa-
tions, 2021.

Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin Xu. Rethinking light decoder-based solvers
for vehicle routing problems. arXiv preprint arXiv:2503.00753, 2025.

10

http://webhotel4.ruc.dk/~keld/research/LKH-3/
http://webhotel4.ruc.dk/~keld/research/LKH-3/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
Advances in Neural Information Processing Systems, 34:10418–10430, 2021.

Detian Kong, Yining Ma, Zhiguang Cao, Tianshu Yu, and Jianhua Xiao. Efficient neural collabora-
tive search for pickup and delivery problems. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Kun Lei, Peng Guo, Yi Wang, Xiao Wu, and Wenchao Zhao. Solve routing problems with a residual
edge-graph attention neural network. Neurocomputing, 508:79–98, 2022.

Xiao-Cheng Liao, Yi Mei, Mengjie Zhang, and Xiang-Ling Chen. Generalized phase pressure con-
trol enhanced reinforcement learning for traffic signal control. arXiv preprint arXiv:2503.20205,
2025.

Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and
Senthilnath Jayavelu. Cross-problem learning for solving vehicle routing problems. arXiv
preprint arXiv:2404.11677, 2024.

Qidong Liu, Jiurui Lian, Chaoyue Liu, and Zhiguang Cao. Enhancing generalization in large-scale
hcvrp: A rank-augmented neural solver. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V. 2, pp. 1845–1856, 2025.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36:8845–8864, 2023.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learn-
ing to iteratively solve routing problems with dual-aspect collaborative transformer. Advances
in Neural Information Processing Systems, 34:11096–11107, 2021.

Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & operations
research, 24(11):1097–1100, 1997.

Arash Mozhdehi, Mahdi Mohammadizadeh, and Xin Wang. Edge-direct: A deep reinforcement
learning-based method for solving heterogeneous electric vehicle routing problem with time
window constraints. arXiv preprint arXiv:2407.01615, 2024.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Jiyuan Pei, Jialin Liu, and Yi Mei. Learning from offline and online experiences: A hybrid adap-
tive operator selection framework. In Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1017–1025, 2024.

Rui Qi, Jun-qing Li, Juan Wang, Hui Jin, and Yu-yan Han. Qmoea: A q-learning-based multiob-
jective evolutionary algorithm for solving time-dependent green vehicle routing problems with
time windows. Information Sciences, 608:178–201, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nasrin Sultana, Jeffrey Chan, Babak Abbasi, Tabinda Sarwar, and AK Qin. Learning to guide local
search optimisation for routing problems. Operations Research Letters, 55:107136, 2024.

Ye Tian, Xiaopeng Li, Haiping Ma, Xingyi Zhang, Kay Chen Tan, and Yaochu Jin. Deep reinforce-
ment learning based adaptive operator selection for evolutionary multi-objective optimization.
IEEE Transactions on Emerging Topics in Computational Intelligence, 7(4):1051–1064, 2022.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Chao Wang, Mengmeng Cao, Hao Jiang, Xiaoshu Xiang, and Xingyi Zhang. A deep reinforce-
ment learning-based adaptive large neighborhood search for capacitatedelectric vehicle routing
problems. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems, 33
(9):5057–5069, 2021.

Wenjie Yi, Rong Qu, Licheng Jiao, and Ben Niu. Automated design of metaheuristics using rein-
forcement learning within a novel general search framework. IEEE Transactions on Evolutionary
Computation, 27(4):1072–1084, 2022.

A Appendix

A.1 Learning-to-optimize methods for VRPs

L2C methods Nazari et al. (2018); Joshi et al. (2019) focus on sequentially building a feasible solution
from scratch using learned policies. Despite their efficiency, these methods generally struggle
to reach (near-)optimal solutions, even when enhanced with techniques Kool et al. (2018); Kim
et al. (2021). Among existing construction-based approaches, POMO Kwon et al. (2020), is widely
regarded as one of the most effective construction methods.
L2P methods doesn’t generate solutions by itself. Instead, it predicts useful information like heuris-
tic scores or structural properties, which are then used to guide traditional solvers or other learning
components. For example, a GNN-based method was proposed Joshi et al. (2019) to predict edge-
wise probability heatmaps, which are then leveraged by a beam search algorithm to solve the TSP.
L2I methods aim to iteratively refine a given solution by modeling the search trajectory, offering
a more flexible and adaptive paradigm than one-shot construction. L2I approaches can be broadly
categorized into two paradigms based on how they integrate local search operations. The first
paradigm adopts a fixed-operator framework, where a specific operator—such as 2-opt, relocate,
or insertion—is pre-defined, and the model learns to select a node pair or an edge as the target
of that operator at each step Wu et al. (2021); Ma et al. (2021). Despite their effectiveness, these
approaches are inherently limited by the expressiveness and flexibility of the chosen operator. In
contrast, the second paradigm introduces a more general framework to select the most suitable
operator from a predefined set at each step based on the current solution state Pei et al. (2024). Our
work builds on the second paradigm by viewing operator selection as a high-level action space and
learning a neural policy that integrates both solution information and operator dynamics.

A.2 Problem Formulation

We formulate the Vehicle Routing Problem (VRP) as a combinatorial optimization problem defined
over a graph G = (V,E), where each node vi ∈ V denotes a customer or depot, and edges encode
the travel cost between nodes. The objective is to minimize the total travel distance f(δ) under
certain problem-specific constraints. A feasible solution δ consists of multiple sub-routes, each
corresponding to a single vehicle tour. Each route starts and ends at the depot, and visits a subset
of customers exactly once. The total demand served in each route must not exceed a predefined

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

6

1

2
3

4

5
7

8

9

1

2
3

4

5
7

8

9

2optinsertion

1

2
3

4

5
7

8

9

Figure 3: Illustration examples of two operators with different local optimal neighbors.

Algorithm 2: δ′ ← LocalSearch (δ, a)

Input : Solution δ, selected local search operator a, neighborhood set Γ = {N1, ...,Nk, ...}
Output: Improved solution s′

1 δ′ = null, Cost (δ′) =∞
2 for δ′′ ∈ Na do
3 Cost (δ′′) = Evaluate (δ′′)
4 if Cost (δ′′) < Cost (δ′) then
5 δ′ ← δ′′

6 Cost (δ′)← Cost (δ′′)
7 return Improved solution δ′

vehicle capacity Q. Thus, the solution must satisfy the following constraints: (1) each customer is
visited exactly once, and (2) the sum of demands in each route does not exceed the vehicle capacity
Q.
In this study, we follow the common benchmark setup proposed by Uchoa et al., for each CVRP
instance, the coordinates of all nodes (customers and depot) are sampled uniformly within the unit
square [0, 1]2, and customer demands are drawn uniformly from {1, 2, ..., 9}. The vehicle capacity
Q is set to 30, 40, and 50 for CVRP20, CVRP50, and CVRP100 respectively, controlling the number
of required sub-routes and the problem’s combinatorial complexity.
Therefore, each VRP instance provides static problem features (e.g., node location and demand),
while each candidate solution induces dynamic solution features that encode the current rout-
ing configuration and neighborhood context. Starting from an initial yet feasible solution, our
learning-based AOS framework employs a neural policy to iteratively improve the solution. At
each decision step, the policy selects an operator from a predefined set of local search heuristics.
The details of the heuristics are presented in Table 4. The majority of the heuristics employed are
canonical operators frequently used in VRP and TSP, with their effectiveness extensively validated
in prior work. Once an operator is selected, it is applied exhaustively in the neighborhood of the
current solution, the best improving move is then adopted to update the solution. This process is
shown in Algorithm 2. Given the same input solution, different operators may yield a different lo-
cally optimal neighbor. As illustrated in Figure 3, the insert operator repositions a node, the 2-opt
operator reverses a path segment. These operators explore different regions of the solution space,
and their performance varies dynamically during the search, which highlights the complementar-
ity among operators and the importance of learning to select the most suitable one at each search
step.

A.3 Feature Representations

In our neural neighborhood search framework for solving CVRP, the state at decision step t, de-
noted as st, is designed to comprehensively represent the current search context. Specifically, it
integrates structural features from the problem and current solution, as well as relevant statistics
from the optimization history. The complete state feature is formulated as:

st = {Gdis,Gsol,Xt, a, e,∆, η} (11)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Descriptions of Local Search Operators
Type Name(#operated routes) Description

Intra-route

2-opt(1) Reverses a sub-route.
relocate(1) Move a segment of m nodes (m = 1, 2, 3) in the

route to a new location.
swap(1) Exchange two nodes in the same route.
or-opt(1) Replace 3 arcs with 3 new arcs in a route.

Inter-route

cross(2) Exchange the segments from two routes.
symmetric-swap(2) Exchange segments of length m (m = 1, 2, 3, 4)

between two routes.

asymmetric-swap(2) Exchange segments of length m and n
(m = 1, 2, 3, 4, n = 1, 2, 3, 4,m ̸= n) between two

routes.
relocate(2) Move a segment of length m (m = 1, 2, 3) from a

route to another.
2opt(2) Remove two edges and reconnect their endpoints in

different routes.
or-opt(2) Replace 3 arcs with 3 new arcs from another route.

cyclic-exchange(3) Exchange cyclically one customer between three
routes.

Each component is described as follows:

• Distance Graph Gdis: A fully connected graph encoding the spatial structure of the prob-
lem instance. Each node corresponds to a customer or depot, and edge weights rep-
resent Euclidean distances between node pairs, given by Gdis = ∥loc(i) − loc(j)∥2 =√

(xi − xj)2 + (yi − yj)2. This graph is static across the entire search process and cap-
tures the underlying geometry of the problem.

• Solution Graph Gsol: A subgraph dynamically induced by the current routing solution. For
any two nodes i and j, Gsol[i, j] = 1 if they are directly connected in the current routing
solution, and 0 otherwise. This graph evolves over time as the solution is updated and
provides insight into the local neighborhood and tour connectivity.

• Node Features Xt at Time t: A matrix of node-level features that encode both static and
dynamic attributes of each node. Each node i comprises 11 features, which include the
two-dimensional coordinate, the customer’s demand qi, the remaining capacity after the
vehicle arrives at this node, the coordinates of its two adjacent neighbors in the current
routing solution (the predecessor i− and successor i+), and the Euclidean distances be-
tween the node and its adjacent nodes, specifically ∥i− i−∥2, ∥i− i+∥2, and ∥i−− i+∥2;

• Optimization-based Features: including last applied operator a; its improvement effec-
tiveness e to measure the solution improvement. If the last action successfully improves
the current solution, e = 1; otherwise, e = 0; the gap between the current solution and
the current best solution ∆; and the change in objective value caused by the last action η.

A.4 More discussion on the experiments

The parameter settings of the proposed GAMA is given in Table 5, including the GNN model ar-
chitecture and other algorithm parameters.

A.4.1 Convergence Analysis

To further understand the inference dynamics, we plot the inference-time convergence trajectories
of GAMA, L2I, and DACT on CVRP20/50/100 in Figure 4. Each curve corresponds to a single
representative run and shows how solution quality evolves with increasing rollout steps.
Across all instance sizes, we observe that:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Parameter Setting of GAMA.
Description Value

GCN
number of GCN layers 2

GCN output hidden dimension 16
GCN activation functions ReLU

MLP output hidden dimension 32

Attention
Head number of attention 4

Input hidden dimension of each head 16
Output hidden dimension of self-attention 32

other

learning rate 3e-4
Optimizer to training neural networks ADAM

Maximum episodes NoE 500
Maximum timesteps T 20000

max no improvement threshold L 6

0 2500 5000 7500 10000 12500 15000 17500 20000
Rollout Steps

6.08

6.09

6.10

6.11

6.12

6.13

O
bj

ec
tiv

e
V

al
ue

L2I

GAMA

DACT

6.0810

6.0820

(a) CVRP20

0 2500 5000 7500 10000 12500 15000 17500 20000
Rollout Steps

10.35

10.40

10.45

10.50

10.55

10.60

10.65

O
bj

ec
tiv

e
V

al
ue

L2I

GAMA

DACT

10.360

10.370

(b) CVRP50

0 2500 5000 7500 10000 12500 15000 17500 20000
Rollout Steps

15.7

15.8

15.9

16.0

16.1

16.2

16.3

O
bj

ec
tiv

e
Va

lu
e

L2I
GAMA

DACT

15.65

15.70

(c) CVRP100

Figure 4: Convergence curves of GAMA and different L2I methods.

• In the early phase (up to Rollout Steps = 2500), all methods exhibit comparable perfor-
mance, making steady improvements as search proceeds.

• Beyond 2500 steps, however, DACT and L2I quickly reach a plateau, and their improve-
ment slows down very slowly - this is especially evident in CVRP100, where both methods
stagnate prematurely.

• In contrast, GAMA continues to improve steadily across the entire inference horizon, re-
gardless of problem scale. This indicates that GAMA’s attention-based encoder and adap-
tive fusion enable it to effectively explore deeper and more promising neighborhoods dur-
ing late-stage rollouts.

These trends suggest that GAMA maintains better long-term optimization ability, avoiding early
convergence.

A.4.2 Detailed Analysis on Encoder Effectiveness

To provide a more comprehensive evaluation of our encoder design, we report in Table 6 the perfor-
mance of three encoder variants—GENIS, GAMA NG, and the proposed GAMA—under different
training budgets (T = 5k, 10k, 20k steps). The results reveal consistent and significant trends
across all instance sizes (CVRP20, CVRP50, and CVRP100).
At all training steps, GAMA outperforms or performs equal to the other two baselines in both best
and average solution quality, with especially clear advantages on the largest and most challeng-
ing instances (e.g., CVRP100). For example, under T = 20k, GAMA achieves an average cost of
15.6510, which improves over 15.7001 from GAMA NG and 15.7441 from GENIS. This highlights
the scalability of our encoding strategy.

Effectiveness of self-and-cross attention: GENIS utilizes dual GCNs to encode the problem
and solution graphs independently, followed by simple concatenation and a shallow self-attention
module. This design leads to limited interaction between the two modalities. Under small training

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Experimental details of encoder effectiveness.
CVRP20 CVRP50 CVRP100

GENIS best 6.0825 10.4020 15.8344
(T=5k) mean 6.0839 (↑) 10.4075 (↑) 15.8503 (↑)

std 0.0008 0.0027 0.0057
GAMA NG best 6.0824 10.3996 15.8354

(T=5k) mean 6.0835 (≈) 10.4058 (≈) 15.8452 (↑)
std 0.0005 0.0028 0.0042

GAMA best 6.0823 10.3996 15.7105
(T=5k) mean 6.0836 10.4057 15.7768

std 0.0006 0.0031 0.0340
GENIS best 6.08011 10.3715 15.7744
(T=10k) mean 6.0818 (≈) 10.3755 (↑) 15.7834 (↑)

std 0.0003 0.0020 0.0045
GAMA NG best 6.0811 10.3699 15.7693

(T=10k) mean 6.0816 (↑) 10.3744 (≈) 15.7780 (↑)
std 0.0003 0.0024 0.0039

GAMA best 6.0810 10.3711 15.6512
(T=10k) mean 6.0818 10.3742 15.7054

std 0.0005 0.0021 0.0280
GENIS best 6.0807 10.3576 15.7306
(T=20k) mean 6.0814 (↑) 10.3604 (↑) 15.7441 (↑)

std 0.0004 0.0018 0.0053
GAMA NG best 6.0809 10.3551 15.6897

(T=20k) mean 6.0813 (↑) 10.3590 (↑) 15.7001 (↑)
std 0.0003 0.002 0.0042

GAMA best 6.0806 10.3511 15.6178
(T=20k) mean 6.0810 10.3533 15.6510

std 0.0002 0.0012 0.0215

budgets (e.g., T = 5k), GENIS performs comparably to GAMA NG and even GAMA on small
problems (CVRP20), but significantly lags on CVRP50 and CVRP100. As training increases, GENIS
does improve, but at a slower rate than GAMA. Even at T = 20k, its average performance remains
worse than both GAMA NG and GAMA, suggesting an architectural limitation.

Effectiveness of the Gated Fusion Module: GAMA NG incorporates the same self-and-cross
attention encoder as GAMA but removes the gated fusion, using simple addition for feature merg-
ing. This preserves more modal interaction than GENIS but lacks adaptive control over information
flow. In early training stages, GAMA NG achieves slightly better performance than GENIS, espe-
cially on medium/large instances (e.g., CVRP100 with T = 5k), indicating that cross-attention
already contributes to better representation. However, the lack of adaptive gating makes it harder
to balance the importance of problem vs. solution graph features, especially when solution struc-
tures become complex.

Effect of Training Steps: We also observe that performance improves steadily with more training.
For all methods, increasing T from 5k to 20k reduces the cost across all problem sizes, indicating
that sufficient training is crucial for model effectiveness. However, GAMA consistently maintains
its lead at every training step, which supports the claim that its architectural design—not just
training duration—plays a key role in achieving high solution quality.
In conclusion, the results clearly validate both components of our encoder design: the self-and-
cross attention mechanism, which enables explicit cross-modal interaction, and the gated fusion

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Performance Comparison on CVRP Library Benchmarks
BKS LEHD ReLD L2I DACT GAMA

best

27591

28145.61 28033 28076.85 29359.58 27950.24
X-n101-k25 mean 28386.42 28237.73 28417.64 32212.39 28204.41

std 130.69 125.06 179.16 1780.99 106.72
A. G. 2.883% 2.344% 2.996% 16.749% 2.223%
best

26558

27514.34 27320 28608.15 33860.63 27696.61
X-n261-k13 mean 28013.16 27381.3 29250.14 35969.73 28141.57

std 258.51 44.94 275.68 951.49 154.02
A. G. 5.479% 3.1% 10.137% 35.438% 5.963%
best

31102

32336.99 32027 33359.79 35807.18 32378.05
X-n331-k15 mean 33020.61 32115.3 33839 36305.12 32598.64

std 299.57 55.75 307.24 145.14 124.18
A. G. 6.168% 3.257% 8.8% 16.729% 4.812%
best

107798

119403.97 110462 110092.01 127712.69 109654.01
X-n420-k130 mean 120437.96 110730.9 111104.40 129816.05 110299.95

std 628.52 161.03 325.61 1235.13 234.29
A. G. 11.725% 2.72% 3.067% 20.425% 2.321%
best

24201

27052.21 25597 26462.71 31143.84 25099.95
X-n513-k21 mean 27532.85 25987.7 27273.49 31638.12 25918.88

std 250.29 62.55 501.66 96.40 400.39
A. G. 13.767% 7.382% 12.695% 30.730% 7.098%
best

59535

65013.57 62287 64333.62 78296.5 62003.09
X-n613-k62 mean 65701.16 63042.7 65365.06 79951.56 62956.56

std 286.52 282.08 591.02 1082.35 454.34
A. G. 10.357% 5.892% 9.792% 34.293% 5.747%
best

81923

88488.54 85197 92034.43 92940.80 85358.34
X-n701-k44 mean 89316.59 86156.53 94453.01 93177.37 85904.55

std 421.9 801.91 1056.73 95.917 554.27
A. G. 9.0250% 5.167% 15.294% 13.737% 4.86%
best

73311

79154.95 76682 88188.46 111656.89 76043.89
X-n801-k40 mean 80290.66 77037.4 93258.41 120036.77 76701.02

std 442.79 135.11 5127.52 3621.25 611.32
A. G. 9.521% 5.08% 27.209% 63.736% 4.624%
best

329179

354583.06 340357 363036.36 347893.41 336099.09
X-n916-k207 mean 357081.81 341262.46 368784.99 356082.14 336538.92

std 946.27 388.73 2383.99 4638.04 278.33
A. G. 8.4764% 3.67% 12.031% 8.172% 2.236%
best

72355

80981.09 78426.43 92196.18 76787.63 77996.14
X-n1001-k43 mean 82048.95 80726.83 96627.31 81789.21 79359.78

std 551.22 486.75 1961.46 2558.03 705.39
A. G. 13.397% 11.57% 33.546% 13.039% 9.681%

Total Avg. Gap 9.111% 5.018% 13.557% 25.305% 4.956%

module, which adaptively integrates problem and solution embeddings. These components jointly
contribute to GAMA’s superior performance and generalization ability.

A.4.3 Generalization on benchmark datasets

We further evaluate the generalization ability of our proposed GAMA framework on the well-
established CVRPLib benchmark suite introduced by Uchoa et al. Uchoa et al. (2017), which consists
of diverse real-world-inspired CVRP instances with customer sizes ranging from 100 to 1000. To
ensure a representative and challenging evaluation, we systematically select 10 instances with
varying size, vehicle count, and spatial distribution characteristics, thereby inducing substantial
distribution shifts from our training set.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

All baselines, including LEHD, ReLD, L2I, and DACT, are evaluated using their official implemen-
tations. As shown in Table 7, our GAMA achieves the lowest total average optimality gap of 4.96%,
outperforming LEHD (9.11%), ReLD (5.018%), L2I (13.56%), and DACT (25.31%) by substantial mar-
gins. GAMA consistently delivers competitive or superior best and mean solutions across almost all
instances, especially on larger and more complex cases such as X-n801-k40 and X-n916-k207. This
evidences its strong out-of-distribution generalization ability and robustness to scale variation.
Notably, DACT exhibits significantly inferior performance on large-scale benchmarks. This can
be largely attributed to: it employs a fixed local search operator (2-opt) throughout optimization,
limiting its adaptability to diverse problem structures. Although GAMA incurs a higher average in-
ference time compared to L2I and DACT, this additional cost is offset by its substantially improved
solution quality. For high-stakes logistics applications, such a trade-off is often desirable.
These results collectively demonstrate that GAMA generalizes robustly to a wide variety of real-
world CVRP scenarios, thanks to its expressive graph-based state representation and adaptive op-
erator selection policy.

LLM Usage Statement

We used ChatGPT (GPT-5) only as an assistive tool for grammar checking and language polishing.
The model was not involved in research ideation, algorithm design, experiment execution, or result
analysis. All scientific content and conclusions are entirely the work of the authors.

18

	Introduction
	Related Work
	Methodology
	Overall Framework
	Markov Decision Process (MDP)
	GAMA Encoder
	Dual-GCN Module
	Attention-based Fusion Module
	Final State Representation

	Policy : Decision Module

	Experiments
	Setup
	Compared Algorithms
	Results and Discussions
	Ablation Evaluation
	Effectiveness of self-and-cross attention
	Effectiveness of the Gated Fusion Module
	Generalization Evaluation

	Conclusion
	Appendix
	Learning-to-optimize methods for VRPs
	Problem Formulation
	Feature Representations
	More discussion on the experiments
	Convergence Analysis
	Detailed Analysis on Encoder Effectiveness
	Generalization on benchmark datasets

