Under review as a conference paper at I[COMP 2024

TRAFFIC CONTROL OPTIMIZATION USING FRAME-
WORK SUMO-ATCLIB

Anonymous authors
Paper under double-blind review

ABSTRACT

This article proposes the sumo-atclib framework, which provides a convenient
uniform interface for testing adaptive control algorithms with different limitations,
for example, restrictions on phase duration, phase sequences, restrictions on the
minimum time between control actions, which uses the open source microscopic
transport modeling environment SUMO. The framework shares the functional-
ity of controllers (class TrafficController) and a monitoring and detection system
(class StateObserver), which repeats the architecture of real traffic light objects
and adaptive control systems and simplifies the testing of new algorithms, since
combinations of different controllers and vehicle detection systems can be freely
varied.

At the same time, the algorithms themselves use the same interface and are ab-
stracted from the specific parameters of the detectors, network topologies, that
is, it is assumed that this solution will allow the transport engineer to test ready-
made algorithms for a new scenario, without the need to adapt them to new con-
ditions, which speeds up the development process of the control system, and
reduces design overhead. At the moment, the package contains examples of
MaxPressure algorithms and the Q-learning reinforcement learning method, the
database of examples is also being updated. The framework also includes a set
of SUMO scripts for testing algorithms, which includes both synthetic maps and
well-verified SUMO scripts such as Cologne and Ingolstadt.

1 INTRODUCTION

Despite the large number of results in the field of adaptive traffic management, this task is still
relevant, which is confirmed by the regular appearance of new research. New approaches based on
the latest results in the field of Reinforcement Learning (hereinafter referred to as RL) and artificial
neural networks are also actively developing. However, there is some discrepancy between the
theoretical and practical results. This is due to the fact that, as a rule, algorithms are initially based
on model data, which in a real situation is difficult to obtain, especially when controlling in real time,
as well as the control method itself, for example, choosing the next phase in real time is a rather
difficult method to implement in practice, due to hardware limitations(controllers, communication
with a traffic light object) or existing local regulations.

For example, in the absolute majority of the studied works (11) (table 1), the proposed algorithms
control traffic light objects by selecting the next phase, that is, every few seconds the algorithm
decides to leave the current phase or select any of the list of phases. However, in practice, such
management is not always technically available. More often, the most available option is to update
the phase durations once in a longer period of time, for example, 15 minutes.

Such a shift in focus in the adaptive control algorithms being developed has also led to a shift in
the developed tools. Thus, in the main open benchmarks and ready-made frameworks, only one
type of traffic light object management is available. All this complicates the direct comparison of
algorithms, since they could use different control methods in different studies. It is also difficult to
simulate the operation of the selected algorithm for a specific intersection, since most likely you will
have to implement it yourself under existing conditions. This paper proposes a unified framework
for the development and testing of adaptive traffic management algorithms, which provides a larger
set of available management methods, easily adapts a once-written algorithm to a specific road net-

Under review as a conference paper at I[COMP 2024

Table 1: Adaptive traffic control articles analysis.

Control action articles number | percentage, %
time distribution between phases 5 12
switch/continue phase 8 19
choose next phase 26 62
define phase duration 3 7

work. The framework is written in python and uses the SUMO(3) package as a transport modeling
environment.

2 EXISTING FRAMEWORKS

Existing frameworks for the development of adaptive control algorithms use ready-made open pack-
ages for modeling traffic flows, among which SUMO and CityFlow (12) can be distinguished.
SUMO - Simulation of Urban MObility, is an open source traffic simulation package. It is the
most widespread, has a graphical interface, wide functionality (up to the simulation of pedestrians,
public transport, the choice of algorithms for following the leader, etc.), is regularly updated. De-
spite the fact that it is written in C++, it has connectors for various languages that allow you to
control the simulation in real time. CityFlow was originally built as an environment for building
RL adaptive control algorithms. It was stated that this package has higher performance compared to
SUMO in highly loaded scenarios (12), which was rather due to the TraCI(10) connector to SUMO,
since the article (5) shows that the simulation time of the same scenarios is comparable. Also, this
package has not been updated since November 2021. At the moment, 2 sumo frameworks can be
distinguished for the development and debugging of algorithms-rl and LibSignal.

The sumo-rl(4) framework uses SUMO as an environment for transport modeling. This framework
also contains a set of RESCO (1) scripts, there is an example of an implemented agent. However, it
only implements control by selecting the next phase. Also, the space of possible actions in it is quite
poor, it consists only of the possibility of choosing the next phase, but it lacks information about
adjacent intersections and pressure, in terms of the MaxPressure algorithm, is considered only the
general one at the intersection, which makes it impossible to directly apply this algorithm without
modifying the framework.

The LibSignal(5) framework can also use SUMO as a modeling module, but at the same time it is
possible to use CityFlow. However, this framework also does not have the ability to simulate a situ-
ation with scheduled management. However, it is more flexible and already offers more possibilities
for customizing the state space, but this requires a fairly deep dive into the framework code.

3 PROPOSED FRAMEWORK

In the proposed framework, it was also decided to use SUMO as an environment for modeling traffic
flow. This is the most popular package to date, regularly updated, and has open source code. The
framework also includes a set of scenarios for testing algorithms - RESCO. The block diagram of
the proposed library is shown in the figure 1

Under review as a conference paper at I[COMP 2024

{ Adaptive control agent]
(RL, nonRL)

action
reward
state

/Environment 4 \

[TrafficControllers]

K
i

Ly E
[SUMO config J— ----------------- > SUMO —>{ Metrics, log J

L] '
[Observers }

\ /

v

{ Visualization tools }

Figure 1: The block diagram of the framework.

The environment consists of a SUMO simulation, intersection controllers (TrafficControllers in the
diagram) and surveillance systems (StateObservers). Controllers control traffic lights and are im-
plemented in two classes - TrafficLightsScheduleController and TrafficRealTimeController, the first
allows you to simulate scheduled control, makes it possible to set acceptable phases durations for a
certain period of time, does not imply real-time control, while the second class of controllers, on the
contrary, simulates real-time control, and requests with some frequency (for example, 5 seconds) an
action Depending on the initialization, it allows you to control in two modes: prolongation of the
current phase/activation of the next one (cyclic mode) or selection of the next phase from all possible
ones (acyclic mode). Thus, 3 control methods are available - according to a schedule, switching to
the next phase, choosing the next phase, and in one simulation, different controllers can be placed at
different intersections, which allows you to simulate the existing hardware stack of a specific road
network for testing adaptive control algorithms. Another feature of the proposed framework is the
unification of lanes (lane in SUMO) into roads”, class Road. This is due to the fact that in SUMO,
and in other environments too, the road from one intersection to another may consist of several sec-
tions (edges on the graph), that is, there is one path, but it consists of several sequentially connected
edges, this may be, for example, due to constrictions/extensions, thus, if you automatically build a
graph for a new scenario, it may turn out that the algorithm controls lanes of several tens of meters
at the entrance and exit, and all traffic lights are not connected to each other, although in fact they
are adjacent. In order to deal with such a problem, the Road class was introduced, which combines
the lanes that make up one branch (one can see the difference on the figure 2).

The Observer class simulates the operation of a surveillance system on a road network, allowing,
for example, to set the surveillance area. In this framework, it is possible to test not only algorithms
based on reinforcement learning, but also classical model-based ones, such as MaxPressure (8; 9)
or evolutionary algorithms in the case of scheduled management.

4 EXPERIMENTS

This section demonstrates the capabilities of the framework. To build metrics, the methods MaxPres-
sure, MaxPressure - in cycle mode and Qlearning - an approach based on reinforcement learning
methods were used, and metrics for a manually selected schedule were also obtained. The methods
were tested on a SUMO model of two connected intersections in Moscow, the map is shown in the
figure 3.

Under review as a conference paper at I[COMP 2024

(@)

Figure 2: Merging lanes into one road (Road class).

Figure 3: On the map, the northern intersection: the intersection of Atlasov-Moskvitina-Chumakov,
and the southern one: the intersection of Atlasov-Valuevskoe-Khabarova

Under review as a conference paper at I[COMP 2024

4.1 ALGORITHMS DESCRIPTION

Max-pressure: The algorithm proposed in (9) minimizes the “pressure” at the intersection. The
pressure of the phase, informally speaking, is defined as the difference between the number of
vehicles in line on the incoming roads of the intersection, which the phase allows to travel, and the
number of cars queuing at adjacent intersections of outgoing roads. This decentralized algorithm
controls only one traffic light object using information from adjacent intersections, however, it is
claimed that under certain conditions it guarantees the stabilization of queues at all intersections of
the network.

More formally, the weight of the direction is first considered according to the following rule:
neOuty,

where ¢(l, m) represents the length of the queue from edge [to edge m, p(m,n) the proportion of
vehicles heading from m to n. Pressure then counts as:

Yo=Y w(l,m)
(Im)€d

Where ¢ is a set of intersection directions allowed for the phase, in the form of input-output pairs
(I,m).

The standard implementation of the algorithm proposed in (9). A variant with real-time control,
where the phase sequence may not be observed. The algorithm is described below.

Algorithm 1: MaxPressure

Data: Minimal phases duration ¢,,,;,

Time from the beginning current phase of i-th junction ¢;
@i, ¢i,0 current and initial phases of the i-th junction
foreach i junction do

®i + 05

ti%o;

end

foreach timestep do

foreach i-th junction do

if t; > trmin then

Evaluate pressure for the i-th junction for each phase ; 4 ;
if arg mgx Vi,¢ 7 ¢: then

Change current phase to arg mdz)ix Vi, b5
t; 0;
else

| Do not change current phase;
end

end

end
end

The figure 4 shows a listing of a program implementing this algorithm using the interface of the
proposed framework.

The described algorithm assumes real-time control, however, this is not always applicable in prac-
tice, so its modification is often used, which does not change the order of phases in the cycle, but
only distributes the duration of each phase in the cycle. Unlike the original algorithm, here the du-
ration of the cycle phases is simply set in proportion to the corresponding pressures. It is also not
difficult to implement this option in the proposed framework, and the figure 5 shows a listing of this
algorithm within the framework.

Under review as a conference paper at I[COMP 2024

env = SumoEnvironment (args)
initial_state, _, done = env.reset()
actions = {}

while not dome["__all__"

¥

obs, _, done, i = env.step(actions)
actiens = {}
for ts in obs.keys():
pressures = obs[ts] ["pressure"]
actiens[ts] = np.argmax(pressures)
env.close()

Figure 4: Acyclic MaxPressure - free choice of phases, the implementation in the proposed interface.

env = SumoEnvironment(args)
initial_state, _, done, _ = env.reset()
actions = {}
while not done["__all__"
obs, _, done, i = env.step(actions)
actions = {}
for ts in obs.keys():
pressures = obs[ts] ["pressure"]
actions[ts] = env.tls_controllers[ts] ["available time"] #
pressures / sum(pressures)
env.close()

Figure 5: Cyclic MaxPressure - fixed order of phases, control of time distribution between phases,
the implementation in the proposed interface.

Unlike classical algorithms, Reinforcement Learning algorithms have an agent who learns in the
process of interacting with the environment, figuratively speaking, gaining experience and drawing
conclusions. In order to demonstrate the capabilities of the framework in supporting RL methods, an
example of agent training using the Q-learning (7) method was also implemented. The pseudocode
of the algorithm is presented in the algorithm 2.

Algorithm 2: Q-learning.

Data: « - smoothing parameter
€ - exploration parameter
Q(s,a) - Q-function values table
s € S - state vector (queues, pressures, ...)
a € A - action
So - initial state
foreach step k do
ay, with probability e is chosen uniformly from A, and with probability 1 — € is defined as
ay < arg max Q(sg, a)
a

Tk, Sk+1 - environment output after step ay,
Update Q: Q(sg,ar) < Q(sk,ar) + a(ry + 7 max Q(sgt1,a) — Qak, sk))
end

This is an example of the off-policy method, since an agent, generally speaking, can learn from
examples not only of its interaction with the environment, but also from samples of other agents
(policies). That is, you can use the replay buffer (experience replay) and generally speaking, sepa-
rately collect examples and update the Q-table.

Under review as a conference paper at I[COMP 2024

4.2 RESULTS

The simulation result is shown in figures 6 and 7, where expert schedule - the phase durations are
expertly selected and fixed throughout the episode; MaxPressure (cyclic) - algorithm MaxPressure,
where the duration of the phases is set once before the cycle, the sequence of phases remains un-
changed; MaxPressure (acyclic) - algorithm MaxPressure, where a new phase is selected every 5
seconds, or the current one remains, the sequence of phases changes (this one performs better than
cyclic one, similar to (6)); Q-agent (cyclic) - implementation of the Q-learning approach, the se-
quence of phases does not change, the algorithm decides every 5 seconds to switch to the next
phase or not; Q-agent (free choice of phases) - implementation of the Q-learning approach, in which
the algorithm selects the next phase every 5 seconds, the sequence of phases changes. The ex-
periment code can be found in the project repository: https://github.com/zhelyazik/
sumo-atclib/tree/main/experiments (2).

Average travel time
400

—— Expert schedule
MaxPressure (cyclic)
—— MaxPressure (acyclic)
—— Q-agent (cylcic)
300 1 —— Q-agent (acyclic)

350 A

N

%

o
L

200 A

150 1

average travel time, s

100 +

50

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
simulation time, s

Figure 6: The graph of the average trip time per car, depending on the step of the simulation, the
calculation uses jointly the cars that are on the way and arrived at the destination.

Under review as a conference paper at I[COMP 2024

Average timeloss
400

—— Expert schedule
MaxPressure (cyclic)
—— MaxPressure (acyclic)
—— Q-agent (cyclic)
300 1 —— Q-agent (acyclic)

350 4

N

%

o
L

200 A

average timeoss, s
—
w
o
L

100 1

50 A

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
simulation time, s

Figure 7: The graph of the average delay in a trip per car, depending on the step of the simulation,
the calculation uses jointly the cars that are on the way and arrived at the destination. The delay time
of the vehicle is calculated as the total time of all stops.

5 CONCLUSIONS

The purpose of this work is to develop a tool that will significantly accelerate the develop-
ment and research of adaptive traffic management algorithms. Initially, a ready-made framework
(sumo-rl) was taken, which as a result of edits was significantly redesigned and its function-
ality expanded. The framework is available on GitHub at the link https://github.com/
zhelyazik/sumo—atclib (2).

This tool can be useful for engineers and researchers in the field of traffic management to model and
test adaptive control algorithms being developed.

However, there are several limitations in the current version. For example, the reward function,
which is used to train RL agents, is still implemented inside the framework and there is no way to
connect a custom version. The situation is similar with the StareObserver class - it has been fixed
so far, and there is no possibility of additional configuration, however, developers can change the
framework themselves if necessary. Currently, controllers are implemented that allow you to control
traffic light objects in the mode of selecting the next phase (any) in real time, switching to the next
phase in the cycle in order, setting the time distribution by phases in the cycle (schedule).

Despite the functionality already implemented, further development is necessary in order to make the
framework more flexible and convenient for engineers. The primary task is to fill the framework, in
addition to the script base, with a set of ready-made implementations of adaptive control algorithms.

REFERENCES

[1] Ault J., Sharon G.: Reinforcement learning benchmarks for traffic signal control. Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round
1) (2021).

[2] Kazorin V.: SUMO-ATCLIB. https://github.com/zhelyazik/sumo—-atclib

[3] Lopez, Pablo Alvarez and Behrisch, Michael and Bieker-Walz, Laura and Erdmann, Jakob
and Flotteréd, Yun-Pang and Hilbrich, Robert and Liicken, Leonhard and Rummel, Johannes
and Wagner, Peter and Wiessner, Evamarie: Microscopic traffic simulation using sumo. 2018
21st international conference on intelligent transportation systems (ITSC), pp. 2575-2582. IEEE
(2018).

Under review as a conference paper at I[COMP 2024

[4] Lucas N. Alegre: SUMO-RL. https://github.com/LucasAlegre/sumo-rl.

[5] Mei, Hao and Lei, Xiaoliang and Da, Longchao and Shi, Bin and Wei, Hua: Libsignal: an open
library for traffic signal control. Machine Learning, pp. 1?37 (2023).

[6] Sun X., Yin Y.: A simulation study on max pressure control of signalized intersections. Trans-
portation research record, vol. 2672(18), pp. 117?127 (2018).

[7] Sutton R. S., Barto A. G.: Reinforcement learning: An introduction. MIT press (2018).

[8] Varaiya P.: A universal feedback control policy for arbitrary networks of signalized intersec-
tions. Published online (2009). http://paleale.eecs.berkeley.edu/varaiya/
papers\textbackslashps.dir/090801-Intersectionsv5.pdf

[9] Varaiya P.: Max pressure control of a network of signalized intersections. Transportation Re-
search Part C: Emerging Technologies, vol. 36, pp. 177?195 (2013).

[10] Wegener, Axel and Piérkowski, Michat and Raya, Maxim and Hellbriick, Horst and Fischer,
Stefan and Hubaux, Jean-Pierre: TraCl: an interface for coupling road traffic and network sim-
ulators. Proceedings of the 11th communications and networking simulation symposium., pp.
155?163 (2008).

[11] Wei, Hua and Zheng, Guanjie and Gayah, Vikash and Li, Zhenhui: A survey on traffic signal
control methods. arXiv preprint arXiv:1904.08117 (2019).

[12] Zhang, Huichu and Feng, Siyuan and Liu, Chang and Ding, Yaoyao and Zhu, Yichen and
Zhou, Zihan and Zhang, Weinan and Yu, Yong and Jin, Haiming and Li, Zhenhui: Cityflow: A
multi-agent reinforcement learning environment for large scale city traffic scenario. The world
wide web conference, pp. 3620?3624 (2019).

