

000 001 002 003 004 005 006 007 008 009 010 APEX: EMPOWERING LLMs WITH PHYSICS-BASED TASK PLANNING FOR REAL-TIME INSIGHT

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Large Language Models (LLMs) demonstrate strong reasoning and task planning capabilities but remain fundamentally limited in physical interaction modeling. Existing approaches integrate perception via Vision-Language Models (VLMs) or adaptive decision-making through Reinforcement Learning (RL), but they fail to capture dynamic object interactions or require task-specific training, limiting their real-world applicability. We introduce APEX (Anticipatory Physics-Enhanced Execution), a framework that equips LLMs with physics-driven foresight for real-time task planning. APEX constructs structured graphs to identify and model the most relevant dynamic interactions in the environment, providing LLMs with explicit physical state updates. Simultaneously, APEX provides low-latency forward simulations of physically feasible actions, allowing LLMs to select optimal strategies based on predictive outcomes rather than static observations. We evaluate APEX on three benchmarks designed to assess perception, prediction, and decision-making: (1) Physics Reasoning Benchmark, testing causal inference and object motion prediction; (2) Tetris, evaluating whether physics-informed prediction enhances decision-making performance in long-horizon planning tasks; (3) Dynamic Obstacle Avoidance, assessing the immediate integration of perception and action feasibility analysis. APEX significantly outperforms standard LLMs and VLM-based models, demonstrating the necessity of explicit physics reasoning for bridging the gap between language-based intelligence and real-world task execution.

1 INTRODUCTION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
A cat is about to pounce on an LLM-controlled agent. The agent detects the cat nearby and knows it should move, but does it understand that the cat will jump in 2 seconds? Once the LLM decides to evade, multiple escape routes exist, how does it choose a path that avoids both the cat and surrounding obstacles? These two challenges: **understanding dynamic interactions** and **predicting action consequences**, highlight fundamental limitations in existing LLM-based agents. Current methods attempt to address these issues using Vision-Language Models (VLMs) (Wang et al., 2024a; Ahn et al., 2022; Huang et al., 2024; 2023; Liang et al., 2023; Liu et al., 2024; Hu et al., 2023b) and Reinforcement Learning (RL) (Patel et al., 2025; Lee et al., 2024; Ma et al., 2024a; Sun et al., 2024). However, they remain fundamentally limited:

- 000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
• **Static Perception Without Dynamic Awareness:** VLMs enable LLMs to recognize objects but fail to model interactions over time. They can detect a cat, but cannot anticipate its movement. In real-world decision-making, static snapshots are insufficient; understanding object motion is essential.
- 000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
• **Lack of Action-Outcome Feedback and Physical Grounding:** Existing approaches often treat decision-making as a one-shot prediction task, offering no structured feedback loop between actions and their physical consequences. Instead of modeling the environment's response through grounded physical equations, they rely on latent dynamics (World Models) or reward-driven adaptation (RL). As a result, these systems lack interpretable quantitative feedback on the feasibility of action, e.g., whether an action would cause a collision, balance failure, or violate timing constraints.
- 000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
• **Expensive and Slow Policy Adaptation:** RL-based approaches, such as VoxPoser (Huang et al., 2023) and Code-as-Policies (Liang et al., 2023), require extensive task-specific training. Every new scenario demands costly retraining, making real-time adaptation impractical.

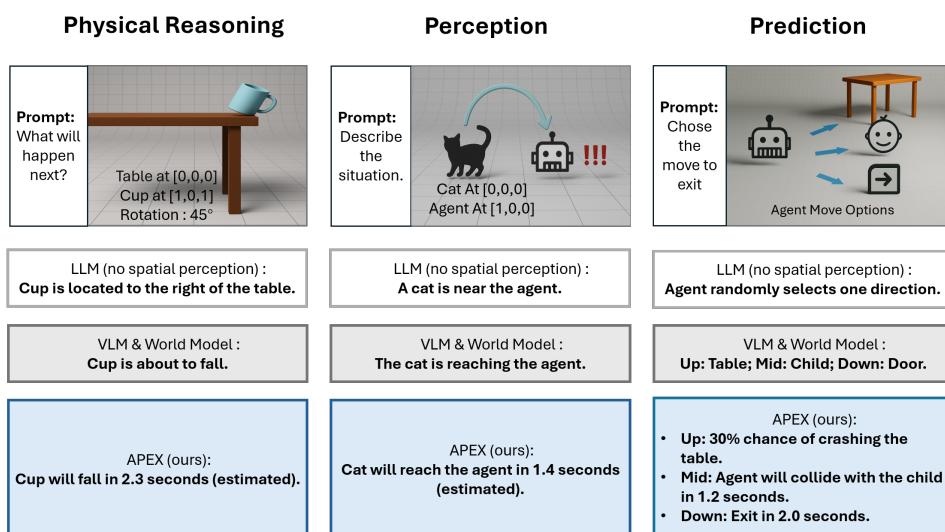


Figure 1: Comparison of physical reasoning capabilities across three systems, LLM without spatial grounding, VLM and world modeling, and our proposed APEX on three scenarios involving object prediction, agent-object interaction, and action planning. While vanilla LLMs are not necessarily making random choices in the prediction task, our experimental results in Section 4 indicate that their performance is statistically indistinguishable from random selection in this context. APEX provides not only qualitative predictions but also quantitative estimations of outcomes (e.g., time to impact, risk of collision), demonstrating its structured understanding of physical causality.

To plan actions in the real world, agents must do more than perceive and react. They must simulate, quantify, and foresee. We introduce APEX (Anticipatory Physics-Enhanced Execution), a framework that enables LLMs to anticipate environmental changes and optimize actions through physics-based reasoning. APEX constructs structured graphs that extract the most relevant dynamic interactions in an environment(Nishida et al., 2018; Huang et al., 2025), enabling LLMs to reason about the motion and forces of objects. Additionally, APEX performs future state simulation(Smith et al., 2013), predicting how different actions will alter the environment over time, providing explicit physical constraints to guide decision-making. This strengthens the standard LLM’s capabilities in physical reasoning, perception, and prediction, empowering LLM-driven agents to perform low-latency planning in physical environments, as illustrated in Fig. 1.

We evaluate APEX across three benchmark tasks; each is designed to address a critical limitation in existing approaches:

- **Physics Reasoning Benchmark (Addressing Static Perception):** Testing LLMs’ ability to infer object dynamics beyond simple object recognition.
- **Tetris (Evaluating Physics-Driven Foresight):** Testing whether providing forward physical simulations as feedback improves the long-horizon decision quality of language models in structured planning environments.
- **Dynamic Obstacle Avoidance (Addressing Real-Time Adaptation):** Assessing real-time integration of perception and prediction for adaptive decision-making, ensuring LLMs can dynamically adjust their behavior based on future state simulations.

We aim to close the gap between language-based reasoning and physically grounded execution. Our contributions are:

- **APEX:** a unified framework that equips LLMs with real-time perception with graph networks and physical foresight for dynamic task planning.
- **A three-part benchmark suite** spanning structured reasoning, long-horizon planning, and real-time control, each targeting a distinct dimension of physical intelligence.
- Empirical results showing that APEX outperforms LLMs and VLM-based agents in (1) numerical reasoning and physical calculation (Physics QA); (2) simulation-guided planning with physical intuition (Tetris); and (3) perception-integrated prediction for real-time decision-making (dynamic obstacle avoidance).

108

2 RELATED WORK

109
110 Despite significant progress in task planning for LLM-based or VLM-based agents (Wang et al.,
111 2024b; Ma et al., 2024b; Kawaharazuka et al., 2024; Hu et al., 2023a), existing paradigms largely fail
112 to integrate real-time physical modeling in embodied intelligence. Our work is situated at a unique
113 intersection of language reasoning, graph-based physical abstraction, and online physics simulation.114

2.1 VISION-LANGUAGE MODELS: PERCEPTION WITHOUT PHYSICAL CONSEQUENCE

115
116 Vision-language models (VLMs) such as CLIP (Radford et al., 2021), Flamingo (Alayrac et al.,
117 2022), PaLM-E (Driess et al., 2023), and OpenVLM (Kim et al., 2024) learn powerful image-text
118 embeddings that support zero-shot recognition and instruction following (Ma et al., 2024b). Many
119 VLM-empowered agents, such as CLIPort (Shridhar et al., 2022), VIMA (Jiang et al., 2022), Vox-
120 Poser (Huang et al., 2023), RT-2 (Brohan et al., 2023), and PhysVLM (Zhou et al., 2025) inherit this
121 same static worldview. They augment visual grounding with spatial transport layers, multimodal
122 prompting, or feasibility masks, but still cannot generalize to novel dynamics and remain blind to
123 explicit physical laws. A handful of works have tried to close the loop by training Transformer-based
124 action predictors directly on VLM features, for example, RT-1 (Brohan et al., 2022) learns end-to-end
125 vision-to-control policies. DeepMind’s generalist agent Gato (Reed et al., 2022) showed that a single
126 Transformer can handle images, text, and control signals in a unified framework. Yet these approaches
127 still encode physics only implicitly in learned weights, offering no transparent physical feedback and
128 often failing under distributional shifts.129

2.2 WORLD MODELS: FORESIGHT WITHOUT GUARANTEES

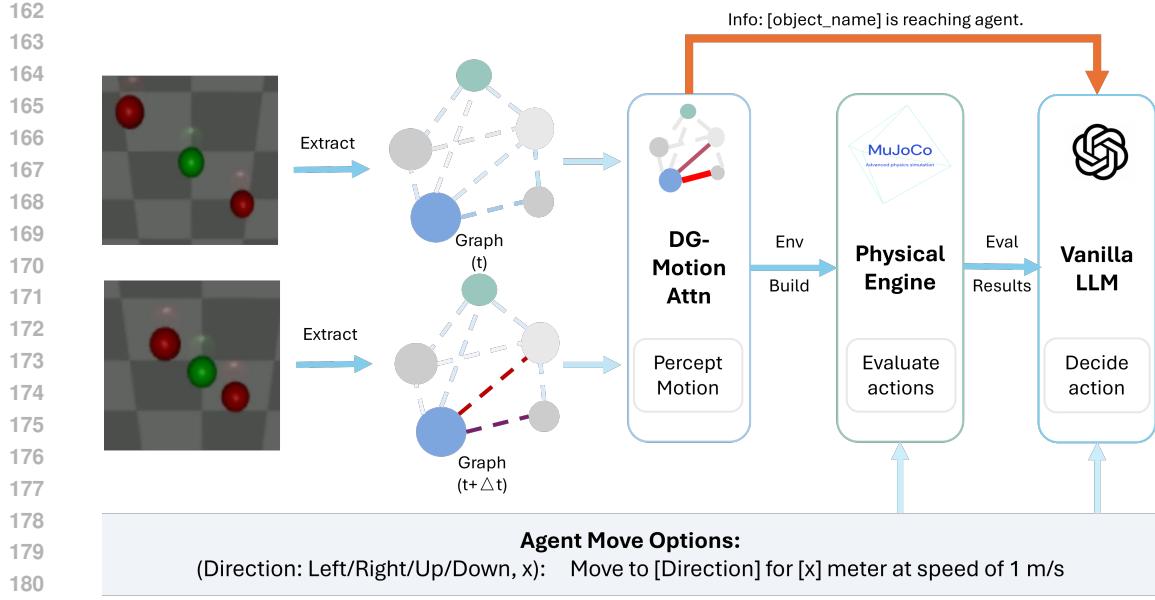
130
131 TWM (Robine et al., 2023) incorporates temporal attention into latent rollouts; SMART (Sun et al.,
132 2023) adds self-supervised multi-task pretraining for control; R3M (Nair et al., 2022) leverages
133 universal visual representations; and Genie (Bruce et al., 2024) integrates interactive environment
134 generation. These models introduce video representation learning (Majumdar et al., 2023), multi-
135 agent dynamics, and forward/inverse prediction, yet all remain black-box latent estimators without
136 explicit guarantees of physical consistency. Despite their imaginative capabilities, latent world models
137 exhibit fundamental limitations, including compounding roll-out errors that exacerbate over extended
138 horizons, poor robustness to distributional shifts, and opaque latent dynamics that obscure failure
139 modes and hinder interpretability. Furthermore, their temporal abstraction often distorts real physical
140 intervals by embedding time into latent structures rather than modeling it explicitly.141

2.3 REINFORCEMENT LEARNING: EXPENSIVE MASTERY, POOR GENERALIZATION

142
143 Reinforcement learning (RL) algorithms such as Proximal Policy Optimization (PPO) (Schulman
144 et al., 2017) and Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and Imitation Learning (IL) like
145 Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) have achieved notable
146 success in robotic control through extensive trial-and-error interaction. More recent LLM-guided
147 RL hybrids aim to mitigate these issues by combining language reasoning with policy learning.
148 SayCan (Ahn et al., 2022) uses a language model to rank actions proposed by a pretrained policy,
149 and Inner Monologue (Huang et al., 2022) adds on-the-fly replanning via chain-of-thought prompts.
150 Iker (Patel et al., 2025) augments low-level controllers with iterative keypoint rewards from a VLM.
151 Models such as RT-1 Brohan et al. (2022) and BC-Z Jang et al. (2022) demonstrate the potential of
152 large Transformer policies to generalize across multiple tasks after extensive pretraining on diverse
153 environments. ProgPrompt (Singh et al., 2023), PromptCap (Hu et al., 2023c), and ECOT (Zawalski
154 et al., 2024), chain LLM reasoning for task planning. Despite these advancements, RL and its
155 LLM-centric extensions still face substantial challenges. They either require millions of environment
156 steps to converge, struggle under physical distribution shifts, or rely on predefined controllers with
157 limited adaptability to new physics interactions.158

2.4 PHYSICAL SIMULATION IN LLM REASONING: BEYOND CONCEPTUAL HALLUCINATIONS

159
160 Prior works like Mind’s Eye (Liu et al., 2022) and PiLoT (Zhang et al., 2023) propose injecting
161 simulation-derived hints into LLM prompts to correct conceptual hallucinations, such as misunderstandings
of qualitative physics (e.g., “heavier objects fall faster”). While effective for symbolic reasoning,
these methods overlook a key dimension: **numerical precision**. Our experiments show
that modern LLMs (e.g., GPT-4o(Achiam et al., 2023)) already grasp qualitative physical rules,



limiting the value of such corrections. However, they still fail at quantitative tasks, like predicting collision timing, unless grounded by external computation. In real-world environments where timing and magnitude are critical, this gap is consequential.

Table 1: Comparison of planning paradigms in dynamic physical environments.

Method	Quant. Physics	Foresight	Resp. Time	Space-Time (Big- \mathcal{O})	Zero-shot
Vanilla LLMs	None	Implicit	Low	¹ $\mathcal{O}(p n)$	Partial
VLMs	None	Implicit	Low	² $\mathcal{O}(p n)$	Partial
World Models	Implicit	Latent rollout	Low-High	³ $\mathcal{O}(h k p n)$ – ³ $\mathcal{O}(h k p n^2)$	Partial
RL / IL	None	Implicit	Low (infer)	train ⁴ $\mathcal{O}(s h p)$, infer ⁴ $\mathcal{O}(p)$	No
APEX (ours)	Explicit	Physics rollout	Low	⁵ $\mathcal{O}(h k n)$	Yes

Resp. Time = per-decision inference latency (p95 bins: Low \leq 2s; Medium 2–10s; High 10–60s; Very High > 60s).

p = parameter count of models.

¹ n = number of objects/state tokens per decision; no explicit lookahead \Rightarrow near-linear cost.

² Cost dominated by perception (encode/decode once per decision); no multi-step rollout.

³ h = lookahead steps; k = action space samples; worst-case $\mathcal{O}(h k n^2)$ with dense pairwise interactions; $\mathcal{O}(h k n)$ if sparsified.

⁴ s = training environment steps (high sample complexity); inference scales with p .

⁵ Graph filtering reduces effective edges to $j \sim \mathcal{O}(p n)$; engine rollout $\mathcal{O}(h k n)$.

Zero-shot means performing in *unseen* scenes/tasks/dynamics *without* fine-tuning; labels: *Yes* (robust), *Partial* (degrades but usable), *No* (requires adaptation).

3 METHODOLOGY

In this section, we introduce the APEX framework, structured explicitly in five detailed stages as shown in Fig. 2, systematically integrating physical reasoning into LLM decision-making. At its core, APEX leverages a graph-based representation explicitly chosen for its inherent ability to model relationships, not merely to highlight the most immediate or obvious actions but rather to capture complex, task-relevant interactions comprehensively.

216 3.1 GRAPH: RELATIONAL SCENE REPRESENTATION
217

218 Given consecutive snapshots at times t and $t + \Delta t$, we construct relational graphs G_t and $G_{t+\Delta t}$
219 over the same set of object nodes. Each node corresponds to a distinct entity in the environment,
220 and edges encode potential interactions between pairs of objects. This relational graph structure
221 explicitly represents the complex web of interactions, emphasizing task-relevant relationships rather
222 than isolated physical states.

223 Such graph representations can be directly connected to upstream 3D reconstruction modules, serving
224 as an intermediate abstraction layer between raw perceptual input and structured physical reasoning.
225

226 3.2 TRIGGER: DIFFERENCE-GRAPH MOTION ATTENTION
227

228 We form a *difference graph*:

$$229 \Delta G = G_{t+\Delta t} - G_t,$$

230 whose edges encode per-pair displacement, relative velocity, and newly emerging or evolving rela-
231 tionships. A Graphomer encoder computes attention scores:

$$232 \alpha_{ij} = \text{Graphomer}(G_t, G_{t+\Delta t})_{ij},$$

233 identifying the most task-relevant edges based on relational dynamics. The selected edges define
234 a focused subgraph, which is translated into a concise natural-language summary S , explicitly
235 describing critical interactions and relationships (e.g., "sphere A is about to collide with B, influencing
236 agent strategy").
237

238 3.3 SIMULATE: PHYSICS-GROUNDED ACTION ROLLOUTS
239

240 From the current relational state s_t , we enumerate a discrete set of candidate actions $\{a_i\}$ (e.g., left,
241 right, down, jump). Note that while we define the action set A as a collection of potential actions, the
242 size of A remains limited due to the finite degrees of freedom in current robotic systems, making
243 enumeration feasible (Glover, 2004; Sutton et al., 1998). For each candidate action a_i , we invoke
244 forward simulations:

$$245 s_{t+1}^{(i)} = \text{PhysicsSim}(s_t, a_i),$$

246 and generate outcome descriptors r_i (collision flags, target distances, object positions, durations).
247 These outcome descriptors offer explicit, physics-grounded feedback tied directly to relational
248 predictions and task implications.

249 3.4 LLM: GUIDED DECISION SYNTHESIS
250

251 We enrich the original LLM prompt x with the relational summary S and detailed simulation outcomes
252 $\{r_1, \dots, r_n\}$, resulting in a contextually comprehensive prompt:

$$253 x' = x \cup S \cup \{r_i\}.$$

255 The augmented context guides the LLM to synthesize the optimal relationally-informed decision
256 sequence Π , representing a series of actions strategically selected to achieve the target objective based
257 on predictive outcomes:

$$258 \Pi' = \arg \max_{\Pi} P_{\text{LLM}}(\Pi \mid x').$$

260 3.5 ACT: EXECUTION OF THE OPTIMAL PLAN
261

262 The action plan Π' is executed in the environment, realizing robust interactions grounded explicitly
263 in relationally-informed physical foresight.

264 3.6 REPLACEMENT OF MODELS
265

266 APEX is modular. Each component can be replaced by a drop-in alternative as long as the *interfaces*
267 are respected.

268 **Graph Trigger.** Any message-passing GNN or graph transformer that produces edge saliency
269 scores over $(G_t, G_{t+\Delta t})$ is compatible, provided it yields a ranked set of task-relevant edges and a
compact, textual summary S for the current frame. Training and alternative encoders are detailed in
Appendix 6.7.

270 **Physics simulator / world model.** PhysicsSim may be any engine capable of forward rollout (e.g.,
 271 MuJoCo, Bullet, Brax) or a learned world model with bounded rollout error. The only requirement is
 272 to expose next-state predictions and outcome descriptors r_i (collisions, distances, durations). Engine
 273 selection and learned-model variants are discussed in Appendix 6.8.

274 **Action search and complexity.** The default action set A is small and enumerated. Time complexity
 275 and swap-in planners are summarized in Appendix 6.9.

277 **Algorithm 1** APEX: Anticipatory Physics-Enhanced Execution

278 **Require:** Environment snapshots at t and $t + \Delta t$, LLM prompt x
 279 **Ensure:** Final LLM-generated action plan Π'
 280 1: Construct relational graphs $G_t = (V, E)$ and $G_{t+\Delta t}$ from object states
 281 2: Compute attention scores via Graphomer:
 282

$$283 \quad \alpha_{ij} = \text{Graphomer}(G_t, G_{t+\Delta t})_{ij}$$

284

285 3: Identify top- k relationally salient edges forming focused subgraph \tilde{G}
 286 4: Generate summary S from relational interactions within \tilde{G}
 287 5: Enumerate feasible actions $\{a_1, \dots, a_n\}$ from current relational state
 288 6: **for** each action a_i **do**
 289 7: Simulate future state: $s_{t+1}^{(i)} = \text{PhysicsSim}(s_t, a_i)$
 290 8: Generate outcome description $r_i = \text{Describe}(s_{t+1}^{(i)})$
 291 9: **end for**
 292 10: Append summary S and outcomes $\{r_1, \dots, r_n\}$ to LLM prompt, forming enriched prompt x'
 293 11: Decode optimal action plan from LLM:

$$294 \quad \Pi' = \arg \max_{\Pi} P_{\text{LLM}}(\Pi \mid x')$$

295

296 12: **return** Π'

299 **4 EXPERIMENTS**

301 To evaluate APEX, we introduce a new **LLM Physical Reasoning Benchmark**, testing AI models'
 302 ability to predict and adapt to dynamic environments. The evaluation consists of three primary
 303 experiments as shown in Table 2. Results for other open-source LLMs are reported in Tables 8–13.
 304 Additional evaluations include a dedicated physical benchmark (Appendix 6.3) and a real-world
 305 application case study (Appendix 6.4).

306 Table 2: Summary of Experimental Setups and Physical Reasoning Capabilities

308 Experiment	309 Capability Verified	310 Evaluation Objective
311 Physics Reasoning	312 Physical reasoning over multiple entities	313 Test LLM's ability to understand motion-related quantities across targets.
314 Tetris Planning	315 Foresight via simulated prediction	316 Assess whether physics-informed feedback improves planning quality.
317 Obstacle Avoidance	318 Perception-integrated prediction	319 Validate perception-action grounding under dynamic environments.

320 **4.1 EXPERIMENT 1: PHYSICAL REASONING ACCURACY IN STRUCTURED TASKS**

321 To assess the physical reasoning capabilities of LLMs, we construct a suite of synthetic 3D tasks
 322 grounded in classical mechanics, including linear motion, circular motion, projectile motion, multi-
 323 object interactions, and collision prediction. Each task is framed as a structured reasoning problem:
 324 given object positions, velocities, and physical parameters, the LLM must infer whether collisions
 325 will occur or predict resulting velocities after interaction.

324 We compare vanilla GPT-4o against our APEX-enhanced GPT-4o in Table 3 and report three metrics:
 325

326

- 327 • Accuracy: Whether the model provides a fully correct structured answer within the tolerance
 328 of 5%.
- 329 • Mean Squared Error (MSE): Quantitative deviation from ground-truth numerical values.
- 330 • Numerical Validity: Percentage of fields where the model returns valid numbers.

331 We conduct ablation experiments on different dt in the physical simulation engine with the Euler
 332 forward method in Table 4. (Here, dt refers to the step size in the physics engine’s forward simulation,
 333 not the time interval in the Graph Trigger module.)
 334

335 Table 3: Comparison of GPT-4o vs. APEX-enhanced GPT on Physical Reasoning Tasks. Across
 336 all five categories (linear, circular, projectile, collision, and multi-object motion), APEX achieves
 337 near-perfect accuracy, drastically lower MSE, and full numerical validity, while vanilla GPT-4o
 338 struggles on multi-object tasks.

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Task Type	339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Accuracy (%) \uparrow	339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 MSE \downarrow	339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 Numerical Validity (%) \uparrow
<i>GPT-4o</i>			
3D Linear Motion	8.00	213.5931	28.00
3D Circular Motion	24.00	4.0998	76.00
3D Projectile Motion	88.00	303.6022	100.00
3D Collision	44.00	12.4816	100.00
3D Multi-Object Motion	0.00	1918.2065	81.33
<i>APEX (ours)</i>			
3D Linear Motion	96.00	0.0076	100.00
3D Circular Motion	100.00	0.0000	100.00
3D Projectile Motion	100.00	0.0001	100.00
3D Collision	88.00	2.4627	100.00
3D Multi-Object Motion	97.33	0.0013	100.00

354 Table 4: Simulation accuracy and average duration per question type at different timesteps dt . Smaller
 355 timesteps ($dt = 0.001$) achieve the highest accuracy but incur longer runtimes, while larger timesteps
 356 ($dt = 0.010$) reduce computation at the cost of accuracy.

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 Question Type	357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 $dt = 0.001$		357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 $dt = 0.005$		357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 $dt = 0.010$	
	357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 Accuracy (%) \uparrow	357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 Duration (s) \downarrow	357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 Accuracy (%) \uparrow	357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 Duration (s) \downarrow	357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 Accuracy (%) \uparrow	357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 Duration (s) \downarrow
3D Linear Motion	100.00	0.023	100.00	0.0058	96.00	0.0042
3D Circular Motion	100.00	0.028	100.00	0.0068	96.00	0.0046
3D Projectile Motion	92.00	0.013	92.00	0.0035	48.00	0.0027
3D Multi-Object Motion	97.33	0.076	90.67	0.022	80.00	0.013
3D Collision	98.00	0.0073	98.00	0.0090	98.00	0.0080

4.2 EXPERIMENT 2: REAL-TIME PHYSICAL PLANNING IN TETRIS

We design a second benchmark to test the agent’s ability to perform dynamic, physics-informed planning in a classic block-stacking domain: Tetris. Unlike traditional planning tasks that focus on symbolic correctness or visual alignment, this environment emphasizes physical feasibility, spatial reasoning, and long-horizon optimization.

The agent interacts with a Tetris simulator in which it must select actions (left, right, rotate, drop) for falling blocks. Each decision must be made based on the current board state, the shape of the block, and the anticipated physical consequences of different placements. All models are run under the same sequence of five randomized seeds, and each episode is capped at 15 blocks with the estimated maximum number of clear lines as 3, ensuring fair and bounded comparison.

We compare different decision systems:

- **GPT-4o & GPT-4o-mini:** baseline LLMs with no physical modeling.

378 • **VLM**: GPT-4o with images as the VLM (Patel et al., 2025; Wang et al., 2025) that perceives
 379 the current board state via screenshot input.
 380 • **APEX (ours)**: physical planning with physics-based rollout.
 381

382 We evaluate each model on five physically grounded metrics:

383 • **Final Score**: total score after game termination (each cleared line counts 100).
 384 • **Max Height**: the tallest column reached during gameplay.
 385 • **Hole Count**: number of empty cells beneath landed blocks.
 386 • **Bumpiness**: total height difference between adjacent columns.
 387 • **Height Increase per Move**: average vertical growth rate per action.
 388

389 These metrics reflect task performance and physical efficiency jointly. A low bumpiness and hole
 390 count indicate stable and compact stacking, while a lower height delta per move demonstrates the
 391 agent’s foresight in minimizing vertical sprawl.

392
 393 Table 5: Comparison of baselines vs. APEX on Tetris-style structured planning. Baseline models
 394 (GPT-4o, GPT-4o-mini, VLM) fail to clear lines and yield unstable, high stacks with many holes and
 395 bumps, whereas APEX achieves a large positive score with low stack height and smooth structure.

Model	Final Score \uparrow	Max Height \downarrow	Holes \downarrow	Bumps \downarrow
GPT-4o	0.0	14.6	33.4	25.6
GPT-4o-mini	0.0	18.2	26.0	36.4
VLM	0.0	12.6	30.2	22.6
APEX (ours)	140.0	5.0	2.8	6.8

402 4.3 EXPERIMENT 3: DYNAMIC OBSTACLE AVOIDANCE

404 This experiment assesses the agent’s adaptive decision-making capabilities within dynamic physical
 405 environments characterized by moving obstacles. The setup utilizes a simulated MuJoCo environment
 406 where an LLM-driven agent navigates through varying obstacle densities and speeds across different
 407 difficulty levels.

408 The evaluation metrics are as follows:

409 • **CFR (Collision-Free Rate)**: the rate of time in which the agent successfully avoids all
 410 obstacles.
 411 • **IAR (Invalid Action Rate)**: the proportion of actions that lead to collisions or unsafe states.
 412 • **AST (Average Survival Time)**: the average duration the agent remains operational without
 413 colliding, reflecting overall navigation efficacy.
 414

416 Table 6: Performance on real-time obstacle avoidance across task complexities. Baselines (GPT-4o,
 417 GPT-4o-mini, VLM) fail to generalize beyond trivial cases, yielding near-zero success rates. By
 418 contrast, APEX consistently achieves high completion rates with zero invalid actions across all
 419 settings, maintaining robust performance even as task complexity increases.

Model	Simple			Medium			Hard		
	CFR \uparrow	IAR (%) \downarrow	AST (s) \uparrow	CFR \uparrow	IAR (%) \downarrow	AST (s) \uparrow	CFR \uparrow	IAR (%) \downarrow	AST (s) \uparrow
GPT-4o-mini	0/5	0	2.55	0/5	0	1.86	0/5	0	2.24
GPT-4o	1/5	0	5.85	0/5	0	3.15	0/5	0	1.66
VLM	0/5	7	5.18	0/5	4	3.14	0/5	7	2.48
APEX (GPT-4o-mini)	5/5	0	10.00	3/5	0	8.64	1/5	0	6.86
APEX (GPT-4o)	5/5	0	10.00	5/5	0	10.00	3/5	0	8.07

427 We conduct ablation experiments on different graph models and different values of k , as reported
 428 in Table 7. The choice of k controls how many relational edges are passed forward after motion-
 429 based saliency filtering: small k may discard critical interactions, while large k increases noise and
 430 computational overhead. Similarly, the graph encoder defines how relational dynamics are aggregated;
 431 we compare GAT, GCN, and Graphomer to evaluate whether higher-order attention mechanisms
 432 improve action planning performance. This ablation isolates the contribution of edge selection (k)
 433 and relational modeling capacity (graph backbone) to overall system performance.

432 Table 7: Ablation study on hard obstacle avoidance: Top- k selection vs. graph model choice.
 433 Performance is highly sensitive to both hyperparameters: $k = 2$ with GPT-4o provides the best trade-
 434 off in success rate and planning stability, while Graphomer shows moderate gains over GAT/GCN.
 435 Mini variants fail across all settings, underscoring the need for both sufficient LLM capacity and
 436 structured graph filtering.

Ablation	k/Model	LLM	CFR↑	AST (s)↑	IAR(%)↓	Latency (s)↓
Top- k	$k = 1$	gpt-4o-mini	0/5	7.17	0	0.74
	$k = 2$	gpt-4o-mini	0/5	6.38	0	0.73
	$k = 4$	gpt-4o-mini	0/5	7.53	0	0.74
	$k = 1$	gpt-4o	0/5	4.97	0	0.94
	$k = 2$	gpt-4o	2/5	6.58	0	1.25
	$k = 4$	gpt-4o	2/5	5.58	0	1.29
Graph Model	GAT	gpt-4o-mini	0/5	2.85	0	0.89
	GCN	gpt-4o-mini	0/5	7.08	0	0.85
	Graphomer	gpt-4o-mini	0/5	7.59	0	0.76
	GAT	gpt-4o	0/5	4.99	0	0.62
	GCN	gpt-4o	0/5	5.26	0	0.70
	Graphomer	gpt-4o	1/5	5.44	0	1.24

451 4.4 EVALUATION SUMMARY

452 APEX substantially augments LLM capabilities in physical reasoning across structured tasks, dy-
 453 namic adaptation, and real-time obstacle avoidance. Our findings indicate that APEX consistently
 454 outperforms standard LLMs, achieving over 90% accuracy in multi-object dynamics (Experiment 1),
 455 efficient long-horizon planning (Experiment 2), and proactive collision avoidance (Experiment 3).

456 In Experiment 1, APEX demonstrates superior accuracy in predicting circular motion and collision
 457 dynamics, with baseline GPT-4o achieving less than 20% in Table 3.

458 In Experiment 2 (Tetris), APEX leverages predictive foresight to minimize structural irregularities,
 459 optimizing placements and significantly improving task performance in Table 5.

460 Experiment 3 further underscores APEX’s advantage in real-time obstacle avoidance, effectively
 461 mitigating collision risks through predictive modeling, a critical gap in baseline GPT and VLM
 462 systems in Table 6.

463 5 CONCLUSION

464 In this paper, we introduced APEX, a novel framework that enhances LLMs with predictive physical
 465 reasoning capabilities by integrating graph-based physical modeling, and physics simulation. Unlike
 466 prior methods that rely on static observations or constraint filtering, APEX enables LLMs to anticipate
 467 future physical interactions and adapt task plans accordingly. Experimental results demonstrate that
 468 APEX significantly improves performance on physical reasoning benchmarks, outperforming standard
 469 LLMs, VLM-based task planning, and grounded decoding techniques.

470 Furthermore, APEX’s structured approach to physical modeling opens new opportunities for future
 471 research in AI-driven task planning, robotics, and autonomous decision-making. This study provides
 472 a new perspective on enhancing LLMs’ physical reasoning capabilities by replacing RL-based trial-
 473 and-error learning with predictive physical modeling. This direction presents new possibilities for
 474 future robotic task planning and can be combined with existing VLM+RL-based methods to further
 475 improve LLMs’ ability to handle physical interaction tasks.

476 6 FUTURE WORK

477 As a next step, we aim to extend APEX into APEX++, where the language model serves not only as a
 478 planner, but as a core component in a recurrent, interpretable perception-prediction-action loop. This
 479 would allow for the emergence of grounded intelligence capable of proactive behavior, structured
 480 foresight, and physical adaptability, unlocking new possibilities across robotics, self-driving, and
 481 embodied AI.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
492 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
493 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.

494

495 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
496 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
497 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736,
498 2022.

499

500 Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, and Ross Girshick. Phyre:
501 A new benchmark for physical reasoning. *Advances in Neural Information Processing Systems*, 32,
502 2019.

503

504 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
505 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
506 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

507

508 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
509 Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
510 models transfer web knowledge to robotic control. *arXiv preprint arXiv:2307.15818*, 2023.

511

512 Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
513 Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
514 interactive environments. In *Forty-first International Conference on Machine Learning*, 2024.

515

516 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
517 Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied
518 multimodal language model. 2023.

519

520 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
521 in-context? a case study of simple function classes. *Advances in neural information processing
522 systems*, 35:30583–30598, 2022.

523

524 Scott Glover. Planning and control in action. *Behavioral and brain sciences*, 27(1):57–78, 2004.

525

526 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
527 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
528 applications. *arXiv preprint arXiv:1812.05905*, 2018.

529

530 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural
531 information processing systems*, 29, 2016.

532

533 Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan Kim,
534 Yaqi Xie, Tianyi Zhang, Hao-Shu Fang, et al. Toward general-purpose robots via foundation
535 models: A survey and meta-analysis. *arXiv preprint arXiv:2312.08782*, 2023a.

536

537 Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the
538 power of gpt-4v in robotic vision-language planning. *arXiv preprint arXiv:2311.17842*, 2023b.

539

540 Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A Smith, and Jiebo Luo. Promptcap:
541 Prompt-guided image captioning for vqa with gpt-3. In *Proceedings of the IEEE/CVF International
542 Conference on Computer Vision*, pp. 2963–2975, 2023c.

543

544 Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang, and Yang Gao. Copa: General robotic
545 manipulation through spatial constraints of parts with foundation models. In *2024 IEEE/RSJ
546 International Conference on Intelligent Robots and Systems (IROS)*, pp. 9488–9495. IEEE, 2024.

540 Wanjing Huang, Tongjie Pan, and Yalan Ye. Graphomer-guided task planning: Beyond static rules
 541 with llm safety perception. *arXiv preprint arXiv:2503.06866*, 2025.

542

543 Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
 544 Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
 545 planning with language models. *arXiv preprint arXiv:2207.05608*, 2022.

546

547 Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
 548 Composable 3d value maps for robotic manipulation with language models. *arXiv preprint
 549 arXiv:2307.05973*, 2023.

550

551 Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
 552 and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In
 553 *Conference on Robot Learning*, pp. 991–1002. PMLR, 2022.

554

555 Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
 556 Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
 557 prompts. *arXiv preprint arXiv:2210.03094*, 2(3):6, 2022.

558

559 Kento Kawaharazuka, Tatsuya Matsushima, Andrew Gambardella, Jiaxian Guo, Chris Paxton, and
 560 Andy Zeng. Real-world robot applications of foundation models: A review. *Advanced Robotics*,
 561 38(18):1232–1254, 2024.

562

563 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 564 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 565 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.

566

567 Olivia Y Lee, Annie Xie, Kuan Fang, Karl Pertsch, and Chelsea Finn. Affordance-guided reinforce-
 568 ment learning via visual prompting. *arXiv preprint arXiv:2407.10341*, 2024.

569

570 Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
 571 Andy Zeng. Code as policies: Language model programs for embodied control. In *2023 IEEE
 572 International Conference on Robotics and Automation (ICRA)*, pp. 9493–9500. IEEE, 2023.

573

574 Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-world robotic manipula-
 575 tion through mark-based visual prompting. *arXiv preprint arXiv:2403.03174*, 2024.

576

577 Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui, Denny Zhou,
 578 and Andrew M Dai. Mind’s eye: Grounded language model reasoning through simulation. *arXiv
 579 preprint arXiv:2210.05359*, 2022.

580

581 Runyu Ma, Jelle Luijkx, Zlatan Ajanovic, and Jens Kober. Explorllm: Guiding exploration in
 582 reinforcement learning with large language models. *arXiv preprint arXiv:2403.09583*, 2024a.

583

584 Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-language-
 585 action models for embodied ai. *arXiv preprint arXiv:2405.14093*, 2024b.

586

587 Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Jason Ma, Claire Chen, Sneha Silwal, Aryan Jain,
 588 Vincent-Pierre Berges, Tingfan Wu, Jay Vakil, et al. Where are we in the search for an artificial
 589 visual cortex for embodied intelligence? *Advances in Neural Information Processing Systems*, 36:
 590 655–677, 2023.

591

592 Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
 593 visual representation for robot manipulation. *arXiv preprint arXiv:2203.12601*, 2022.

594

595 Shin’ya Nishida, Takahiro Kawabe, Masataka Sawayama, and Taiki Fukiage. Motion perception:
 596 From detection to interpretation. *Annual review of vision science*, 4(1):501–523, 2018.

597

598 Shivansh Patel, Xinchen Yin, Wenlong Huang, Shubham Garg, Hooshang Nayyeri, Li Fei-Fei,
 599 Svetlana Lazebnik, and Yunzhu Li. A real-to-sim-to-real approach to robotic manipulation with
 600 vlm-generated iterative keypoint rewards. *arXiv preprint arXiv:2502.08643*, 2025.

594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 595 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 596 models from natural language supervision. In *International conference on machine learning*, pp.
 597 8748–8763. PMLR, 2021.

598 Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
 599 Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
 600 agent. *arXiv preprint arXiv:2205.06175*, 2022.

601 Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world models
 602 are happy with 100k interactions. *arXiv preprint arXiv:2303.07109*, 2023.

603 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 604 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

605 Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
 606 manipulation. In *Conference on robot learning*, pp. 894–906. PMLR, 2022.

607 Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
 608 Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
 609 large language models. In *2023 IEEE International Conference on Robotics and Automation*
 610 (ICRA), pp. 11523–11530. IEEE, 2023.

611 Kevin A Smith, Eyal Dechter, Joshua B Tenenbaum, and Edward Vul. Physical predictions over time.
 612 In *Proceedings of the annual meeting of the cognitive science society*, volume 35, 2013.

613 Fan-Yun Sun, SI Harini, Angela Yi, Yihan Zhou, Alex Zook, Jonathan Tremblay, Logan Cross, Jiajun
 614 Wu, and Nick Haber. Factorsim: Generative simulation via factorized representation. *Advances in
 615 Neural Information Processing Systems*, 37:87438–87472, 2024.

616 Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, and Ashish
 617 Kapoor. Smart: Self-supervised multi-task pretraining with control transformers. *arXiv preprint
 618 arXiv:2301.09816*, 2023.

619 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 620 press Cambridge, 1998.

621 Beichen Wang, Juexiao Zhang, Shuwen Dong, Irving Fang, and Chen Feng. Vlm see, robot do: Hu-
 622 man demo video to robot action plan via vision language model. *arXiv preprint arXiv:2410.08792*,
 623 2024a.

624 Chen Wang, Fei Xia, Wenhao Yu, Tingnan Zhang, Ruohan Zhang, C Karen Liu, Li Fei-Fei, Jie Tan,
 625 and Jacky Liang. Chain-of-modality: Learning manipulation programs from multimodal human
 626 videos with vision-language-models. *arXiv preprint arXiv:2504.13351*, 2025.

627 Jiaqi Wang, Enze Shi, Huawei Hu, Chong Ma, Yiheng Liu, Xuhui Wang, Yincheng Yao, Xuan Liu,
 628 Bao Ge, and Shu Zhang. Large language models for robotics: Opportunities, challenges, and
 629 perspectives. *Journal of Automation and Intelligence*, 2024b.

630 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
 631 Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in neural
 632 information processing systems*, 34:28877–28888, 2021.

633 Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
 634 control via embodied chain-of-thought reasoning. *arXiv preprint arXiv:2407.08693*, 2024.

635 Cedegao Zhang, Lionel Wong, Gabriel Grand, and Josh Tenenbaum. Grounded physical language
 636 understanding with probabilistic programs and simulated worlds. In *Proceedings of the annual
 637 meeting of the cognitive science society*, volume 45, 2023.

638 Weijie Zhou, Manli Tao, Chaoyang Zhao, Haiyun Guo, Honghui Dong, Ming Tang, and Jinqiao
 639 Wang. Physvlm: Enabling visual language models to understand robotic physical reachability.
 640 *arXiv preprint arXiv:2503.08481*, 2025.

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

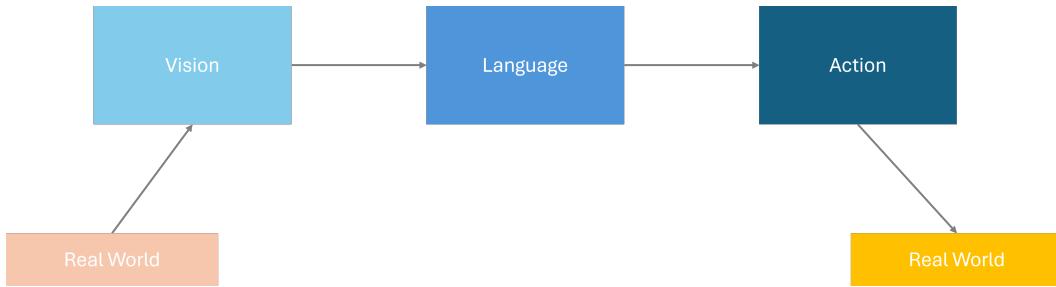
701

Appendix

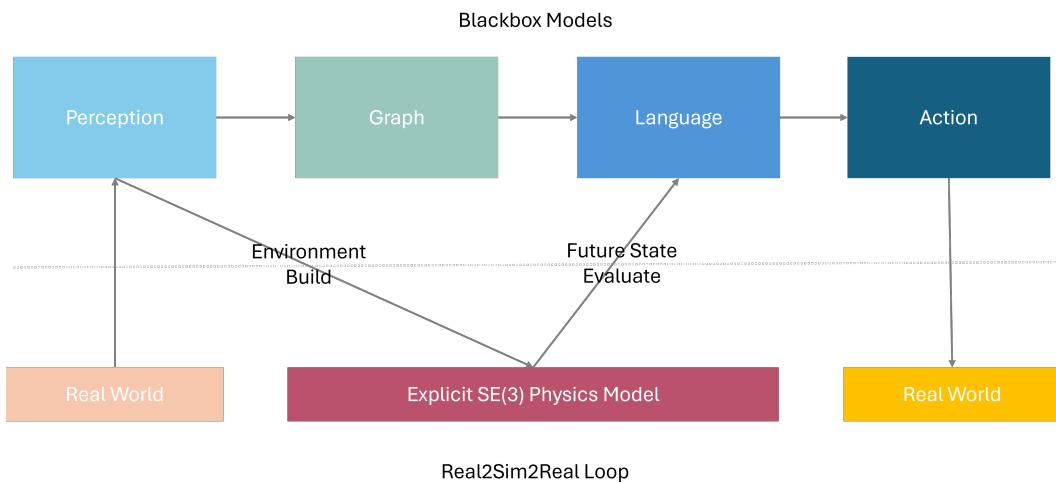
- **A.** Design Principle:
Perception–Graph–Language–Physics–Action (PGLPA) vs.
Vision–Language–Action (VLA)
- **B.** Supplementary Experiments on More LLMs
- **C.** Supplementary Experiments on the Phyre Benchmark
- **D.** Supplementary Experiments on Real World Application
- **E.** Prompt Formats and Model Inputs
- **F.** Implementation and System Configurations
- **G1.** Graph Models
- **G2.** Physical Engine / World Model
- **G3.** Action Space Analysis
- **H1.** Error Analysis for Physics QA
- **H2.** Case Studies for Tetris Planning
- **H3.** Dynamic Obstacle Avoidance Examples

702 **6.1 DESIGN PRINCIPLE: PERCEPTION–GRAPH–LANGUAGE–PHYSICS–ACTION (PGLPA) vs.**
 703 **VISION–LANGUAGE–ACTION (VLA)**

705 A key design principle underlying our framework diverges from the conventional *Vi-
 706 sion–Language–Action* (VLA) paradigm, **to connect real-to-sim-to-real with LLM reasoning,
 707 while keeping the blackbox models isolated from numerical/physical information**. We refer to
 708 our modular approach as *Perception–Graph–Language–Physics–Action* (PGLPA). Figures 3 and 4
 709 contrast the conventional VLA pipeline with our proposed PGLPA paradigm, highlighting the struc-
 710 tural differences that motivate our approach. We further compare the two paradigms in terms of
 711 accuracy and hallucination, training and data requirements, and interpretability as follows.
 712



722 Figure 3: Illustration of the conventional Vision–Language–Action (VLA) paradigm. Visual per-
 723 ception encodes the real world into language features, which are then mapped directly to action
 724 commands. The execution loop closes by applying actions back to the real world. Although concep-
 725 tually simple, VLA tightly couples perception, reasoning, and control within a single embedding
 726 space, limiting interpretability and robustness.
 727



745 Figure 4: Illustration of our Perception–Graph–Language–Physics–Action (PGLPA) paradigm.
 746 Perception constructs a relational graph from the real world; this graph informs both symbolic
 747 reasoning and an explicit SE(3)-consistent physics simulator. The simulator evaluates candidate
 748 actions via rollouts, producing structured feedback that is integrated with LLM-based reasoning
 749 before execution. This “real-to-sim-to-real” loop decouples numerical physical computation from
 750 probabilistic inference, improving stability, interpretability, and zero-shot transfer.
 751

752 **Accuracy and Hallucination.** Planning in dynamic scenes is inherently spatio-temporal: agents
 753 must reason over objects’ states and transitions in 4D under the constraints of Newtonian mechanics.
 754 With *full* observation, physical laws enable forward prediction of future states; the residual difficulty
 755 comes from action selection, which is combinatorially hard (often treated as a weakly NP-type
 search problem; see e.g., classical results on planning/search). Under *partial* observation, priors (e.g.,

756 plausible mass ranges) and online updates (e.g., quick weighing) are required to reduce uncertainty.
 757 Modern deep models, including transformers, approximate such unknowns probabilistically; however,
 758 their physical modeling is *implicit*, which leads to two issues: (i) numerical instability for arithmetic
 759 operations¹, and (ii) lack of strict SE(3) consistency (viewpoint changes can disrupt spatial constancy).

760 PGLPA addresses both by performing all physics in an *explicit*, SE(3)-consistent environment
 761 (sim/engine) and using perception/graph/LLM only for probabilistic inference and decision. Explicit
 762 physics also constrains VLM/LLM hallucinations, and solving partial observability in a structured
 763 physical model is substantially simpler than tackling it end-to-end in a monolithic VLA.
 764

765 **Training and Data Requirements.** VLA typically demands joint *vision* \times *language* \times *action* datasets
 766 and end-to-end training. In contrast, PGLPA trains mature modules independently and composes them
 767 via stable interfaces. Adding a new modality (e.g., LiDAR) requires retraining only the perception
 768 module rather than the full stack. For action selection, we can leverage simulator-backed search
 769 (e.g., RL/MCTS/CEM) directly in the physics environment; this is generally more data-efficient than
 770 learning a vision \rightarrow action mapping end-to-end, and aligns with simulator-to-real fine-tuning practices.
 771

772 **Interpretability.** All PGLPA modules expose explicit outputs with clear supervision:

- 773 • The perception model performs object categorization and 2D/3D localization.
- 774 • The graph module acts as a filter, surfacing salient interactions (see Appendix roadmap for a
 775 definition of “salient”).
- 776 • The LLM is pre-trained for commonsense and reasoning (task decomposition, option
 777 selection, safety-aware judgments).
- 778 • The physics module conducts forward and counterfactual rollouts; their combination enables
 779 capabilities beyond standard RL (e.g., “if I do not block at (0, 0, 1), the car will hit the child,
 780 which is immoral and unaffordable.”).
- 781 • The action module follows from the training discussion above.

809 ¹Transformers and related architectures are not reliable for exact arithmetic/iteration operations, especially
 810 exponential or iterative routines (Garg et al., 2022). It aligns with our results in Table 3.

810 6.2 SUPPLEMENTARY EXPERIMENTS ON MORE LLMs
811812 We further conduct the three experiments on five recent LLMs, with detailed results presented in
813 Tables 8 to 13.814 Table 8: Generalization across LLM backbones - Physical QA. This table compares the accuracy
815 and response latency of five recent LLMs across diverse physical reasoning tasks. While these
816 models demonstrate varying capabilities, none surpass the accuracy achieved by our GPT-4o + APEX
817 framework reported in Table 3.
818

LLM	Linear		Circular		Projectile		Multi Obj		Collision	
	Acc (%)↑	Time (s)↓	Acc (%)↑	Time (s)↓	Acc (%)↑	Time (s)↓	Acc (%)↑	Time (s)↓	Acc (%)↑	Time (s)↓
GPT-4.1	52.00	3.767	44.00	4.120	92.00	3.093	12.00	4.723	28.00	8.170
DeepSeek-R1*	100.00	193.934	80.00	356.351	100.00	349.337	86.65	310.937	40.00	363.831
Claude Sonnet 4	100.00	6.845	16.00	4.387	100.00	6.808	6.67	8.686	38.00	10.019
Gemini 2.5 Flash	80.00	10.593	40.00	7.434	92.00	11.766	32.00	19.168	70.00	58.761
LLaMA 4 Scout	0.00	6.141	4.00	5.583	72.00	6.687	1.33	5.770	10.00	5.824

824 For DeepSeek-R1, only 20% of the dataset was evaluated due to its significantly longer reasoning time, which
825 made full-scale benchmarking impractical within our resource constraints.
826827 Table 9: Performances of LLMs for the Tetris Experiment. Gemini achieved the best structural control
828 with the lowest stack height, though its latency was very high. Claude and Gemini occasionally
829 cleared lines and maintained moderate structure. GPT-4.1 was fast but structurally weak, while
830 LLaMA failed all cases with rigid stacking behavior. Overall, Gemini appears to perform the best,
831 achieving the lowest average max stack height (9.2 ± 2.48). For reference, the APEX (GPT-4o)
832 baseline maintains an average max height of 5 ± 2.97 .
833

Model	Final Score↑	Max Stack Height↓	Holes↓	Bumps↓	Resp. Time (s)↓
GPT-4.1	0.0 ± 0.0	15.0 ± 2.61	38.4 ± 17.67	27.4 ± 7.36	0.778 ± 0.116
Claude Sonnet 4 (20250514)	20.0 ± 40.0	14.4 ± 0.80	36.4 ± 6.86	17.8 ± 3.92	1.557 ± 0.049
Gemini 2.5 Flash	20.0 ± 40.0	9.2 ± 2.48	14.2 ± 5.84	13.6 ± 5.68	85.391 ± 7.625
LLaMA 4 Scout	0.0 ± 0.0	17.0 ± 0.00	32.2 ± 5.46	30.2 ± 5.19	0.852 ± 0.054

834 For clarity, we removed the “Height/move” metric, which was effectively redundant with max stack height as it
835 was not normalized by the number of moves.
836837 Table 10: Performances of LLMs for the Tetris Experiment with Vision. All models failed to
838 clear lines with image input. Gemini maintained the lowest stack height but had high latency,
839 Claude showed balanced structural metrics, GPT-4.1 was fast but unstable, and LLaMA consistently
840 terminated at max height due to rigid behavior.
841

Model	Final Score↑	Max Stack Height↓	Holes↓	Bumps↓	Resp. Time (s)↓
GPT-4.1	0.0 ± 0.0	12.6 ± 2.73	24.4 ± 9.05	26.0 ± 10.35	1.162 ± 0.096
Gemini 2.5 Flash	0.0 ± 0.0	10.8 ± 1.47	23.2 ± 7.19	15.8 ± 4.02	47.490 ± 8.011
LLaMA 4 Scout	0.0 ± 0.0	17.6 ± 1.36	34.8 ± 11.89	35.2 ± 2.71	0.892 ± 0.105
Claude Sonnet 4 (20250514)	0.0 ± 0.0	12.2 ± 2.23	22.4 ± 7.45	21.6 ± 8.96	1.736 ± 0.114

864
865
866
867
868
869

Table 11: Performances of LLMs and LLM+Vision models on the Simple dynamic obstacle avoidance task. Claude and GPT-4.1 reached 80% task success, while DeepSeek and Gemini showed extremely long latencies.

Type	Model	CFR↑	AST (s)↑	IAR (%)↓	Avg Latency (s) ↓
LLM+Vision	Claude Sonnet 4 (20250514)	4/5	9.98	2.00	2.00
LLM+Vision	Gemini 2.5 Flash	1/5	6.73	4.00	27.45
LLM+Vision	LLaMA 4 Scout	1/5	5.24	0.00	1.27
LLM+Vision	GPT-4.1	0/5	6.84	0.00	1.19
LLM	DeepSeek-R1 (0528)	0/5	2.55	7.00	88.08
LLM	Claude Sonnet 4 (20250514)	0/5	5.79	0.00	1.54
LLM	Gemini 2.5 Flash	0/5	6.64	7.00	2.36
LLM	LLaMA 4 Scout	0/5	6.83	0.00	0.88
LLM	GPT-4.1	4/5	8.89	0.00	0.92

880
881
882
883
884
885

Table 12: Performances on the Medium difficulty setting. Most models failed to generalize. DeepSeek and Gemini still exhibited long planning times, while Claude and GPT-4.1 remained efficient.

Type	Model	CFR↑	AST (s)↑	IAR (%)↓	Avg Latency (s) ↓
LLM+Vision	Claude Sonnet 4 (20250514)	0/5	2.58	0.00	1.92
LLM+Vision	Gemini 2.5 Flash	0/5	4.47	4.00	28.07
LLM+Vision	LLaMA 4 Scout	0/5	5.35	0.00	1.24
LLM+Vision	GPT-4.1	0/5	1.86	0.00	1.25
LLM	DeepSeek-R1 (0528)	0/5	2.43	13.00	179.01
LLM	Claude Sonnet 4 (20250514)	0/5	3.96	2.00	2.68
LLM	Gemini 2.5 Flash	0/5	2.53	11.00	33.03
LLM	LLaMA 4 Scout	0/5	4.28	0.00	0.82
LLM	GPT-4.1	0/5	3.16	0.00	0.71

898
899
900
901
902
903

Table 13: Performances on the Hard setting. No model succeeded, but latency differences remained stark. Gemini and DeepSeek remain impractical for time-sensitive planning.

Type	Model	CFR ↑	AST (s)↑	IAR (%)↓	Avg Latency (s) ↓
LLM+Vision	Claude Sonnet 4 (20250514)	0/5	4.63	2.00	2.14
LLM+Vision	Gemini 2.5 Flash	0/5	3.57	0.00	35.65
LLM+Vision	LLaMA 4 Scout	0/5	1.66	0.00	1.26
LLM+Vision	GPT-4.1	0/5	3.04	0.00	1.23
LLM	DeepSeek-R1 (0528)	0/5	3.18	9.00	228.02
LLM	Claude Sonnet 4 (20250514)	0/5	3.55	0.00	1.65
LLM	Gemini 2.5 Flash	0/5	3.77	4.00	34.34
LLM	LLaMA 4 Scout	0/5	2.33	7.00	0.67
LLM	GPT-4.1	0/5	4.20	0.00	1.42

916
917

918 6.3 SUPPLEMENTARY EXPERIMENTS ON THE PHYRE BENCHMARK
919

920 We additionally evaluate APEX on the Phyre benchmark (Bakhtin et al., 2019), a widely used suite
921 of physical reasoning puzzles that require agents to anticipate object dynamics and plan interventions
922 in diverse 2D environments. Each task is defined by a goal condition (e.g., make the green ball touch
923 the blue box) and requires reasoning about gravity, collisions, and multi-object interactions. Unlike
924 synthetic kinematics tests, Phyre emphasizes generalization: models must solve both seen and unseen
925 templates, making it a strong proxy for zero-shot physical reasoning. This benchmark allows us to
926 assess whether APEX’s graph–simulation loop provides advantages in standardized tasks beyond our
927 custom environments.

928 To simulate potential sim-to-sim or sim-to-real discrepancies in real-world settings, we implemented
929 a disturbed simulator in the 256×256 environment: each object was perturbed with up to 2 pixels in
930 position and 1° in rotation. We did not repeat standard sim-to-sim comparisons for two reasons: (1)
931 time constraints, and (2) most RL agents, except those that explicitly address vision or sim-to-sim
932 transfer, are trained in the original simulation environment and are not typically designed to generalize
933 across simulators.

934 Table 14: GPT-4.1 nearly completely failed to solve the task. DeepSeek-R1 took a significantly
935 long time (~ 150 s per case) but still solved only a small number of problems. In contrast, our
936 APEX-enhanced GPT-4.1, even under disturbed conditions, consistently produced valid rollouts and
937 outperformed analytical methods by a wide margin.

Model	Task Type	Total Tasks	Solved \uparrow	Solved (%) \uparrow	Avg Resp. Time (s) \downarrow	Avg Sim Time (s) \downarrow	AUCCESS \uparrow	Attempts / Task \downarrow
GPT-4.1	ball_cross_template	500	2	0.40%	5.188	0.000	0.004	2.918
GPT-4.1	ball_within_template	500	6	1.20%	4.945	0.000	0.0114	2.958
DeepSeek-R1	ball_cross_template	20	0	0.00%	170.915	0.000	0.000	2.800
DeepSeek-R1	ball_within_template	20	3	15.00%	133.611	0.000	0.119	2.800
APEX (GPT-4.1)	ball_cross_template	500	261	52.20%	5.735	14.654	0.487	3.978
APEX (GPT-4.1)	ball_within_template	500	289	57.80%	5.689	12.181	0.542	3.826

938 All simulations were run sequentially on CPU without GPU or distributed computing. Parallelization would
939 significantly reduce total runtime.

940 The action space was explored using 10,000 actions sampled uniformly at random.

941 Due to DeepSeek-R1’s high inference cost, only 20 out of 500 test cases were evaluated.

942 6.4 SUPPLEMENTARY EXPERIMENTS ON REAL WORLD APPLICATION
943

944 We further validate APEX in a real-world robotic setting, using a reactive collision avoidance task.

945 **Experimental Setup.** The platform is a HiWonder Mini Arm (5 DOF) controlled by a Raspberry
946 Pi 4B (Arm32, Python 3.7). An onboard RGB-D camera is mounted on the end-effector for visual
947 input. Perception is implemented with classical CV techniques including color-based segmentation,
948 bounding box tracking, and depth estimation, followed by a 5-frame sliding-window filter for position
949 smoothing. The agent receives prompts in the format specified in the following. Baseline comparisons
950 use GPT-4o directly, queried once per second without trigger or simulation.

951 960 **Prompt of Explicit intervention setting(APEX and GPT-4o)**

952 You are controlling a robot arm in a 2D tabletop environment.
953 Two balls are moving on the table: a red ball and a green ball.
954 The red ball is stationary, and the green ball is moving toward it.

955 Your task is to **prevent a collision** between them
956 by moving the robot arm to intercept the green ball.

957
968 Please choose a 2D target position (x, y) ,
969 where the robot arm should go to block the green ball’s path.
970 The robot arm will then move to the position $(x, y, 0.5)$ in 3D space,
971 hovering slightly above the table.

972 Make sure the chosen position is effective in preventing the collision,
 973 but also avoid placing the robot arm too close to the red ball.
 974

975 Current_state:{state}
 976 Physical Engine Result: {rolling_results} (Prompt Injection)
 977 Return your result as a JSON dictionary: `{"x": ..., "y": ...}`
 978 or `{"x": -99, "y": -99}` if you think no need of action
 979 Return Only The JSON without Markdown

980

981 **Prompt of Implicit intervention setting(APEX and GPT-4o)**

982 You are controlling a robot ball on 2D board.
 983 It can stop any object near in any movement
 984 You can move the ball to a location (x, y) in 1 sec
 985 Current_state:{state}
 986 The green car is reaching the child in red T-shirt in 5 sec.
 987

988 Physical Engine Result: {rolling_results}
 989

990 Return your result as a JSON dictionary: `{"x": ..., "y": ...}`
 991 or `{"x": -99, "y": -99}` if you think no need of action
 992 Return Only The JSON without Markdown

993

994 **Task.** Explicit intervention setting: A human moves a green block toward a static red block. The
 995 agent must detect the potential collision and move the manipulator to prevent contact. Implicit
 996 intervention setting: In the same setting, but We do not explicitly tell the LLM that it needs to
 997 intervene in a collision. We only inform it that it controls a ball that can stop any object, and that a
 998 green car is approaching a kid in a red T-shirt from the graph model.

999

1000 **Metrics.** We measure response rate, collision rate, and planning latency.

1001

1002 Table 15: In the no-moving condition, we provide the LLM with the ball’s position and velocity.
 1003 When prompted to intervene, GPT-4o tends to react.

1004

Model	FIR \downarrow	Resp. Time (s) \downarrow
GPT-4o	8/10	4.534
APEX (GPT-4o)	0/10	—

1009

1010

1011 Table 16: In the collision condition, we evaluate the intervention behavior of GPT-4o and APEX-
 1012 augmented GPT-4o in the same linear collision scenario. APEX significantly improves both the
 1013 validity and success rate of interventions, while also reducing response time and simulation delay.

1014

Model	Resp. Rate \uparrow	Valid \uparrow	Success \uparrow	Resp. Time (s) \downarrow	Sim Time (s) \downarrow
GPT-4o	10/10	5/10	3/10	5.342	—
APEX (GPT-4o)	10/10	8/10	8/10	1.6562	0.1855

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Limitations Our deployment platform was a Raspberry Pi 4B (ARM32 architecture) with a system-level Python version restricted to 3.7. Under these constraints, PyTorch installation was infeasible. We therefore employed a lightweight linear classifier to estimate whether a selected object would collide with an obstacle within a 5-second horizon. This linear predictor can also serve as a pseudo-label generator for training a graph-based collision forecasting model.

In this hardware setting, Mujoco deployment was also not feasible. Given the simplicity of the task, we implemented a custom forward Euler integrator as a proxy simulator. For each object, trajectories

1026

1027

1028

1029

Table 17: Five consecutive trials for the implicit intervention setting. In this condition, we do not explicitly tell the LLM that it needs to intervene in a collision. The LLM only knows it controls a ball that can stop any object, and that a green car is approaching a kid in a red T-shirt from the graph model. Among the two failure cases: one was due to a simulation error where no feasible stopping point was found; the other was because the LLM did not respond and chose not to intervene.

1034

1035

1036

1037

1038

1039

1040

1041

1042

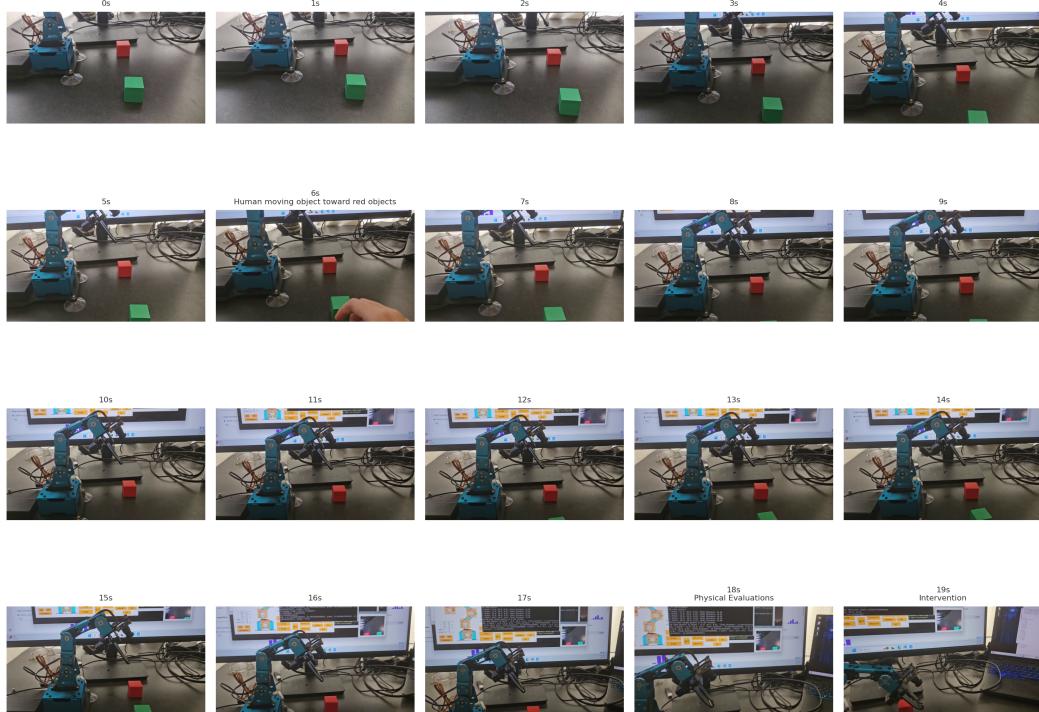
1043

1044

1045

1046

1047



1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

```

1080 Top safe points:
1081   Point: (1.0, 18.5, 0.0), Final Distance: 13.25
1082   Point: (1.5, 18.5, 0.0), Final Distance: 13.25
1083   Point: (2.0, 18.5, 0.0), Final Distance: 13.25
1084   Point: (2.5, 18.5, 0.0), Final Distance: 13.25
1085   Point: (0.5, 18.5, 0.0), Final Distance: 13.00
1086
1087 Rolled 1412 target points in 0.186 seconds.
1088
1089 Top safe points: [
1090   {'point': (1.0, 18.5, 0.0), 'final_distance': 13.246743148225988},
1091   {'point': (1.5, 18.5, 0.0), 'final_distance': 13.246743148225988},
1092   {'point': (2.0, 18.5, 0.0), 'final_distance': 13.246743148225988},
1093   {'point': (2.5, 18.5, 0.0), 'final_distance': 13.246743148225988},
1094   {'point': (0.5, 18.5, 0.0), 'final_distance': 13.003796642816358}
1095 ]

```

Figure 6: Filtered top-5 safe nodes from physical analysis from 1412 points in 0.186 seconds.

were computed using the first-order update:

$$\text{pos}[t+1] = \text{pos}[t] + v[t] \cdot \Delta t, \quad v[t+1] = v[t] + a[t] \cdot \Delta t.$$

Since Mujoco also defaults to Euler integration unless explicitly reconfigured with higher-order solvers, our approximation remains consistent with the default dynamics fidelity. On the Raspberry Pi 4B, simulating 1412 points over a 5-second window with $\Delta t = 0.01$ s takes approximately 0.2s, which is negligible compared to LLM inference latency (1.5–5.0s).

```

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

```

1134 6.5 PROMPT FORMATS AND MODEL INPUTS
 1135

1136 To ensure consistency and replicability across models and tasks, we provide the exact prompt
 1137 templates used in each experimental setting. All inputs are designed to maintain clarity while
 1138 preserving the reasoning and response structure expected by LLMs.

1139

1140 **Physics QA Prompt Format (APEX and GPT-4o):**

1141 You are a physics expert. (System Prompt)

1143 Solve the following problem and return the answer in JSON format.
 1144

1145 Problem: {q["question"]}

1147 The external physical engine predictions: {ref} (Prompt Injection)

1148

1149 Expected JSON response:

1150 {{
 1151 "reasoning": "Explanation of how you arrived at the answer"
 1152 "answer": "Your final numerical answer (without unit and equation)"
 1153 as {str(q['answer_json'])},
 1154 }}

1155 Respond the JSON string only without any markdown symbol.

1156

1158 **Tetris Planning Prompt Format (APEX and GPT-4o):**

1159

1160 You are a Tetris AI agent. (System prompt)

1162 You are playing Tetris. Your goal is to maximize the score by:

1163 - Clearing as many lines as possible.
 1164 - Keeping the board as flat as possible.
 1165 - Avoiding unnecessary stacking.

1166 Here is the current board state (0-blank,, 1-current piece, 2-landed piece):
 1167 {state}

1169 Here are physical engine analysis: {APEX_results} (Prompt Injection)

1170

1171 Available moves:

1172 - "left": Move the piece left by one column.
 1173 - "right": Move the piece right by one column.
 1174 - "rotate": Rotate the piece 90 degrees clockwise.
 1175 - "down": Instantly drop the piece to the lowest possible position. (max times = 1)

1176 Decide the best move sequence in JSON format as a list of actions.

1177 Each action should include the move and how many times to perform it.

1178

1179 Example:

1180 [

1181 {{ "move": "left", "times": 2 }},
 1182 {{ "move": "rotate", "times": 1 }},
 1183 {{ "move": "down", "times": 1 }}
 1184]

1185

1186 Allowed moves are: "left", "right", "rotate", and "down".

1187 Only return the JSON array without any explanation or markdown. No Markdown

```

1188 Obstacle Avoidance Prompt (APEX and GPT-4o):
1189
1190 You are an AI robot that avoids dynamic obstacles. (System Prompt)
1191 You are controlling a robot in a 3D physical environment with moving obstacles.
1192 Your goal is to avoid collisions with cats while progressing toward the target
1193 location.
1194
1195 Current state
1196 (The map has square walls located at  $x = \pm 5$  meters and  $y = \pm 5$  meters):
1197 {state}
1198
1199 Obstacles:
1200 {summary}
1201
1202 Available Moves:
1203 {available_move}
1204
1205 Physical Engine Analysis:
1206 {apex_results} (Prompt Injection)
1207
1208 Output the decision in this format:
1209 {{{
1210 "move": "stay",
1211 "duration": 1.0,
1212 }}}
1213
1214 Only return the JSON object with no explanation or markdown.
1215
1216 Here is the screenshot
1217 (Red balls cat, green ball-your controlled agent): {image} (VLM only)
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
6.6 IMPLEMENTATION AND SYSTEM CONFIGURATIONS
All experiments were conducted using:
• Hardware: A laptop with NVIDIA RTX 4070 for MuJoCo simulations and forward predictions.
• Language Models: GPT-4o via OpenAI API;
• Physics Simulators: MuJoCo for environment modeling and trajectory evaluation.
• Evaluation Interface: A custom Python simulator for Tetris and real-time rendering with frame capture for trajectory visualization.
6.7 GRAPH MODELS
6.7.1 TRAINING OF DG-MOTION ATTENTION
Training data generation. We synthesize star-graphs with  $n=6$  nodes (one master and five targets). Each node is assigned a random 3D position  $\mathbf{x} \sim U(-10, 10)^3$ , a random unit direction, and a speed  $s \sim U(0.5, 1.0)$ , yielding  $\mathbf{v} = s \hat{\mathbf{v}}$ . Half of the samples are labeled collision: we pick a random target and set its velocity to intercept the master's future position at horizon  $t=3$ s; the remaining half are safe. We compute a physically interpretable risk score at  $t+\Delta t$  ( $\Delta t=0.01$ s) by combining (i) inverse distance, (ii) directional alignment (cosine), and (iii) speed via sigmoids with weights  $(w_d, w_{dir}, w_v) = (0.34, 0.33, 0.33)$ . Edges from the master to each target are labeled positive if risk  $> \tau$  ( $\tau=0.75$  by default). Node features are  $[\text{isMaster}, \mathbf{x}_t, \mathbf{v}_t]$  at  $t$  and  $t+\Delta t$ , and edge attributes are relative displacements w.r.t. the master, yielding a star graph of  $\mathcal{O}(n)$  edges per sample.

```

1242 **DiffGraphomer (DG-Motion Attention).** Our model is a lightweight variant inspired by
 1243 Graphomer (Ying et al., 2021), but implemented with TransformerConv (PyG) and explicit edge
 1244 features. We encode nodes and edges with linear layers and apply a TransformerConv (with edge
 1245 features) as the relational backbone. During the forward pass, differential motion $(\mathbf{x}_{t+\Delta t} - \mathbf{x}_t)/\Delta t$
 1246 provides velocity cues to construct edge attributes aligned with the data generator (distance, direction,
 1247 speed). An edge head aggregates endpoints ($h_{ij} = h_i + h_j$) and outputs a sigmoid probability for
 1248 each master \rightarrow target edge. We train with binary cross-entropy; in deployment, we favor high-recall
 1249 thresholds (e.g., $>90\%$ recall with $\sim70\%$ accuracy) to minimize missed hazards that would prevent
 1250 APEX from triggering physics rollouts.

1251 **Training setup.** We train edge-level hazard predictors on the synthetic star-graph dataset. We split
 1252 data 80/20 for train/val and use a batch size of 1 (variable-size graphs), Adam ($\text{lr}=10^{-3}$), 100 epochs,
 1253 and $\Delta t=0.01$ s. Models include DiffGraphomer (TransformerConv with edge features) and ablations
 1254 DiffGAT/DiffGCN.

1255 **Loss & class balance.** We optimize binary cross-entropy with logits and a positive class weight
 1256 $w^+ = (1 - \pi)/\pi$ computed from the dataset prior π (positive ratio). Evaluation. We report edge-level
 1257 accuracy and recall on the validation split with a 0.5 decision threshold, prioritizing high recall to
 1258 avoid missed hazards that would bypass APEX’s simulation trigger. Trained weights are saved for
 1259 deployment.

1260 6.7.2 DESIGN PRINCIPLE

1261 Although our goal is not to benchmark graph architectures, one might ask why we place a graph
 1262 module after the perception stack. This is an engineering choice. The graph plays two complementary
 1263 filtering roles: (i) *interaction filtering*: in a cluttered scene, not all pairwise (or higher-order)
 1264 interactions are task-relevant. Curating a sparse, task-conditioned interaction set prevents overlong
 1265 contexts for LLM/VLM-based reasoning; and (ii) *temporal saliency filtering*: selecting only the most
 1266 informative current frames (*triggers*) substantially reduces compute and relaxes the FPS requirements
 1267 for downstream modules.

1268 Beyond filtering, a scene graph offers a clean interface for switching between the physical world
 1269 and natural language while retaining spatial structure and object state. Concretely, it preserves
 1270 object-centric coordinates and attributes, implicitly maintaining an approximate $\text{SE}(3)$ consistency
 1271 that can be online updated.

1272 The practical upside is that graph modeling is a mature area: from annotation pipelines to training
 1273 recipes, we can leverage well-established methods rather than inventing bespoke machinery.

1274 **Directions and Examples.** We highlight several graph-based avenues that align with our system:

- 1275 • **Physical Interaction Graphs** (e.g., falling/moving dynamics): encode contact, support, and
 1276 relative motion to gate physics queries and rollouts.
- 1277 • **Semantic Hybrid Graphs**: integrate symbolic object categories with continuous physical
 1278 states, enabling reasoning that links high-level semantics (e.g., “cup”) with contextual
 1279 properties (e.g., “full of water”, “hot”).
- 1280 • **Safety Graphs**: augment nodes and edges with risk labels and constraints, supporting
 1281 safety-aware planning and intervention (Huang et al., 2025).
- 1282 • **Partial Complement Graphs**: expand partial observations (e.g., “a hand”) into complete
 1283 object groups (e.g., articulated human joints).
- 1284 • **Spatio-Temporal Graphs**: capture objects whose motion patterns deviate from typical
 1285 dynamics, such as those that suddenly appear or exhibit anomalous trajectories.
- 1286 • **Counterfactual Graphs**: represent causal structures that support “what-if” reasoning
 1287 (e.g., if object A had not collided with object B, would B still move?), enabling stronger
 1288 generalization and interpretability.

1296 6.8 PHYSICAL ENGINE / WORLD MODEL
1297

1298 Simulation-based methods inevitably face both sim-to-real shift and partial observability. If we
1299 restrict the scope to Newtonian mechanics, information-theoretic considerations suggest that, given
1300 sufficiently rich observations of the real world, the Newtonian laws provide the most compact and
1301 faithful model. Under partial observation, the primary challenge is therefore accurate sensing and
1302 identification of the entities present in the scene, rather than entangling object categories (e.g., “apple,”
1303 “cup”) with specific motion patterns (e.g., free fall). Although one may train a model to approximate
1304 linear operators, and linearity is central to Newtonian mechanics, this introduces additional training
1305 cost and instability: we cannot guarantee that the model has internalized the gravitational constant or
1306 that such constants scale coherently across all motions.

1307 Attempts to realize a purely learned *world model* that performs physical forward prediction with
1308 large sequence models (e.g., Transformers) inherit these issues (see Appendix 6.1). A lightweight,
1309 hybrid world model layered on top of a physics engine may be promising, but we leave a thorough
1310 exploration to future work.

1311 **Limitations.** Beyond sim-to-real shift, partial observability, and the deliberate restriction to Newto-
1312 nian regimes, both real and simulated environments exhibit chaotic dynamics. Measurement noise
1313 implies that long-horizon simulations accumulate bounded error. For physics engines, however,
1314 existing numerical analysis provides stability and error bounds, enabling principled confidence as-
1315 sessments. In contrast, black-box learned world models generally lack such calibrated uncertainty
1316 and verifiable error guarantees, which remains a key limitation.

1317
1318 6.9 ACTION SPACE ANALYSIS
1319

1320 Assume an agent with n degrees of freedom (DOF) and k -step rollouts. A naive complexity is:

$$1321 O((n \cdot l)^k),$$

1324 where l denotes the discretization granularity.

1325 In practice, we employ a coarse-to-fine search strategy: early steps use low-resolution discretization
1326 (e.g., 5°), and the resolution is progressively refined near step $k-1$. Thanks to the Markov property,
1327 redundant rollouts are avoided by caching and pruning previously visited states.

1328 Thus, the effective complexity becomes:

$$1329 O(\min((n \cdot l_1)^k, s \cdot l_2)),$$

1332 where s is the number of reachable states, and l_1, l_2 denote coarse and fine resolutions, respectively.

1333 Unlike Bellman-style methods, APEX avoids learning a high-dimensional value function, naturally
1334 supports heuristic pruning, and scales efficiently.

1335 **Computational Overhead.** A common concern is the computational cost of simulation-based
1336 rollouts. In APEX, rollout simulates n objects for k seconds with step size Δt , resulting in:

$$1339 O\left(\frac{n \cdot k}{\Delta t}\right) \text{ operations.}$$

1341 For example, with $n = 100$, $k = 1$, and $\Delta t = 10^{-4}$, the rollout involves 10^4 steps. A standard CPU
1342 core can handle approximately 10^9 FLOPs/s, so this costs less than 1 ms runtime per rollout. Since
1343 simulations are fully parallelizable, APEX runs efficiently on CPUs without requiring specialized
1344 hardware.

1345 The physics engine ensures both interpretability and real-time feasibility. Despite relying on high-
1346 fidelity simulations, APEX remains efficient and tractable.

1348 Moreover, the combined complexity of action rollout and simulation is multiplicative. However,
1349 all simulations are independent, and each frame involves only linear-time physics computation per
object. This structure naturally enables GPU-level parallelism.

1350 As an illustration, consider a brute-force rollout of 100,000 actions over 1 second with timestep
1351 $\Delta t = 0.01$. Assuming 10 objects are active per frame, each requiring $\sim 10^3$ FLOPs, the total cost is:
1352

$$(100,000 \text{ actions}) \times (100 \text{ frames}) \times (10 \text{ objects}) \times (10^3 \text{ FLOPs}) = 10^{11} \text{ operations.}$$

1353 Such a workload is easily handled by modern GPUs and can be completed within milliseconds
1354 through parallel computation.
1355

1356 **Replacement.** The APEX rollout module is drop-in replaceable with pretrained RL policies or
1357 Monte Carlo Tree Search (MCTS) planners for candidate action generation; our caching/pruning and
1358 simulation interfaces remain unchanged and continue to provide the same complexity and parallelism
1359 benefits.
1360

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404 6.10 ERROR ANALYSIS FOR PHYSICS QA
14051406 Despite its general reasoning strength and applying of correct physical laws, GPT-4o often struggles
1407 with numerical accuracy especially on displacement calculations, which is crucial in real-world
1408 application like auto driving. We sampled failure cases across five representative tasks to understand
1409 the underlying issues.
14101411 **(1) 3D Linear Motion: Numerical Errors**
14121413 Linear Motion Numerical Error
14141415 **Question:** An object starts at $(0, 0, 0)$ with an initial velocity of $[13.15, 1.48, 6.23]$ m/s and
1416 an acceleration of $[-2.77, 2.36, 1.77]$ m/s. What are its velocity vx, vy, vz and displacement
1417 dx, dy, dz after 9.03 seconds?
14181419 **LLM Reasoning:** To find the velocity and displacement of the object after 9.03 seconds, we
1420 use the kinematic equations. The final velocity in each direction can be calculated using
1421 the formula $v = u + at$, where u is the initial velocity, a is the acceleration, and t is the
1422 time. The displacement in each direction can be calculated using the formula $s = ut + 0.5at^2$.
14231424 For the x-direction: Initial velocity (u_x) = 13.15 m/s, acceleration (a_x) = -2.77
1425 m/s². Final velocity (v_x) = $13.15 + (-2.77) \times 9.03 = -11.8851$ m/s. Displacement (d_x) =
1426 $13.15 \times 9.03 + 0.5 \times (-2.77) \times (9.03)^2 = \mathbf{59.364315}$ m.
14271428 For the y-direction: Initial velocity (u_y) = 1.48 m/s, acceleration (a_y) = 2.36 m/s².
1429 Final velocity (v_y) = $1.48 + 2.36 \times 9.03 = 22.7708$ m/s. Displacement (d_y) =
1430 $1.48 \times 9.03 + 0.5 \times 2.36 \times (9.03)^2 = \mathbf{114.94686}$ m.
14311432 For the z-direction: Initial velocity (u_z) = 6.23 m/s, acceleration (a_z) = 1.77 m/s².
1433 Final velocity (v_z) = $6.23 + 1.77 \times 9.03 = 22.2101$ m/s. Displacement (d_z) =
1434 $6.23 \times 9.03 + 0.5 \times 1.77 \times (9.03)^2 = \mathbf{147.014145}$ m.
14351436 **LLM Answer:**
14371438 {
1439 "velocity_x": "-11.8851",
1440 "velocity_y": "22.7708",
1441 "velocity_z": "22.2101",
1442 "displacement_x": "59.3643154", (wrong)
1443 "displacement_y": "114.94686",
1444 "displacement_z": "147.014145"
1445 }1446 **Ground Truth:**
14471448 {
1449 "velocity_x": -11.86,
1450 "velocity_y": 22.79,
1451 "velocity_z": 22.21,
1452 "displacement_x": 5.81,
1453 "displacement_y": 109.58,
1454 "displacement_z": 128.42
1455 }1456 **Error:** Miscalculation on displacement.
14571458 **(2) 3D Circular Motion: Numerical Errors**
1459

1458
1459

(2) 3D Circular Motion Numerical Error

1460
1461**Question:**1462
1463
1464
1465
1466
1467
1468
1469
1470

- **Motion Type:** Circular Motion
- **Radius:** 2.49 meters
- **Speed:** 8.75 m/s
- **Angular velocity:** 3.51 rad/s
- **Time:** 5.95 s
- **Plane:** xy-plane
- **Task:** Compute its position (x_B, y_B, z_B) , assuming it starts at $(r, 0, 0)$.

1471
1472
1473
1474**LLM Reasoning:**

To find the position of the object in circular motion, we use the parametric equations for circular motion. The object starts at position $(r, 0, 0)$ and rotates in the xy-plane. Its position at any time t is given by:

1475

$$(x_B, y_B) = (r \cdot \cos(\theta), r \cdot \sin(\theta))$$

1477

where θ is the angular displacement. The angular displacement θ is calculated as:

1478

$$\theta = \omega \times t = 3.51 \times 5.95 = 20.8845 \text{ rad}$$

1479

Thus:

1480

1481

$$x_B = 2.49 \cdot \cos(20.8845) \quad \text{and} \quad y_B = 2.49 \cdot \sin(20.8845)$$

1482

Since the motion is in the xy-plane, $z_B = 0$.

1483

LLM Answer:

1484

1485

1486

1487

1488

1489

1490

```
{
    "x_B": "0.57",
    "y_B": "-0.51",
    "z_B": "0"
}
```

1491

Ground Truth:

1492

1493

1494

1495

1496

1497

1498

1499

(3) 3D Projectile Motion: Axis Misinterpretation

1500

1501

(3) 3D Projectile Motion: Axis Misinterpretation

1502

1503

1504

Question:1505
1506

A projectile is launched from $(0, 0, 0)$ with an initial velocity of $[7.68, 18.83, 11.81]$ m/s from x-y plane. Calculate its flight time, maximum height (h), and range (dx, dy, dz).

1507

1508

1509

1510

1511

LLM Reasoning:

To solve the problem, we break down the motion into its components. The initial velocity vector is given as $[7.68, 18.83, 11.81]$ m/s, where 7.68 m/s is the x-component, 18.83 m/s is the y-component, and 11.81 m/s is the z-component. The projectile motion is influenced by gravity acting in the negative y-direction with an acceleration of -9.81 m/s. The flight

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

time can be found by determining when the projectile returns to the $y = 0$ plane. Using the kinematic equation for vertical motion $y = v_0 y * t + 0.5 * a * t^2$, we set $y = 0$ and solve for t . The maximum height is achieved when the vertical velocity is zero, calculated using $v = v_0 y + a * t$. The range in each direction is calculated using the horizontal components of motion, which are not affected by gravity. The horizontal ranges (dx, dz) are calculated as $v_0 x * t$ and $v_0 z * t$, respectively. The maximum height is calculated using the vertical motion equation with the time at maximum height.

LLM Answer:

```
{
  "flight_time": "3.84",
  "maximum_height": "18.06",
  "range_x": "29.47",
  "range_y": "0",
  "range_z": "45.32"
}
```

Ground Truth:

```
{
  "flight_time": 2.41,
  "maximum_height": 7.11,
  "range_x": 18.49,
  "range_y": 45.34,
  "range_z": any.
}
```

Error: The model confuses the vertical axis with the forward direction, mistakenly assigning horizontal motion to the z -axis and ignoring vertical displacement on y .

(4) 3D Multi-Object Motion: Complex Reasoning with Mixed Physics Types

3D Multi-Object Motion Error (LLM Inaccuracy in Hybrid Settings)

Question:

We have three objects moving in different types of motion in 3D space:

1. Object A - Linear Motion

- Initial Velocity: $[11.41, 1.01, 6.45] \text{ m/s}$
- Acceleration: $[-0.7, 0.8, 1.55] \text{ m/s}^2$
- Time: 5.18 s
- Compute the final position (x_A, y_A, z_A) , assuming it starts at $(0, 0, 0)$.

2. Object B - Circular Motion

- Radius: 2.49 m
- Angular Velocity: 1.17 rad/s
- Time: 5.26 s
- Rotating in the xy -plane.
- Compute the position (x_B, y_B, z_B) , assuming it starts at $(r_B, 0, 0)$.

3. Object C - Projectile Motion

- Initial Speed: $[21.47, 12.09, 21.6] \text{ m/s}$
- Time: 6.57 s
- Compute the position (x_C, y_C, z_C) , assuming it starts from $(0, 0, 0)$ in the xy -plane.

Reasoning:

1566
 1567 • For **Object A (Linear Motion)**, we use the kinematic equation for linear motion:
 1568 Position = Initial Velocity $\times t + 0.5 \times$ Acceleration $\times t^2$
 1569
 1570 • For **Object B (Circular Motion)**, the position is calculated using the parametric
 1571 equations:
 1572
$$(x_B, y_B) = (r \cdot \cos(\omega \cdot t), r \cdot \sin(\omega \cdot t)), \quad z_B = 0$$

 1573
 1574 • For **Object C (Projectile Motion)**, the position is calculated for each component as:
 1575
 1576
$$x_C = v_x \times t$$

 1577
$$y_C = v_y \times t$$

 1578
$$z_C = v_z \times t - 0.5 \times g \times t^2$$

 1579
 1580 where g is the gravitational acceleration.

1581 **LLM Answer:**

```
1582     {  

  1583         'pos_A': {'x_A': '51.698247', 'y_A': '8.06772', 'z_A':  

  1584         '48.568195'},  

  1585         'pos_B': {'x_B': '1.176498', 'y_B': '2.140898',  

  1586         'z_B': '0'},  

  1587         'pos_C': {'x_C': '141.0939', 'y_C': '79.46213',  

  1588         'z_C': '48.842055'}  

  1589     }
```

1590
 1591 **Ground Truth:**

```
1592     {  

  1593         'pos_A': {'x_A': 49.71, 'y_A': 15.96, 'z_A': 54.21},  

  1594         'pos_B': {'x_B': 2.47, 'y_B': -0.32, 'z_B': 0},  

  1595         'pos_C': {'x_C': 141.06, 'y_C': 79.43, 'z_C': any}  

  1596     }
```

1597 **Error:** The questions are too complex, and the reasoning parts are correct, but the calculations
 1598 are wrong.

1600
 1601 **(5) 3D Collision: Fails to Predict Future Collision**

1602 **(5) 3D Collision: Fails to Predict Future Collision**

1603 **Question:**

1604 Two objects with masses 8.4 kg and 5.91 kg are located at positions:

1605 Object 1 Position: $[-2.8817, -0.4259, -2.0413]$

1606 Object 2 Position: $[-0.4778, 1.7133, 0.4933]$

1607 The radius of both spheres is 0.5 .

1608 They are moving with velocities:

1609 Object 1 Velocity: $[1.999, 1.779, 2.108]\text{ m/s}$

1610 Object 2 Velocity: $[-1.273, -1.133, -1.342]\text{ m/s}$

1611 Assuming an **elastic collision**, determine:

1612 • Will they collide?

1613 • If they collide, what are their final velocities?

1620

LLM Reasoning:

1622 To determine if the two objects will collide, we first calculate the distance between their
1623 centers using the Euclidean distance formula:

$$1624 \quad d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

1626 If the distance d is less than or equal to the sum of their radii (1.0), they are already colliding.
1627 If not, we proceed to check their relative velocities to determine whether they are moving
1628 towards each other.

1629 The relative velocity vector \mathbf{v}_{rel} is given by:

$$1630 \quad \mathbf{v}_{\text{rel}} = \mathbf{v}_2 - \mathbf{v}_1$$

1632 We then compute the dot product of \mathbf{v}_{rel} and the vector connecting the centers. If the dot
1633 product is **negative**, it indicates that the objects are moving towards each other.

1634 In this case:

- The initial distance is approximately 4.558, which is greater than the sum of the radii 1.0.
- The dot product of the relative velocity vector and the center-to-center vector is **negative**, indicating that the objects will collide.

1637 For an **elastic collision**, we apply the conservation of momentum and kinetic energy to
1638 calculate the final velocities of both objects.

LLM Answer:

```
1640 {  
1641     "will_collide": "true",  
1642     "velocity_1":  
1643         {"vel_1_x": "-1.2731450866327967",  
1644         "vel_1_y": "-1.1329265996055307",  
1645         "vel_1_z": "-1.3423728509665511"},  
1646     "velocity_2":  
1647         {"vel_2_x": "1.9989536980325082",  
1648         "vel_2_y": "1.7787979073700424",  
1649         "vel_2_z": "2.107647590798081"}  
1650 }
```

Ground Truth:

```
1651 {  
1652     "will_collide": "true",  
1653     "velocity_1":  
1654         {"vel_1_x": -0.7, "vel_1_y": -0.63, "vel_1_z": -0.74},  
1655     "velocity_2":  
1656         {"vel_2_x": 2.57, "vel_2_y": 2.29, "vel_2_z": 2.71}  
1657 }  
1658 }
```

Error:

1661 Although LLM correctly identified the two object will collide, it failed to calculate the
1662 velocities by Newton's third law of motion but just swap them.
1663

1664

1665

6.11 CASE STUDIES: TETRIS PLANNING

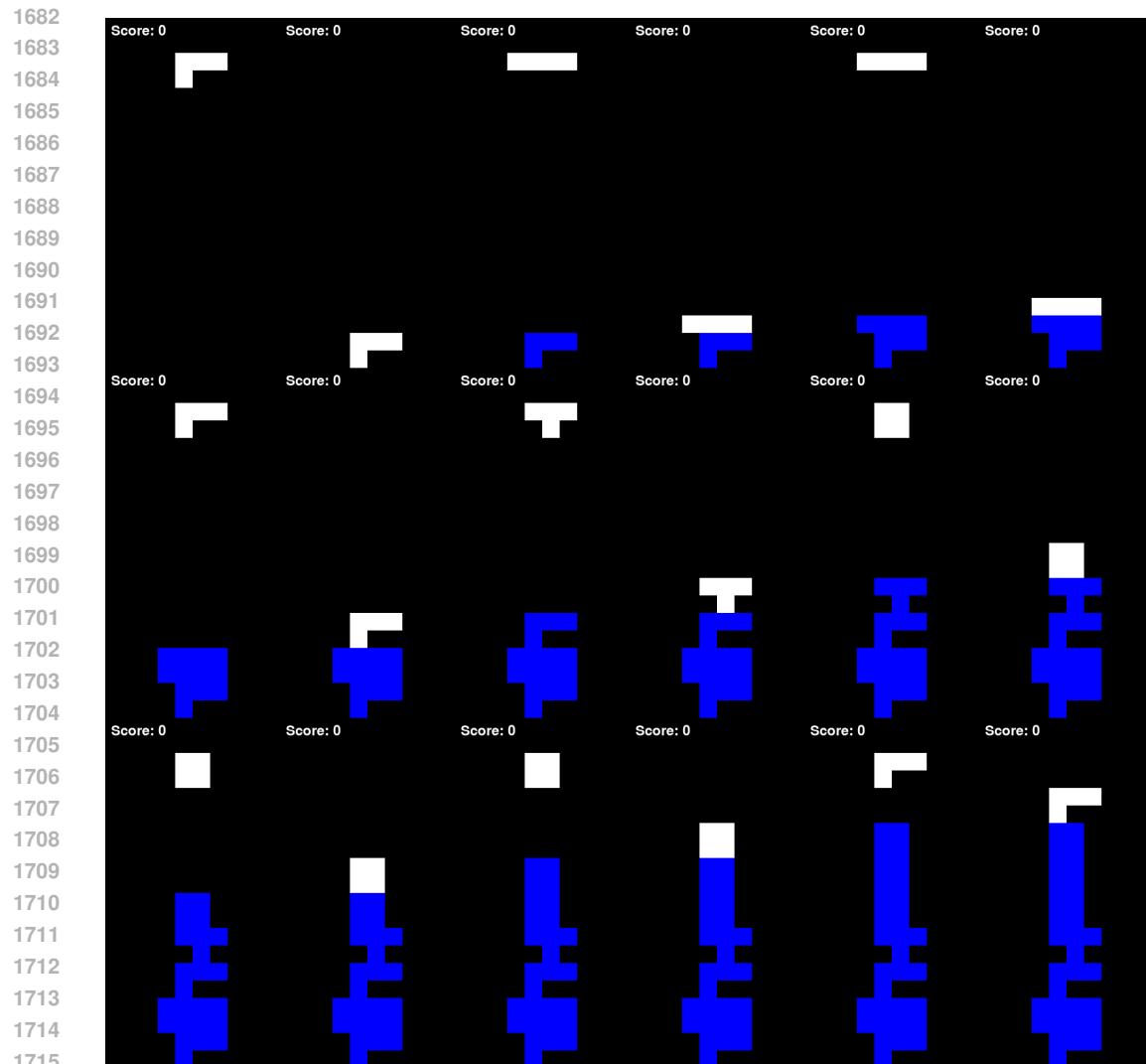
1666

1667 We analyze qualitative behavioral differences across four models on identical Tetris configurations,
1668 with visualizations shown in Figures 7–10. Each model was given the same initial board states and
1669 action budget.

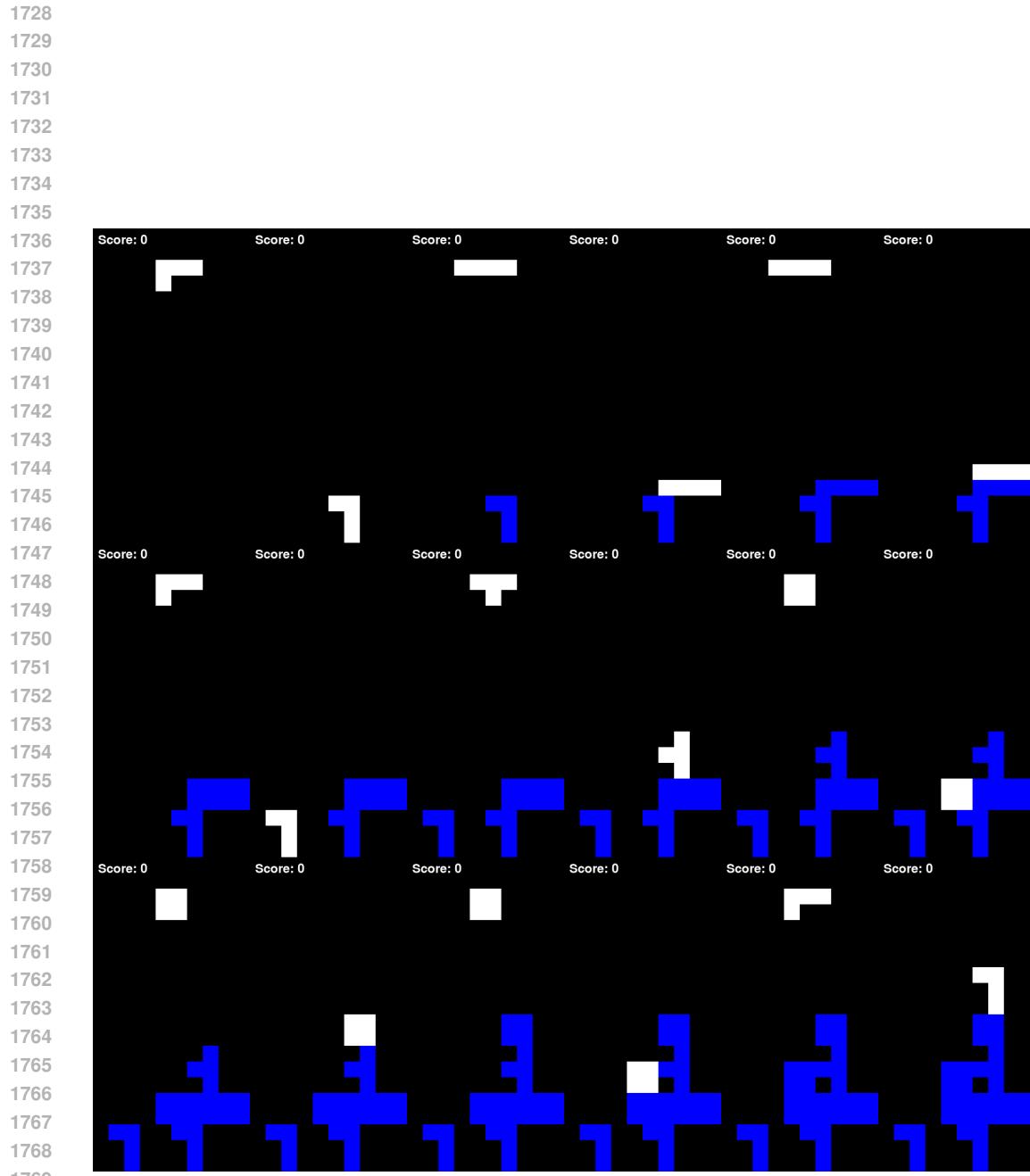
1670

1671 These case studies highlight the crucial role of physics-based foresight in long-horizon spatial
1672 planning. APEX not only reacts to the present state, but also reasons about the physical impact of
1673 future placements, resulting in more strategic and compact gameplay.

1674
1675
1676
1677
1678
1679
1680
1681



1716 Figure 7: Performance of GPT-4o-mini. Despite various prompt engineering attempts, GPT-4o-mini
1717 consistently defaulted to the down action regardless of board state. As a result, the pieces were
1718 dropped directly without any lateral movement or rotation, quickly leading to high towers and early
1719 termination. The model lacks basic spatial foresight and cannot anticipate block alignment or stability.
1720
1721
1722
1723
1724
1725
1726
1727



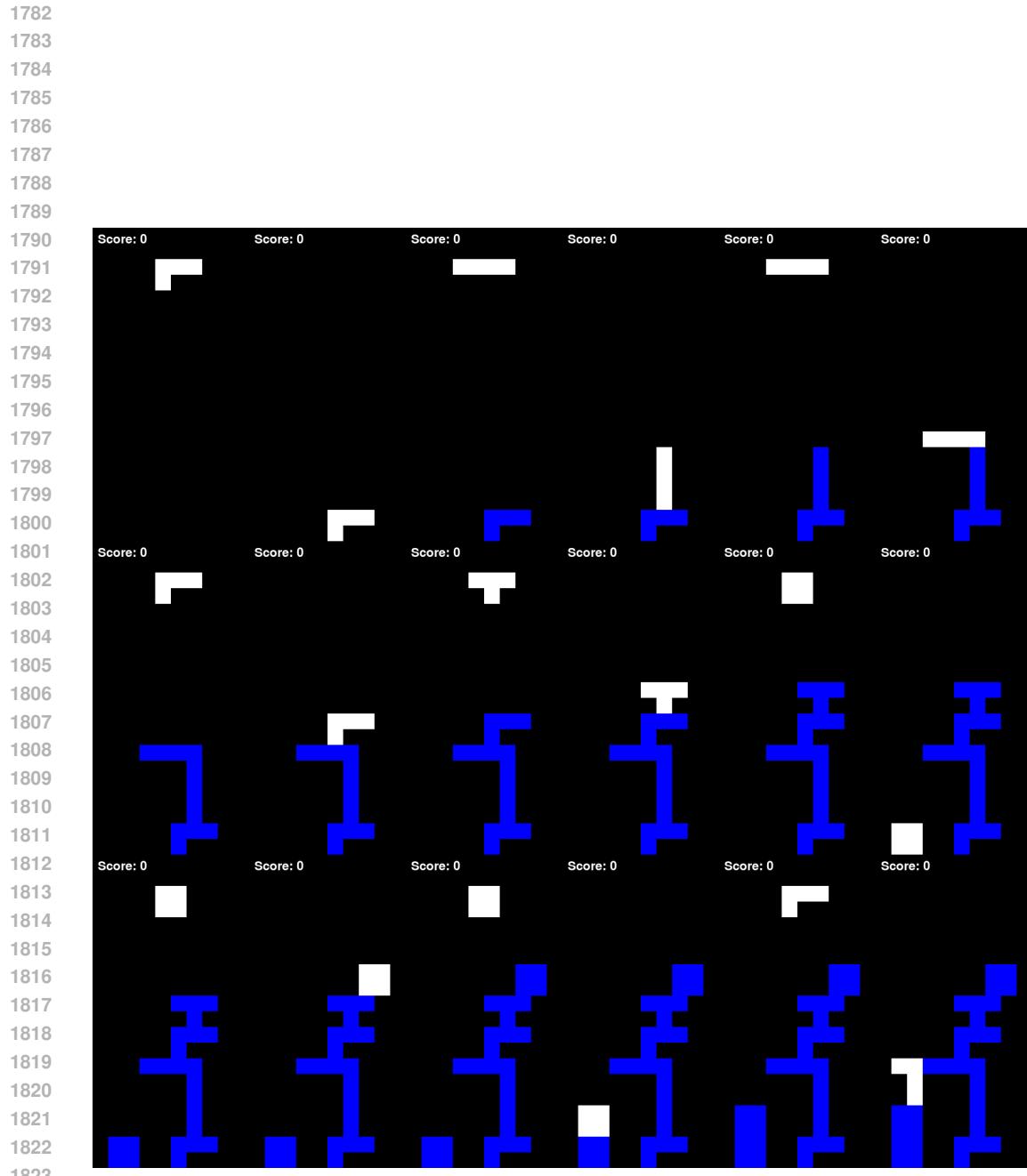


Figure 9: Performance of VLM. Incorporating visual perception enables better state awareness, but the VLM model exhibits a strong reluctance to rotate pieces. For instance, long vertical bars are often dropped in upright orientation at the center of the board, creating tall columns that destabilize subsequent placements. The inability to rotate blocks limits the model's flexibility and leads to inefficient spatial usage.

1890
1891

6.12 EXAMPLES FROM DYNAMIC OBSTACLE AVOIDANCE

1892
1893
1894
1895
1896
1897
1898
1899

Figures 11–15 contrasts navigation behaviors under four conditions, highlighting the role of APEX in guiding physically informed decision-making in dynamic obstacle environments. In Table 6, we found that GPT-4o-mini tends to exploit a shortcut in decision-making: it selects any path labeled as "Safe" without considering the actual distance to the obstacle. Specifically, in the final timestep of one scenario, we labeled a move as "Safe" if the distance to the nearest obstacle exceeded a threshold of 0.5 meters. One such option (moving left) had a distance of 0.54 meters, just above the threshold, while alternative paths offered significantly safer margins (over 2.0 meters). GPT-4o-mini simply selected the first available "Safe" option without comparison.

1900
1901
1902

GPT-4o occasionally made similar mistakes when not explicitly prompted with instructions such as "choose the path farthest from the obstacle." However, GPT-4o-mini consistently followed this suboptimal policy, defaulting to a static heuristic.

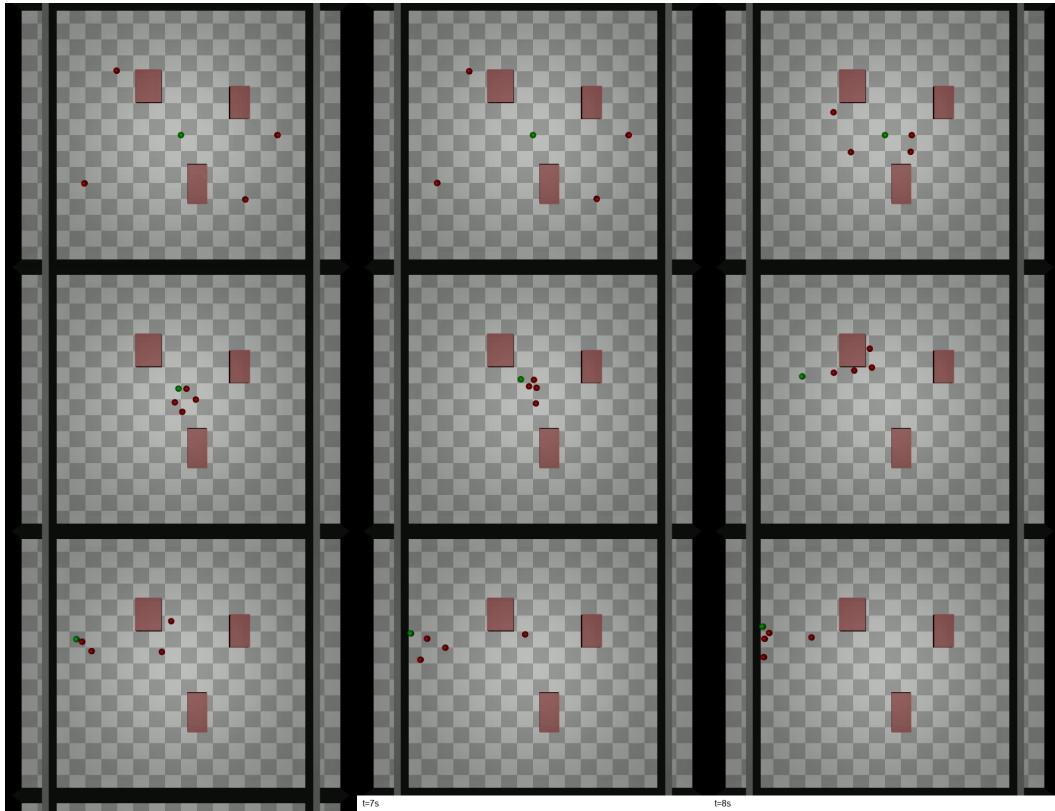
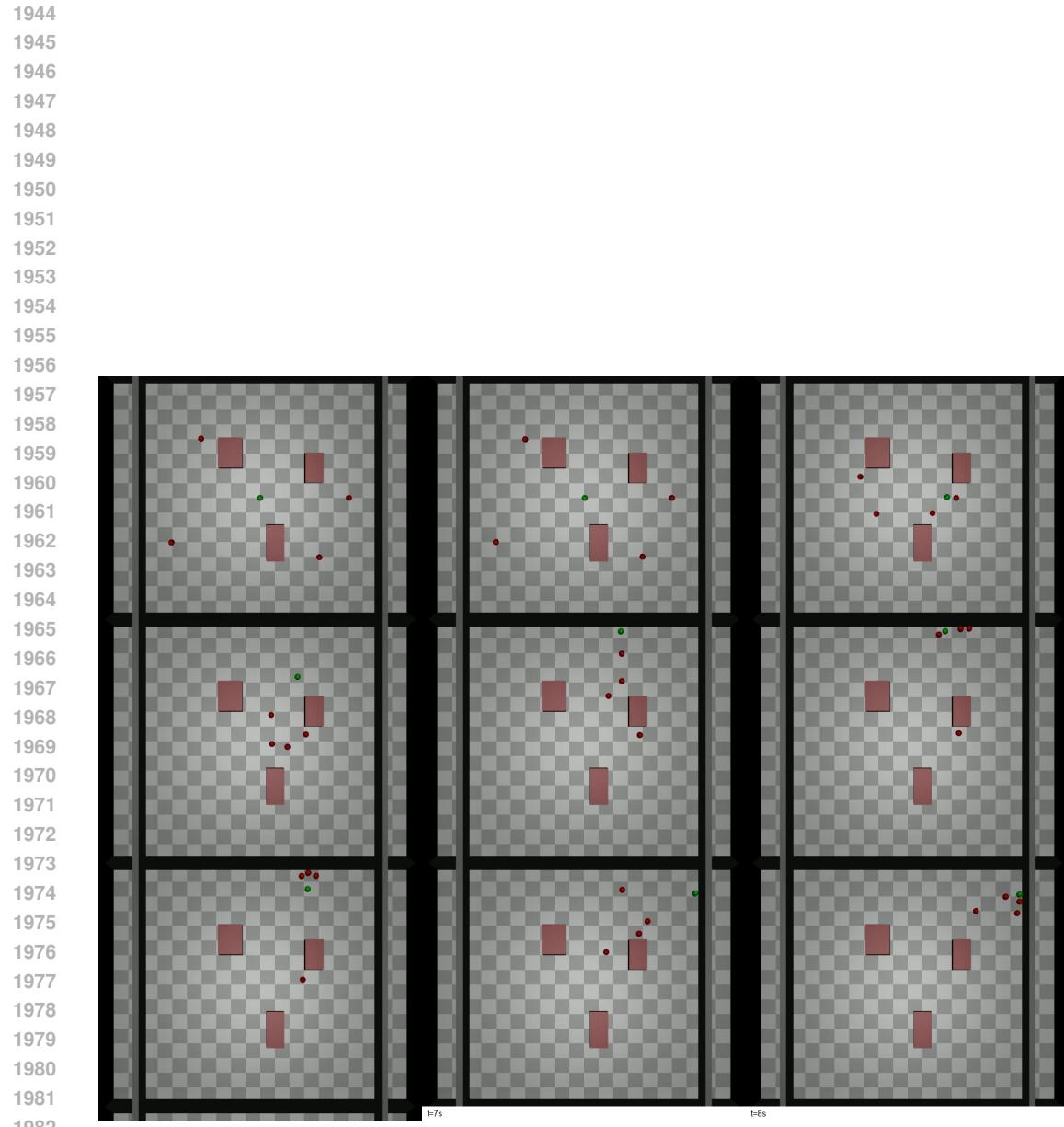
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929

Figure 11: Performance of GPT-4o-mini. GPT-4o-mini fails to react altogether, remaining static even as a moving obstacle approaches. This indicates a lack of temporal prediction or awareness of imminent collision.

1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943



1983 Figure 12: Performance of GPT-4o. GPT-4o recognizes the presence of a moving object but selects
 1984 an incorrect evasive direction, resulting in a direct collision. While perceptual awareness is present,
 1985 the absence of predictive modeling leads to poor decision quality.

1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

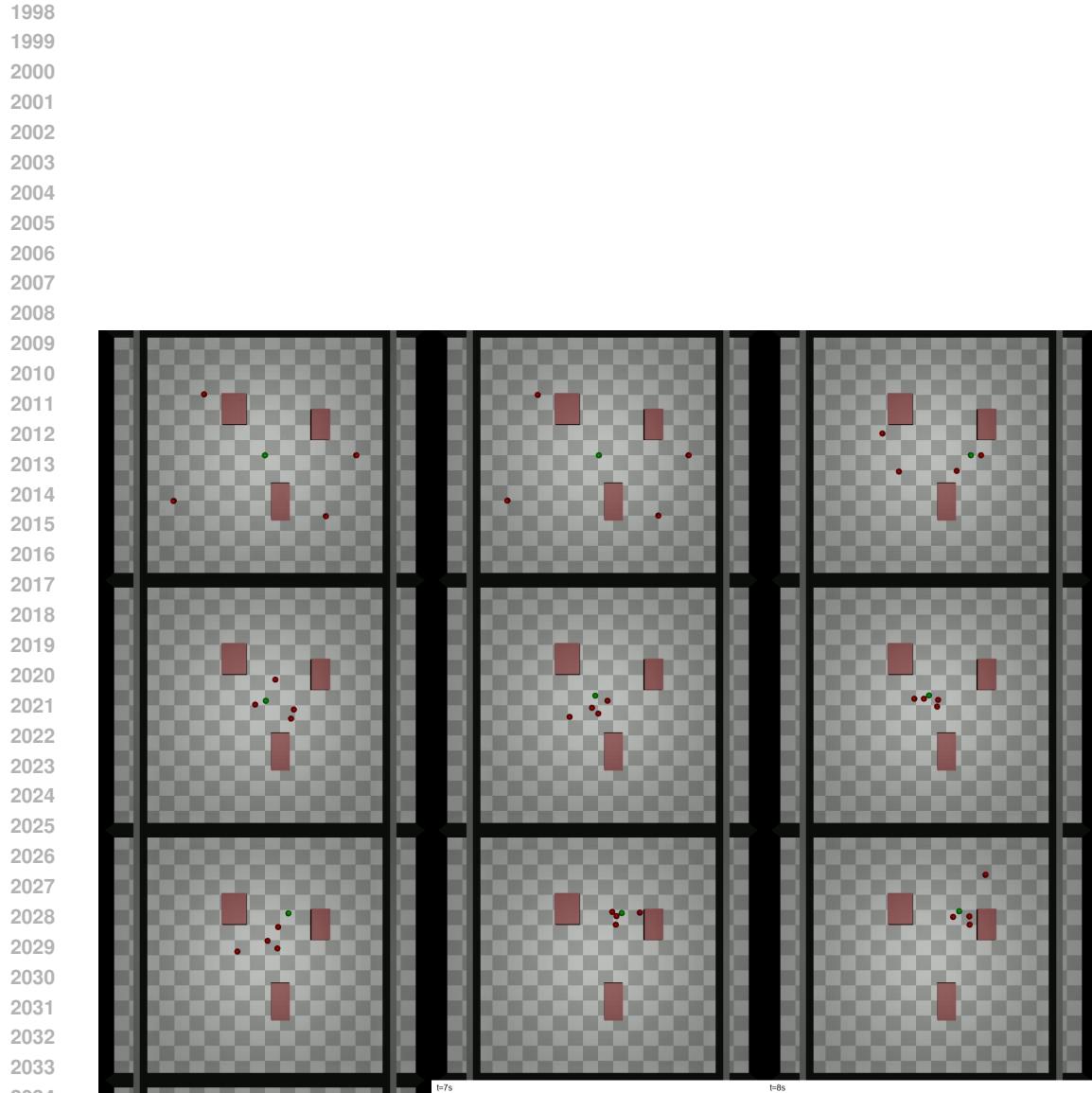


Figure 13: Performance of VLM. We observe consistent failure patterns in the VLM-based baseline across multiple scenarios. In some cases, the model produces responses such as "Sorry, I can't help with that", indicating that it is unable to generate actionable plans when faced with ambiguous or dynamic input. More critically, the model often misjudges object displacement or relative movement, leading to physically invalid plans, such as walking into obstacles that are visibly approaching. This suggests a lack of grounded numerical estimation and forward reasoning capability, which are necessary for real-world spatial tasks.

2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

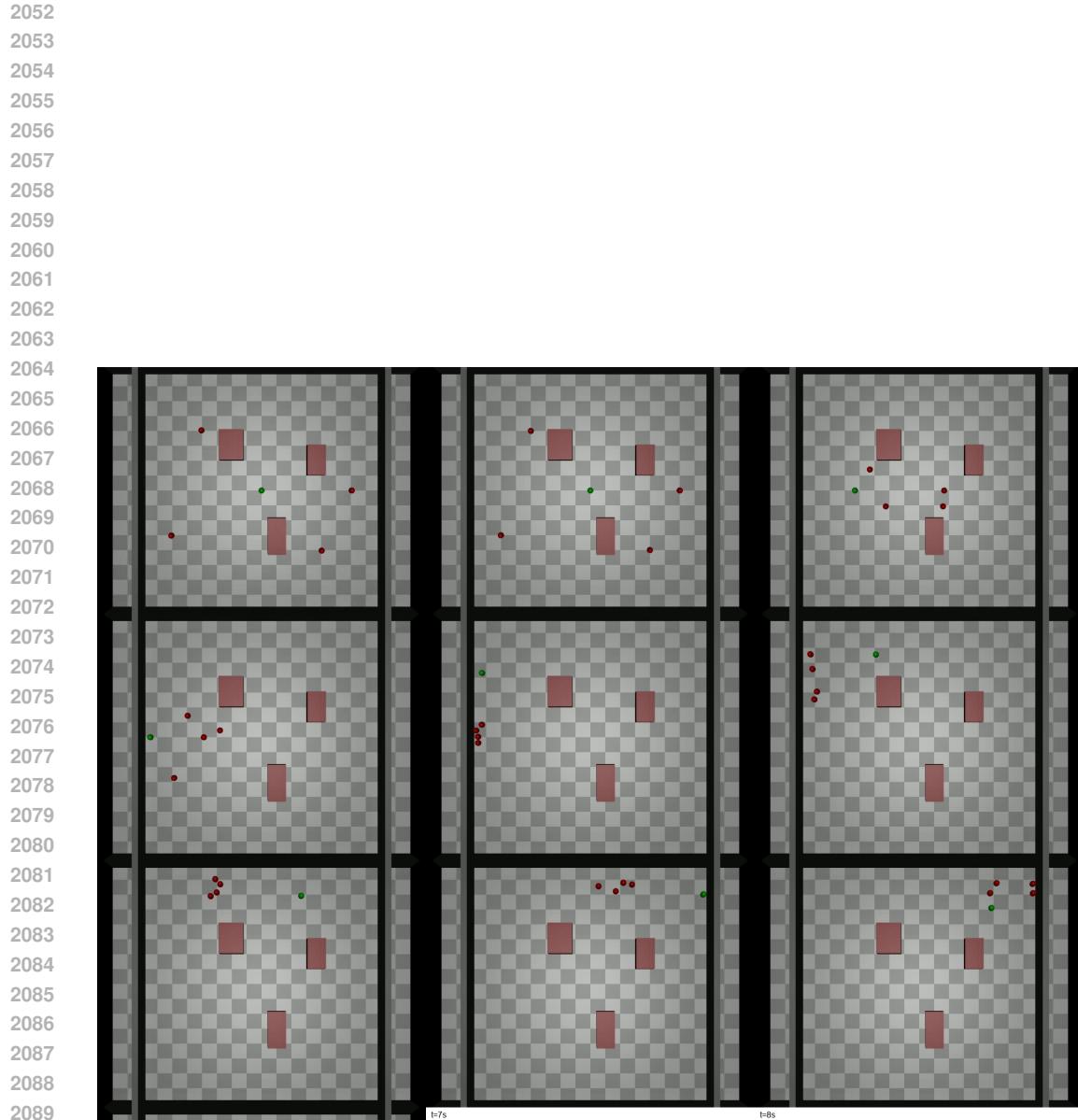


Figure 14: Performance of APEX(GPT-4o-mini). GPT-4o-mini operates under APEX guidance but occasionally disregards simulated risk evaluations, choosing paths that minimize immediate distance to the goal, ironically aligning with the obstacle’s trajectory. This suggests limited integration of long-term consequence awareness.

2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

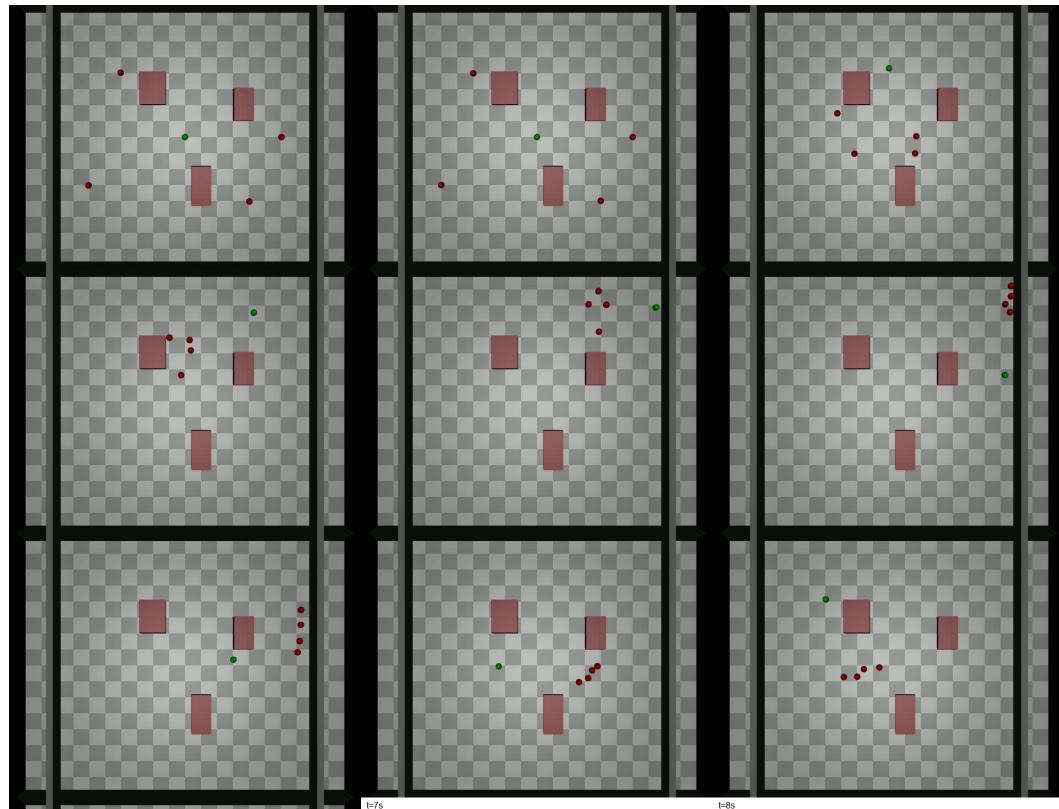


Figure 15: Performance of APEX(GPT-4o). GPT-4o, with full APEX support, exhibits anticipatory behavior, dynamically adjusting its trajectory to avoid the obstacle while maintaining movement toward the goal. Notably, the agent even "orbits" around the obstacle when direct paths are unsafe, demonstrating flexible foresight and real-time risk mitigation.