3DILG: Irregular Latent Grids for 3D Generative
Modeling

Biao Zhang Matthias NieBner Peter Wonka
KAUST Technical University of Munich KAUST
biao.zhang @kaust.edu.sa niessner @tum.de pwonka@gmail.com
Abstract

We propose a new representation for encoding 3D shapes as neural fields. The
representation is designed to be compatible with the transformer architecture and
to benefit both shape reconstruction and shape generation. Existing works on
neural fields are grid-based representations with latents defined on a regular grid.
In contrast, we define latents on irregular grids, enabling our representation to be
sparse and adaptive. In the context of shape reconstruction from point clouds, our
shape representation built on irregular grids improves upon grid-based methods in
terms of reconstruction accuracy. For shape generation, our representation promotes
high-quality shape generation using auto-regressive probabilistic models. We show
different applications that improve over the current state of the art. First, we show
results for probabilistic shape reconstruction from a single higher resolution image.
Second, we train a probabilistic model conditioned on very low resolution images.
Third, we apply our model to category-conditioned generation. All probabilistic
experiments confirm that we are able to generate detailed and high quality shapes
to yield the new state of the art in generative 3D shape modeling.

1 Introduction

(1) SR | (2) HRICG | (3) LRICG (4) PCCG

L { i Hl -« " R BB EEB

o= hiddd * - ITFsaas

= 2 i RN P o9 .w y WW

kst s ST~ 20007 PV TV SV
(5) CcG

Figure 1: Irregular Latent Grids enable many applications: (1) shape reconstruction, (2) high-
resolution-image-conditioned generation, (3) low-resolution-image-conditioned generation, (4) point-
cloud-conditioned generation, and (5) category-conditioned generation. The data structure is es-
pecially suited for auto-regressive modeling (applications 2-5). For each of these applications the
probabilistic approach enables sampling of many plausible models for a single query.

Neural fields for 3D shapes are popular in machine learning because they are generally easier to
process with neural networks than other alternative representations, e.g., triangle meshes or spline
surfaces. Earlier works represent a shape with a single global latent [29, 13, 7, 36, 66]. This already
gives promising results in shape autoencoding and shape reconstruction. However, shape details
are often missing and hard to recover from a global latent. Later, local latent grids for shapes
were proposed [39, 23, 3, 48]. A local latent mainly influences the shape (surface) in a local 3D
neighborhood, thus perceiving shape details. However, in contrast to global latents, local latents

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

mailto:biao.zhang@kaust.edu.sa
mailto:niessner@tum.de
mailto:pwonka@gmail.com

Global Multiscale Irregular

Figure 2: Latent grids. From left to right, we show single global latent (e.g., OccNet [29]), latent
grid (e.g. ConvONet [39]), multiscale latent grids (e.g. IF-Net [9]), and our irregular latent grid.

require positional information about their location, e.g., as implicitly defined by a regular grid.
Furthermore, multiscale latent pyramid grids [9, 6] provide some performance improvement over
basic grids. We illustrate the three current ways of modeling neural fields in Fig. 2.

In this paper, we set out to study irregular grids as 3D shape representation for neural fields. This
extends previous grid-based representations, but allows each latent to have an arbitrary position in
space, rather than a position that is pre-determined on a regular grid. We do not want to give up
the advantages of a fixed length representation, and therefore propose to encode shapes as a fixed
length sequence of tuples (x;, Z;);e, Where x; are the 3D positions and z; are the latents. The
overall advantages of this representation are that it is fixed length, works well with transformer-based
architectures using established building blocks, and that it can adapt to the 3D shape it encodes by
placing latents at the most important positions. The representation also scales better than grid-based
(and especially pyramid-based) representations to a larger number of latents. The number of latents
in a representation is a factor that greatly influences the training time of transformer architectures, as
the computation time is quadratic in the number of latents.

While our proposed representation brings some improvement for 3D shape reconstruction from
point clouds, the improvement is very significant for 3D generative models that have been less
explored. We believe that the most promising avenue for 3D shape generation is to follow recent
image generative methods based on vector quantization and auto-regressive models using transformer,
e.g. VQGAN [16]. These models operate on discrete latent vectors represented by indices [53].
During training, an autoregressive probabilistic model is trained to predict discrete indices. When
doing inference (sampling), discrete indices are sampled from the autoregressive model and are
decoded to images with a learned decoder. These models work well in the image domain, because
a single image can comfortably be represented by medium size, e.g. 16 x 16 latent grids of 256
latents [16]. This does not directly scale to 3D shapes, as a 16 x 16 x 16 grid is too large to be
comfortably trained on 4-8 GPUs due to the quadratic complexity of the transformer architecture [55].
As aresult, generative models based on low-resolution regular grids lead to artifacts in the details,
whereas our representation yields a nice and clean surface (e.g. Fig. 9).

We show the following applications of our proposed representations (see Fig. 1). For 3D shape
reconstruction, we show results for 3D reconstruction from a point cloud. For generative modeling,
we show results for image-conditioned 3D shape generation, object category-conditioned 3D shape
generation, and point-cloud-conditioned 3D shape generation. The generative model is probabilistic
and can generate multiple different 3D shapes for the same conditioning information.

We summarize the contributions of our work as follows: 1) We propose irregular latent grids as 3D
shape representation for neural fields. Our shape representation thereby extends existing works using
a global latent, a local latent grid or a multi-scale grid. 2) We improve upon grid-based SOTA methods
for 3D shape reconstruction for point-clouds. 3) We improve state-of-the art generative models for 3D
shape generation, including image-conditioned generation, object category-conditioned generation
and point cloud-conditioned generation.

2 Related Work

2.1 Neural shape representations

Shape analysis with neural networks processes shapes in different representations. Common rep-
resentations include voxels [27, 10, 12, 44] and point clouds [40, 41, 57, 58, 51]. More recently,
researchers study shapes represented with neural fields [63], e.g., signed distance functions (SDFs)
or occupancy (indicator) functions of shapes modeled by neural networks. Subsequently, meshes
can be extracted by contouring methods such as marching cubes [28]. The methods have been called

neural implicit representations [29, 30, 36, 18, 13, 7, 66] or coordinate-based representations [47].
We decided to use the term neural fields in this paper [63].

Point cloud processing. Earlier works for point cloud processing rely on multilayer perceptrons
(MLPs), e.g., PointNet [40]. PointNet++ [41] and DGCNN [57] extended the idea by employing a
hierarchical structure to capture local information. Inspired by ViT [15], which treats images as a set
of patches, PCT [20] and PT [67] propose a transformer backbone for point cloud processing. Both
works introduce extra modules which are not standard transformers [55] anymore. Since our main goal
is not to develop a general backbone for point clouds, we simply work with a standard transformer
for shape autoencoding (first-stage training). Similarly, both PointBERT[65] and PointMAE [34] use
standard transformers for point cloud self-supervised learning.

Neural fields for 3D shapes. One possible approach is to represent a shape with a single global
latent, e.g., OccNet [29], CvxNet [13] and Zhang et al. [66]. While this method is very simple, it
is not suitable to encode surface details or shapes with complex topology. Later works studied the
use of local latents. Compared to global latents, these representations represent shapes with multiple
local latents. Each latent is responsible for reconstruction in a local region. ConvONet [39], as a
follow-up work of OccNet, learns latents on a grid (2d or 3d). IF-Net [9], trains a model which
outputs 3d latent grids of several different resolutions. The grids are then concatenated into a final
representation. Some more recent works [17, 26, 49] learn to put latents on 3D positions.

2.2 Generative models

Generative models include generative adversarial networks (GANSs) [19], variational autoencoders
(VAEs) [24], energy-based models [25, 59, 61, 62, 60], normalizing flows (NFs) [43, 14] and
auto-regressive models (ARs) [54]. Our shape representation is designed to be compatible with
auto-regressive generative models. Thus we will mainly discuss related work in this area.

In the image domain, earlier AR works generate pixels one-by-one, e.g., PixelRNN [54] and its
follow-up works [52, 45]. Combining this idea with autoregressive transformers, similar approaches
are applied to 3D data, e.g., PointGrow [46] for point cloud generation and PolyGen [33] for
polygonal mesh generation. Other use cases include floor plan generation [35] and indoor scene
generation [56, 38].

An important ingredient of many auto-regressive models is vector quantization (VQ) that was
originally integrated into VAEs. VQVAE [53] adopts a two-stage training strategy. The first stage is
an autoencoder with vector quantization, where bottleneck latents are quantized to discrete indices.
In the second stage, an autoregressive model is trained to predict the discrete indices. This idea is
further developed in VQGAN [16] which builds the autoregressive model with a transformer [55].
Vector quantization, has been shown to be an efficient way for generating high resolution images. We
study how VQ can be used in the 3D domain, specifically, neural fields for 3D shapes.

There are some works adopting VQVAE to the 3D domain. Canonical Mapping [8] proposes point
cloud generation models with VQVAE. In concurrent work, AutoSDF [32] generalizes VQVAE to
3D voxels. However, the bottleneck latent grid resolution is low and it is difficult to capture details as
in ConvONet and IF-Net. Increasing the resolution is the key for detailed 3D shape reconstruction.
On the other hand, higher resolution leads to more difficult training of autoregressive transformers.
Another concurrent work, ShapeFormer [64], shows a solution by sparsifying latent grids. However,
ShapeFormer still only accepts voxel grids as input (point clouds need to be voxelized). Additionally,
the sequence length varies for different shapes, requiring the method to go through a whole dataset to
find a maximum sequence length. This relies on dataset-dependent maximum sequence lengths. In
contrast to existing works, our method processes point clouds directly, learns fixed-size latents and
outputs neural fields. A comparison summary can be found in Table 1.

3 Shape Reconstruction

Here we build a shape autoencoding method. Given a shape surface, we want to output the same shape
surface. We preprocess a shape surface via uniform sampling to a point cloud {x;: x; € R3};cnr
(also in matrix form X € RY*3), our goal is to predict the indicator function O(-) : R® — [0,1]
corresponding to the volume represented by the point cloud. Our representation is being generated in

Table 1: Method comparison. All methods here take point clouds as input. If the column Requiring
Voxelization says yes, it means the method takes voxels as input. The numbers shown in parenthesis
are alternative choices of hyperparameters.

Local Requiring Latent Vector Sequence

Latents Voxelization Output Resolution Quantization Length Comments
OccNet [29] X X Fields 1 X 1
ConvONet [39] v v Fields 323(64%) X 323(64%)
IF-Net [9] v v Fields 1283 X 1283 Multiscale
AutoSDF [32] v v/ Voxels 8? v 8?
CanMap[8] v X Point Cloud 128 v 128
ShapeFormer [64] v v Fields 16%(32%) v variable Sparsification
3DILG (Ours) v X Fields 512 v 512

FPS KNN PointNet Transformer | | Reconstruction O] Transfom(lle)r B0k L)
z z z

~~ T PR’ ~~ = ~ A ~— =

b W %W e o R . E
5% s P

2

S8 bt]
&N 5
Transformer Blocks
PAQ) z(D 70 Zz(L)
W e e %%
RNx3 RMx3 RMxKx3 RMxC RMxC R3 — [0,1] §' ?‘.: :’ . ’:, ;' {‘:5. P2 E

Figure 3: Shape reconstruction from point clouds. Left: the main pipeline. The framework can
be used with (Bottom Right) or without (Top Right) vector quantization.

three steps (See Fig. 3): patch construction (Sec. 3.1), patch information processing (Sec. 3.2), and
reconstruction (Sec. 3.3).

3.1 Patch Construction

We sub-sample the input point cloud via Farthest Point Sampling (FPS),
FPS ({xi}ien) = {Xi}iem = X € RM*, (1)

where M C A and | M| = M. Next, for each point in the sub-sampled point set {x; };c 1, We apply
the K-nearest neighbor (KNN) algorithm to find K — 1 points to form a point patch of size K,

Vie M, KNN (xi) = {xj}jen:, 2

where M is the neighbor index set for point x; and |[N;| = K — 1. Thus we have a collection of
point patches,

{0 {x}jens) NIl = K = liem = X € RM*XE, 3)
We project each patch with a mini-PointNet-like [40] module to an embedding vector
Vi€ M, PointNet (x;,{x;}jen;) =e; € RY, 4)

where C'is the embedding dimension for patches.

3.2 Transformer

Furthermore, we build a transformer to learn local latents {z; };c o¢. The point coordinates {x; };c
are converted to positional embeddings (PEs) [31], p; = PE(x;) € R,

PE(x) = [sin(2°x), cos(2%x), sin(2'x), cos(2'x), - - -, sin(27x), cos(27x)]. (5)
Our transformer takes as input the sequence of patch-PE pairs,
Transformer ({(€;, i) Yiea) = {2zi: 2; € R }icns. (6)
The transformer is composed of L blocks. We denote the intermediate outputs of all blocks as
Zgo)’ zgl), ‘e ,zgl), e ,ZEL), where zl(.o) is the input e; and ZEL) is the output z;.

T T T T T T

—» —»Z0,1—» —»Z0,2—» —»Z0,3—> —» 20

P P @ P
3 3 ot 3

5 o1 0,1 0,2 0,3 20 S —»TlL,l—» o —»ZT1,2—» S —»T1,3—» S —» 21
g) M) M
& o oy o o
e Q (5] o (5]

o1 Z g —»®21—» E —Z22—» E —T23—» E —» 22
5] < S < S
= 2 2 2 2
g g g g

&= —»Z3,1—» & —»T3,2—> &= —»Z3,3—» & — Z3

I
I
I
I
I
I
I
I
—» Iz w12 1,3 | 21
I
I
02 —» I jx2,1 22,2 2,3 22 f—»
| J
. | .
. . I :

Figure 4: Autoregressive Generative Models with Unidirectional Transformer. Left: sequence
prediction. Right: detailed visualizations with sequence element components.

Steps

Figure 5: Autoregressive Generative Models with Bidirectional Transformer. Cubes ([J) are
predicted tokens. From left to right, we show 8 decoding steps.

Vector Quantization. This model can be used with vector quantization [53]. We simply replace
the intermediate output at block [with its closest vector in a dictionary D,

Vie M, argmin igl) - zl(.l) H . 7

2VeD

The dictionary D contains |[D| = D vectors. As in VQVAE [53], the gradient with respect to zgl) is
approximated with the straight-through estimator [1].

3.3 Reconstruction

We expect that each latent z; is responsible for shape reconstruction near the point x;. However,

our goal is to estimate O(-) for an arbitrary x € R®. We interpolate latent z, for point x with the

Nadaraya-Watson estimator,

D ier p(—Blx — x(1?)z;
b

2iemexp(=Bx — xi[|?)
where [controls the smoothness of interpolation and can be fixed or learned. The final indicator is
an MLP with a sigmoid activation,

O(x) = Sigmoid(MLP(x, zy)).)

Zy =

®)

Loss Function. We optimize the estimated O(-) by comparing to ground-truth O(-) via a binary
cross entropy loss (BCE) and an additional commitment loss term [53],

2
L = Lrecon+Moeommit = Exers BCE(O(X),O(X))}JFAExeRs [Eie ™ Hsg(zgw) _ ZEDH } . (10)

where sg(-) is the stop-gradient operation. When A = 0, it means we train the model without vector
quantization.

4 Autoregressive Generative Modeling

With Vector Quantization (Eq. 7), we compress the bit size of intermediate latents {Zgl)}ie M
to log, D where D is the size of the dictionary D. We denote the compressed index as z; €
{0,1,...,D — 1}. We also quantize point coordinates x; to (z;1,%; 2, ;3) where each entry is
a 8-bit integer {0,1,...,255}, As a result, we obtain a discrete representation of the 3D shape
{(zi1, 2, i3, 2i) biem-

4.1 Unidirectional Transformer

Autoregressive generation with unidirectional transformer is a more classical approach. We often
need to sequentialize an unordered set if the order is not defined yet. Specifically, we re-order the
representations in ascending order by the first component x; 1, then by the second component z; o,
and finally by the third component x; 3,

S= {(:EO,17 0,2,20,3, ZO)7 ($1,1,$1,27x1,3a Zl)a B (mel,la TM—-1,2,TM-1,3, szl)}~ (1])

Our goal to predict sequence elements one-by-one. A common way is to flatten the sequence S by
concatenating the quadruplets, for examples, PointGrow [46] and PolyGen [33]. However, here we
consider an approach generating quadruplet-by-quadruplet. We write o; = (x;.1, Ti 2, Ti 3, ;). The
likelihood of generating o; autoregressively is
i=M-—1
pS1¢)=][ploilo0), (12)
i=0
where C is conditioned context. Similar to ATISS [38], we predict components of o, =
(xi,1,%i2, %3, 2;) autoregressively:
p(o; | 0<;,C)
ZP(961,1|0<1‘,C) 'p<$i,2|xi,170<iac) 'p(CUz‘,3|CCi,2, l‘i,1,0<i7c) P(Zz|5€zs, xi,2>$i,170<z‘7c)~

The model is shown in Fig. 4. Different from ATISS [38] which uses MLPs to decode different
components, instead we continue to apply transformer blocks for component decoding.

13)

4.2 Bidirectional Transformer

Bidirectional transformer for autoregressive generation is recently proposed by MaskGIT [5]. Here
we show our model can also be combined with bidirectional transformer. However, here we consider
a different task. We generate {z; };c A4 conditioned on {(z; 1, %; 2, %: 3) }iem. In training phase, we
sample a subset {z; }icvcat Of {2 }iem as the input of the bidirectional transformer. We aim to
predict {z; };e a\v. The coordinates { (4,1, 2; 2, %i3) }ic are converted to positional embeddings
(either learned or fixed) as condition. The likelihood of generating M \ V is as follows,

H p({zitieam\v | {zitiev, {(zi,1, Ti2, 74 3) fiem)- (14)
VeM

In practice, the bidirectional transformer takes as input all tokens except that {z; };c ¢\ are replaced
by a special masked token [m]. When decoding (inference), we iteratively predict multiple tokens at
the same time. Tokens are sampled based on their probabilities (transformer output). See [5] for a
detailed explanation. We show visualization of decoding steps in Fig. 5.

5 Reconstruction Experiments

We set the size of the input point cloud to NV = 2048. The number and the size of point patches
are M = 512 and K = 32, respectively. In the case of Vector Quantization, there are D = 1024
vectors in the dictionary D. Other details of the implementation can be found in the Appendix.
We use the datset ShapeNet-v2 [4] for shape reconstruction. We split samples into train/val/test
(48597/1283/2592) set. Following the evaluation protocol of [13, 66], we include three metrics,
volumetric IoU, the Chamfer-L1 distance, and F-Score [50]. We also show reconstruction results on
another object-level dataset ABO [11], a real-world dataset D-FAUST [2], and a synthetic scene-level
dataset in the appendix.

Results We compare our method with three existing works, OccNet [29], ConvONet [39] and
IF-Net [9]. The results can be found in Table 2. We select 7 categories among 55 categories with
largest training set (fable, car, chair, airplane, sofa, rifle, lamp). Detailed results can be found in the
Appendix. We show different choices of M. As we can see in this table, increasing M from 64 to 512
gives a performance boost. Even with the simplest model M = 64, our results outperform ConvONet.
The best results are achieved when setting M/ = 512. In this case, our results lead in most categories

Table 2: Shape reconstruction. We train all models on ShapeNet-v2 (55 categories). All baseline
methods are trained with the corresponding officially released code. For our model, we set N = 2048
and K = 32. We select 7 categories to show. These categories have largest training set among 55
categories. We also show averaged metrics over all categories. The numbers shown in parenthesis are
results of vector quantization.

3DILG (Ours)
M=64 M=128 M =256 M =512
mean (selected) 0.822 0.881 0.929 0.922(0.904) 0.936(0.929) 0.945(0.943) 0.952(0.950)

OccNet ConvONet IF-Net

loU? mean (all) 0.825 0.888 0.934 0.923(0.907) 0.937(0.929) 0.946(0.943) 0.953(0.950)
Chamfer | mean (selected) 0.058 0.040 0.034 0.038(0.038) 0.035(0.036) 0.034(0.034) 0.032(0.030)
mean (all) 0.072 0.052 0.041 0.048(0.052) 0.044(0.046) 0.041(0.042) 0.040(0.040)

F-Score 1 mean (selected) 0.898 0.951 0.975 0.95900.948) 0.968(0.964) 0.972(0.969) 0.976(0.975)

mean (all) 0.858 0.933 0.967 0.9420.926) 0.955(0.948) 0.963(0.958) 0.966(0.965)

when comparing to IF-Net. The results of IF-Net are better than ours in terms of metric F-Score in
some categories. However, we argue that in this case the metric F-score is saturated (values are close
to 1), which making it hard to compare. We also show results after introducing vector quantization to
our model in the same table. We can see that vector quantization harms the performance slightly.

Qualitative Comparison Qualitative results are shown in Fig. 6. From the visualization, it can be
seen that the reconstruction quality increases as M increases, particularly for shapes with complex
topology. OccNet, as a global latent method, often fails to recover complex structures. ConvONet
can recover better structures than OccNet, due to its localized latents. By learning multiscale latents,
IF-Net improves further upon ConvONet. Our method with M = 64 outperforms ConvONet, and
with M = 128, the results are comparable with IF-Net.

6 Generative Experiments

We introduce three experiments to show how our model can be combined with auto-regressive trans-
formers for generative modeling. In Sec. 6.1, we show image-conditioned generation as probabilistic
shape reconstruction from single image. In Sec. 6.2, we show how we generate samples given a
category label (using the 55 ShapeNet categories). In Sec. 6.3, we further show generation condi-
tioned on downsampled point clouds. In contrast to the first two tasks, the point-cloud-conditioned
generation is based on a bidirectional transformer described in Sec 4.2. More generative results on
additional datasets ABO and D-FAUST can be found in the appendix.

6.1 Probabilistic Shape Reconstruction from a Single Image

We train a uni-directional transformer for this task (see Sec. 4.1). The context C is an image. To train
this model, we render 40 images (224 x 224) of different views for each shape in ShapeNet. The
implementation of the uni-directional transformer is based on GPT [42]. It contains 24 blocks, where
each block has an attention layer with 16 heads and 1024 embedding dimension. When sampling,
nucleus sampling [22] with top-p (0.85) and top-£ (100) are applied to predicted token probabilities.

High resolution images. We show some generated samples when C are high resolution images
in Fig. 7. We compare our results with a deterministic method, OccNet [29]. As we can see in the
results, the deterministic method (OccNet) tends to create blurred meshes. However, our probabilistic
reconstruction is able to output detailed meshes.

Low resolution images. We also consider another more challenging task. The input images are
downsampled to low resolution (16 x 16). In this case, the generative model has more freedom to
find multiple plausible interpretations, including variations with different topology (see Fig. 8).

3DILG (Ours)

Input GT OccNet ConvONet IF-Net

e e
%

¥
¥
|
¥
>
g

Figure 6: Shape reconstruction. The column Input shows input point clouds of size 2048. The
column GT shows ground-truth meshes. We compare our results with different M to OccNet,
ConvONet and IF-Net. We also show {x;};c r obtained via Farthest Point Sampling.

6.2 Category-Conditioned Generation

To generate shapes given a category label, we use the context C to encode the category label. We
employ the uni-directional transformer based on GPT as in Sec. 6.1. We compare to our proposed
baseline model that encodes shapes as a latent grid of resolution 8. To make a fair comparison, we
also extend ViT [15] to the 3D voxel domain in the first stage of training. In the second stage, we use
the same uni-directional transformer for sequence prediction. Here the sequence length is 8% = 512,
which is the same as in our proposed model. The baseline model is named Grid-82. The comparison
to the baseline model is in Fig. 9. We can see that the baseline is unable to generate high quality
shapes. We argue that this is because the representation is not expressive enough to capture surface
details. Furthermore, we show more generated samples of our model in Fig. 10. The three selected
categories are bookshelf, bench and chair. For both the baseline and our model, we render 10 images
of predicted shapes, and calculate the Fréchet Inception Distance (FID) [21, 37] between predictions
and test sets. The metrics can be found in Table 3. A perceptual study on the quality of generated
samples can be found in the appendix.

6.3 Point Cloud Conditioned Generation

We train a bidirectional transformer described in Sec 4.2. The model takes as input {x; };c 1. The
results can be found in Fig. 11.

Figure 7: Image-conditioned generation (224 x 224). We sample 2 shapes for each input image,
and compare them with OccNet.

Input GT Probabilistic Reconstruction with 3DILG (Ours)

Figure 8: Image-conditioned generation (16 x 16). We sample 8 shapes for each input image.

7 Conclusion

We have studied neural fields for shapes and presented a new representation. In contrast to common
approaches which define latents a on a regular grid or multiple regular grids, we position latents on an
irregular grid. Comparing to existing works, the representation better scales to larger models, because
the irregular grid is sparse and adapts to the underlying 3D shape of the object. In our results, we
demonstrated an improvement in 3D shape reconstruction from point clouds and generative modeling
conditioned on images, object category, or point-clouds over alternative grid-based methods. In future
work, we suggest to explore other applications of our proposed representation, e.g., shape completion,
and extensions to textured 3D shapes and 3D scenes.

Broader impact

We introduce a new 3d shape representation for generative modeling and shape analysis. This shape
representation is designed to be compatible with the transformer architecture. We demonstrate
some example applications in the paper including shape generation conditioned on images, point
clouds, and shape class, and 3d shape reconstruction. However, we envision our proposed shape
representation to be general and it could be employed in all shape processing tasks.

Potential societal impacts of generative modeling in general exist. Future iterations of our work could
possibly be used to generate high fidelity 3D virtual humans. However, we do not see an important
negative societal impact that is specific to our work and that would constitute an immediate concern.

3DILG (Ours)

JdJI 1iddg

Figure 9: Comparison of category-conditioned generation. We compare our results (Left) with
an 82 latent grid baseline (Right).

Table 3: FID | for category-conditioned generation. We compare our results with the baseline
Grid-82. The 7 categories are the largest categories in ShapeNet.

Categories

. : - mean
table car chair airplane sofa rifle lamp

Grid-83 72.396 95.566 58.649 42.009 58.092 59.456 87.319 67.641
3DILG (Ours) 68.016 92.597 45.333 30957 53.244 40500 72.672 57.617

L

Son

S

Figure 10: Category-conditioned generation. We choose 3 categories to show (bookshelf, bench
and chair). We show 100 samples for each category.

Context Steps

S EREEEE
)

Figure 11: Point cloud conditioned generation. We show 8 decoding steps.

Acknowledgements

We would like to acknowledge support from the SDAIA-KAUST Center of Excellence in Data
Science and Artificial Intelligence.

10

References

[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.
(Cited on 5)

[2] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J Black. Dynamic faust:
Registering human bodies in motion. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6233-6242, 2017. (Cited on 6)

[3] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and
Richard Newcombe. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction.
In European Conference on Computer Vision, pages 608—625. Springer, 2020. (Cited on 1)

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015. (Cited on 6)

[5] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked
generative image transformer. arXiv preprint arXiv:2202.04200, 2022. (Cited on 6)

[6] Zhang Chen, Yinda Zhang, Kyle Genova, Sean Fanello, Sofien Bouaziz, Christian Hine,
Ruofei Du, Cem Keskin, Thomas Funkhouser, and Danhang Tang. Multiresolution deep
implicit functions for 3d shape representation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 13087-13096, 2021. (Cited on 2)

[7] Zhigin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via
binary space partitioning. arXiv preprint arXiv:1911.06971,2019. (Cited on 1, 3)

[8] An-Chieh Cheng, Xueting Li, Sifei Liu, Min Sun, and Ming-Hsuan Yang. Autoregressive 3d
shape generation via canonical mapping. arXiv preprint arXiv:2204.01955, 2022. (Cited on 3,
4)

[9] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature space
for 3d shape reconstruction and completion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6970-6981, 2020. (Cited on 2, 3, 4, 6)

[10] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2:
A unified approach for single and multi-view 3d object reconstruction. In European conference
on computer vision, pages 628—644. Springer, 2016. (Cited on 2)

[11] Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu,
Xi Zhang, Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al. Abo: Dataset
and benchmarks for real-world 3d object understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 21126-21136, 2022. (Cited on
0)

[12] Angela Dai, Charles Ruizhongtai Qi, and Matthias NieBner. Shape completion using 3d-encoder-
predictor cnns and shape synthesis. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5868-5877, 2017. (Cited on 2)

[13] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea
Tagliasacchi. Cvxnet: Learnable convex decomposition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 31-44, 2020. (Cited on 1, 3, 6)

[14] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components
estimation. In Yoshua Bengio and Yann LeCun, editors, International Conference on Learning
Representations (ICLR), 2015. (Cited on 3)

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. ICLR, 2021. (Cited on 3, 8)

11

[16] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12873-12883, 2021. (Cited on 2, 3)

[17] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Local deep
implicit functions for 3d shape. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4857—4866, 2020. (Cited on 3)

[18] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas
Funkhouser. Learning shape templates with structured implicit functions. In Proceedings of the
IEEE International Conference on Computer Vision, pages 7154-7164, 2019. (Cited on 3)

[19] Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural
Information Processing Systems, 27:2672-2680, 2014. (Cited on 3)

[20] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min
Hu. Pct: Point cloud transformer. Computational Visual Media, 7(2):187-199, 2021. (Cited on
3)

[21] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017. (Cited on 8)

[22] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019. (Cited on 7)

[23] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Niener, Thomas
Funkhouser, et al. Local implicit grid representations for 3d scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6001-6010, 2020.
(Cited on 1)

[24] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio
and Yann LeCun, editors, International Conference on Learning Representations (ICLR), 2014.
(Cited on 3)

[25] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006. (Cited on 3)

[26] Tianyang Li, Xin Wen, Yu-Shen Liu, Hua Su, and Zhizhong Han. Learning deep implicit
functions for 3d shapes with dynamic code clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12840-12850, 2022. (Cited on 3)

[27] Yangyan Li, Soeren Pirk, Hao Su, Charles R Qi, and Leonidas J Guibas. Fpnn: Field probing
neural networks for 3d data. Advances in neural information processing systems, 29, 2016.
(Cited on 2)

[28] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface
construction algorithm. ACM siggraph computer graphics, 21(4):163-169, 1987. (Cited on 2)

[29] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4460-4470, 2019. (Cited on 1,
2,3,4,6,7)

[30] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders
Eriksson. Deep level sets: Implicit surface representations for 3d shape inference. arXiv preprint
arXiv:1901.06802, 2019. (Cited on 3)

[31] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,

and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
conference on computer vision, pages 405—421. Springer, 2020. (Cited on 4)

12

[32] Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. Autosdf: Shape priors
for 3d completion, reconstruction and generation. arXiv preprint arXiv:2203.09516, 2022.
(Cited on 3, 4)

[33] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. Polygen: An autoregressive
generative model of 3d meshes. In International Conference on Machine Learning, pages
7220-7229. PMLR, 2020. (Cited on 3, 6)

[34] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked
autoencoders for point cloud self-supervised learning. arXiv preprint arXiv:2203.06604, 2022.
(Cited on 3)

[35] Wamiq Para, Paul Guerrero, Tom Kelly, Leonidas J Guibas, and Peter Wonka. Generative layout
modeling using constraint graphs. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6690-6700, 2021. (Cited on 3)

[36] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 165-174,
2019. (Cited on 1, 3)

[37] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties
in gan evaluation. In CVPR, 2022. (Cited on 8)

[38] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and Sanja
Fidler. Atiss: Autoregressive transformers for indoor scene synthesis. Advances in Neural
Information Processing Systems, 34, 2021. (Cited on 3, 6)

[39] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger.
Convolutional occupancy networks. In European Conference on Computer Vision, pages
523-540. Springer, 2020. (Cited on 1, 2, 3, 4, 6)

[40] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652—-660, 2017. (Cited on 2, 3, 4)

[41] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in neural information processing
systems, pages 5099-5108, 2017. (Cited on 2, 3)

[42] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. (Cited on 7)

[43] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530-1538, 2015. (Cited on 3)

[44] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d represen-
tations at high resolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3577-3586, 2017. (Cited on 2)

[45] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017. (Cited on 3)

[46] Yongbin Sun, Yue Wang, Ziwei Liu, Joshua Siegel, and Sanjay Sarma. Pointgrow: Autore-
gressively learned point cloud generation with self-attention. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 61-70, 2020. (Cited on 3, 6)

[47] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T.
Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural representa-
tions. In CVPR, 2021. (Cited on 3)

[48] Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, and Lei Zhang. Sa-convonet: Sign-
agnostic optimization of convolutional occupancy networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6504-6513, 2021. (Cited on 1)

13

[49] Jiapeng Tang, Markhasin Lev, Wang Bi, Thies Justus, and Matthias Niefiner. Neural shape
deformation priors. In Advances in Neural Information Processing Systems, 2022. (Cited on 3)

[50] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li, Vladlen Koltun, and Thomas
Brox. What do single-view 3d reconstruction networks learn? In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3405-3414, 2019. (Cited on 6)

[51] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Francois
Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point
clouds. In Proceedings of the IEEE International Conference on Computer Vision, pages
6411-6420, 2019. (Cited on 2)

[52] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. Advances in Neural Information Processing
Systems, 29:4790-4798, 2016. (Cited on 3)

[53] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017. (Cited on 2, 3, 5)

[54] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International Conference on Machine Learning, pages 1747-1756, 2016. (Cited on 3)

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. (Cited on 2, 3)

[56] Xinpeng Wang, Chandan Yeshwanth, and Matthias NieBner. Sceneformer: Indoor scene
generation with transformers. In 2021 International Conference on 3D Vision (3DV), pages
106-115. IEEE, 2021. (Cited on 3)

[57] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics
(tog), 38(5):1-12, 2019. (Cited on 2, 3)

[58] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 9621-9630, 2019. (Cited on 2)

[59] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative convnet. In
International Conference on Machine Learning, pages 2635-2644. PMLR, 2016. (Cited on 3)

[60] Jianwen Xie, Yifei Xu, Zilong Zheng, Song-Chun Zhu, and Ying Nian Wu. Generative pointnet:
Deep energy-based learning on unordered point sets for 3d generation, reconstruction and
classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14976-14985, 2021. (Cited on 3)

[61] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, and Ying Nian Wu.
Learning descriptor networks for 3d shape synthesis and analysis. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8629-8638, 2018. (Cited on 3)

[62] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, and Ying Nian Wu.
Generative voxelnet: learning energy-based models for 3d shape synthesis and analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2020. (Cited on 3)

[63] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shigin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual
computing and beyond. Computer Graphics Forum, 2022. (Cited on 2, 3)

[64] Xingguang Yan, Ligiang Lin, Niloy J Mitra, Dani Lischinski, Danny Cohen-Or, and Hui Huang.
Shapeformer: Transformer-based shape completion via sparse representation. arXiv preprint
arXiv:2201.10326, 2022. (Cited on 3, 4)

[65] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-
bert: Pre-training 3d point cloud transformers with masked point modeling. arXiv preprint
arXiv:2111.14819, 2021. (Cited on 3)

14

[66] Biao Zhang and Peter Wonka. Training data generating networks: Shape reconstruction via
bi-level optimization. In International Conference on Learning Representations, 2022. (Cited
onl,3,06)

[67] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16259—
16268, 2021. (Cited on 3)

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Appendix.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Appendix.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] We specify the random seed. The results are reproducible.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] See Appendix.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] See Appendix.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes]

15

	Introduction
	Related Work
	Neural shape representations
	Generative models

	Shape Reconstruction
	Patch Construction
	Transformer
	Reconstruction

	Autoregressive Generative Modeling
	Unidirectional Transformer
	Bidirectional Transformer

	Reconstruction Experiments
	Generative Experiments
	Probabilistic Shape Reconstruction from a Single Image
	Category-Conditioned Generation
	Point Cloud Conditioned Generation

	Conclusion

