
PINNsAgent: Automated PDE Surrogation with Large Language Models

Qingpo Wuwu 1 * Chonghan Gao 2 * Tianyu Chen 2 Yihang Huang 3 Yuekai Zhang 1 Jianing Wang 1

Jianxin Li 2 Haoyi Zhou 2 Shanghang Zhang 1

Abstract
Solving partial differential equations (PDEs) us-
ing neural methods has been a long-standing
scientific and engineering research pursuit.
Physics-Informed Neural Networks (PINNs) have
emerged as a promising alternative to traditional
numerical methods for solving PDEs. However,
the gap between domain-specific knowledge and
deep learning expertise often limits the practical
application of PINNs. Previous works typically
involve manually conducting extensive PINNs ex-
periments and summarizing heuristic rules for
hyperparameter tuning. In this work, we intro-
duce PINNsAgent, a novel surrogation framework
that leverages large language models (LLMs) to
bridge the gap between domain-specific knowl-
edge and deep learning. PINNsAgent integrates
Physics-Guided Knowledge Replay (PGKR) for
efficient knowledge transfer from solved PDEs
to similar problems, and Memory Tree Reason-
ing for exploring the search space of optimal
PINNs architectures. We evaluate PINNsAgent on
14 benchmark PDEs, demonstrating its effective-
ness in automating the surrogation process and
significantly improving the accuracy of PINNs-
based solutions. Project website: https://
qingpowuwu.github.io/PINNsAgent/.

1. Introduction
Solving partial differential equations (PDEs) is a fundamen-
tal challenge with wide-ranging applications across various
scientific and engineering domains, including fluid dynam-
ics (Kutz, 2013), quantum mechanics (Teschl, 2014), and cli-
mate modeling (Stocker, 2011). Traditional numerical meth-

*Equal contribution 1State Key Laboratory of Multimedia Infor-
mation Processing, School of Computer Science, Peking Univer-
sity 2School of Computer Science, Beihang University 3School of
Artificial Intelligence, Beijing Normal University. Correspondence
to: Shanghang Zhang <shanghang@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ods, such as finite difference (Strikwerda, 2004), finite ele-
ment (Hughes, 2000), and finite volume methods (LeVeque,
2002), often incur significant computational costs, struggle
to handle nonlinearities and complex geometries (Canuto
et al., 2007; Berger & Oliger, 1984), motivating the devel-
opment of data-driven alternatives. Physics-Informed Neu-
ral Networks (PINNs) have recently emerged as a promis-
ing deep learning-based approach for solving PDEs (Raissi
et al., 2017; 2019). However, designing effective neural
architectures for PINNs heavily relies on expert knowledge
and often requires extensive trial-and-error to mitigate train-
ing pathologies (Wang et al., 2023b), prompting extensive
research to explore optimal PINNs architectures and hyper-
parameters through numerous manual experiments. (Wang
et al., 2022) conducted a comprehensive study to understand
the relationship between PINNs architectures and their per-
formance, while (Kaplarević-Mališić et al., 2023) manually
explored various evolutionary strategies for PINNs archi-
tecture optimization. Similarly, (Wang & Zhong, 2024)
investigated the impact of different architectural choices on
PINNs performance through extensive experiments. These
works often summarize their findings as thumb rules or
guidelines for several PDE families to assist non-experts in
manually tuning PINNs architectures and hyperparameters.
However, this manual approach is time-consuming, labor-
intensive, and may not generalize well to a wide range of
PDEs, highlighting the need for an automated framework
capable of hierarchically formulating and optimizing PINNs
architectures for given PDEs.

Recent advancements in large language model (LLM)-based
intelligent agents have showcased their capacity in the realm
of scientific computing, automating tasks such as code gen-
eration (Nijkamp et al., 2023; Huang et al., 2023; Madaan
et al., 2024; Wang et al., 2023c), hyper-parameter tuning
(Zhang et al., 2023), and physical modeling (Alexiadis &
Ghiassi, 2024; Ali-Dib & Menou, 2023). These agents
leverage the vast knowledge encoded within LLMs to pro-
vide intelligent assistance and recommendations, opening
up new possibilities for accelerating scientific research and
development. However, their application in developing deep
learning-based solvers for PDEs has yet to fully exploit the
potential of leveraging existing database as foundational
knowledge and experimental logs as iterative feedback. We

1

https://qingpowuwu.github.io/PINNsAgent/
https://qingpowuwu.github.io/PINNsAgent/

PINNsAgent: Automated PDE Surrogation with Large Language Models

aim to bridge this gap by developing an LLM-based intelli-
gent agent (Brown et al., 2020) framework to autonomously
optimize Physics-Informed Neural Networks (PINNs) archi-
tectures for solving Partial Differential Equations (PDEs)
without relying on manual tuning or expert heuristics.

To this end, we introduce PINNsAgent, an innovative LLM-
based surrogate framework that leverages LLMs as intelli-
gent agents to develop and optimize PINNs autonomously.
PINNsAgent comprises a multi-agent system, including a
database that accumulates past experimental logs, a plan-
ner that generates candidate architectures and guides the
exploration process, a programmer that translates designed
architectures into executable code, and a code bank for stor-
ing and retrieving successful implementations. To efficiently
utilize the knowledge stored in the database, we propose a
new retrieval framework called Physics-Guided Knowledge
Replay (PGKR) that encodes the essential characteristics of
PDEs. Inspired by insights from existing literature (Wang
et al., 2023b; 2022; Rathore et al., 2024; Saratchandran
et al., 2024), we assign appropriate weights to different PDE
features for better determining similarity. This weighted en-
coding enables efficient knowledge transfer from solved
PDEs to similar problems by ranking their similarity scores.
Additionally, to further explore and optimize the hyperpa-
rameter configurations provided by PGKR, we introduce the
Memory Tree Reasoning Strategy (MTRS), which guides
the planner in exploring the PINNs architecture space. This
approach continuously improves PINNs architecture com-
ponents via online learning with experiment feedback.

Evaluated on 14 diverse PDEs, PINNsAgent demonstrates
superior performance compared to state-of-the-art methods,
showcasing its ability to autonomously develop and opti-
mize PINNs architectures. The critical contributions of our
work can be summarized as follows:

• We propose PINNsAgent, a novel LLM-based surro-
gate framework that autonomously develops and ex-
plores optimal PINNs for given PDEs without relying
on expert heuristics on deep learning. The framework
consists of a multi-agent system, including a database,
a planner, a programmer, and a code bank, which work
together to generate and optimize PINNs architectures.

• We introduce Physics-Guided Knowledge Replay
(PGKR), which encodes essential characteristics of
PDEs and enables efficient knowledge transfer from
solved PDEs to similar problems, significantly improv-
ing learning efficiency.

• We develop the Memory Tree Reasoning Strategy
(MTRS) that guides the planner in navigating the
PINNs architecture space, facilitating continuous im-
provement through iterative feedback.

2. Related Work
2.1. Learned PDE Solvers
Data-driven PDE solvers have garnered significant atten-
tion since (Raissi et al., 2017; 2019) first propose physics-
informed neural networks (PINNs) to solve nonlinear PDEs
by using automatic differentiation to embed PDE residuals
into the loss function. However, vanilla PINNs exhibit vari-
ous limitations in accuracy, efficiency, and generalizability,
prompting extensive research towards developing improved
differentiable neural network PDE solvers (Cuomo et al.,
2022). For instance, (Yu et al., 2022; Wang et al., 2021)
proposed loss functions that incorporate gradient enhance-
ment of the PDE residual to improve model stability and
accuracy. Another approach, as described (Jagtap et al.,
2020b;a; 2022), introduced adaptive activation functions to
reduce the inefficiency of trial and error in network train-
ing. Furthermore, to enhance computational efficiency and
adapt to complex geometries, (Nabian et al., 2021; Shukla
et al., 2021; Jagtap & Karniadakis, 2020) introduced impor-
tance sampling and domain decomposition. Despite these
advancements, the selection and design of PINNs still pose
barriers for non-experts. Our proposed PINNsAgent frame-
work aims to provide an automated surrogate framework
for proposing PINNs architectures to solve user-provided
PDEs.

2.2. LLM-based Autonomous SciML Agents
Large language models have demonstrated powerful general
knowledge and linguistic capabilities since the release of
GPT-3.5(Ouyang et al., 2022), leading to various studies
that extend their application towards specific tasks, known
as large language model (LLM) agents. These agents have
been applied to both general tasks and scientific disciplines
(AI4Science & Quantum, 2023; Bran et al., 2024; Boiko
et al., 2023). In the field of Scientific Machine Learning
(SciML), various studies have highlighted the capability of
LLMs to simulate physical phenomena, for instance, (Ali-
Dib & Menou, 2023; Alexiadis & Ghiassi, 2024) demon-
strate the use of LLMs in developing numerical PDE solvers,
thereby accelerating scientific inquiries and discoveries. Ad-
ditionally, (Kumar et al., 2023) combined LLMs with PDE
solvers (PINNs and DeepONet), creating agents that assist
in data preprocessing, model selection, and result interpre-
tation. Similarly, (Lin et al., 2024) introduced a physics-
informed LLM agent specifically designed for power con-
verter modulation. However, these previous works have
only preliminarily explored the potential of LLMs in solv-
ing PDE problems and conducted some case studies. Our
work not only further validates the effectiveness of LLMs
in these applications but also proposes a novel framework
that seamlessly integrates LLMs with PINNs, contributing
to the SciML community.

2

PINNsAgent: Automated PDE Surrogation with Large Language Models

PINNsAgent

PDE Descriptions Literatures

Query

Database

Arch 1 Arch 2 Arch K

…

TopK

Planner

ProgrammerPlan

Code

Write Execute

Feedback

Debug × n

Config

Code
Bank

Code Generation

Config Generation

Base Code

Update Retrieve

Execute

Revise Loop × N

Exp Record

Memory Tree

Input

Feedback

Figure 1. The workflow of the PINNsAgent’s Framework. The PINNsAgent operates in two modes: Code Generation and Config
Generation. It leverages LLM agents to generate and refine executable code and YAML configuration files for optimizing hyperparameters
in PINNs. The planner and programmer collaborate to devise experimental plans and generate training code, utilizing a central Code Bank
and top-K cases from the Database.

2.3. LLMs enabled AutoML
Automated Machine Learning (AutoML) has revolutionized
the field of machine learning by automating the selection of
optimal models and their hyperparameters (He et al., 2021;
Karmaker et al., 2021). Early approaches in AutoML fo-
cused on efficiently exploring hyperparameter spaces, a pro-
cess known as Hyperparameter Optimization (HPO) (Feurer
& Hutter, 2019). Representative methods include Random
Search (Bergstra & Bengio, 2012), Grid Search (Liashchyn-
skyi & Liashchynskyi, 2019), Bayesian Optimization (Wu
et al., 2019), and Evolutionary Computation (Liu et al.,
2023). With the advent of large language models (LLMs),
HPO methodologies have significantly evolved. LLMs can
automate and enhance HPO by generating predictive and
insightful hyperparameter suggestions based on their exten-
sive training data (Wang et al., 2023a; Tornede et al., 2024).
Their reasoning capabilities allow them to propose initial hy-
perparameters by analyzing training tasks and datasets (Guo
et al., 2024). Additionally, LLMs leverage cross-domain
knowledge to improve model configurations and can gen-
erate parts or entire neural network architectures (Yu et al.,
2023; Zheng et al., 2023). Our work differs from previ-
ous studies by introducing a novel multi-agent framework
that automates the design of PINNs at two levels: database
retrieval (PGKR), hyperparameter optimization (MTRS).
This approach provides a balanced trade-off between effi-
ciency and accuracy, offering significant improvements over

traditional methods.

3. Methods
In this session, we introduce PINNsAgent, a novel multi-
agent framework for optimizing PINNs architectures.

Section 3.1 introduces the background of the proposed
framework. Section 3.2 provides an overview of the critical
components of PINNsAgent. In Section 3.3, we propose
a novel retrieval framework called Physics-Guided Knowl-
edge Replay (PGKR), which leverages the mathematical
and physical properties of PDEs to identify promising hy-
perparameter configurations. Finally, Section 3.4 introduces
the Memory Tree Reasoning Strategy within PINNsAgent
for efficient exploration of the search space.

3.1. Preliminary
3.1.1. PROBLEM FORMULATION: SOLVING PDES WITH

PINNS

Partial Differential Equations (PDEs) are foundational to
modeling various physical phenomena across science and
engineering disciplines, including fluid dynamics (Kutz,
2013), quantum mechanics (Teschl, 2014), and climate mod-
eling (Stocker, 2011). A general form of a PDE is expressed
as:

3

PINNsAgent: Automated PDE Surrogation with Large Language Models

F (x, u,∇u,∇2u, . . .) = 0, (1)

where u = u(x) denotes the unknown function, x the spatial
coordinates, and ∇u, ∇2u the first and higher-order spatial
derivatives of u.

Physics-Informed Neural Networks (PINNs) provide a
mesh-free method to solve PDEs by utilizing the univer-
sal approximation capabilities of deep neural networks.
PINNs enforce the compliance of the neural network solu-
tion u(θ,H) with the underlying physical laws represented
by the PDEs. The overall formulation of a PINNs is given
by:

L(u(θ,H)) = LPDE(u(θ,H)) + LBC(u(θ,H)), (2)

where u(θ,H) is the neural network approximation of u,
parameterized by weights θ and hyperparameters H. The
PDE-residual loss LPDE is computed as:

LPDE(u(θ,H)) =
1

N

N∑
i=1

∣∣F (xi, u,∇u,∇2u, . . .)
∣∣2 .

(3)

where N represents the number of collocation points used
to evaluate the PDE residuals.

The boundary condition loss LBC enforces agreement with
the prescribed boundary (and/or initial) conditions, and is
typically defined as:

LBC(u(θ,H)) =
1

NBC

NBC∑
i=1

∣∣uθ(x
BC
i)− uBC(x

BC
i)

∣∣2 ,
(4)

where NBC is the number of boundary (or initial) sample
points, xBC

i denotes their coordinates, and uBC is the pre-
scribed value at xBC

i .

3.1.2. HYPERPARAMETER OPTIMIZATION VIA LLM

Selecting optimal hyperparameters H, such as learning rates,
layer depths, neuron counts per layer, and activation func-
tions, is crucial for the training efficacy and solution accu-
racy of PINNs. Traditional methods like grid or random
search are often inefficient and computationally demanding.
Large Language Models (LLMs) offer a novel iterative ap-
proach to generate hyperparameter settings. Formally, the
LLM-based HPO method encompass an iterative loop:

pLLM(Ht) =
∑
ft−1

ppr(f
t−1|Ht−1)ppl(Ht|τ,Ht−1, f t−1),

(5)

where Ht denotes the hyperparameters at iteration t, τ is
the PDE formulation, and f t−1 is feedback from the prior
iteration. We introduce two agents: a planner ppl and a
programmer ppr. The planner generates new hyperparame-
ter settings based on the problem formulation τ , previous
settings Ht−1, and feedback f t−1. The programmer ex-
ecutes training scripts for PINNs using the settings Ht−1

and produces f t−1. The initial setting H0 is defined as
p(H0) = pR(τ,B), where pR is a retriever querying a pre-
established database B with the PDE formulation τ to es-
tablish a starting point H0.

3.2. PINNsAgent

PINNsAgent is an LLM-based multi-agent framework that
integrates three key components: the Database, the Planner,
and the Code Bank. These components work collaboratively
to develop optimal PINNs architectures for target PDEs.

As illustrated in Figure 1, the PINNsAgent operates in two
distinct modes: Config Generation and Code Generation.
The Config Generation mode, which is the primary focus of
this study, is designed to handle scenarios where the target
PDE already exists in the Code Bank. In this mode, the
LLM-based agent, termed the planner, is tasked with gen-
erating YAML configuration files. These files delineate the
settings within a predefined search space, optimizing the hy-
perparameters in accordance with the specific requirements
and constraints of the target PDEs. The Code Generation
mode is designed to address scenarios where the user spec-
ifies a PDE that is not present in the Code Bank, enabling
PINNsAgent to handle user-specified PDEs that are new to
the Code Bank.

3.2.1. STEP 1: DATABASE RETRIEVAL

The Database acts as a central repository for archiving both
the literature related to PINNs and the successful hyperpa-
rameter configurations derived from prior experiments. To
capitalize on this accumulated experience efficiently, we
introduce a novel retrieval strategy named Physics-Guided
Knowledge Replay (PGKR). Upon querying the Database
with a detailed description of the PDE, select the top K hy-
perparameter settings that best align with the requirements
of the target PDE. These selected settings are then forwarded
to the planner, which synthesizes this information to devise
a comprehensive experiment plan. The details of PGKR are
elaborated in Section 3.3.

3.2.2. STEP 2: EXPERIMENT PLAN GENERATION

In this step, the planner plays a pivotal role in generating
candidate architectures and guiding the exploration of the
hyperparameter search space for PINNs. Utilizing the top K
initial configurations sourced from the database, the planner
functions as a policy model tasked with the strategic explo-

4

PINNsAgent: Automated PDE Surrogation with Large Language Models

ration of the PINNs architecture search space. To navigate
this search space efficiently, we have developed the Memory
Tree Reasoning Strategy (MTRS), a novel method designed
to optimize the selection process of hyperparameters by
evaluating their exploration scores. The details of MTRS
are thoroughly elaborated in Section 3.4. After selecting Hi

using MTRS, the planner proceeds to develop a comprehen-
sive experimental plan. This plan serves as a blueprint for
the programmer to implement the PINNs according to the
specified configurations. In the case of Config Generation
mode where the programmer is not involved, the planner is
required to generate the configuration files in YAML format,
based on the feedback lt−1 of the former iteration.

3.2.3. STEP 3: CODE EXECUTION

To facilitate the deployment of PINNs models, we construct
a Code Bank to store the reusable code snippets, providing
the programmer with successful examples and API instances.
In the Code Generation mode, The programmer retrieves
pre-defined templates, libraries, and best practices from
the Code Bank and translates the candidate architectures
generated by the planner into executable code following
the experiment plan. If errors are reported, the terminal
feedback is then replayed to the programmer to identify
and resolve bugs. In the Config Generation mode, we ex-
tract the base code that can directly run on the generated
configuration file to get the final results.

3.2.4. STEP 4: REVISION

Upon completing the execution step, the evaluation results
f t, including detailed training logs, performance metrics,
and visualization results, are utilized to update the Database.
This process ensures that each iteration enriches the repos-
itory with new insights and empirical evidence, contribut-
ing to a more comprehensive knowledge base. Using the
feedback f t, the Planner revises the experimental plan to
enhance the model’s performance in subsequent iterations.
This feedback-driven revision process involves systemati-
cally adjusting the hyperparameter settings and potentially
exploring new architectural modifications. The revision pro-
cess is meticulously executed through a loop that iterates
N times. In each iteration, the Planner assesses the current
performance, identifies areas for improvement, and makes
informed adjustments to the hyperparameters.

3.3. Database Exploitation: Physics-Guided Knowledge
Replay (PGKR)

Experience Replay is a paradigm for reusing past experimen-
tal data and expert knowledge to address new challenges
(Rolnick et al., 2019). However, there is a lack of sufficient
databases and literature supporting the retrieval of optimal
architectures for PDEs in database components when de-

signing PINNs.

To address this issue, we conducted 3000 parameter fine-
tuning experiments on the datasets provided by PINNa-
cle (Hao et al., 2024). These experimental results enable
us to leverage past experiences to solve new PDEs. Sub-
sequently, we developed a new retrieval method named
Physics-Guided Knowledge Replay (PGKR), which ex-
tends the general Knowledge Replay concept by incorpo-
rating domain-specific knowledge. PGKR first encodes a
PDE’s mathematical and physical properties into a struc-
tured format. This allows the method to find retrieval PDEs
with similar structures to the target PDE. By comparing the
encoded representations, PGKR identifies the most relevant
PDEs from the knowledge base, providing valuable insights
into the appropriate PINNs architectures and hyperparame-
ter settings.

To encode the mathematical and physical properties of PDEs
into a structured format, we define a comprehensive set of
labels L = {l1, l2, . . . , ln} that capture the key features of
each PDE, including equation type (e.g., parabolic, elliptic,
hyperbolic), spatial dimensions, linearity, time dependence,
boundary and initial conditions, coefficient type, time scale,
and geometric complexity. These labels are then encoded
into feature vectors F = {f1, f2, . . . , fn} using a prede-
fined encoding scheme. Based on findings from previous
studies, we assign higher weights to certain critical features,
particularly the PDE type, to enhance similarity determina-
tion. The encoding process can be formally defined as a
function E : L → F , which maps each label to its corre-
sponding weighted feature vector:

E (li) = wifi, i = 1, 2, . . . , n (6)

where wi is the weight assigned to the i-th feature.

The encoded feature vectors for all PDEs are concatenated
to form a feature matrix X ∈ Rn×m, where n is the num-
ber of PDEs and m is the dimensionality of the feature
space. Further details on the encoding scheme and weight
assignment can be found in Appendix A.

To measure the similarity between PDEs, we employ a
weighted cosine similarity, which quantifies the cosine of
the angle between two weighted feature vectors. Given two
PDEs represented by their feature vectors fi and fj , the
weighted cosine similarity sij is computed as:

sij =
(Wfi) · (Wfj)

∥Wfi∥ ∥Wfj∥
, i, j = 1, 2, . . . , n (7)

where W is a diagonal matrix of weights. This weighting
scheme allows us to emphasize the importance of certain
features in determining similarity. The resulting similarity
matrix S ∈ Rn×n captures the pairwise similarities between
all PDEs in the knowledge base. The top-k most similar

5

PINNsAgent: Automated PDE Surrogation with Large Language Models

Planner

Step1: Analyze Memory Tree

Step2: Select Unexplored Branch

LLM serve as policy model

Burgers

Tanh

8

64

Step3: Generate Config

Optimizer:
LR: 1e-3
Optim: Adam

Model:
Depth: 8
Width: 64
Net: LAAFs

Activation: Tanh
…

YAML

Step4: Execute

Result

Revise Loop × N

Burgers

Relu Tanh

8 16 8 16

128 64128128

Arch 1
MSE=0.1

Arch 2
MSE=0.01

Arch 3
MSE=0.2

Arch 4
MSE=0.3

Memory Tree

Local
Optimal

Burgers

Relu Tanh

8 16 8 16

64 128 64 12864 12864 128

Arch 1
MSE=0.1

Arch 2
MSE=0.01

Arch 3
MSE=0.2

Arch 4
MSE=0.3

Updated Memory Tree

Local
Optimal

Global
Optimal

Arch 5
MSE=0.25

Arch 6
MSE=0.8

Arch 7
MSE=0.02

Arch 8
MSE=0.001

PDE

Activation

Depth

Width

Case

PDE

Activation

Depth

Width

Case

Code
Bank

Base Code

Step5: Back-Propagation

Figure 2. Memory Tree Reasoning Strategy. The root node represents the corresponding PDE, with subsequent levels corresponding to
different hyperparameters. The planner selects unexplored branches and generates configurations, which are executed to obtain MSE
scores. This process iterates to refine the tree and find the global optimal architecture (Arch 8 with the lowest MSE).

PDEs are retrieved by ranking the similarity scores, along
with their associated best-performing PINNs configurations.
These configurations serve as the starting points for the
surrogate model search process.

3.4. Guided Exploration: Memory Tree Reasoning
Strategy

Physics-Guided Knowledge Replay (PGKR) provides an
effective sub-optimal hyperparameter configuration as an
initial point. To further refine and optimize this configura-
tion, inspired by Monte Carlo Tree Search (MCTS) (Browne
et al., 2012), we introduce the Memory Tree Reasoning
Strategy (MTRS) within PINNsAgent. The Memory Tree
abstracts the hyperparameter optimization process, as il-
lustrated in Figure 2, enabling the agent to utilize prior
knowledge and feedback to guide the exploration of the
Physics-Informed Neural Networks (PINNs) architecture
space.

In the Memory Tree abstraction, the root node represents the
PDE to be solved, and each subsequent level corresponds to
a specific hyperparameter, such as optimizer or activation
function. The child nodes within each level represent the
possible values for the corresponding hyperparameter.

The Hyperparameter Optimization of PINNs can thus be
formulated as a Monte Carlo Tree Search (MCTS) process.
In this formulation,each node in the tree represents a state,
denoted as si, which encapsulates the unique path to the

root node s0. The action ai at step i involves selecting a
specific hyperparameter from the subsequent layer. Con-
sequently, each leaf node at the final layer represents a
complete hyperparameter setting. The reward is simply de-
signed as the negative Mean Squared Error (MSE) score of
the selected setting. To leverage the LLM agent planner for
guiding the expansion and exploration of the most promising
nodes of the tree, we maintain a state-action value function
Q : S × A 7→ R, where Q(s, a) estimates the expected
future reward of taking action a at state s.

3.4.1. SELECTION

The first step is to select the most promising actions within
the search space. To achieve this, we employ the well-
known Upper Confidence bounds applied to the Trees (UCT)
algorithm (Kocsis & Szepesvari, 2006):

a∗ = arg max
a∈A(s)

[
Q(s, a) + λπpl(a|s)

√
lnN(s)

N(s, a)

]
, (8)

where N(s) is the number of times state s has been visited,
N(s, a) is the number of times action a is taken at node s,
and λ is a constant that balances exploration and exploita-
tion. The planner, serving as the policy model πpl(a|s),
uses the distribution of the LLM’s output to determine the
following action to take.

6

PINNsAgent: Automated PDE Surrogation with Large Language Models

3.4.2. EXPANSION

This step expands the memory tree by adding new child
nodes to the previous state. If the selected node is a terminal
node, this step is skipped, and the process proceeds directly
to the back-propagation step. We limit the range of selection
to avoid generating unreasonable architecture.

3.4.3. SIMULATION

The planner iteratively selects new actions and expands
the existing memory tree until terminal nodes are reached.
During this process, the top-K and temperature values of the
planner can balance the exploration and exploitation of the
memory tree. For instance, the LLM’s decisions are more
diverse with higher temperatures.

3.4.4. BACK-PROPAGATION

After selecting an unexplored path, the planner generates
a configuration, integrates it into the base code extracted
from the code base, and obtains the execution results. At
this stage, only the MSE score is needed to calculate the
reward of Ht, defined as R(Ht) = −Ltest(u(θ,Ht), ugt).
The back-propagation algorithm of MCTS is then executed
to update the Q(s, a) by aggregating the rewards from all
future steps of the nodes along the path.

Table 1. Hyperparameter Search Spaces for PINNs Optimization
Tasks

Hyperparameter Details

Net FNNs, LAAFs, GAAFs

Activation Elu, Selu, Sigmoid, SiLu, ReLU,
Tanh, Swish, Sin, Gaussian

Width 8 to 256 (Increment: 4)
Depth 3 to 10 (Increment: 1)

Optimizer SGD, Adam, MultiAdam,
L-BFGS

Initializer Glorot Normal/Uniform,
He Normal/Uniform, Zeros

Learning Rate 10−6 to 10−1

Points
(Dom/Bnd/Init) 100 to 9600 (Increment: 500)

4. Experiments
In this section, we discuss the experimental methodology
used to evaluate the performance of our PINNsAgent.

Section 4.1 describes the experimental settings, including
the dataset, hyperparameter search space, and baselines for
comparison. In Section 4.2, we present the main results and

analyze the effectiveness of PINNsAgent in solving PDEs.
Finally, Section 4.3 presents an ablation study to investigate
the contributions of PGKR and the Memory Tree.

4.1. Experimental Settings

Dataset. We leverage the PINNacle benchmark dataset
(Hao et al., 2024), a comprehensive collection of 20 repre-
sentative PDEs spanning 1D, 2D, and 3D domains. These
PDEs encompass diverse characteristics, including varying
geometries, multi-scale phenomena, nonlinearity, and high
dimensionality, providing a challenging testbed for evaluat-
ing PINNs architectures. Detailed descriptions are provided
in Appendix B.

Hyperparameter Search Space. We extend the hyperpa-
rameter search space defined by (Wang et al., 2022; Wang
& Zhong, 2024), with additional hyperparameters carefully
curated from previous hyperparameter optimization (HPO)
works (Klein & Hutter, 2019) to provide a more compre-
hensive exploration of the architectural landscape of PINNs.
The configuration space, shown in Table 1, encompasses
4 architectural choices: network type, activation functions,
width, and depth, along with 5 hyperparameters: optimizer,
initializer, learning rate, loss weight coefficients, and do-
main/boundary/initial points.

Task Description and Experimental Details. We eval-
uate the performance of PINNsAgent on the task of Hy-
perparameter Optimization. In this task, PINNsAgent is
required to optimize the hyperparameter configuration for a
given PDE within 5 iterations. We implement PINNsAgent
with GPT-4 model. To evaluate the ability of PINNsAgent to
solve unseen PDEs, we did not provide the relevant database
for the target PDE. During the implementation of PGKR,
we selected topk = 1. For each PDE, we conducted ten
repeated experiments and took the average of the lowest
MSE to mitigate randomness, with a temperature of 0.7.
We compare PINNsAgent with two baseline methods: (1)
Random Search, a basic hyperparameter tuning method that
selects configurations randomly, and (2) Bayesian Search,
which uses Bayesian optimization to select configurations.
We also provide PINNacle benchmark’s best reported results
as oracle/upper bound for reference.

4.2. Main Results

The comparative end-to-end performance of PINNsAgent
and the baseline approaches on 14 different PDEs is pre-
sented in Table 2. The results demonstrate that PINNsAgent
consistently outperforms the baselines, achieving the best
performance on 12 out of 14 PDEs. Notably, PINNsAgent
shows significant improvements over Random Search and
Bayesian Search in complex PDEs such as NS-C, Heat-
MS, and Heat-ND. For instance, on the NS-C equation,

7

PINNsAgent: Automated PDE Surrogation with Large Language Models

Table 2. Comparative performance (MSE) of PINNsAgent and baseline approaches on 14 different PDEs for Task 1. Results are averaged
over 10 runs to mitigate randomness. Values in parentheses represent standard deviations. The best performances are highlighted in bold.
PINNacle benchmark’s best reported results are shown in gray for reference.

PDEs Random Bayesian PINNsAgent PINNacle
Search Search Benchmark

1D
Burgers 6.63E-02 (±1.10E-01) 8.70E-02 (±6.51E-03) 6.51E-05 (±1.63E-05) 7.90E-05
Wave-C 1.50E-01 (±1.46E-01) 1.78E-01 (±3.84E-02) 3.33E-02 (±3.60E-02) 3.01E-03

KS 1.09E+00 (±3.58E-02) 1.10E+00 (±2.55E-03) 1.09E+00 (±3.20E-02) 1.04E+00

2D

Burgers-C 2.48E-01 (±4.04E-03) 2.42E-01 (±8.96E-03) 2.04E-01 (±1.71E-02) 1.09E-01
Wave-CG 2.87E-02 (±4.98E-04) 2.11E-02 (±1.12E-02) 5.40E-02 (±7.89E-03) 2.99E-02
Heat-CG 3.96E-01 (±3.22E-01) 1.17E-01 (±3.24E-02) 1.80E-03 (±1.04E-03) 8.53E-04

NS-C 4.02E-03 (±5.93E-03) 5.12E-03 (±1.33E-03) 8.50E-06 (±6.80E-06) 2.33E-05
GS 4.28E-03 (±2.23E-05) 4.03E-03 (±4.47E-04) 4.32E-03 (±3.07E-05) 4.32E-03

Heat-MS 1.84E-02 (±1.18E-02) 7.48E-03 (±3.81E-03) 3.57E-05 (±2.3E-05) 5.27E-05
Heat-VC 3.57E-02 (±8.72E-03) 3.93E-02 (±2.17E-03) 5.52E-03 (±3.89E-03) 1.76E-03

Poisson-MA 5.87E+00 (±1.17E+00) 5.82E+00 (±2.30E+00) 3.16E+00 (±9.92E-01) 1.83E+00

3D Poisson-CG 3.82E-02 (±2.15E-02) 2.55E-02 (±5.65E-03) 1.59E-02 (±1.11E-02) 9.51E-04

ND Poisson-ND 1.30E-04 (±2.78E-04) 4.72E-05 (±2.76E-06) 2.09E-06 (±1.06E-05) 2.09E-06
Heat-ND 2.58E-02 (±9.87E-02) 1.18E-04(±8.92E-06) 3.51E-07 (±7.92E-07) 8.52E+00

Table 3. Ablation study: Comparative performance (MSE) of PINNsAgent variants using GPT-4 on 12 PDEs. Results are averaged over
runs (mean ± std). Best performances are highlighted in bold.

Method

B
ur

ge
rs

W
av

e-
C

B
ur

ge
rs

-C

W
av

e-
C

G

H
ea

t-
C

G

N
S-

C

G
S

H
ea

t-
M

S

H
ea

t-
V

C

Po
is

so
n-

C
G

Po
is

so
n-

N
D

H
ea

t-
N

D

PINNsAgent
6.51E-05 3.33E-02 2.04E-01 5.40E-02 1.80E-03 8.50E-06 4.32E-03 3.57E-05 5.52E-03 1.59E-02 2.09E-06 3.51E-07
±1.63E-05 ±3.60E-02 ±1.71E-02 ±7.89E-03 ±1.04E-03 ±6.80E-06 ±3.07E-05 ±2.3E-05 ±3.89E-03 ±1.11E-02 ±1.06E-05 ±7.92E-07

w/o PGKR
7.41E-05 2.87E-02 2.17E-01 3.19E-02 1.38E-02 1.53E-05 4.31E-03 3.85E-05 6.19E-03 2.27E-02 2.02E-05 4.92E-06
±1.86E-05 ±3.91E-02 ±1.55E-02 ±2.88E-03 ±7.94E-03 ±1.58E-05 ±3.06E-05 ±1.02E-04 ±4.38E-03 ±1.59E-02 ±1.02E-01 ±1.11E-05

w/o PGKR
& MTRS

8.44E-05 2.88E-02 2.25E-01 3.53E-02 6.97E-02 1.08E-05 2.59E+08 8.13E-05 1.10E-02 2.58E-02 2.43E-05 6.59E-07
±5.97E-05 ±3.32E-02 ±1.87E-02 ±1.29E-02 ±2.07E-01 ±8.65E-06 ±7.77E+08 ±1.43E-04 ±1.36E-02 ±1.68E-02 ±2.47E-05 ±1.01E-06

PINNsAgent achieves an MSE of 8.50E-06, which is several
orders of magnitude better than Random Search (4.02E-03)
and Bayesian Search (5.12E-03). These results highlight
the effectiveness of PINNsAgent in optimizing PINNs archi-
tectures across a diverse range of PDEs.

These results confirm that the knowledge encoded and
reused by PINNsAgent can be effectively transferred to dif-
ferent PDE classes and datasets, further highlighting the
practical value of our approach for automated scientific ma-
chine learning.

4.3. Ablation Study

To gain a deeper understanding of the contributions of
Physics-Guided Knowledge Replay (PGKR) and the Mem-
ory Tree Retrieval Strategy (MTRS) in PINNsAgent, we
conducted an ablation study by removing these components
individually and comparing the performance with the com-
plete framework.

Effectiveness of PGKR and MTRS. Table 3 presents
the performance of three variants of PINNsAgent: (1) the
complete PINNsAgent framework, (2) PINNsAgent with-
out PGKR (w/o PGKR), and (3) PINNsAgent without both
PGKR and MTRS (w/o PGKR & MTRS).

The results demonstrate that both PGKR and MTRS con-
tribute significantly to the performance of PINNsAgent. The
complete PINNsAgent framework achieves the best per-
formance on 9 out of 12 PDEs. Removing PGKR leads to
performance degradation on most PDEs, with notable excep-
tions on Wave-C and Wave-CG. Further removing MTRS
results in additional performance drops, most dramatically
on the GS equation where the MSE increases from 4.31E-
03 to 2.59E+08. These results validate the effectiveness
of leveraging prior knowledge through PGKR and MTRS,
demonstrating their crucial role in enhancing the perfor-
mance and robustness of PINNsAgent across a diverse range
of PDEs.

8

PINNsAgent: Automated PDE Surrogation with Large Language Models

4.4. Computational Cost Analysis

We also conduct a computational cost analysis by reporting
the average computation time per PDE for all methods. As
shown in Table 4, the additional overhead introduced by
LLM inference in PINNsAgent is only about 8.2% higher
than Random Search and 4.1% higher than Bayesian Opti-
mization.

Table 4. Average computation time (seconds) per PDE across all
14 benchmarks.

Method Average Computation Time (s)

Random Search 3462.24 ± 2631.55
Bayesian Search 3598.47 ± 2792.83

PINNsAgent 3747.78 ± 2965.62

Our approach therefore remains efficient and practical for
real-world scientific machine learning tasks.

5. Conclusion
In this work, we introduced PINNsAgent, a novel LLM-
based surrogate framework that automates the development
and optimization of PINNs for solving PDEs. By leveraging
the knowledge and reasoning capabilities of large language
models, PINNsAgent effectively bridges the gap between
domain-specific knowledge and deep learning expertise,
enabling non-experts to harness the power of PINNs without
extensive manual tuning.

Acknowledgments
This work was supported by the National Science and Tech-
nology Major Project (No. 2022ZD0117800).

Impact Statement
We acknowledge several potential societal implications of
PINNsAgent: (1) Democratization vs. expertise dilution.
While PINNsAgent aims to make PINNs technology more
accessible to non-experts, there is a concern that widespread
automation might lead to insufficient understanding of the
underlying physics and mathematical principles. We empha-
size that PINNsAgent should serve as an educational tool
that guides users toward better understanding rather than
replacing the need for scientific rigor and domain exper-
tise. (2) API dependency and cost barriers. The reliance
on commercial LLM APIs creates potential barriers for
researchers with limited funding or those in regions with
restricted access to such services. We recommend explor-
ing integration with open-source language models to ensure
broader accessibility. (3) Overconfidence in automated
solutions. There is a risk that automated optimization may
create false confidence in PINNs solutions, particularly for

complex physical systems. Users should maintain healthy
skepticism about automatically generated configurations
and always validate results against physical intuition and
established numerical benchmarks before applying them to
real-world problems with safety implications.

References
AI4Science, M. R. and Quantum, M. A. The impact of

large language models on scientific discovery: a pre-
liminary study using gpt-4. ArXiv, abs/2311.07361,
2023. URL https://api.semanticscholar.
org/CorpusID:265150648.

Alexiadis, A. and Ghiassi, B. From text to tech: Shaping
the future of physics-based simulations with ai-driven
generative models. Results in Engineering, 21:101721,
2024.

Ali-Dib, M. and Menou, K. Physics simulation capabilities
of llms. CoRR, abs/2312.02091, 2023. doi: 10.48550/
ARXIV.2312.02091. URL https://doi.org/10.
48550/arXiv.2312.02091.

Berger, M. J. and Oliger, J. Adaptive mesh refinement
for hyperbolic partial differential equations. Journal of
computational Physics, 53(3):484–512, 1984.

Bergstra, J. and Bengio, Y. Random search for
hyper-parameter optimization. J. Mach. Learn.
Res., 13:281–305, 2012. URL https://api.
semanticscholar.org/CorpusID:15700257.

Boiko, D. A., MacKnight, R., Kline, B., and Gomes, G. Au-
tonomous chemical research with large language models.
Nature, 2023. URL https://doi.org/10.1038/
s41586-023-06792-0.

Bran, A. M., Cox, S., Schilter, O., Baldassari, C., White,
A. D., and Schwaller, P. Augmenting large language mod-
els with chemistry tools. Nat. Mac. Intell., 6(5):525–535,
2024. doi: 10.1038/S42256-024-00832-8. URL https:
//doi.org/10.1038/s42256-024-00832-8.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. A survey of monte carlo
tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games, 4(1):1–43, 2012.

9

https://api.semanticscholar.org/CorpusID:265150648
https://api.semanticscholar.org/CorpusID:265150648
https://doi.org/10.48550/arXiv.2312.02091
https://doi.org/10.48550/arXiv.2312.02091
https://api.semanticscholar.org/CorpusID:15700257
https://api.semanticscholar.org/CorpusID:15700257
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s42256-024-00832-8
https://doi.org/10.1038/s42256-024-00832-8

PINNsAgent: Automated PDE Surrogation with Large Language Models

Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang,
T. A. Spectral methods: fundamentals in single domains.
Springer Science & Business Media, 2007.

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi,
M., and Piccialli, F. Scientific machine learning through
physics–informed neural networks: Where we are and
what’s next. Journal of Scientific Computing, 92(3):88,
2022.

Feurer, M. and Hutter, F. Hyperparameter optimization. Au-
tomated machine learning: Methods, systems, challenges,
pp. 3–33, 2019.

Guo, S., Deng, C., Wen, Y., Chen, H., Chang, Y., and
Wang, J. Ds-agent: Automated data science by em-
powering large language models with case-based reason-
ing. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.
net/forum?id=LfJgeBNCFI.

Hao, Z., Yao, J., Su, C., Su, H., Wang, Z., Lu, F., Xia,
Z., Zhang, Y., Liu, S., Lu, L., and Zhu, J. Pinnacle: A
comprehensive benchmark of physics-informed neural
networks for solving pdes. In Globersons, A., Mackey,
L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J. M.,
and Zhang, C. (eds.), Advances in Neural Information
Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

He, X., Zhao, K., and Chu, X. Automl: A survey of the
state-of-the-art. Knowledge-based systems, 212:106622,
2021.

Huang, D., Bu, Q., Zhang, J. M., Luck, M., and Cui, H.
Agentcoder: Multi-agent-based code generation with it-
erative testing and optimisation. CoRR, abs/2312.13010,
2023. doi: 10.48550/ARXIV.2312.13010. URL https:
//doi.org/10.48550/arXiv.2312.13010.

Hughes, T. J. The Finite Element Method: Linear Static and
Dynamic Finite Element Analysis. Dover Publications,
2000.

Jagtap, A. D. and Karniadakis, G. E. Extended physics-
informed neural networks (xpinns): A generalized space-
time domain decomposition based deep learning frame-
work for nonlinear partial differential equations. Commu-
nications in Computational Physics, 28(5):2002–2041,
2020.

Jagtap, A. D., Kawaguchi, K., and Em Karniadakis, G. Lo-
cally adaptive activation functions with slope recovery for
deep and physics-informed neural networks. Proceedings
of the Royal Society A, 476(2239):20200334, 2020a.

Jagtap, A. D., Kawaguchi, K., and Karniadakis, G. E. Adap-
tive activation functions accelerate convergence in deep
and physics-informed neural networks. Journal of Com-
putational Physics, 404:109136, 2020b.

Jagtap, A. D., Shin, Y., Kawaguchi, K., and Karniadakis,
G. E. Deep kronecker neural networks: A general frame-
work for neural networks with adaptive activation func-
tions. Neurocomputing, 468:165–180, 2022.

Kaplarević-Mališić, A., Andrijević, B., Bojović, F., Nikolić,
S., Krstić, L., Stojanović, B., and Ivanović, M. Identi-
fying optimal architectures of physics-informed neural
networks by evolutionary strategy. Applied Soft Comput-
ing, 146:110646, 2023.

Karmaker, S. K., Hassan, M. M., Smith, M. J., Xu, L., Zhai,
C., and Veeramachaneni, K. Automl to date and beyond:
Challenges and opportunities. ACM Computing Surveys
(CSUR), 54(8):1–36, 2021.

Klein, A. and Hutter, F. Tabular benchmarks for joint
architecture and hyperparameter optimization. CoRR,
abs/1905.04970, 2019. URL http://arxiv.org/
abs/1905.04970.

Kocsis, L. and Szepesvari, C. Bandit based monte-carlo
planning. In European Conference on Machine Learning,
2006. URL https://api.semanticscholar.
org/CorpusID:15184765.

Kumar, V. V., Gleyzer, L., Kahana, A., Shukla, K., and
Karniadakis, G. E. Mycrunchgpt: A chatgpt assisted
framework for scientific machine learning. Journal
of Machine Learning for Modeling and Computing,
2023. URL https://api.semanticscholar.
org/CorpusID:259262122.

Kutz, J. N. Data-driven modeling & scientific computation:
methods for complex systems & big data. OUP Oxford,
2013.

LeVeque, R. J. Finite volume methods for hyperbolic prob-
lems, volume 31. Cambridge university press, 2002.

Liashchynskyi, P. and Liashchynskyi, P. Grid search, ran-
dom search, genetic algorithm: A big comparison for nas,
2019.

Lin, F., Liu, J., Li, X., Zhao, S., Zhao, B., Ma, H., and
Zhang, X. PE-GPT: A physics-informed interactive large
language model for power converter modulation design.
CoRR, abs/2403.14059, 2024. doi: 10.48550/ARXIV.
2403.14059. URL https://doi.org/10.48550/
arXiv.2403.14059.

Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Tan,
K. C. A survey on evolutionary neural architecture search.

10

https://openreview.net/forum?id=LfJgeBNCFI
https://openreview.net/forum?id=LfJgeBNCFI
https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.48550/arXiv.2312.13010
http://arxiv.org/abs/1905.04970
http://arxiv.org/abs/1905.04970
https://api.semanticscholar.org/CorpusID:15184765
https://api.semanticscholar.org/CorpusID:15184765
https://api.semanticscholar.org/CorpusID:259262122
https://api.semanticscholar.org/CorpusID:259262122
https://doi.org/10.48550/arXiv.2403.14059
https://doi.org/10.48550/arXiv.2403.14059

PINNsAgent: Automated PDE Surrogation with Large Language Models

IEEE Transactions on Neural Networks and Learning
Systems, 34(2):550–570, February 2023. ISSN 2162-
2388. doi: 10.1109/tnnls.2021.3100554. URL http://
dx.doi.org/10.1109/TNNLS.2021.3100554.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Nabian, M. A., Gladstone, R. J., and Meidani, H. Efficient
training of physics-informed neural networks via impor-
tance sampling. Comput. Aided Civ. Infrastructure Eng.,
36(8):962–977, 2021. doi: 10.1111/MICE.12685. URL
https://doi.org/10.1111/mice.12685.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,
Zhou, Y., Savarese, S., and Xiong, C. Codegen: An open
large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/forum?id=iaYcJKpY2B_.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,
Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A. (eds.), Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics
informed deep learning (part I): data-driven solutions
of nonlinear partial differential equations. CoRR,
abs/1711.10561, 2017. URL http://arxiv.org/
abs/1711.10561.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 02 2019. doi: 10.1016/j.jcp.2018.
10.045.

Rathore, P., Lei, W., Frangella, Z., Lu, L., and Udell,
M. Challenges in training pinns: A loss landscape
perspective. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=mJGiFr8jLa.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P., and
Wayne, G. Experience replay for continual learning. In
Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E. B., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 348–358, 2019.

Saratchandran, H., Ch’ng, S., and Lucey, S. Architectural
strategies for the optimization of physics-informed neural
networks. CoRR, abs/2402.02711, 2024. doi: 10.48550/
ARXIV.2402.02711. URL https://doi.org/10.
48550/arXiv.2402.02711.

Shukla, K., Jagtap, A. D., and Karniadakis, G. E. Parallel
physics-informed neural networks via domain decompo-
sition. Journal of Computational Physics, 447:110683,
2021.

Stocker, T. Introduction to climate modelling. Springer
Science & Business Media, 2011.

Strikwerda, J. C. Finite difference schemes and partial
differential equations. SIAM, 2004.

Teschl, G. Mathematical methods in quantum mechanics,
volume 157. American Mathematical Soc., 2014.

Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A.,
Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede,
T., Wachsmuth, H., and Lindauer, M. Automl in the
age of large language models: Current challenges, future
opportunities and risks. Trans. Mach. Learn. Res., 2024,
2024. URL https://openreview.net/forum?
id=cAthubStyG.

Wang, H., Gao, Y., Zheng, X., Zhang, P., Chen, H., and
Bu, J. Graph neural architecture search with GPT-4.
CoRR, abs/2310.01436, 2023a. doi: 10.48550/ARXIV.
2310.01436. URL https://doi.org/10.48550/
arXiv.2310.01436.

Wang, S., Teng, Y., and Perdikaris, P. Understanding and
mitigating gradient flow pathologies in physics-informed
neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

Wang, S., Sankaran, S., Wang, H., and Perdikaris, P. An ex-
pert’s guide to training physics-informed neural networks.
CoRR, abs/2308.08468, 2023b. doi: 10.48550/ARXIV.
2308.08468. URL https://doi.org/10.48550/
arXiv.2308.08468.

Wang, Y. and Zhong, L. Nas-pinn: neural architecture
search-guided physics-informed neural network for solv-
ing pdes. Journal of Computational Physics, 496:112603,
2024.

11

http://dx.doi.org/10.1109/TNNLS.2021.3100554
http://dx.doi.org/10.1109/TNNLS.2021.3100554
https://doi.org/10.1111/mice.12685
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
http://arxiv.org/abs/1711.10561
http://arxiv.org/abs/1711.10561
https://openreview.net/forum?id=mJGiFr8jLa
https://openreview.net/forum?id=mJGiFr8jLa
https://doi.org/10.48550/arXiv.2402.02711
https://doi.org/10.48550/arXiv.2402.02711
https://openreview.net/forum?id=cAthubStyG
https://openreview.net/forum?id=cAthubStyG
https://doi.org/10.48550/arXiv.2310.01436
https://doi.org/10.48550/arXiv.2310.01436
https://doi.org/10.48550/arXiv.2308.08468
https://doi.org/10.48550/arXiv.2308.08468

PINNsAgent: Automated PDE Surrogation with Large Language Models

Wang, Y., Han, X., Chang, C., Zha, D., Braga-
Neto, U., and Hu, X. Auto-pinn: Understanding
and optimizing physics-informed neural architecture.
CoRR, abs/2205.13748, 2022. doi: 10.48550/ARXIV.
2205.13748. URL https://doi.org/10.48550/
arXiv.2205.13748.

Wang, Y., Le, H., Gotmare, A., Bui, N. D. Q., Li, J.,
and Hoi, S. C. H. Codet5+: Open code large lan-
guage models for code understanding and generation.
In Bouamor, H., Pino, J., and Bali, K. (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 1069–1088. Association for
Computational Linguistics, 2023c. doi: 10.18653/V1/
2023.EMNLP-MAIN.68. URL https://doi.org/
10.18653/v1/2023.emnlp-main.68.

Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., and
Deng, S.-H. Hyperparameter optimization for machine
learning models based on bayesian optimization. Journal
of Electronic Science and Technology, 17(1):26–40, 2019.

Yu, C., Liu, X., Feng, W., Tang, C., and Lv, J. GPT-
NAS: evolutionary neural architecture search with the
generative pre-trained model. CoRR, abs/2305.05351,
2023. doi: 10.48550/ARXIV.2305.05351. URL https:
//doi.org/10.48550/arXiv.2305.05351.

Yu, J., Lu, L., Meng, X., and Karniadakis, G. E. Gradient-
enhanced physics-informed neural networks for forward
and inverse pde problems. Computer Methods in Applied
Mechanics and Engineering, 393:114823, 2022.

Zhang, M. R., Desai, N., Bae, J., Lorraine, J., and Ba, J. Us-
ing large language models for hyperparameter optimiza-
tion. In NeurIPS 2023 Foundation Models for Decision
Making Workshop, 2023.

Zheng, M., Su, X., You, S., Wang, F., Qian, C., Xu, C.,
and Albanie, S. Can GPT-4 perform neural architecture
search? CoRR, abs/2304.10970, 2023. doi: 10.48550/
ARXIV.2304.10970. URL https://doi.org/10.
48550/arXiv.2304.10970.

12

https://doi.org/10.48550/arXiv.2205.13748
https://doi.org/10.48550/arXiv.2205.13748
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.48550/arXiv.2305.05351
https://doi.org/10.48550/arXiv.2305.05351
https://doi.org/10.48550/arXiv.2304.10970
https://doi.org/10.48550/arXiv.2304.10970

PINNsAgent: Automated PDE Surrogation with Large Language Models

Appendix

A. PDE Feature Encoding and Similarity Analysis
A.1. PDE Feature Encoding

To enable effective knowledge reuse in the PINNsAgent framework, we define a comprehensive set of labels L =
l1, l2, . . . , ln that capture the essential mathematical and physical characteristics of each PDE problem. These labels include:

• PDE Type (Burgers, Poisson, Heat, NS, Wave, Chaotic)

• Equation Type (Parabolic, Elliptic, Hyperbolic, Mixed)

• Spatial Dimensions (1D, 2D, 3D, ND)

• Linearity (Linear, Nonlinear)

• Time Dependence (Time-Independent, Time-Dependent)

• Boundary Conditions (Dirichlet, Neumann, Mixed Robin, Periodic)

• Initial Conditions (Presence or Absence)

• Coefficient Type (Constant, Variable)

• Time Scale (Short-Time, Long-Time)

• Geometric Complexity (Simple, Complex)

We then encode these labels into binary feature vectors F = f1, f2, . . . , fn, where n is the number of PDEs, using a
predefined encoding scheme, as shown in Table 5.

A.2. PDE Labels

With the defined labels and encoding scheme, we assign a comprehensive set of labels to each PDE problem in our study.
Table 6 and 7 present these labels for each PDE.

This encoding process can be formally defined as a function E : L → F , which maps each label to its corresponding binary
feature vector. The encoded feature vectors for all PDEs are concatenated to form a feature matrix X ∈ Rn×m, where n is
the number of PDEs and m is the dimensionality of the feature space. In our study, n = 14 and m = 30.

A.3. PDE Similarity Analysis

Having obtained the PDE labels L and their corresponding feature vectors F , we employ cosine similarity to quantify the
similarity between PDEs , which measures the cosine of the angle between two feature vectors. The resulting similarity
matrix S ∈ Rn×n captures the pairwise similarities between all PDEs in the knowledge base.

B. Datasets
We conduct our experiments using the datasets provided in PINNacle (Hao et al., 2024), which include 20 representative
partial differential equations (PDEs) in one, two, and three dimensions. These equations exhibit a variety of complexities,
including different geometries, multi-scale phenomena, nonlinearity, and high dimensionality.

For our study, we selected 14 PDEs from this collection. We excluded PInv and HInv because they are used for conducting
inverse problems and Heat2d-LT and NS2d-LT because they present long-time PDEs that are poorly fitted by PINNs
regardless of the hyperparameter configuration. Thus, their optimal hyperparameter configurations are not meaningful and
can negatively impact the Physics-Guided Knowledge Replay (PGKR) approach during retrieval.

Below, we provide key properties of the PDEs used in this paper. For full details on the data generation process and the
hyperparameters used to generate the PDE dataset, we refer the reader to (Hao et al., 2024).

13

PINNsAgent: Automated PDE Surrogation with Large Language Models

Table 5. Feature encoding scheme for PDE labels

Label Description Binary Encoding

PDE Type

Burgers [1, 0, 0, 0, 0, 0]
Poisson [0, 1, 0, 0, 0, 0]

Heat [0, 0, 1, 0, 0, 0]
Navier-Stokes [0, 0, 0, 1, 0, 0]

Wave [0, 0, 0, 0, 1, 0]
Chaotic [0, 0, 0, 0, 0, 1]

Equation Type

Parabolic [1, 0, 0, 0]
Elliptic [0, 1, 0, 0]

Hyperbolic [0, 0, 1, 0]
Mixed [0, 0, 0, 1]

Spatial Dimensions

1D [1, 0, 0, 0]
2D [0, 1, 0, 0]
3D [0, 0, 1, 0]
ND [0, 0, 0, 1]

Linearity Linear [1, 0]
Nonlinear [0, 1]

Time Dependence Time-Independent [1, 0]
Time-Dependent [0, 1]

Boundary Conditions

Dirichlet [1, 0, 0, 0]
Neumann [0, 1, 0, 0]

Mixed Robin [0, 0, 1, 0]
Periodic [0, 0, 0, 1]

Initial Conditions Initial Condition [1, 0]
No Initial Condition [0, 1]

Coefficient Type Constant Coefficient [1, 0]
Variable Coefficient [0, 1]

Time Scale Short-Time [1, 0]
Long-Time [0, 1]

Geometric Complexity Simple Geometry [1, 0]
Complex Geometry [0, 1]

B.1. PDE Descriptions

B.1.1. BURGERS EQUATION (1D)

The Burgers equation is a fundamental nonlinear partial differential equation (PDE) extensively used to model various fluid
dynamics systems, including shock flows, wave propagation in combustion chambers, and vehicular traffic movement. The
equation is given by:

∂u

∂t
+ u

∂u

∂x
− 0.01

π

∂2u

∂x2
= 0, (9)

where x ∈ [−1, 1] and t ∈ [0, 1]. Here, 0.01
π represents the diffusion coefficient of the fluid. The initial and boundary

conditions are
u(x, 0) = − sinπx,

u(−1, t) = u(1, t) = 0.
(10)

14

PINNsAgent: Automated PDE Surrogation with Large Language Models

Table 6. PDE labels and their corresponding feature vectors

PDE Labels

Burgers1d
Burgers, parabolic, 1d, nonlinear, time-dependent,
Dirichlet, initial-condition, constant-coefficient,

short-time, simple-geometry

Burgers2d
Burgers, parabolic, 2d, nonlinear, time-dependent,

periodic, initial-condition, constant-coefficient,
short-time, simple-geometry

Poisson2d-C
Poisson, elliptic, 2d, linear, time-independent, dirichlet,

no-initial-condition, constant-coefficient, short-time,
complex-geometry

Poisson2d-CG
Poisson, elliptic, 2d, linear, time-independent, dirichlet,

no-initial-condition, variable-coefficient, short-time,
complex-geometry

Poisson3d-CG
Poisson, elliptic, 3d, linear, time-independent, neumann,

no-initial-condition, variable-coefficient, short-time,
complex-geometry

Poisson2d-MS
Poisson, elliptic, 2d, linear, time-independent, robin,
no-initial-condition, variable-coefficient, short-time,

complex-geometry

Heat2d-VC
Heat, parabolic, 2d, linear, time-dependent, dirichlet,

initial-condition, variable-coefficient, short-time,
simple-geometry

Heat2d-MS
Heat, parabolic, 2d, linear, time-dependent, dirichlet,

initial-condition, constant-coefficient, short-time,
simple-geometry

B.1.2. 2D COUPLED BURGERS EQUATION (BURGERS 2D)

The 2D Coupled Burgers equation, which extends the 1D Burgers equation to two dimensions, is expressed as:

ut + u · ∇u− ν∆u = 0, (11)

where (x, y) ∈ [0, 4]2 and t ∈ [0, 1]. Here, ν represents the diffusion coefficient of the fluid. The periodic boundary
conditions are:

u(0, y, t) = u(L, y, t), u(x, 0, t) = u(x, L, t) (12)

The initial conditions are given by:

w(x, y) =

L∑
i=−L

L∑
j=−L

aij sin(2π(ix+ jy)) + bij cos(2π(ix+ jy))

u(x, y, 0) = 2w(x, y) + c

(13)

where aij , bij , and c are normally distributed random variables with mean 0 and variance 1, i.e., aij , bij , c ∼ N(0, 1).

B.1.3. POISSON 2D CLASSIC (POISSON2D-C)

The Poisson 2D equation is widely used to describe various physical phenomena, such as electrostatics and fluid dynamics.
It models the distribution of a scalar field u(x, y) governed by Laplace’s operator:

−∆u = 0. (14)

15

PINNsAgent: Automated PDE Surrogation with Large Language Models

Table 7. PDE labels and their corresponding feature vectors

PDE Labels

Heat2d-CG
Heat, parabolic, 2d, linear, time-dependent, robin,
initial-condition, constant-coefficient, short-time,

complex-geometry

NS2d-C
NS, mixed, 2d, nonlinear, time-independent, dirichlet,
no-initial-condition, constant-coefficient, short-time,

simple-geometry

NS2d-CG
NS, mixed, 2d, nonlinear, time-independent, dirichlet,
no-initial-condition, constant-coefficient, short-time,

complex-geometry

Wave1d-C
Wave, hyperbolic, 1d, linear, time-dependent, dirichlet,

initial-condition, constant-coefficient, short-time,
simple-geometry

Wave2d-CG
Wave, hyperbolic, 2d, linear, time-dependent, neumann,

initial-condition, variable-coefficient, short-time,
complex-geometry

Wave2d-MS
Wave, hyperbolic, 2d, linear, time-dependent, dirichlet,

initial-condition, constant-coefficient, long-time,
simple-geometry

GS
Chaotic, parabolic, 2d, nonlinear, time-dependent,

no-boundary-condition, initial-condition,
constant-coefficient, long-time, simple-geometry

KS
Chaotic, parabolic, 1d, nonlinear, time-dependent,

periodic, initial-condition, constant-coefficient,
short-time, simple-geometry

PNd
Poisson, elliptic, nd, linear, time-independent, dirichlet,

no-initial-condition, constant-coefficient, short-time,
simple-geometry

HNd
Heat, parabolic, nd, linear, time-dependent,

mixed-boundary, initial-condition, constant-coefficient,
short-time, simple-geometry

We define the regions R1, R2, R3, and R4 as:

R1 = {(x, y) : (x− 0.3)2 + (y − 0.3)2 ≤ 0.12},
R2 = {(x, y) : (x+ 0.3)2 + (y − 0.3)2 ≤ 0.12},
R3 = {(x, y) : (x− 0.3)2 + (y + 0.3)2 ≤ 0.12},
R4 = {(x, y) : (x+ 0.3)2 + (y + 0.3)2 ≤ 0.12}.

(15)

This equation operates within the spatial domain Ω = Ωrec \ {Ri}, where Ωrec = [−0.5, 0.5]2 denotes a rectangular region
excluding the four circular areas Ri. The boundary condition is defined as:

u = 0, x ∈ ∂Ri

u = 1, x ∈ ∂Ωrec .
(16)

B.1.4. POISSON-BOLTZMANN (HELMHOLTZ) 2D IRREGULAR GEOMETRY (POISSON2D-CG)

The Poisson-Boltzmann (Helmholtz) 2D equation extends the classic Poisson equation by including a term proportional to
the scalar field u. The equation is given by:

16

PINNsAgent: Automated PDE Surrogation with Large Language Models

−∆u+ k2u = f(x, y). (17)

The computational domain is defined as [−1, 1]2 excluding several circular regions Ωcircle = ∪4
i=1Ri, which are defined by:

R1 =
{
(x, y) : (x− 0.5)2 + (y − 0.5)2 ≤ 0.22

}
,

R2 =
{
(x, y) : (x− 0.4)2 + (y + 0.4)2 ≤ 0.42

}
,

R3 =
{
(x, y) : (x+ 0.2)2 + (y + 0.7)2 ≤ 0.12

}
,

R4 =
{
(x, y) : (x+ 0.6)2 + (y − 0.5)2 ≤ 0.32

}
.

(18)

The boundary conditions are:

u = 0.2, x ∈ ∂Ωrec,

u = 1, x ∈ ∂Ωcircle.
(19)

B.1.5. POISSON 3D COMPLEX GEOMETRY WITH TWO DOMAINS (POISSON3D-CG)

The Poisson 3D equation with two distinct regions is described by:

−µi∆u+ k2i u = f(x, y, z), i = 1, 2. (20)

The computational regions are defined as follows:

Ω1 = [0, 1]× [0, 1]× [0, 0.5] \
4⋃

i=1

Ri,

Ω2 = [0, 1]× [0, 1]× [0.5, 1] \
4⋃

i=1

Ri.

(21)

The spherical regions Ri are given by:

R1 =
{
(x, y, z) : (x− 0.4)2 + (y − 0.3)2 + (z − 0.6)2 ≤ 0.22

}
,

R2 =
{
(x, y, z) : (x− 0.6)2 + (y − 0.7)2 + (z − 0.6)2 ≤ 0.22

}
,

R3 =
{
(x, y, z) : (x− 0.2)2 + (y − 0.8)2 + (z − 0.7)2 ≤ 0.12

}
,

R4 =
{
(x, y, z) : (x− 0.6)2 + (y − 0.2)2 + (z − 0.3)2 ≤ 0.12

}
.

(22)

The boundary condition is:

∂u

∂n
= 0, x ∈ ∂Ω. (23)

B.1.6. 2D POISSON EQUATION WITH MANY SUBDOMAINS (POISSON2D-MS)

The PDE and boundary condition are given by:

−∇ · (a(x)∇u) = f(x, y), x ∈ Ω,

∂u

∂n
+ u = 0, x ∈ ∂Ω.

(24)

Here, the domain is (x, y) ∈ Ω = [−10, 10]2. The entire domain is divided into many small squares, with a(x) being a
piecewise linear function within each square.

17

PINNsAgent: Automated PDE Surrogation with Large Language Models

B.1.7. 2D HEAT WITH VARYING COEFFICIENTS (HEAT2D-VC)

The heat equation models the distribution of temperature in a given region over time, describing how heat diffuses through a
medium. The 2D heat equation with a varying source is given by:

∂u

∂t
−∇(a(x)∇u) = f(x, t), (25)

where the computational domain is Ω× T = [0, 1]2 × [0, 5]. The initial and boundary conditions are defined as:

u(x, y, 0) = 0, x ∈ Ω

u(x, y, t) = 0, x ∈ ∂Ω.
(26)

B.1.8. 2D HEAT EQUATION WITH MULTI-SCALE FEATURES (HEAT2D-MS)

The 2D heat equation with multi-scale features is described by:

∂u

∂t
− 1

(500π)2
uxx − 1

π2
uyy = 0, (27)

over the domain Ω× T = [0, 1]2 × [0, 5]. The initial and boundary conditions are given by:

u(x, y, 0) = sin(20πx) sin(πy), x ∈ Ω,

u(x, y, t) = 0, x ∈ ∂Ω.
(28)

B.1.9. 2D HEAT COMPLEX GEOMETRY (HEAT EXCHANGER, HEAT2D-CG)

The 2D heat equation for a complex geometry is given by:

∂u

∂t
−∆u = 0. (29)

The domain is defined as Ω× T = ([−8, 8]× [−12, 12] \ ∪iRi)× [0, 3].

B.1.10. 2D HEAT LONG TIME (HEAT2D-LT)

The long-time 2D heat equation is defined by:

∂u

∂t
= 0.001∆u+ 5 sin

(
ku2

)(
1 + 2 sin

(
πt

4

))
sin (m1πx) sin (m2πy) , (30)

where the computational domain is Ω× T = [0, 1]2 × [0, 100]. The initial and boundary conditions are given by:

u(x, y, 0) = sin(4πx) sin(3πy), x ∈ Ω

u(x, y, t) = 0, x ∈ ∂Ω
(31)

B.1.11. 2D NAVIER-STOKES LID-DRIVEN FLOW (NS2D-C)

The 2D Navier-Stokes equations describe the motion of fluid substances and are fundamental in fluid dynamics. The
governing equations for describing lid-driven cavity flow are defined as:

u · ∇u+∇p− 1

Re
∆u = 0, x ∈ Ω,

∇ · u = 0, x ∈ Ω,
(32)

where Ω = [0, 1]2 is the domain. The boundary conditions are specified as follows:

18

PINNsAgent: Automated PDE Surrogation with Large Language Models

u(x) = (4x(1− x), 0), x ∈ Γ1,

u(x) = (0, 0), x ∈ Γ2,

p = 0, x = (0, 0),

(33)

where the top boundary is denoted as Γ1, and the left, right, and bottom boundaries are denoted as Γ2.

B.1.12. 2D BACK STEP FLOW (NS-CG)

For the 2D back step flow, the Navier-Stokes equations and boundary conditions are described as follows:

u · ∇u+∇p− 1

Re
∆u = 0,

∇ · u = 0,
(34)

The domain is defined as Ω = [0, 4] × [0, 2]\ ([0, 2]× [1, 2] ∪Ri), which excludes the top-left quarter. The boundary
conditions are:

uin = 4y(1− y),

p = 0, at the outlet,
u = 0, no-slip condition,

(35)

B.1.13. 1D BASIC WAVE EQUATION (WAVE1D-C)

The 1D wave equation is a second-order partial differential equation that describes the propagation of waves, such as sound
or light waves, through a medium. The standard form of the wave equation in one dimension is given by:

utt − 4uxx = 0 (36)

The domain for this problem is Ω× T = [0, 1]× [0, 1]. The boundary conditions are:

u(0, t) = u(1, t) = 0 (37)

The initial conditions are:

u(x, 0) = sin(πx) +
1

2
sin(4πx) ut(x, 0) = 0 (38)

B.1.14. 2D WAVE EQUATION IN HETEROGENEOUS MEDIUM (WAVE2D-CG)

The governing PDE for the 2D wave equation in a heterogeneous medium is given by:

[
∇2 − 1

c(x)

∂2

∂t2

]
u(x, t) = 0 (39)

The domain is Ω = [−1, 1]× [−1, 1], and the initial conditions are:

u(x, 0) = exp

(
−|x− µ|2

2σ2

)
, x ∈ Ω

∂u

∂t
(x, 0) = 0, x ∈ Ω

(40)

The boundary condition is:

19

PINNsAgent: Automated PDE Surrogation with Large Language Models

∂u

∂n
= 0, x ∈ ∂Ω (41)

B.1.15. 2D DIFFUSION-REACTION GRAY-SCOTT MODEL (GS)

The Gray-Scott model describes the pattern formation in reaction-diffusion systems. The governing PDEs are:

ut = ε1∆u+ b(1− u)− uv2

vt = ε2∆v − dv + uv2
(42)

The domain is Ω× T = [−1, 1]2 × [0, 200] . The initial conditions are:

u(x, y, 0) = 1− exp
(
−80

(
(x+ 0.05)2 + (y + 0.02)2

))
v(x, y, 0) = exp

(
−80

(
(x− 0.05)2 + (y − 0.02)2

)) (43)

B.1.16. 2D KURAMOTO-SIVASHINSKY EQUATION (KS)

The Kuramoto-Sivashinsky equation models the chaotic behavior in systems such as flame fronts and fluid surfaces. The
governing PDE is:

ut + αuux + βuxx + γuxxxx = 0 (44)

The domain is Ω× T = [0, 2π]× [0, 1]. The initial condition is:

u(x, 0) = cos(x)(1 + sin(x)) (45)

B.1.17. N-DIMENSIONAL POISSON EQUATION (PND)

The Poisson equation is a fundamental PDE in potential theory and electrostatics. The N-Dimensional Poisson Equation is
given by:

−∆u =
π2

4

n∑
i=1

sin
(π
2
xi

)
(46)

The domain is defined by Ω = [0, 1]n.

B.1.18. N-DIMENSIONAL HEAT EQUATION (HND)

The heat equation describes the distribution of heat (or variation in temperature) in a given region over time. The N-
Dimensional Heat Equation is:

∂u

∂t
= k∆u+ f(x, t), x ∈ Ω× [0, 1]

n · ∇u = g(x, t), x ∈ ∂Ω× [0, 1]

u(x, 0) = g(x, 0), x ∈ Ω

(47)

The geometric domain Ω = {x : |x|2 ≤ 1} is a unit sphere in d-dimensional space.

20

PINNsAgent: Automated PDE Surrogation with Large Language Models

C. Pseudocodes

Algorithm 1 Physics-Guided Knowledge Replay (PGKR) for a New PDE
1: Input: Knowledge base K = {(Pi, li, Ci)}ni=1, where:
2: - Pi is the i-th PDE in the knowledge base,
3: - li is the label set of the i-th PDE,
4: - Ci is the best-performing PINNs configuration for the i-th PDE,
5: - n is the total number of PDEs in the knowledge base.
6: Input: New PDE Pnew with labels Lnew
7: Output: Top-k most similar PDEs, their best-performing PINNs configurations, and the updated knowledge base
8: Initialize an empty set S = {} to store the similarities
9: Encode the labels of the new PDE: fnew = E(Lnew)

10: for i = 1, 2, . . . , n do
11: Encode the labels of the i-th PDE in the knowledge base: fi = E(li)
12: Compute the cosine similarity between the new PDE and the i-th PDE:
13: snew,i =

fnew·fi
∥fnew∥∥fi∥

14: Add the similarity to the set S: S = S ∪ {(Pi, snew,i)}
15: end for
16: Sort the set S in descending order based on the similarity scores
17: Select the top-k most similar PDEs: T = {(Pj , snew,j)}kj=1

18: Retrieve the best-performing PINNs configurations for the top-k PDEs: C = {Cj |(Pj , snew,j) ∈ T }
19: Use the retrieved PINNs configurations C as starting points for solving the new PDE Pnew
20: Fine-tune the PINNs configurations in C for the new PDE Pnew
21: Select the best-performing PINNs configuration Cnew for the new PDE Pnew
22: Add the new PDE, its feature vector, and its best-performing PINNs configuration to the knowledge base:
23: K = K ∪ {(Pnew, fnew, Cnew)}
24: Return: T , C, and the updated knowledge base K

D. Prompt
D.1. Task Description

Task Description

[Task]

You are an expert in the field of neural architecture search (NAS) and physics-informed neural networks (PINNs).
Your task is to suggest a hyperparameter configuration for solving the Burgers-1D equation, a Partial Differential
Equation (PDE), using a PINNs model. The objective is to maximize the model’s performance, measured by
minimizing the Mean Squared Error (MSE) and running time.

The Burgers-1D equation is given by:
u t + u u x = nu u xx

The domain is defined as:
(x, t) in Omega = [-1, 1] x [0, 1]

The initial and boundary conditions are:
u(x, 0) = -sin(pi x)
u(-1, t) = u(1, t) = 0

The parameter is:
nu = 0.01/pi

The search space includes various options for the network architecture, optimization algorithm, and other settings:

- ”net” options: FNN (Fully-connected neural network), LAAF (Locally Adaptive Activation Functions), GAAF
(Globally Adaptive Activation Functions)

21

PINNsAgent: Automated PDE Surrogation with Large Language Models

- ”optimizer” options: adam (Adam optimizer), multiadam (Multiscale Adam optimizer), lbfgs (Limited-memory
BFGS algorithm)

The full search space is provided in the following JSON file:

[train.yaml]

{
"name": "Transfer_Learning",
"seed": 44,
"log_every": 100,
"plot_every": 2000,
"repeat": 1,
"iter": 20000,
"pde_list": [’Burgers1D’],
"activation": ["elu", "selu", "sigmoid", "silu", "relu", "tanh",
"swish", "gaussian"],
"net": ["fnn", "laaf", "gaaf"],
"optimizer": ["adam", "multiadam", "lbfgs"],
"loss_weight": ["none"],
"width": [8, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72,
76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132,
136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188,
192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244,
248, 252, 256],
"depth": [3, 4, 5, 6, 7, 8, 9, 10],
"lr": [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1],
"num_domain_points": [100, 600, 1100, 1600, 2100, 2600, 3100, 3600,
4100, 4600, 5100, 5600, 6100, 6600, 7100, 7600, 8100, 8600, 9100,
9600],
"num_boundary_points": [100, 600, 1100, 1600, 2100, 2600, 3100, 3600,
4100, 4600, 5100, 5600, 6100, 6600, 7100, 7600, 8100, 8600, 9100,
9600],
"num_initial_points": [100, 600, 1100, 1600, 2100, 2600, 3100, 3600,
4100, 4600, 5100, 5600, 6100, 6600, 7100, 7600, 8100, 8600, 9100,
9600],
"initializer": ["Glorot normal", "Glorot uniform", "He normal",
"He uniform", "zeros"]

}

D.2. PGKR

PGKR

Here are the most relevant hyperparameter configurations from previous experiments on PDEs that share similar
characteristics with the PDE in the current [Task]. These configurations have shown good performance in the past, so
they can serve as a valuable starting point for your hyperparameter search. However, keep in mind that the optimal
configuration may still differ due to the unique properties of the current PDE. Use these configurations as a guide,
but don’t hesitate to explore other values within the provided search space.

[experiment_logs]
task run time mse l2rel mxe crmse activation net
optimizer width depth lr domain_points boundary_points
initial_points initializer iter

Heat2D_VaryingCoef 1940.0 0.00165 0.205 0.255 sin fnn multiadam

22

PINNsAgent: Automated PDE Surrogation with Large Language Models

100 5 0.001 8192 2048 2024 Glorot normal NaN 0.00131
0.00174 20000

Please provide a single hyperparameter configuration that aims to improve performance by selecting one value for
each key from the search space. Return the configuration as a properly formatted JSON object enclosed in triple
backticks (“‘).

D.3. Optimization with the Guidance of Memory Tree

Memory Tree

Iteration 30:

Config: {’name’: ’exp_1_Transfer_Learning’, ’seed’: 44, ’log_every’: 100,
’plot_every’: 2000, ’repeat’: 1, ’iter’: 200, ’pde_list’: [’Burgers1D’],
’activation’: ’swish’, ’net’: ’fnn’, ’optimizer’: ’adam’, ’loss_weight’:
’none’, ’width’: 120, ’depth’: 8, ’lr’: 0.001, ’num_domain_points’: 9600,
’num_boundary_points’: 9600, ’num_initial_points’: 9600, ’initializer’:
’He normal’}

MSE: 4.7700e-02 Run Time: 59.50s
Exploration Scores: activation: 1.1592 net: 0.9660 optimizer: 1.1592 width: 0.7728 depth: 0.7728 lr: 0.7728
num domain points: 0.2898 num boundary points: 0.2898 num initial points: 0.2898 initializer: 0.3864
Please provide an updated JSON configuration enclosed in triple backticks (“‘) for the next iteration. Adjust the
hyperparameters to improve both the Mean Squared Error (MSE) and Run Time.
Ensure to select values from the provided search space in [train.yaml].
Focus on tuning the following parameters: activation, optimizer, net. These parameters have the highest exploration
scores, indicating they are the most promising for improving performance based on previous iterations.
Note that we have only a GPU with 24GB of memory. Return the configuration as a properly formatted JSON object
enclosed in triple backticks.

23

