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ABSTRACT

Large Language Models (LLMs) demonstrate strong reasoning and task planning
capabilities but remain fundamentally limited in physical interaction modeling.
Existing approaches integrate perception via Vision-Language Models (VLMs) or
adaptive decision-making through Reinforcement Learning (RL), but they fail to
capture dynamic object interactions or require task-specific training, limiting their
real-world applicability. We introduce APEX (Anticipatory Physics-Enhanced
Execution), a framework that equips LLMs with physics-driven foresight for real-
time task planning. APEX constructs structured graphs to identify and model
the most relevant dynamic interactions in the environment, providing LLMs with
explicit physical state updates. Simultaneously, APEX provides low-latency for-
ward simulations of physically feasible actions, allowing LLMs to select optimal
strategies based on predictive outcomes rather than static observations. We eval-
uate APEX on three benchmarks designed to assess perception, prediction, and
decision-making: (1) Physics Reasoning Benchmark, testing causal inference and
object motion prediction; (2) Tetris, evaluating whether physics-informed predic-
tion enhances decision-making performance in long-horizon planning tasks; (3)
Dynamic Obstacle Avoidance, assessing the immediate integration of perception
and action feasibility analysis. APEX significantly outperforms standard LLMs
and VLM-based models, demonstrating the necessity of explicit physics reason-
ing for bridging the gap between language-based intelligence and real-world task
execution.

1 INTRODUCTION

A cat is about to pounce on an LLM-controlled agent. The agent detects the cat nearby and knows it
should move, but does it understand that the cat will jump in 2 seconds? Once the LLM decides to
evade, multiple escape routes exist, how does it choose a path that avoids both the cat and surrounding
obstacles? These two challenges: understanding dynamic interactions and predicting action
consequences, highlight fundamental limitations in existing LLM-based agents. Current methods
attempt to address these issues using Vision-Language Models (VLMs) (Wang et al., 2024a; Ahn
et al., 2022; Huang et al., 2024; 2023; Liang et al., 2023; Liu et al., 2024; Hu et al., 2023b) and
Reinforcement Learning (RL) (Patel et al., 2025; Lee et al., 2024; Ma et al., 2024a; Sun et al., 2024).
However, they remain fundamentally limited:

• Static Perception Without Dynamic Awareness: VLMs enable LLMs to recognize objects
but fail to model interactions over time. They can detect a cat, but cannot anticipate its
movement. In real-world decision-making, static snapshots are insufficient; understanding
object motion is essential.

• Lack of Action-Outcome Feedback and Physical Grounding: Existing approaches often
treat decision-making as a one-shot prediction task, offering no structured feedback loop
between actions and their physical consequences. Instead of modeling the environment’s
response through grounded physical equations, they rely on latent dynamics (World Models)
or reward-driven adaptation (RL). As a result, these systems lack interpretable quantitative
feedback on the feasibility of action, e.g., whether an action would cause a collision, balance
failure, or violate timing constraints.

• Expensive and Slow Policy Adaptation: RL-based approaches, such as VoxPoser (Huang
et al., 2023) and Code-as-Policies (Liang et al., 2023), require extensive task-specific training.
Every new scenario demands costly retraining, making real-time adaptation impractical.
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Figure 1: Comparison of physical reasoning capabilities across three systems, LLM without spatial
grounding, VLM and world modeling, and our proposed APEX on three scenarios involving object
prediction, agent-object interaction, and action planning. While vanilla LLMs are not necessarily
making random choices in the prediction task, our experimental results in Section 4 indicate that their
performance is statistically indistinguishable from random selection in this context. APEX provides
not only qualitative predictions but also quantitative estimations of outcomes (e.g., time to impact,
risk of collision), demonstrating its structured understanding of physical causality.

To plan actions in the real world, agents must do more than perceive and react. They must simulate,
quantify, and foresee. We introduce APEX (Anticipatory Physics-Enhanced Execution), a framework
that enables LLMs to anticipate environmental changes and optimize actions through physics-based
reasoning. APEX constructs structured graphs that extract the most relevant dynamic interactions in an
environment(Nishida et al., 2018; Huang et al., 2025), enabling LLMs to reason about the motion and
forces of objects. Additionally, APEX performs future state simulation(Smith et al., 2013), predicting
how different actions will alter the environment over time, providing explicit physical constraints
to guide decision-making. This strengthens the standard LLM’s capabilities in physical reasoning,
perception, and prediction, empowering LLM-driven agents to perform low-latency planning in
physical environments, as illustrated in Fig. 1.

We evaluate APEX across three benchmark tasks; each is designed to address a critical limitation in
existing approaches:

• Physics Reasoning Benchmark (Addressing Static Perception): Testing LLMs’ ability to
infer object dynamics beyond simple object recognition.

• Tetris (Evaluating Physics-Driven Foresight): Testing whether providing forward physical
simulations as feedback improves the long-horizon decision quality of language models in
structured planning environments.

• Dynamic Obstacle Avoidance (Addressing Real-Time Adaptation): Assessing real-time
integration of perception and prediction for adaptive decision-making, ensuring LLMs can
dynamically adjust their behavior based on future state simulations.

We aim to close the gap between language-based reasoning and physically grounded execution. Our
contributions are:

• APEX: a unified framework that equips LLMs with real-time perception with graph networks
and physical foresight for dynamic task planning.

• A three-part benchmark suite spanning structured reasoning, long-horizon planning, and
real-time control, each targeting a distinct dimension of physical intelligence.

• Empirical results showing that APEX outperforms LLMs and VLM-based agents in (1)
numerical reasoning and physical calculation (Physics QA); (2) simulation-guided plan-
ning with physical intuition (Tetris); and (3) perception-integrated prediction for real-time
decision-making (dynamic obstacle avoidance).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Despite significant progress in task planning for LLM-based or VLM-based agents (Wang et al.,
2024b; Ma et al., 2024b; Kawaharazuka et al., 2024; Hu et al., 2023a), existing paradigms largely fail
to integrate real-time physical modeling in embodied intelligence. Our work is situated at a unique
intersection of language reasoning, graph-based physical abstraction, and online physics simulation.

2.1 VISION-LANGUAGE MODELS: PERCEPTION WITHOUT PHYSICAL CONSEQUENCE

Vision–language models (VLMs) such as CLIP (Radford et al., 2021), Flamingo (Alayrac et al.,
2022), PaLM-E (Driess et al., 2023), and OpenVLM (Kim et al., 2024) learn powerful image–text
embeddings that support zero-shot recognition and instruction following (Ma et al., 2024b). Many
VLM-empowered agents, such as CLIPort (Shridhar et al., 2022), VIMA (Jiang et al., 2022), Vox-
Poser (Huang et al., 2023), RT-2 (Brohan et al., 2023), and PhysVLM (Zhou et al., 2025) inherit this
same static worldview. They augment visual grounding with spatial transport layers, multimodal
prompting, or feasibility masks, but still cannot generalize to novel dynamics and remain blind to
explicit physical laws. A handful of works have tried to close the loop by training Transformer-based
action predictors directly on VLM features, for example, RT-1 (Brohan et al., 2022) learns end-to-end
vision-to-control policies. DeepMind’s generalist agent Gato (Reed et al., 2022) showed that a single
Transformer can handle images, text, and control signals in a unified framework. Yet these approaches
still encode physics only implicitly in learned weights, offering no transparent physical feedback and
often failing under distributional shifts.

2.2 WORLD MODELS: FORESIGHT WITHOUT GUARANTEES

TWM (Robine et al., 2023) incorporates temporal attention into latent rollouts; SMART (Sun et al.,
2023) adds self-supervised multi-task pretraining for control; R3M (Nair et al., 2022) leverages
universal visual representations; and Genie (Bruce et al., 2024) integrates interactive environment
generation. These models introduce video representation learning (Majumdar et al., 2023), multi-
agent dynamics, and forward/inverse prediction, yet all remain black-box latent estimators without
explicit guarantees of physical consistency. Despite their imaginative capabilities, latent world models
exhibit fundamental limitations, including compounding roll-out errors that exacerbate over extended
horizons, poor robustness to distributional shifts, and opaque latent dynamics that obscure failure
modes and hinder interpretability. Furthermore, their temporal abstraction often distorts real physical
intervals by embedding time into latent structures rather than modeling it explicitly.

2.3 REINFORCEMENT LEARNING: EXPENSIVE MASTERY, POOR GENERALIZATION

Reinforcement learning (RL) algorithms such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017) and Soft Actor–Critic (SAC) (Haarnoja et al., 2018), and Imitation Learning (IL) like
Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) have achieved notable
success in robotic control through extensive trial-and-error interaction. More recent LLM-guided
RL hybrids aim to mitigate these issues by combining language reasoning with policy learning.
SayCan (Ahn et al., 2022) uses a language model to rank actions proposed by a pretrained policy,
and Inner Monologue (Huang et al., 2022) adds on-the-fly replanning via chain-of-thought prompts.
Iker (Patel et al., 2025) augments low-level controllers with iterative keypoint rewards from a VLM.
Models such as RT-1 Brohan et al. (2022) and BC-Z Jang et al. (2022) demonstrate the potential of
large Transformer policies to generalize across multiple tasks after extensive pretraining on diverse
environments. ProgPrompt (Singh et al., 2023), PromptCap (Hu et al., 2023c), and ECOt (Zawalski
et al., 2024), chain LLM reasoning for task planning. Despite these advancements, RL and its
LLM-centric extensions still face substantial challenges. They either require millions of environment
steps to converge, struggle under physical distribution shifts, or rely on predefined controllers with
limited adaptability to new physics interactions.

2.4 PHYSICAL SIMULATION IN LLM REASONING: BEYOND CONCEPTUAL HALLUCINATIONS

Prior works like Mind’s Eye (Liu et al., 2022) and PiLoT (Zhang et al., 2023) propose injecting
simulation-derived hints into LLM prompts to correct conceptual hallucinations, such as misunder-
standings of qualitative physics (e.g., “heavier objects fall faster”). While effective for symbolic
reasoning, these methods overlook a key dimension: numerical precision. Our experiments show
that modern LLMs (e.g., GPT-4o(Achiam et al., 2023)) already grasp qualitative physical rules,
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Figure 2: Overview of the APEX reasoning pipeline. Environment snapshots are abstracted into a
motion-aware interaction graph via DG-Motion Attention. This graph structure triggers simulation in
a physical engine (MuJoCo), which evaluates the outcome of candidate actions. A vanilla LLM then
selects an action based on the simulated consequences. This loop, perception → graph trigger →
simulation → LLM → action, enables grounded, temporally aware physical reasoning.

limiting the value of such corrections. However, they still fail at quantitative tasks, like predicting
collision timing, unless grounded by external computation. In real-world environments where timing
and magnitude are critical, this gap is consequential.

Table 1: Comparison of planning paradigms in dynamic physical environments.

Method Quant. Physics Foresight Resp. Time Space–Time (Big-O) Zero-shot

Vanilla LLMs None Implicit Low 1O(p n) Partial
VLMs None Implicit Low 2O(p n) Partial
World Models Implicit Latent rollout Low–High 3O(h k pn)–3O(h k pn2) Partial
RL / IL None Implicit Low (infer) train 4O(s h p), infer 4O(p) No
APEX (ours) Explicit Physics rollout Low 5O(h k n) Yes

Resp. Time = per-decision inference latency (p95 bins: Low ≤ 2s; Medium 2–10s; High 10–60s; Very High > 60s).
p = parameter count of models.
1 n = number of objects/state tokens per decision; no explicit lookahead ⇒ near-linear cost.
2 Cost dominated by perception (encode/decode once per decision); no multi-step rollout.
3 h = lookahead steps; k = action space samples; worst-case O(h k n2) with dense pairwise interactions; O(h k n) if
sparsified.
4 s = training environment steps (high sample complexity); inference scales with p.
5 Graph filtering reduces effective edges to j∼O(p n); engine rollout O(h k n).
Zero-shot means performing in unseen scenes/tasks/dynamics without fine-tuning; labels: Yes (robust), Partial

(degrades but usable), No (requires adaptation).

3 METHODOLOGY

In this section, we introduce the APEX framework, structured explicitly in five detailed stages as
shown in Fig. 2, systematically integrating physical reasoning into LLM decision-making. At its
core, APEX leverages a graph-based representation explicitly chosen for its inherent ability to model
relationships, not merely to highlight the most immediate or obvious actions but rather to capture
complex, task-relevant interactions comprehensively.

4
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3.1 GRAPH: RELATIONAL SCENE REPRESENTATION

Given consecutive snapshots at times t and t + ∆t, we construct relational graphs Gt and Gt+∆t

over the same set of object nodes. Each node corresponds to a distinct entity in the environment,
and edges encode potential interactions between pairs of objects. This relational graph structure
explicitly represents the complex web of interactions, emphasizing task-relevant relationships rather
than isolated physical states.

Such graph representations can be directly connected to upstream 3D reconstruction modules, serving
as an intermediate abstraction layer between raw perceptual input and structured physical reasoning.

3.2 TRIGGER: DIFFERENCE-GRAPH MOTION ATTENTION

We form a difference graph:
∆G = Gt+∆t −Gt,

whose edges encode per-pair displacement, relative velocity, and newly emerging or evolving rela-
tionships. A Graphormer encoder computes attention scores:

αij = Graphormer(Gt, Gt+∆t)ij ,

identifying the most task-relevant edges based on relational dynamics. The selected edges define
a focused subgraph, which is translated into a concise natural-language summary S, explicitly
describing critical interactions and relationships (e.g., "sphere A is about to collide with B, influencing
agent strategy").

3.3 SIMULATE: PHYSICS-GROUNDED ACTION ROLLOUTS

From the current relational state st, we enumerate a discrete set of candidate actions {ai} (e.g., left,
right, down, jump). Note that while we define the action set A as a collection of potential actions, the
size of A remains limited due to the finite degrees of freedom in current robotic systems, making
enumeration feasible (Glover, 2004; Sutton et al., 1998). For each candidate action ai, we invoke
forward simulations:

s
(i)
t+1 = PhysicsSim(st, ai),

and generate outcome descriptors ri (collision flags, target distances, object positions, durations).
These outcome descriptors offer explicit, physics-grounded feedback tied directly to relational
predictions and task implications.

3.4 LLM: GUIDED DECISION SYNTHESIS

We enrich the original LLM prompt x with the relational summary S and detailed simulation outcomes
{r1, . . . , rn}, resulting in a contextually comprehensive prompt:

x′ = x ∪ S ∪ {ri}.

The augmented context guides the LLM to synthesize the optimal relationally-informed decision
sequence Π, representing a series of actions strategically selected to achieve the target objective based
on predictive outcomes:

Π′ = argmax
Π

PLLM(Π | x′).

3.5 ACT: EXECUTION OF THE OPTIMAL PLAN

The action plan Π′ is executed in the environment, realizing robust interactions grounded explicitly
in relationally-informed physical foresight.
3.6 REPLACEMENT OF MODELS

APEX is modular. Each component can be replaced by a drop-in alternative as long as the interfaces
are respected.
Graph Trigger. Any message-passing GNN or graph transformer that produces edge saliency
scores over (Gt, Gt+∆t) is compatible, provided it yields a ranked set of task-relevant edges and a
compact, textual summary S for the current frame. Training and alternative encoders are detailed in
Appendix 6.7.
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Physics simulator / world model. PhysicsSim may be any engine capable of forward rollout (e.g.,
MuJoCo, Bullet, Brax) or a learned world model with bounded rollout error. The only requirement is
to expose next-state predictions and outcome descriptors ri (collisions, distances, durations). Engine
selection and learned-model variants are discussed in Appendix 6.8.
Action search and complexity. The default action set A is small and enumerated. Time complexity
and swap-in planners are summarized in Appendix 6.9.

Algorithm 1 APEX: Anticipatory Physics-Enhanced Execution

Require: Environment snapshots at t and t+∆t, LLM prompt x
Ensure: Final LLM-generated action plan Π′

1: Construct relational graphs Gt = (V,E) and Gt+∆t from object states
2: Compute attention scores via Graphormer:

αij = Graphormer(Gt, Gt+∆t)ij

3: Identify top-k relationally salient edges forming focused subgraph G̃
4: Generate summary S from relational interactions within G̃
5: Enumerate feasible actions {a1, . . . , an} from current relational state
6: for each action ai do
7: Simulate future state: s(i)t+1 = PhysicsSim(st, ai)

8: Generate outcome description ri = Describe(s(i)t+1)
9: end for

10: Append summary S and outcomes {r1, . . . , rn} to LLM prompt, forming enriched prompt x′

11: Decode optimal action plan from LLM:

Π′ = argmax
Π

PLLM(Π | x′)

12: return Π′

4 EXPERIMENTS

To evaluate APEX, we introduce a new LLM Physical Reasoning Benchmark, testing AI models’
ability to predict and adapt to dynamic environments. The evaluation consists of three primary
experiments as shown in Table 2. Results for other open-source LLMs are reported in Tables 8–13.
Additional evaluations include a dedicated physical benchmark (Appendix 6.3) and a real-world
application case study (Appendix 6.4).

Table 2: Summary of Experimental Setups and Physical Reasoning Capabilities

Experiment Capability Verified Evaluation Objective

Physics Reasoning Physical reasoning over multiple en-
tities

Test LLM’s ability to understand
motion-related quantities across tar-
gets.

Tetris Planning Foresight via simulated prediction Assess whether physics-informed
feedback improves planning quality.

Obstacle Avoidance Perception-integrated prediction Validate perception-action grounding
under dynamic environments.

4.1 EXPERIMENT 1: PHYSICAL REASONING ACCURACY IN STRUCTURED TASKS

To assess the physical reasoning capabilities of LLMs, we construct a suite of synthetic 3D tasks
grounded in classical mechanics, including linear motion, circular motion, projectile motion, multi-
object interactions, and collision prediction. Each task is framed as a structured reasoning problem:
given object positions, velocities, and physical parameters, the LLM must infer whether collisions
will occur or predict resulting velocities after interaction.

6
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We compare vanilla GPT-4o against our APEX-enhanced GPT-4o in Table 3 and report three metrics:

• Accuracy: Whether the model provides a fully correct structured answer within the tolerance
of 5%.

• Mean Squared Error (MSE): Quantitative deviation from ground-truth numerical values.
• Numerical Validity: Percentage of fields where the model returns valid numbers.

We conduct ablation experiments on different dt in the physical simulation engine with the Euler
forward method in Table 4. (Here, dt refers to the step size in the physics engine’s forward simulation,
not the time interval in the Graph Trigger module.)

Table 3: Comparison of GPT-4o vs. APEX-enhanced GPT on Physical Reasoning Tasks. Across
all five categories (linear, circular, projectile, collision, and multi-object motion), APEX achieves
near-perfect accuracy, drastically lower MSE, and full numerical validity, while vanilla GPT-4o
struggles on multi-object tasks.

Task Type Accuracy (%) ↑ MSE ↓ Numerical Validity (%) ↑
GPT-4o
3D Linear Motion 8.00 213.5931 28.00
3D Circular Motion 24.00 4.0998 76.00
3D Projectile Motion 88.00 303.6022 100.00
3D Collision 44.00 12.4816 100.00
3D Multi-Object Motion 0.00 1918.2065 81.33

APEX (ours)
3D Linear Motion 96.00 0.0076 100.00
3D Circular Motion 100.00 0.0000 100.00
3D Projectile Motion 100.00 0.0001 100.00
3D Collision 88.00 2.4627 100.00
3D Multi-Object Motion 97.33 0.0013 100.00

Table 4: Simulation accuracy and average duration per question type at different timesteps dt. Smaller
timesteps (dt = 0.001) achieve the highest accuracy but incur longer runtimes, while larger timesteps
(dt = 0.010) reduce computation at the cost of accuracy.

Question Type dt = 0.001 dt = 0.005 dt = 0.010

Accuracy (%)↑ Duration (s)↓ Accuracy (%)↑ Duration (s)↓ Accuracy (%)↑ Duration (s)↓

3D Linear Motion 100.00 0.023 100.00 0.0058 96.00 0.0042
3D Circular Motion 100.00 0.028 100.00 0.0068 96.00 0.0046
3D Projectile Motion 92.00 0.013 92.00 0.0035 48.00 0.0027
3D Multi-Object Motion 97.33 0.076 90.67 0.022 80.00 0.013
3D Collision 98.00 0.0073 98.00 0.0090 98.00 0.0080

4.2 EXPERIMENT 2: REAL-TIME PHYSICAL PLANNING IN TETRIS

We design a second benchmark to test the agent’s ability to perform dynamic, physics-informed
planning in a classic block-stacking domain: Tetris. Unlike traditional planning tasks that focus on
symbolic correctness or visual alignment, this environment emphasizes physical feasibility, spatial
reasoning, and long-horizon optimization.

The agent interacts with a Tetris simulator in which it must select actions (left, right, rotate, drop) for
falling blocks. Each decision must be made based on the current board state, the shape of the block,
and the anticipated physical consequences of different placements. All models are run under the
same sequence of five randomized seeds, and each episode is capped at 15 blocks with the estimated
maximum number of clear lines as 3, ensuring fair and bounded comparison.

We compare different decision systems:

• GPT-4o & GPT-4o-mini: baseline LLMs with no physical modeling.

7
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• VLM: GPT-4o with images as the VLM (Patel et al., 2025; Wang et al., 2025) that perceives
the current board state via screenshot input.

• APEX (ours): physical planning with physics-based rollout.

We evaluate each model on five physically grounded metrics:

• Final Score: total score after game termination (each cleared line counts 100).
• Max Height: the tallest column reached during gameplay.
• Hole Count: number of empty cells beneath landed blocks.
• Bumpiness: total height difference between adjacent columns.
• Height Increase per Move: average vertical growth rate per action.

These metrics reflect task performance and physical efficiency jointly. A low bumpiness and hole
count indicate stable and compact stacking, while a lower height delta per move demonstrates the
agent’s foresight in minimizing vertical sprawl.

Table 5: Comparison of baselines vs. APEX on Tetris-style structured planning. Baseline models
(GPT-4o, GPT-4o-mini, VLM) fail to clear lines and yield unstable, high stacks with many holes and
bumps, whereas APEX achieves a large positive score with low stack height and smooth structure.

Model Final Score ↑ Max Height ↓ Holes ↓ Bumps ↓
GPT-4o 0.0 14.6 33.4 25.6
GPT-4o-mini 0.0 18.2 26.0 36.4
VLM 0.0 12.6 30.2 22.6
APEX (ours) 140.0 5.0 2.8 6.8

4.3 EXPERIMENT 3: DYNAMIC OBSTACLE AVOIDANCE

This experiment assesses the agent’s adaptive decision-making capabilities within dynamic physical
environments characterized by moving obstacles. The setup utilizes a simulated MuJoCo environment
where an LLM-driven agent navigates through varying obstacle densities and speeds across different
difficulty levels.

The evaluation metrics are as follows:

• CFR (Collision-Free Rate): the rate of time in which the agent successfully avoids all
obstacles.

• IAR (Invalid Action Rate): the proportion of actions that lead to collisions or unsafe states.
• AST (Average Survival Time): the average duration the agent remains operational without

colliding, reflecting overall navigation efficacy.

Table 6: Performance on real-time obstacle avoidance across task complexities. Baselines (GPT-4o,
GPT-4o-mini, VLM) fail to generalize beyond trivial cases, yielding near-zero success rates. By
contrast, APEX consistently achieves high completion rates with zero invalid actions across all
settings, maintaining robust performance even as task complexity increases.

Model Simple Medium Hard
CFR ↑ IAR (%)↓ AST (s)↑ CFR ↑ IAR (%)↓ AST (s)↑ CFR ↑ IAR (%)↓ AST (s)↑

GPT-4o-mini 0/5 0 2.55 0/5 0 1.86 0/5 0 2.24
GPT-4o 1/5 0 5.85 0/5 0 3.15 0/5 0 1.66
VLM 0/5 7 5.18 0/5 4 3.14 0/5 7 2.48

APEX (GPT-4o-mini) 5/5 0 10.00 3/5 0 8.64 1/5 0 6.86
APEX (GPT-4o) 5/5 0 10.00 5/5 0 10.00 3/5 0 8.07

We conduct ablation experiments on different graph models and different values of k, as reported
in Table 7. The choice of k controls how many relational edges are passed forward after motion-
based saliency filtering: small k may discard critical interactions, while large k increases noise and
computational overhead. Similarly, the graph encoder defines how relational dynamics are aggregated;
we compare GAT, GCN, and Graphormer to evaluate whether higher-order attention mechanisms
improve action planning performance. This ablation isolates the contribution of edge selection (k)
and relational modeling capacity (graph backbone) to overall system performance.

8
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Table 7: Ablation study on hard obstacle avoidance: Top-k selection vs. graph model choice.
Performance is highly sensitive to both hyperparameters: k = 2 with GPT-4o provides the best trade-
off in success rate and planning stability, while Graphormer shows moderate gains over GAT/GCN.
Mini variants fail across all settings, underscoring the need for both sufficient LLM capacity and
structured graph filtering.

Ablation k/Model LLM CFR↑ AST (s)↑ IAR(%)↓ Latency (s)↓

Top-k

k = 1 gpt-4o-mini 0/5 7.17 0 0.74
k = 2 gpt-4o-mini 0/5 6.38 0 0.73
k = 4 gpt-4o-mini 0/5 7.53 0 0.74
k = 1 gpt-4o 0/5 4.97 0 0.94
k = 2 gpt-4o 2/5 6.58 0 1.25
k = 4 gpt-4o 2/5 5.58 0 1.29

Graph Model

GAT gpt-4o-mini 0/5 2.85 0 0.89
GCN gpt-4o-mini 0/5 7.08 0 0.85
Graphormer gpt-4o-mini 0/5 7.59 0 0.76
GAT gpt-4o 0/5 4.99 0 0.62
GCN gpt-4o 0/5 5.26 0 0.70
Graphormer gpt-4o 1/5 5.44 0 1.24

4.4 EVALUATION SUMMARY

APEX substantially augments LLM capabilities in physical reasoning across structured tasks, dy-
namic adaptation, and real-time obstacle avoidance. Our findings indicate that APEX consistently
outperforms standard LLMs, achieving over 90% accuracy in multi-object dynamics (Experiment 1),
efficient long-horizon planning (Experiment 2), and proactive collision avoidance (Experiment 3).

In Experiment 1, APEX demonstrates superior accuracy in predicting circular motion and collision
dynamics, with baseline GPT-4o achieving less than 20% in Table 3.

In Experiment 2 (Tetris), APEX leverages predictive foresight to minimize structural irregularities,
optimizing placements and significantly improving task performance in Table 5.

Experiment 3 further underscores APEX’s advantage in real-time obstacle avoidance, effectively
mitigating collision risks through predictive modeling, a critical gap in baseline GPT and VLM
systems in Table 6.

5 CONCLUSION

In this paper, we introduced APEX, a novel framework that enhances LLMs with predictive physical
reasoning capabilities by integrating graph-based physical modeling, and physics simulation. Unlike
prior methods that rely on static observations or constraint filtering, APEX enables LLMs to anticipate
future physical interactions and adapt task plans accordingly. Experimental results demonstrate that
APEX significantly improves performance on physical reasoning benchmarks, outperforming standard
LLMs, VLM-based task planning, and grounded decoding techniques.

Furthermore, APEX’s structured approach to physical modeling opens new opportunities for future
research in AI-driven task planning, robotics, and autonomous decision-making. This study provides
a new perspective on enhancing LLMs’ physical reasoning capabilities by replacing RL-based trial-
and-error learning with predictive physical modeling. This direction presents new possibilities for
future robotic task planning and can be combined with existing VLM+RL-based methods to further
improve LLMs’ ability to handle physical interaction tasks.

6 FUTURE WORK

As a next step, we aim to extend APEX into APEX++, where the language model serves not only as a
planner, but as a core component in a recurrent, interpretable perception-prediction-action loop. This
would allow for the emergence of grounded intelligence capable of proactive behavior, structured
foresight, and physical adaptability, unlocking new possibilities across robotics, self-driving, and
embodied AI.

9
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6.1 DESIGN PRINCIPLE: PERCEPTION–GRAPH–LANGUAGE–PHYSICS–ACTION (PGLPA) VS.
VISION–LANGUAGE–ACTION (VLA)

A key design principle underlying our framework diverges from the conventional Vi-
sion–Language–Action (VLA) paradigm, to connect real-to-sim-to-real with LLM reasoning,
while keeping the blackbox models isolated from numerical/physical information. We refer to
our modular approach as Perception–Graph–Language–Physics–Action (PGLPA). Figures 3 and 4
contrast the conventional VLA pipeline with our proposed PGLPA paradigm, highlighting the struc-
tural differences that motivate our approach. We further compare the two paradigms in terms of
accuracy and hallucination, training and data requirements, and interpretability as follows.

Figure 3: Illustration of the conventional Vision–Language–Action (VLA) paradigm. Visual per-
ception encodes the real world into language features, which are then mapped directly to action
commands. The execution loop closes by applying actions back to the real world. Although concep-
tually simple, VLA tightly couples perception, reasoning, and control within a single embedding
space, limiting interpretability and robustness.

Figure 4: Illustration of our Perception–Graph–Language–Physics–Action (PGLPA) paradigm.
Perception constructs a relational graph from the real world; this graph informs both symbolic
reasoning and an explicit SE(3)-consistent physics simulator. The simulator evaluates candidate
actions via rollouts, producing structured feedback that is integrated with LLM-based reasoning
before execution. This “real-to-sim-to-real” loop decouples numerical physical computation from
probabilistic inference, improving stability, interpretability, and zero-shot transfer.

Accuracy and Hallucination. Planning in dynamic scenes is inherently spatio-temporal: agents
must reason over objects’ states and transitions in 4D under the constraints of Newtonian mechanics.
With full observation, physical laws enable forward prediction of future states; the residual difficulty
comes from action selection, which is combinatorially hard (often treated as a weakly NP-type
search problem; see e.g., classical results on planning/search). Under partial observation, priors (e.g.,
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plausible mass ranges) and online updates (e.g., quick weighing) are required to reduce uncertainty.
Modern deep models, including transformers, approximate such unknowns probabilistically; however,
their physical modeling is implicit, which leads to two issues: (i) numerical instability for arithmetic
operations1, and (ii) lack of strict SE(3) consistency (viewpoint changes can disrupt spatial constancy).

PGLPA addresses both by performing all physics in an explicit, SE(3)-consistent environment
(sim/engine) and using perception/graph/LLM only for probabilistic inference and decision. Explicit
physics also constrains VLM/LLM hallucinations, and solving partial observability in a structured
physical model is substantially simpler than tackling it end-to-end in a monolithic VLA.

Training and Data Requirements. VLA typically demands joint vision×language×action datasets
and end-to-end training. In contrast, PGLPA trains mature modules independently and composes them
via stable interfaces. Adding a new modality (e.g., LiDAR) requires retraining only the perception
module rather than the full stack. For action selection, we can leverage simulator-backed search
(e.g., RL/MCTS/CEM) directly in the physics environment; this is generally more data-efficient than
learning a vision→action mapping end-to-end, and aligns with simulator-to-real fine-tuning practices.

Interpretability. All PGLPA modules expose explicit outputs with clear supervision:
• The perception model performs object categorization and 2D/3D localization.
• The graph module acts as a filter, surfacing salient interactions (see Appendix roadmap for a

definition of “salient”).
• The LLM is pre-trained for commonsense and reasoning (task decomposition, option

selection, safety-aware judgments).
• The physics module conducts forward and counterfactual rollouts; their combination enables

capabilities beyond standard RL (e.g., “if I do not block at (0, 0, 1), the car will hit the child,
which is immoral and unaffordable.”).

• The action module follows from the training discussion above.

1Transformers and related architectures are not reliable for exact arithmetic/iteration operations, especially
exponential or iterative routines (Garg et al., 2022). It aligns with our results in Table 3.
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6.2 SUPPLEMENTARY EXPERIMENTS ON MORE LLMS

We further conduct the three experiments on five recent LLMs, with detailed results presented in
Tables 8 to 13.

Table 8: Generalization across LLM backbones - Physical QA. This table compares the accuracy
and response latency of five recent LLMs across diverse physical reasoning tasks. While these
models demonstrate varying capabilities, none surpass the accuracy achieved by our GPT-4o + APEX
framework reported in Table 3.

LLM Linear Circular Projectile Multi Obj Collision

Acc (%)↑ Time (s)↓ Acc (%)↑ Time (s)↓ Acc (%)↑ Time (s)↓ Acc (%)↑ Time (s)↓ Acc (%)↑ Time (s)↓
GPT-4.1 52.00 3.767 44.00 4.120 92.00 3.093 12.00 4.723 28.00 8.170
DeepSeek-R1* 100.00 193.934 80.00 356.351 100.00 349.337 86.65 310.937 40.00 363.831
Claude Sonnet 4 100.00 6.845 16.00 4.387 100.00 6.808 6.67 8.686 38.00 10.019
Gemini 2.5 Flash 80.00 10.593 40.00 7.434 92.00 11.766 32.00 19.168 70.00 58.761
LLaMA 4 Scout 0.00 6.141 4.00 5.583 72.00 6.687 1.33 5.770 10.00 5.824

For DeepSeek-R1, only 20% of the dataset was evaluated due to its significantly longer reasoning time, which
made full-scale benchmarking impractical within our resource constraints.

Table 9: Performances of LLMs for the Tetris Experiment. Gemini achieved the best structural control
with the lowest stack height, though its latency was very high. Claude and Gemini occasionally
cleared lines and maintained moderate structure. GPT-4.1 was fast but structurally weak, while
LLaMA failed all cases with rigid stacking behavior. Overall, Gemini appears to perform the best,
achieving the lowest average max stack height (9.2±2.48). For reference, the APEX (GPT-4o)
baseline maintains an average max height of 5±2.97.

Model Final Score↑ Max Stack Height↓ Holes↓ Bumps↓ Resp. Time (s)↓
GPT-4.1 0.0 ± 0.0 15.0 ± 2.61 38.4 ± 17.67 27.4 ± 7.36 0.778 ± 0.116
Claude Sonnet 4 (20250514) 20.0 ± 40.0 14.4 ± 0.80 36.4 ± 6.86 17.8 ± 3.92 1.557 ± 0.049
Gemini 2.5 Flash 20.0 ± 40.0 9.2 ± 2.48 14.2 ± 5.84 13.6 ± 5.68 85.391 ± 7.625
LLaMA 4 Scout 0.0 ± 0.0 17.0 ± 0.00 32.2 ± 5.46 30.2 ± 5.19 0.852 ± 0.054

For clarity, we removed the “Height/move” metric, which was effectively redundant with max stack height as it
was not normalized by the number of moves.

Table 10: Performances of LLMs for the Tetris Experiment with Vision. All models failed to
clear lines with image input. Gemini maintained the lowest stack height but had high latency,
Claude showed balanced structural metrics, GPT-4.1 was fast but unstable, and LLaMA consistently
terminated at max height due to rigid behavior.

Model Final Score↑ Max Stack Height↓ Holes↓ Bumps↓ Resp. Time (s)↓
GPT-4.1 0.0 ± 0.0 12.6 ± 2.73 24.4 ± 9.05 26.0 ± 10.35 1.162 ± 0.096
Gemini 2.5 Flash 0.0 ± 0.0 10.8 ± 1.47 23.2 ± 7.19 15.8 ± 4.02 47.490 ± 8.011
LLaMA 4 Scout 0.0 ± 0.0 17.6 ± 1.36 34.8 ± 11.89 35.2 ± 2.71 0.892 ± 0.105
Claude Sonnet 4 (20250514) 0.0 ± 0.0 12.2 ± 2.23 22.4 ± 7.45 21.6 ± 8.96 1.736 ± 0.114
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Table 11: Performances of LLMs and LLM+Vision models on the Simple dynamic obstacle avoidance
task. Claude and GPT-4.1 reached 80% task success, while DeepSeek and Gemini showed extremely
long latencies.

Type Model CFR↑ AST (s)↑ IAR (%)↓ Avg Latency (s) ↓
LLM+Vision Claude Sonnet 4 (20250514) 4/5 9.98 2.00 2.00
LLM+Vision Gemini 2.5 Flash 1/5 6.73 4.00 27.45
LLM+Vision LLaMA 4 Scout 1/5 5.24 0.00 1.27
LLM+Vision GPT-4.1 0/5 6.84 0.00 1.19
LLM DeepSeek-R1 (0528) 0/5 2.55 7.00 88.08
LLM Claude Sonnet 4 (20250514) 0/5 5.79 0.00 1.54
LLM Gemini 2.5 Flash 0/5 6.64 7.00 2.36
LLM LLaMA 4 Scout 0/5 6.83 0.00 0.88
LLM GPT-4.1 4/5 8.89 0.00 0.92

Table 12: Performances on the Medium difficulty setting. Most models failed to generalize. DeepSeek
and Gemini still exhibited long planning times, while Claude and GPT-4.1 remained efficient.

Type Model CFR↑ AST (s)↑ IAR (%)↓ Avg Latency (s) ↓
LLM+Vision Claude Sonnet 4 (20250514) 0/5 2.58 0.00 1.92
LLM+Vision Gemini 2.5 Flash 0/5 4.47 4.00 28.07
LLM+Vision LLaMA 4 Scout 0/5 5.35 0.00 1.24
LLM+Vision GPT-4.1 0/5 1.86 0.00 1.25
LLM DeepSeek-R1 (0528) 0/5 2.43 13.00 179.01
LLM Claude Sonnet 4 (20250514) 0/5 3.96 2.00 2.68
LLM Gemini 2.5 Flash 0/5 2.53 11.00 33.03
LLM LLaMA 4 Scout 0/5 4.28 0.00 0.82
LLM GPT-4.1 0/5 3.16 0.00 0.71

Table 13: Performances on the Hard setting. No model succeeded, but latency differences remained
stark. Gemini and DeepSeek remain impractical for time-sensitive planning.

Type Model CFR ↑ AST (s)↑ IAR (%)↓ Avg Latency (s) ↓
LLM+Vision Claude Sonnet 4 (20250514) 0/5 4.63 2.00 2.14
LLM+Vision Gemini 2.5 Flash 0/5 3.57 0.00 35.65
LLM+Vision LLaMA 4 Scout 0/5 1.66 0.00 1.26
LLM+Vision GPT-4.1 0/5 3.04 0.00 1.23
LLM DeepSeek-R1 (0528) 0/5 3.18 9.00 228.02
LLM Claude Sonnet 4 (20250514) 0/5 3.55 0.00 1.65
LLM Gemini 2.5 Flash 0/5 3.77 4.00 34.34
LLM LLaMA 4 Scout 0/5 2.33 7.00 0.67
LLM GPT-4.1 0/5 4.20 0.00 1.42
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6.3 SUPPLEMENTARY EXPERIMENTS ON THE PHYRE BENCHMARK

We additionally evaluate APEX on the Phyre benchmark (Bakhtin et al., 2019), a widely used suite
of physical reasoning puzzles that require agents to anticipate object dynamics and plan interventions
in diverse 2D environments. Each task is defined by a goal condition (e.g., make the green ball touch
the blue box) and requires reasoning about gravity, collisions, and multi-object interactions. Unlike
synthetic kinematics tests, Phyre emphasizes generalization: models must solve both seen and unseen
templates, making it a strong proxy for zero-shot physical reasoning. This benchmark allows us to
assess whether APEX’s graph–simulation loop provides advantages in standardized tasks beyond our
custom environments.

To simulate potential sim-to-sim or sim-to-real discrepancies in real-world settings, we implemented
a disturbed simulator in the 256× 256 environment: each object was perturbed with up to 2 pixels in
position and 1◦ in rotation. We did not repeat standard sim-to-sim comparisons for two reasons: (1)
time constraints, and (2) most RL agents, except those that explicitly address vision or sim-to-sim
transfer, are trained in the original simulation environment and are not typically designed to generalize
across simulators.

Table 14: GPT-4.1 nearly completely failed to solve the task. DeepSeek-R1 took a significantly
long time (∼150s per case) but still solved only a small number of problems. In contrast, our
APEX-enhanced GPT-4.1, even under disturbed conditions, consistently produced valid rollouts and
outperformed analytical methods by a wide margin.

Model Task Type Total Tasks Solved↑ Solved (%)↑ Avg Resp. Time (s)↓ Avg Sim Time (s)↓ AUCCESS↑ Attempts / Task↓
GPT-4.1 ball_cross_template 500 2 0.40% 5.188 0.000 0.004 2.918
GPT-4.1 ball_within_template 500 6 1.20% 4.945 0.000 0.0114 2.958
DeepSeek-R1 ball_cross_template 20 0 0.00% 170.915 0.000 0.000 2.800
DeepSeek-R1 ball_within_template 20 3 15.00% 133.611 0.000 0.119 2.800
APEX (GPT-4.1) ball_cross_template 500 261 52.20% 5.735 14.654 0.487 3.978
APEX (GPT-4.1) ball_within_template 500 289 57.80% 5.689 12.181 0.542 3.826

All simulations were run sequentially on CPU without GPU or distributed computing. Parallelization would
significantly reduce total runtime.
The action space was explored using 10,000 actions sampled uniformly at random.
Due to DeepSeek-R1’s high inference cost, only 20 out of 500 test cases were evaluated.

6.4 SUPPLEMENTARY EXPERIMENTS ON REAL WORLD APPLICATION

We further validate APEX in a real-world robotic setting, using a reactive collision avoidance task.

Experimental Setup. The platform is a HiWonder Mini Arm (5 DOF) controlled by a Raspberry
Pi 4B (Arm32, Python 3.7). An onboard RGB-D camera is mounted on the end-effector for visual
input. Perception is implemented with classical CV techniques including color-based segmentation,
bounding box tracking, and depth estimation, followed by a 5-frame sliding-window filter for position
smoothing. The agent receives prompts in the format specified in the following. Baseline comparisons
use GPT-4o directly, queried once per second without trigger or simulation.

Prompt of Explicit intervention setting(APEX and GPT-4o)

You are controlling a robot arm in a 2D tabletop environment.
Two balls are moving on the table: a red ball and a green ball.
The red ball is stationary, and the green ball is moving toward it.

Your task is to **prevent a collision** between them
by moving the robot arm to intercept the green ball.

Please choose a 2D target position (x, y),
where the robot arm should go to block the green ball’s path.
The robot arm will then move to the position (x, y, 0.5) in 3D space,
hovering slightly above the table.
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Make sure the chosen position is effective in preventing the collision,
but also avoid placing the robot arm too close to the red ball.

Current_state:{state}
Physical Engine Result: {rolling_results} (Prompt Injection)
Return your result as a JSON dictionary: {{"x": ..., "y": ...}}
or {{"x":-99, "y":-99}} if you think no need of action
Return Only The JSON without Markdown

Prompt of Implicit intervention setting(APEX and GPT-4o)

You are controlling a robot ball on 2D board.
It can stop any object near in any movement
You can move the ball to a location (x,y) in 1 sec
Current_state:{state}
The green car is reaching the child in red T-shirt in 5 sec.

Physical Engine Result: {rolling_results}

Return your result as a JSON dictionary: {{"x": ..., "y": ...}}
or {{"x":-99, "y":-99}} if you think no need of action
Return Only The JSON without Markdown

Task. Explicit intervention setting: A human moves a green block toward a static red block. The
agent must detect the potential collision and move the manipulator to prevent contact. Implicit
intervention setting: In the same setting, but We do not explicitly tell the LLM that it needs to
intervene in a collision. We only inform it that it controls a ball that can stop any object, and that a
green car is approaching a kid in a red T-shirt from the graph model.

Metrics. We measure response rate, collision rate, and planning latency.

Table 15: In the no-moving condition, we provide the LLM with the ball’s position and velocity.
When prompted to intervene, GPT-4o tends to react.

Model FIR↓ Resp. Time (s)↓
GPT-4o 8/10 4.534
APEX (GPT-4o) 0/10 –

Table 16: In the collision condition, we evaluate the intervention behavior of GPT-4o and APEX-
augmented GPT-4o in the same linear collision scenario. APEX significantly improves both the
validity and success rate of interventions, while also reducing response time and simulation delay.

Model Resp. Rate↑ Valid↑ Success ↑ Resp. Time (s)↓ Sim Time (s)↓
GPT-4o 10/10 5/10 3/10 5.342 –
APEX (GPT-4o) 10/10 8/10 8/10 1.6562 0.1855

Limitations Our deployment platform was a Raspberry Pi 4B (ARM32 architecture) with a system-
level Python version restricted to 3.7. Under these constraints, PyTorch installation was infeasible. We
therefore employed a lightweight linear classifier to estimate whether a selected object would collide
with an obstacle within a 5-second horizon. This linear predictor can also serve as a pseudo-label
generator for training a graph-based collision forecasting model.

In this hardware setting, Mujoco deployment was also not feasible. Given the simplicity of the task,
we implemented a custom forward Euler integrator as a proxy simulator. For each object, trajectories

6
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Table 17: Five consecutive trials for the implicit intervention setting. In this condition, we do not
explicitly tell the LLM that it needs to intervene in a collision. The LLM only knows it controls a
ball that can stop any object, and that a green car is approaching a kid in a red T-shirt from the graph
model. Among the two failure cases: one was due to a simulation error where no feasible stopping
point was found; the other was because the LLM did not respond and chose not to intervene.

Model Success↑
APEX (GPT-4o) 3/5

Figure 5: Frame montage from the real-world deployment video, with one frame sampled per second.
The sequence illustrates three key phases of the experiment: (6s) human moving a green object toward
a static red object, (18s) physical evaluations by the APEX simulation loop, and (19s) intervention
performed by the robotic arm to prevent collision. This visualization highlights how APEX integrates
perception, simulation, and LLM reasoning into grounded physical action.
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Figure 6: Filtered top-5 safe nodes from physical analysis from 1412 points in 0.186 seconds.

were computed using the first-order update:

pos[t+ 1] = pos[t] + v[t] ·∆t, v[t+ 1] = v[t] + a[t] ·∆t.

Since Mujoco also defaults to Euler integration unless explicitly reconfigured with higher-order
solvers, our approximation remains consistent with the default dynamics fidelity. On the Raspberry
Pi 4B, simulating 1412 points over a 5-second window with ∆t = 0.01s takes approximately 0.2s,
which is negligible compared to LLM inference latency (1.5–5.0s).
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6.5 PROMPT FORMATS AND MODEL INPUTS

To ensure consistency and replicability across models and tasks, we provide the exact prompt
templates used in each experimental setting. All inputs are designed to maintain clarity while
preserving the reasoning and response structure expected by LLMs.

Physics QA Prompt Format (APEX and GPT-4o):

You are a physics expert.(System Prompt)

Solve the following problem and return the answer in JSON format.

Problem: {q["question"]}

The external physical engine predictions: {ref} (Prompt Injection)

Expected JSON response:
{{

"reasoning": "Explanation of how you arrived at the answer"
"answer": "Your final numerical answer(without unit and equation)"
as {str(q[’answer_json’])},

}}

Respond the JSON string only without any markdown symbol.

Tetris Planning Prompt Format (APEX and GPT-4o):

You are a Tetris AI agent.(System prompt)

You are playing Tetris. Your goal is to maximize the score by:
- Clearing as many lines as possible.
- Keeping the board as flat as possible.
- Avoiding unnecessary stacking.

Here is the current board state(0-blank,,1-current piece, 2-landed piece):
{state}

Here are physical engine analysis:{APEX_results} (Prompt Injection)

Available moves:
- "left": Move the piece left by one column.
- "right": Move the piece right by one column.
- "rotate": Rotate the piece 90 degrees clockwise.
- "down": Instantly drop the piece to the lowest possible position.(max times = 1)

Decide the best move sequence in JSON format as a list of actions.
Each action should include the move and how many times to perform it.

Example:
[

{{"move": "left", "times": 2}},
{{"move": "rotate", "times": 1}},
{{"move": "down", "times": 1}}

]

Allowed moves are: "left", "right", "rotate", and "down".
Only return the JSON array without any explanation or markdown. No Markdown

9
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Obstacle Avoidance Prompt (APEX and GPT-4o):

You are an AI robot that avoids dynamic obstacles.(System Prompt)
You are controlling a robot in a 3D physical environment with moving obstacles.
Your goal is to avoid collisions with cats while progressing toward the target
location.

Current state
(The map has square walls located at x = ±5 meters and y = ±5 meters):
{state}

Obstacles:
{summary}

Available Moves:
{available_move}

Physical Engine Analysis:
{apex_results} (Prompt Injection)

Output the decision in this format:
{{
"move": "stay",
"duration": 1.0,
}}

Only return the JSON object with no explanation or markdown.

Here is the screenshot
(Red balls cat, green ball-your controlled agent): {image} (VLM only)

6.6 IMPLEMENTATION AND SYSTEM CONFIGURATIONS

All experiments were conducted using:

• Hardware: A laptop with NVIDIA RTX 4070 for MuJoCo simulations and forward
predictions.

• Language Models: GPT-4o via OpenAI API;
• Physics Simulators: MuJoCo for environment modeling and trajectory evaluation.
• Evaluation Interface: A custom Python simulator for Tetris and real-time rendering with

frame capture for trajectory visualization.

6.7 GRAPH MODELS

6.7.1 TRAINING OF DG-MOTION ATTENTION

Training data generation. We synthesize star-graphs with n=6 nodes (one master and five targets).
Each node is assigned a random 3D position x∼ U(−10, 10)3, a random unit direction, and a speed
s∼ U(0.5, 1.0), yielding v = s v̂. Half of the samples are labeled collision: we pick a random
target and set its velocity to intercept the master’s future position at horizon t=3s; the remaining
half are safe. We compute a physically interpretable risk score at t+∆t (∆t=0.01s) by combining
(i) inverse distance, (ii) directional alignment (cosine), and (iii) speed via sigmoids with weights
(wd, wdir, wv) = (0.34, 0.33, 0.33). Edges from the master to each target are labeled positive if risk
> τ (τ=0.75 by default). Node features are [isMaster,xt,vt] at t and t+∆t, and edge attributes are
relative displacements w.r.t. the master, yielding a star graph of O(n) edges per sample.

10
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DiffGraphormer (DG-Motion Attention). Our model is a lightweight variant inspired by
Graphormer (Ying et al., 2021), but implemented with TransformerConv (PyG) and explicit edge
features. We encode nodes and edges with linear layers and apply a TransformerConv (with edge
features) as the relational backbone. During the forward pass, differential motion (xt+∆t − xt)/∆t
provides velocity cues to construct edge attributes aligned with the data generator (distance, direction,
speed). An edge head aggregates endpoints (hij=hi+hj) and outputs a sigmoid probability for
each master→target edge. We train with binary cross-entropy; in deployment, we favor high-recall
thresholds (e.g., >90% recall with ∼70% accuracy) to minimize missed hazards that would prevent
APEX from triggering physics rollouts.

Training setup. We train edge-level hazard predictors on the synthetic star-graph dataset. We split
data 80/20 for train/val and use a batch size of 1 (variable-size graphs), Adam (lr=10−3), 100 epochs,
and ∆t=0.01s. Models include DiffGraphormer (TransformerConv with edge features) and ablations
DiffGAT/DiffGCN.

Loss & class balance. We optimize binary cross-entropy with logits and a positive class weight
w+=(1− π)/π computed from the dataset prior π (positive ratio). Evaluation. We report edge-level
accuracy and recall on the validation split with a 0.5 decision threshold, prioritizing high recall to
avoid missed hazards that would bypass APEX’s simulation trigger. Trained weights are saved for
deployment.

6.7.2 DESIGN PRINCIPLE

Although our goal is not to benchmark graph architectures, one might ask why we place a graph
module after the perception stack. This is an engineering choice. The graph plays two complementary
filtering roles: (i) interaction filtering: in a cluttered scene, not all pairwise (or higher-order)
interactions are task-relevant. Curating a sparse, task-conditioned interaction set prevents overlong
contexts for LLM/VLM-based reasoning; and (ii) temporal saliency filtering: selecting only the most
informative current frames (triggers) substantially reduces compute and relaxes the FPS requirements
for downstream modules.

Beyond filtering, a scene graph offers a clean interface for switching between the physical world
and natural language while retaining spatial structure and object state. Concretely, it preserves
object-centric coordinates and attributes, implicitly maintaining an approximate SE(3) consistency
that can be online updated.

The practical upside is that graph modeling is a mature area: from annotation pipelines to training
recipes, we can leverage well-established methods rather than inventing bespoke machinery.

Directions and Examples. We highlight several graph-based avenues that align with our system:

• Physical Interaction Graphs (e.g., falling/moving dynamics): encode contact, support, and
relative motion to gate physics queries and rollouts.

• Semantic Hybrid Graphs: integrate symbolic object categories with continuous physical
states, enabling reasoning that links high-level semantics (e.g., “cup”) with contextual
properties (e.g., “full of water”, “hot”).

• Safety Graphs: augment nodes and edges with risk labels and constraints, supporting
safety-aware planning and intervention (Huang et al., 2025).

• Partial Complement Graphs: expand partial observations (e.g., “a hand”) into complete
object groups (e.g., articulated human joints).

• Spatio-Temporal Graphs: capture objects whose motion patterns deviate from typical
dynamics, such as those that suddenly appear or exhibit anomalous trajectories.

• Counterfactual Graphs: represent causal structures that support “what-if” reasoning
(e.g., if object A had not collided with object B, would B still move?), enabling stronger
generalization and interpretability.
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6.8 PHYSICAL ENGINE / WORLD MODEL

Simulation-based methods inevitably face both sim-to-real shift and partial observability. If we
restrict the scope to Newtonian mechanics, information-theoretic considerations suggest that, given
sufficiently rich observations of the real world, the Newtonian laws provide the most compact and
faithful model. Under partial observation, the primary challenge is therefore accurate sensing and
identification of the entities present in the scene, rather than entangling object categories (e.g., “apple,”
“cup”) with specific motion patterns (e.g., free fall). Although one may train a model to approximate
linear operators, and linearity is central to Newtonian mechanics, this introduces additional training
cost and instability: we cannot guarantee that the model has internalized the gravitational constant or
that such constants scale coherently across all motions.

Attempts to realize a purely learned world model that performs physical forward prediction with
large sequence models (e.g., Transformers) inherit these issues (see Appendix 6.1). A lightweight,
hybrid world model layered on top of a physics engine may be promising, but we leave a thorough
exploration to future work.

Limitations. Beyond sim-to-real shift, partial observability, and the deliberate restriction to Newto-
nian regimes, both real and simulated environments exhibit chaotic dynamics. Measurement noise
implies that long-horizon simulations accumulate bounded error. For physics engines, however,
existing numerical analysis provides stability and error bounds, enabling principled confidence as-
sessments. In contrast, black-box learned world models generally lack such calibrated uncertainty
and verifiable error guarantees, which remains a key limitation.

6.9 ACTION SPACE ANALYSIS

Assume an agent with n degrees of freedom (DOF) and k-step rollouts. A naive complexity is:

O
(
(n · l)k

)
,

where l denotes the discretization granularity.

In practice, we employ a coarse-to-fine search strategy: early steps use low-resolution discretization
(e.g., 5◦), and the resolution is progressively refined near step k−1. Thanks to the Markov property,
redundant rollouts are avoided by caching and pruning previously visited states.

Thus, the effective complexity becomes:

O
(
min

(
(n · l1)k, s · l2

))
,

where s is the number of reachable states, and l1, l2 denote coarse and fine resolutions, respectively.

Unlike Bellman-style methods, APEX avoids learning a high-dimensional value function, naturally
supports heuristic pruning, and scales efficiently.

Computational Overhead. A common concern is the computational cost of simulation-based
rollouts. In APEX, rollout simulates n objects for k seconds with step size ∆t, resulting in:

O

(
n · k
∆t

)
operations.

For example, with n = 100, k = 1, and ∆t = 10−4, the rollout involves 104 steps. A standard CPU
core can handle approximately 109 FLOPs/s, so this costs less than 1 ms runtime per rollout. Since
simulations are fully parallelizable, APEX runs efficiently on CPUs without requiring specialized
hardware.

The physics engine ensures both interpretability and real-time feasibility. Despite relying on high-
fidelity simulations, APEX remains efficient and tractable.

Moreover, the combined complexity of action rollout and simulation is multiplicative. However,
all simulations are independent, and each frame involves only linear-time physics computation per
object. This structure naturally enables GPU-level parallelism.
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As an illustration, consider a brute-force rollout of 100,000 actions over 1 second with timestep
∆t = 0.01. Assuming 10 objects are active per frame, each requiring ∼ 103 FLOPs, the total cost is:

(100,000 actions)× (100 frames)× (10 objects)× (103 FLOPs) = 1011 operations.

Such a workload is easily handled by modern GPUs and can be completed within milliseconds
through parallel computation.

Replacement. The APEX rollout module is drop-in replaceable with pretrained RL policies or
Monte Carlo Tree Search (MCTS) planners for candidate action generation; our caching/pruning and
simulation interfaces remain unchanged and continue to provide the same complexity and parallelism
benefits.
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6.10 ERROR ANALYSIS FOR PHYSICS QA

Despite its general reasoning strength and applying of correct physical laws, GPT-4o often struggles
with numerical accuracy especially on displacement calculations, which is crucial in real-world
application like auto driving. We sampled failure cases across five representative tasks to understand
the underlying issues.

(1) 3D Linear Motion: Numerical Errors

Linear Motion Numerical Error

Question: An object starts at (0, 0, 0) with an initial velocity of [13.15, 1.48, 6.23] m/s and
an acceleration of [−2.77, 2.36, 1.77] m/s. What are its velocity vx, vy, vz and displacement
dx, dy, dz after 9.03 seconds?

LLM Reasoning: To find the velocity and displacement of the object after 9.03 seconds, we
use the kinematic equations. The final velocity in each direction can be calculated using
the formula v = u + at, where u is the initial velocity, a is the acceleration, and t is the
time. The displacement in each direction can be calculated using the formula s = ut+0.5at2.

For the x-direction: Initial velocity (ux) = 13.15 m/s, acceleration (ax) = -2.77
m/s2. Final velocity (vx) = 13.15 + (−2.77)× 9.03 = −11.8851 m/s. Displacement (dx) =
13.15× 9.03 + 0.5× (−2.77)× (9.03)2 = 59.364315 m.

For the y-direction: Initial velocity (uy) = 1.48 m/s, acceleration (ay) = 2.36 m/s2.
Final velocity (vy) = 1.48 + 2.36 × 9.03 = 22.7708 m/s. Displacement (dy) =
1.48× 9.03 + 0.5× 2.36× (9.03)2 = 114.94686 m.

For the z-direction: Initial velocity (uz) = 6.23 m/s, acceleration (az) = 1.77 m/s2.
Final velocity (vz) = 6.23 + 1.77 × 9.03 = 22.2101 m/s. Displacement (dz) =
6.23× 9.03 + 0.5× 1.77× (9.03)2 = 147.014145 m.

LLM Answer:
{

"velocity_x": "-11.8851",
"velocity_y": "22.7708",
"velocity_z": "22.2101",
"displacement_x": "59.3643154",(wrong)
"displacement_y": "114.94686",
"displacement_z": "147.014145"

}

Ground Truth:
{

"velocity_x": -11.86,
"velocity_y": 22.79,
"velocity_z": 22.21,
"displacement_x": 5.81,
"displacement_y": 109.58,
"displacement_z": 128.42

}

Error: Miscalculation on displacement.

(2) 3D Circular Motion: Numerical Errors

14



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(2) 3D Circular Motion Numerical Error

Question:
• Motion Type: Circular Motion
• Radius: 2.49 meters
• Speed: 8.75 m/s
• Angular velocity: 3.51 rad/s
• Time: 5.95 s
• Plane: xy-plane
• Task: Compute its position (xB , yB , zB), assuming it starts at (r, 0, 0).

LLM Reasoning:
To find the position of the object in circular motion, we use the parametric equations for
circular motion. The object starts at position (r, 0, 0) and rotates in the xy-plane. Its position
at any time t is given by:

(xB , yB) = (r · cos(θ), r · sin(θ))
where θ is the angular displacement. The angular displacement θ is calculated as:

θ = ω × t = 3.51× 5.95 = 20.8845 rad
Thus:

xB = 2.49 · cos(20.8845) and yB = 2.49 · sin(20.8845)
Since the motion is in the xy-plane, zB = 0.

LLM Answer:
{

"x_B": "0.57",
"y_B": "-0.51",
"z_B": "0"

}

Ground Truth:
{

"x_B": 0.3206,
"y_B": -0.7001,
"z_B": 0.0

}

Error: Miscalculated both xB and yB . Likely due to incorrect theta or trig eval.

(3) 3D Projectile Motion: Axis Misinterpretation

(3) 3D Projectile Motion: Axis Misinterpretation

Question:
A projectile is launched from (0, 0, 0) with an initial velocity of [7.68, 18.83, 11.81] m/s from
x-y plane. Calculate its flight time, maximum height (h), and range (dx, dy, dz).

LLM Reasoning:
To solve the problem, we break down the motion into its components. The initial velocity
vector is given as [7.68, 18.83, 11.81] m/s, where 7.68 m/s is the x-component, 18.83 m/s
is the y-component, and 11.81 m/s is the z-component. The projectile motion is influenced
by gravity acting in the negative y-direction with an acceleration of −9.81 m/s. The flight
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time can be found by determining when the projectile returns to the y = 0 plane. Using the
kinematic equation for vertical motion y = v0y ∗ t + 0.5 ∗ a ∗ t2, we set y = 0 and solve
for t. The maximum height is achieved when the vertical velocity is zero, calculated using
v = v0y + a ∗ t. The range in each direction is calculated using the horizontal components
of motion, which are not affected by gravity. The horizontal ranges (dx, dz) are calculated as
v0x ∗ t and v0z ∗ t, respectively. The maximum height is calculated using the vertical motion
equation with the time at maximum height.

LLM Answer:
{

"flight_time": "3.84",
"maximum_height": "18.06",
"range_x": "29.47",
"range_y": "0",
"range_z": "45.32"

}

Ground Truth:
{

"flight_time": 2.41,
"maximum_height": 7.11,
"range_x": 18.49,
"range_y": 45.34,
"range_z": any.

}

Error: The model confuses the vertical axis with the forward direction, mistakenly assigning
horizontal motion to the z-axis and ignoring vertical displacement on y.

(4) 3D Multi-Object Motion: Complex Reasoning with Mixed Physics Types

3D Multi-Object Motion Error (LLM Inaccuracy in Hybrid Settings)

Question:
We have three objects moving in different types of motion in 3D space:

1. Object A - Linear Motion
• Initial Velocity: [11.41, 1.01, 6.45]m/s

• Acceleration: [−0.7, 0.8, 1.55]m/s2

• Time: 5.18 s
• Compute the final position (xA, yA, zA), assuming it starts at (0, 0, 0).

2. Object B - Circular Motion
• Radius: 2.49m
• Angular Velocity: 1.17 rad/s
• Time: 5.26 s
• Rotating in the xy-plane.
• Compute the position (xB , yB , zB), assuming it starts at (rB , 0, 0).

3. Object C - Projectile Motion
• Initial Speed: [21.47, 12.09, 21.6]m/s

• Time: 6.57 s
• Compute the position (xC , yC , zC), assuming it starts from (0, 0, 0) in the

xy-plane.

Reasoning:

16
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• For Object A (Linear Motion), we use the kinematic equation for linear motion:

Position = Initial Velocity × t+ 0.5× Acceleration × t2

• For Object B (Circular Motion), the position is calculated using the parametric
equations:

(xB , yB) = (r · cos(ω · t), r · sin(ω · t)) , zB = 0

• For Object C (Projectile Motion), the position is calculated for each component as:

xC = vx × t

yC = vy × t

zC = vz × t− 0.5× g × t2

where g is the gravitational acceleration.

LLM Answer:
{

’pos_A’: {’x_A’: ’51.698247’, ’y_A’: ’8.06772’, ’z_A’:
’48.568195’},
’pos_B’: {’x_B’: ’1.176498’, ’y_B’: ’2.140898’,
’z_B’: ’0’},
’pos_C’: {’x_C’: ’141.0939’, ’y_C’: ’79.46213’,
’z_C’: ’48.842055’}

}

Ground Truth:
{

’pos_A’: {’x_A’: 49.71, ’y_A’: 15.96, ’z_A’: 54.21},
’pos_B’: {’x_B’: 2.47, ’y_B’: -0.32, ’z_B’: 0},
’pos_C’: {’x_C’: 141.06, ’y_C’: 79.43, ’z_C’: any}

}

Error: The questions are too complex, and the reasoning parts are correct, but the calculations
are wrong.

(5) 3D Collision: Fails to Predict Future Collision

(5) 3D Collision: Fails to Predict Future Collision

Question:
Two objects with masses 8.4 kg and 5.91 kg are located at positions:

Object 1 Position: [−2.8817,−0.4259,−2.0413]

Object 2 Position: [−0.4778, 1.7133, 0.4933]

The radius of both spheres is 0.5.
They are moving with velocities:

Object 1 Velocity: [1.999, 1.779, 2.108]m/s

Object 2 Velocity: [−1.273,−1.133,−1.342]m/s

Assuming an elastic collision, determine:

• Will they collide?
• If they collide, what are their final velocities?

17
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LLM Reasoning:
To determine if the two objects will collide, we first calculate the distance between their
centers using the Euclidean distance formula:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

If the distance d is less than or equal to the sum of their radii (1.0), they are already colliding.
If not, we proceed to check their relative velocities to determine whether they are moving
towards each other.
The relative velocity vector vrel is given by:

vrel = v2 − v1

We then compute the dot product of vrel and the vector connecting the centers. If the dot
product is **negative**, it indicates that the objects are moving towards each other.
In this case:
- The initial distance is approximately 4.558, which is greater than the sum of the radii 1.0. -
The dot product of the relative velocity vector and the center-to-center vector is **negative**,
indicating that the objects will collide.
For an elastic collision, we apply the conservation of momentum and kinetic energy to
calculate the final velocities of both objects.

LLM Answer:
{

"will_collide": "true",
"velocity_1":

{"vel_1_x": "-1.2731450866327967",
"vel_1_y": "-1.1329265996055307",
"vel_1_z": "-1.3423728509665511"},

"velocity_2":
{"vel_2_x": "1.9989536980325082",
"vel_2_y": "1.7787979073700424",
"vel_2_z": "2.107647590798081"}

}

Ground Truth:
{

"will_collide": "true",
"velocity_1":
{"vel_1_x": -0.7, "vel_1_y": -0.63, "vel_1_z": -0.74},
"velocity_2":
{"vel_2_x": 2.57, "vel_2_y": 2.29, "vel_2_z": 2.71}

}

Error:

Although LLM correctly identified the two object will collide, it failed to calculate the
velocities by Newton’s third law of motion but just swap them.

6.11 CASE STUDIES: TETRIS PLANNING

We analyze qualitative behavioral differences across four models on identical Tetris configurations,
with visualizations shown in Figures 7–10. Each model was given the same initial board states and
action budget.

These case studies highlight the crucial role of physics-based foresight in long-horizon spatial
planning. APEX not only reacts to the present state, but also reasons about the physical impact of
future placements, resulting in more strategic and compact gameplay.
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Figure 7: Performance of GPT-4o-mini. Despite various prompt engineering attempts, GPT-4o-mini
consistently defaulted to the down action regardless of board state. As a result, the pieces were
dropped directly without any lateral movement or rotation, quickly leading to high towers and early
termination. The model lacks basic spatial foresight and cannot anticipate block alignment or stability.
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Figure 8: Performance of GPT-4o. The full GPT-4o model shows slight improvement over its
miniature counterpart by occasionally moving blocks laterally. However, it frequently misjudges
horizontal distances and fails to align pieces with open gaps. This often results in suboptimal
placements and growing bumpiness. The model demonstrates some reactive planning but lacks
consistent spatial optimization.
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Figure 9: Performance of VLM. Incorporating visual perception enables better state awareness, but
the VLM model exhibits a strong reluctance to rotate pieces. For instance, long vertical bars are
often dropped in upright orientation at the center of the board, creating tall columns that destabilize
subsequent placements. The inability to rotate blocks limits the model’s flexibility and leads to
inefficient spatial usage.
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Figure 10: Performance of APEX. In contrast, APEX consistently produces compact, flat stack
configurations with minimal bumpiness and high spatial efficiency. It is the only model capable of
clearing lines and accumulating positive scores. By simulating multi-step outcomes using a physics
engine and selecting actions based on predicted results, APEX avoids naive placement and optimizes
long-term board stability. Notably, the resulting stack heights are approximately one-fourth that of
the baseline models, clearly demonstrating the benefits of anticipatory physical reasoning.
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6.12 EXAMPLES FROM DYNAMIC OBSTACLE AVOIDANCE

Figures 11–15 contrasts navigation behaviors under four conditions, highlighting the role of APEX
in guiding physically informed decision-making in dynamic obstacle environments. In Table 6, we
found that GPT-4o-mini tends to exploit a shortcut in decision-making: it selects any path labeled as
"Safe" without considering the actual distance to the obstacle. Specifically, in the final timestep of
one scenario, we labeled a move as "Safe" if the distance to the nearest obstacle exceeded a threshold
of 0.5 meters. One such option (moving left) had a distance of 0.54 meters, just above the threshold,
while alternative paths offered significantly safer margins (over 2.0 meters). GPT-4o-mini simply
selected the first available “Safe” option without comparison.

GPT-4o occasionally made similar mistakes when not explicitly prompted with instructions such
as “choose the path farthest from the obstacle.” However, GPT-4o-mini consistently followed this
suboptimal policy, defaulting to a static heuristic.

Figure 11: Performance of GPT-4o-mini. GPT-4o-mini fails to react altogether, remaining static
even as a moving obstacle approaches. This indicates a lack of temporal prediction or awareness of
imminent collision.
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Figure 12: Performance of GPT-4o. GPT-4o recognizes the presence of a moving object but selects
an incorrect evasive direction, resulting in a direct collision. While perceptual awareness is present,
the absence of predictive modeling leads to poor decision quality.
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Figure 13: Performance of VLM. We observe consistent failure patterns in the VLM-based baseline
across multiple scenarios. In some cases, the model produces responses such as "Sorry, I can’t help
with that", indicating that it is unable to generate actionable plans when faced with ambiguous or
dynamic input. More critically, the model often misjudges object displacement or relative movement,
leading to physically invalid plans, such as walking into obstacles that are visibly approaching.
This suggests a lack of grounded numerical estimation and forward reasoning capability, which are
necessary for real-world spatial tasks.
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Figure 14: Performance of APEX(GPT-4o-mini). GPT-4o-mini operates under APEX guidance but
occasionally disregards simulated risk evaluations, choosing paths that minimize immediate distance
to the goal, ironically aligning with the obstacle’s trajectory. This suggests limited integration of
long-term consequence awareness.
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Figure 15: Performance of APEX(GPT-4o). GPT-4o, with full APEX support, exhibits anticipatory
behavior, dynamically adjusting its trajectory to avoid the obstacle while maintaining movement
toward the goal. Notably, the agent even "orbits" around the obstacle when direct paths are unsafe,
demonstrating flexible foresight and real-time risk mitigation.
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