
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

APEX: EMPOWERING LLMS WITH PHYSICS-BASED
TASK PLANNING FOR REAL-TIME INSIGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) demonstrate strong reasoning and task planning
capabilities but remain fundamentally limited in physical interaction modeling.
Existing approaches integrate perception via Vision-Language Models (VLMs) or
adaptive decision-making through Reinforcement Learning (RL), but they fail to
capture dynamic object interactions or require task-specific training, limiting their
real-world applicability. We introduce APEX (Anticipatory Physics-Enhanced
Execution), a framework that equips LLMs with physics-driven foresight for real-
time task planning. APEX constructs structured graphs to identify and model
the most relevant dynamic interactions in the environment, providing LLMs with
explicit physical state updates. Simultaneously, APEX provides low-latency for-
ward simulations of physically feasible actions, allowing LLMs to select optimal
strategies based on predictive outcomes rather than static observations. We eval-
uate APEX on three benchmarks designed to assess perception, prediction, and
decision-making: (1) Physics Reasoning Benchmark, testing causal inference and
object motion prediction; (2) Tetris, evaluating whether physics-informed predic-
tion enhances decision-making performance in long-horizon planning tasks; (3)
Dynamic Obstacle Avoidance, assessing the immediate integration of perception
and action feasibility analysis. APEX significantly outperforms standard LLMs
and VLM-based models, demonstrating the necessity of explicit physics reason-
ing for bridging the gap between language-based intelligence and real-world task
execution.

1 INTRODUCTION

A cat is about to pounce on an LLM-controlled agent. The agent detects the cat nearby and knows it
should move, but does it understand that the cat will jump in 2 seconds? Once the LLM decides to
evade, multiple escape routes exist, how does it choose a path that avoids both the cat and surrounding
obstacles? These two challenges: understanding dynamic interactions and predicting action
consequences, highlight fundamental limitations in existing LLM-based agents. Current methods
attempt to address these issues using Vision-Language Models (VLMs) (Wang et al., 2024a; Ahn
et al., 2022; Huang et al., 2024; 2023; Liang et al., 2023; Liu et al., 2024; Hu et al., 2023b) and
Reinforcement Learning (RL) (Patel et al., 2025; Lee et al., 2024; Ma et al., 2024a; Sun et al., 2024).
However, they remain fundamentally limited:

• Static Perception Without Dynamic Awareness: VLMs enable LLMs to recognize objects
but fail to model interactions over time. They can detect a cat, but cannot anticipate its
movement. In real-world decision-making, static snapshots are insufficient; understanding
object motion is essential.

• Lack of Action-Outcome Feedback and Physical Grounding: Existing approaches often
treat decision-making as a one-shot prediction task, offering no structured feedback loop
between actions and their physical consequences. Instead of modeling the environment’s
response through grounded physical equations, they rely on latent dynamics (World Models)
or reward-driven adaptation (RL). As a result, these systems lack interpretable quantitative
feedback on the feasibility of action, e.g., whether an action would cause a collision, balance
failure, or violate timing constraints.

• Expensive and Slow Policy Adaptation: RL-based approaches, such as VoxPoser (Huang
et al., 2023) and Code-as-Policies (Liang et al., 2023), require extensive task-specific training.
Every new scenario demands costly retraining, making real-time adaptation impractical.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of physical reasoning capabilities across three systems, LLM without spatial
grounding, VLM and world modeling, and our proposed APEX on three scenarios involving object
prediction, agent-object interaction, and action planning. While vanilla LLMs are not necessarily
making random choices in the prediction task, our experimental results in Section 4 indicate that their
performance is statistically indistinguishable from random selection in this context. APEX provides
not only qualitative predictions but also quantitative estimations of outcomes (e.g., time to impact,
risk of collision), demonstrating its structured understanding of physical causality.

To plan actions in the real world, agents must do more than perceive and react. They must simulate,
quantify, and foresee. We introduce APEX (Anticipatory Physics-Enhanced Execution), a framework
that enables LLMs to anticipate environmental changes and optimize actions through physics-based
reasoning. APEX constructs structured graphs that extract the most relevant dynamic interactions in an
environment(Nishida et al., 2018; Huang et al., 2025), enabling LLMs to reason about the motion and
forces of objects. Additionally, APEX performs future state simulation(Smith et al., 2013), predicting
how different actions will alter the environment over time, providing explicit physical constraints
to guide decision-making. This strengthens the standard LLM’s capabilities in physical reasoning,
perception, and prediction, empowering LLM-driven agents to perform low-latency planning in
physical environments, as illustrated in Fig. 1.

We evaluate APEX across three benchmark tasks; each is designed to address a critical limitation in
existing approaches:

• Physics Reasoning Benchmark (Addressing Static Perception): Testing LLMs’ ability to
infer object dynamics beyond simple object recognition.

• Tetris (Evaluating Physics-Driven Foresight): Testing whether providing forward physical
simulations as feedback improves the long-horizon decision quality of language models in
structured planning environments.

• Dynamic Obstacle Avoidance (Addressing Real-Time Adaptation): Assessing real-time
integration of perception and prediction for adaptive decision-making, ensuring LLMs can
dynamically adjust their behavior based on future state simulations.

We aim to close the gap between language-based reasoning and physically grounded execution. Our
contributions are:

• APEX: a unified framework that equips LLMs with real-time perception with graph networks
and physical foresight for dynamic task planning.

• A three-part benchmark suite spanning structured reasoning, long-horizon planning, and
real-time control, each targeting a distinct dimension of physical intelligence.

• Empirical results showing that APEX outperforms LLMs and VLM-based agents in (1)
numerical reasoning and physical calculation (Physics QA); (2) simulation-guided plan-
ning with physical intuition (Tetris); and (3) perception-integrated prediction for real-time
decision-making (dynamic obstacle avoidance).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Despite significant progress in task planning for LLM-based or VLM-based agents (Wang et al.,
2024b; Ma et al., 2024b; Kawaharazuka et al., 2024; Hu et al., 2023a), existing paradigms largely fail
to integrate real-time physical modeling in embodied intelligence. Our work is situated at a unique
intersection of language reasoning, graph-based physical abstraction, and online physics simulation.

2.1 VISION-LANGUAGE MODELS: PERCEPTION WITHOUT PHYSICAL CONSEQUENCE

Vision–language models (VLMs) such as CLIP (Radford et al., 2021), Flamingo (Alayrac et al.,
2022), PaLM-E (Driess et al., 2023), and OpenVLM (Kim et al., 2024) learn powerful image–text
embeddings that support zero-shot recognition and instruction following (Ma et al., 2024b). Many
VLM-empowered agents, such as CLIPort (Shridhar et al., 2022), VIMA (Jiang et al., 2022), Vox-
Poser (Huang et al., 2023), RT-2 (Brohan et al., 2023), and PhysVLM (Zhou et al., 2025) inherit this
same static worldview. They augment visual grounding with spatial transport layers, multimodal
prompting, or feasibility masks, but still cannot generalize to novel dynamics and remain blind to
explicit physical laws. A handful of works have tried to close the loop by training Transformer-based
action predictors directly on VLM features, for example, RT-1 (Brohan et al., 2022) learns end-to-end
vision-to-control policies. DeepMind’s generalist agent Gato (Reed et al., 2022) showed that a single
Transformer can handle images, text, and control signals in a unified framework. Yet these approaches
still encode physics only implicitly in learned weights, offering no transparent physical feedback and
often failing under distributional shifts.

2.2 WORLD MODELS: FORESIGHT WITHOUT GUARANTEES

TWM (Robine et al., 2023) incorporates temporal attention into latent rollouts; SMART (Sun et al.,
2023) adds self-supervised multi-task pretraining for control; R3M (Nair et al., 2022) leverages
universal visual representations; and Genie (Bruce et al., 2024) integrates interactive environment
generation. These models introduce video representation learning (Majumdar et al., 2023), multi-
agent dynamics, and forward/inverse prediction, yet all remain black-box latent estimators without
explicit guarantees of physical consistency. Despite their imaginative capabilities, latent world models
exhibit fundamental limitations, including compounding roll-out errors that exacerbate over extended
horizons, poor robustness to distributional shifts, and opaque latent dynamics that obscure failure
modes and hinder interpretability. Furthermore, their temporal abstraction often distorts real physical
intervals by embedding time into latent structures rather than modeling it explicitly.

2.3 REINFORCEMENT LEARNING: EXPENSIVE MASTERY, POOR GENERALIZATION

Reinforcement learning (RL) algorithms such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017) and Soft Actor–Critic (SAC) (Haarnoja et al., 2018), and Imitation Learning (IL) like
Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) have achieved notable
success in robotic control through extensive trial-and-error interaction. More recent LLM-guided
RL hybrids aim to mitigate these issues by combining language reasoning with policy learning.
SayCan (Ahn et al., 2022) uses a language model to rank actions proposed by a pretrained policy,
and Inner Monologue (Huang et al., 2022) adds on-the-fly replanning via chain-of-thought prompts.
Iker (Patel et al., 2025) augments low-level controllers with iterative keypoint rewards from a VLM.
Models such as RT-1 Brohan et al. (2022) and BC-Z Jang et al. (2022) demonstrate the potential of
large Transformer policies to generalize across multiple tasks after extensive pretraining on diverse
environments. ProgPrompt (Singh et al., 2023), PromptCap (Hu et al., 2023c), and ECOt (Zawalski
et al., 2024), chain LLM reasoning for task planning. Despite these advancements, RL and its
LLM-centric extensions still face substantial challenges. They either require millions of environment
steps to converge, struggle under physical distribution shifts, or rely on predefined controllers with
limited adaptability to new physics interactions.

2.4 PHYSICAL SIMULATION IN LLM REASONING: BEYOND CONCEPTUAL HALLUCINATIONS

Prior works like Mind’s Eye (Liu et al., 2022) and PiLoT (Zhang et al., 2023) propose injecting
simulation-derived hints into LLM prompts to correct conceptual hallucinations, such as misunder-
standings of qualitative physics (e.g., “heavier objects fall faster”). While effective for symbolic
reasoning, these methods overlook a key dimension: numerical precision. Our experiments show
that modern LLMs (e.g., GPT-4o(Achiam et al., 2023)) already grasp qualitative physical rules,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the APEX reasoning pipeline. Environment snapshots are abstracted into a
motion-aware interaction graph via DG-Motion Attention. This graph structure triggers simulation in
a physical engine (MuJoCo), which evaluates the outcome of candidate actions. A vanilla LLM then
selects an action based on the simulated consequences. This loop, perception → graph trigger →
simulation → LLM → action, enables grounded, temporally aware physical reasoning.

limiting the value of such corrections. However, they still fail at quantitative tasks, like predicting
collision timing, unless grounded by external computation. In real-world environments where timing
and magnitude are critical, this gap is consequential.

Table 1: Comparison of planning paradigms in dynamic physical environments.

Method Quant. Physics Foresight Resp. Time Space–Time (Big-O) Zero-shot

Vanilla LLMs None Implicit Low 1O(p n) Partial
VLMs None Implicit Low 2O(p n) Partial
World Models Implicit Latent rollout Low–High 3O(h k pn)–3O(h k pn2) Partial
RL / IL None Implicit Low (infer) train 4O(s h p), infer 4O(p) No
APEX (ours) Explicit Physics rollout Low 5O(h k n) Yes

Resp. Time = per-decision inference latency (p95 bins: Low ≤ 2s; Medium 2–10s; High 10–60s; Very High > 60s).
p = parameter count of models.
1 n = number of objects/state tokens per decision; no explicit lookahead ⇒ near-linear cost.
2 Cost dominated by perception (encode/decode once per decision); no multi-step rollout.
3 h = lookahead steps; k = action space samples; worst-case O(h k n2) with dense pairwise interactions; O(h k n) if
sparsified.
4 s = training environment steps (high sample complexity); inference scales with p.
5 Graph filtering reduces effective edges to j∼O(p n); engine rollout O(h k n).
Zero-shot means performing in unseen scenes/tasks/dynamics without fine-tuning; labels: Yes (robust), Partial

(degrades but usable), No (requires adaptation).

3 METHODOLOGY

In this section, we introduce the APEX framework, structured explicitly in five detailed stages as
shown in Fig. 2, systematically integrating physical reasoning into LLM decision-making. At its
core, APEX leverages a graph-based representation explicitly chosen for its inherent ability to model
relationships, not merely to highlight the most immediate or obvious actions but rather to capture
complex, task-relevant interactions comprehensively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 GRAPH: RELATIONAL SCENE REPRESENTATION

Given consecutive snapshots at times t and t + ∆t, we construct relational graphs Gt and Gt+∆t

over the same set of object nodes. Each node corresponds to a distinct entity in the environment,
and edges encode potential interactions between pairs of objects. This relational graph structure
explicitly represents the complex web of interactions, emphasizing task-relevant relationships rather
than isolated physical states.

Such graph representations can be directly connected to upstream 3D reconstruction modules, serving
as an intermediate abstraction layer between raw perceptual input and structured physical reasoning.

3.2 TRIGGER: DIFFERENCE-GRAPH MOTION ATTENTION

We form a difference graph:
∆G = Gt+∆t −Gt,

whose edges encode per-pair displacement, relative velocity, and newly emerging or evolving rela-
tionships. A Graphormer encoder computes attention scores:

αij = Graphormer(Gt, Gt+∆t)ij ,

identifying the most task-relevant edges based on relational dynamics. The selected edges define
a focused subgraph, which is translated into a concise natural-language summary S, explicitly
describing critical interactions and relationships (e.g., "sphere A is about to collide with B, influencing
agent strategy").

3.3 SIMULATE: PHYSICS-GROUNDED ACTION ROLLOUTS

From the current relational state st, we enumerate a discrete set of candidate actions {ai} (e.g., left,
right, down, jump). Note that while we define the action set A as a collection of potential actions, the
size of A remains limited due to the finite degrees of freedom in current robotic systems, making
enumeration feasible (Glover, 2004; Sutton et al., 1998). For each candidate action ai, we invoke
forward simulations:

s
(i)
t+1 = PhysicsSim(st, ai),

and generate outcome descriptors ri (collision flags, target distances, object positions, durations).
These outcome descriptors offer explicit, physics-grounded feedback tied directly to relational
predictions and task implications.

3.4 LLM: GUIDED DECISION SYNTHESIS

We enrich the original LLM prompt x with the relational summary S and detailed simulation outcomes
{r1, . . . , rn}, resulting in a contextually comprehensive prompt:

x′ = x ∪ S ∪ {ri}.

The augmented context guides the LLM to synthesize the optimal relationally-informed decision
sequence Π, representing a series of actions strategically selected to achieve the target objective based
on predictive outcomes:

Π′ = argmax
Π

PLLM(Π | x′).

3.5 ACT: EXECUTION OF THE OPTIMAL PLAN

The action plan Π′ is executed in the environment, realizing robust interactions grounded explicitly
in relationally-informed physical foresight.
3.6 REPLACEMENT OF MODELS

APEX is modular. Each component can be replaced by a drop-in alternative as long as the interfaces
are respected.
Graph Trigger. Any message-passing GNN or graph transformer that produces edge saliency
scores over (Gt, Gt+∆t) is compatible, provided it yields a ranked set of task-relevant edges and a
compact, textual summary S for the current frame. Training and alternative encoders are detailed in
Appendix 6.7.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Physics simulator / world model. PhysicsSim may be any engine capable of forward rollout (e.g.,
MuJoCo, Bullet, Brax) or a learned world model with bounded rollout error. The only requirement is
to expose next-state predictions and outcome descriptors ri (collisions, distances, durations). Engine
selection and learned-model variants are discussed in Appendix 6.8.
Action search and complexity. The default action set A is small and enumerated. Time complexity
and swap-in planners are summarized in Appendix 6.9.

Algorithm 1 APEX: Anticipatory Physics-Enhanced Execution

Require: Environment snapshots at t and t+∆t, LLM prompt x
Ensure: Final LLM-generated action plan Π′

1: Construct relational graphs Gt = (V,E) and Gt+∆t from object states
2: Compute attention scores via Graphormer:

αij = Graphormer(Gt, Gt+∆t)ij

3: Identify top-k relationally salient edges forming focused subgraph G̃
4: Generate summary S from relational interactions within G̃
5: Enumerate feasible actions {a1, . . . , an} from current relational state
6: for each action ai do
7: Simulate future state: s(i)t+1 = PhysicsSim(st, ai)

8: Generate outcome description ri = Describe(s(i)t+1)
9: end for

10: Append summary S and outcomes {r1, . . . , rn} to LLM prompt, forming enriched prompt x′

11: Decode optimal action plan from LLM:

Π′ = argmax
Π

PLLM(Π | x′)

12: return Π′

4 EXPERIMENTS

To evaluate APEX, we introduce a new LLM Physical Reasoning Benchmark, testing AI models’
ability to predict and adapt to dynamic environments. The evaluation consists of three primary
experiments as shown in Table 2. Results for other open-source LLMs are reported in Tables 8–13.
Additional evaluations include a dedicated physical benchmark (Appendix 6.3) and a real-world
application case study (Appendix 6.4).

Table 2: Summary of Experimental Setups and Physical Reasoning Capabilities

Experiment Capability Verified Evaluation Objective

Physics Reasoning Physical reasoning over multiple en-
tities

Test LLM’s ability to understand
motion-related quantities across tar-
gets.

Tetris Planning Foresight via simulated prediction Assess whether physics-informed
feedback improves planning quality.

Obstacle Avoidance Perception-integrated prediction Validate perception-action grounding
under dynamic environments.

4.1 EXPERIMENT 1: PHYSICAL REASONING ACCURACY IN STRUCTURED TASKS

To assess the physical reasoning capabilities of LLMs, we construct a suite of synthetic 3D tasks
grounded in classical mechanics, including linear motion, circular motion, projectile motion, multi-
object interactions, and collision prediction. Each task is framed as a structured reasoning problem:
given object positions, velocities, and physical parameters, the LLM must infer whether collisions
will occur or predict resulting velocities after interaction.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We compare vanilla GPT-4o against our APEX-enhanced GPT-4o in Table 3 and report three metrics:

• Accuracy: Whether the model provides a fully correct structured answer within the tolerance
of 5%.

• Mean Squared Error (MSE): Quantitative deviation from ground-truth numerical values.
• Numerical Validity: Percentage of fields where the model returns valid numbers.

We conduct ablation experiments on different dt in the physical simulation engine with the Euler
forward method in Table 4. (Here, dt refers to the step size in the physics engine’s forward simulation,
not the time interval in the Graph Trigger module.)

Table 3: Comparison of GPT-4o vs. APEX-enhanced GPT on Physical Reasoning Tasks. Across
all five categories (linear, circular, projectile, collision, and multi-object motion), APEX achieves
near-perfect accuracy, drastically lower MSE, and full numerical validity, while vanilla GPT-4o
struggles on multi-object tasks.

Task Type Accuracy (%) ↑ MSE ↓ Numerical Validity (%) ↑
GPT-4o
3D Linear Motion 8.00 213.5931 28.00
3D Circular Motion 24.00 4.0998 76.00
3D Projectile Motion 88.00 303.6022 100.00
3D Collision 44.00 12.4816 100.00
3D Multi-Object Motion 0.00 1918.2065 81.33

APEX (ours)
3D Linear Motion 96.00 0.0076 100.00
3D Circular Motion 100.00 0.0000 100.00
3D Projectile Motion 100.00 0.0001 100.00
3D Collision 88.00 2.4627 100.00
3D Multi-Object Motion 97.33 0.0013 100.00

Table 4: Simulation accuracy and average duration per question type at different timesteps dt. Smaller
timesteps (dt = 0.001) achieve the highest accuracy but incur longer runtimes, while larger timesteps
(dt = 0.010) reduce computation at the cost of accuracy.

Question Type dt = 0.001 dt = 0.005 dt = 0.010

Accuracy (%)↑ Duration (s)↓ Accuracy (%)↑ Duration (s)↓ Accuracy (%)↑ Duration (s)↓

3D Linear Motion 100.00 0.023 100.00 0.0058 96.00 0.0042
3D Circular Motion 100.00 0.028 100.00 0.0068 96.00 0.0046
3D Projectile Motion 92.00 0.013 92.00 0.0035 48.00 0.0027
3D Multi-Object Motion 97.33 0.076 90.67 0.022 80.00 0.013
3D Collision 98.00 0.0073 98.00 0.0090 98.00 0.0080

4.2 EXPERIMENT 2: REAL-TIME PHYSICAL PLANNING IN TETRIS

We design a second benchmark to test the agent’s ability to perform dynamic, physics-informed
planning in a classic block-stacking domain: Tetris. Unlike traditional planning tasks that focus on
symbolic correctness or visual alignment, this environment emphasizes physical feasibility, spatial
reasoning, and long-horizon optimization.

The agent interacts with a Tetris simulator in which it must select actions (left, right, rotate, drop) for
falling blocks. Each decision must be made based on the current board state, the shape of the block,
and the anticipated physical consequences of different placements. All models are run under the
same sequence of five randomized seeds, and each episode is capped at 15 blocks with the estimated
maximum number of clear lines as 3, ensuring fair and bounded comparison.

We compare different decision systems:

• GPT-4o & GPT-4o-mini: baseline LLMs with no physical modeling.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• VLM: GPT-4o with images as the VLM (Patel et al., 2025; Wang et al., 2025) that perceives
the current board state via screenshot input.

• APEX (ours): physical planning with physics-based rollout.

We evaluate each model on five physically grounded metrics:

• Final Score: total score after game termination (each cleared line counts 100).
• Max Height: the tallest column reached during gameplay.
• Hole Count: number of empty cells beneath landed blocks.
• Bumpiness: total height difference between adjacent columns.
• Height Increase per Move: average vertical growth rate per action.

These metrics reflect task performance and physical efficiency jointly. A low bumpiness and hole
count indicate stable and compact stacking, while a lower height delta per move demonstrates the
agent’s foresight in minimizing vertical sprawl.

Table 5: Comparison of baselines vs. APEX on Tetris-style structured planning. Baseline models
(GPT-4o, GPT-4o-mini, VLM) fail to clear lines and yield unstable, high stacks with many holes and
bumps, whereas APEX achieves a large positive score with low stack height and smooth structure.

Model Final Score ↑ Max Height ↓ Holes ↓ Bumps ↓
GPT-4o 0.0 14.6 33.4 25.6
GPT-4o-mini 0.0 18.2 26.0 36.4
VLM 0.0 12.6 30.2 22.6
APEX (ours) 140.0 5.0 2.8 6.8

4.3 EXPERIMENT 3: DYNAMIC OBSTACLE AVOIDANCE

This experiment assesses the agent’s adaptive decision-making capabilities within dynamic physical
environments characterized by moving obstacles. The setup utilizes a simulated MuJoCo environment
where an LLM-driven agent navigates through varying obstacle densities and speeds across different
difficulty levels.

The evaluation metrics are as follows:

• CFR (Collision-Free Rate): the rate of time in which the agent successfully avoids all
obstacles.

• IAR (Invalid Action Rate): the proportion of actions that lead to collisions or unsafe states.
• AST (Average Survival Time): the average duration the agent remains operational without

colliding, reflecting overall navigation efficacy.

Table 6: Performance on real-time obstacle avoidance across task complexities. Baselines (GPT-4o,
GPT-4o-mini, VLM) fail to generalize beyond trivial cases, yielding near-zero success rates. By
contrast, APEX consistently achieves high completion rates with zero invalid actions across all
settings, maintaining robust performance even as task complexity increases.

Model Simple Medium Hard
CFR ↑ IAR (%)↓ AST (s)↑ CFR ↑ IAR (%)↓ AST (s)↑ CFR ↑ IAR (%)↓ AST (s)↑

GPT-4o-mini 0/5 0 2.55 0/5 0 1.86 0/5 0 2.24
GPT-4o 1/5 0 5.85 0/5 0 3.15 0/5 0 1.66
VLM 0/5 7 5.18 0/5 4 3.14 0/5 7 2.48

APEX (GPT-4o-mini) 5/5 0 10.00 3/5 0 8.64 1/5 0 6.86
APEX (GPT-4o) 5/5 0 10.00 5/5 0 10.00 3/5 0 8.07

We conduct ablation experiments on different graph models and different values of k, as reported
in Table 7. The choice of k controls how many relational edges are passed forward after motion-
based saliency filtering: small k may discard critical interactions, while large k increases noise and
computational overhead. Similarly, the graph encoder defines how relational dynamics are aggregated;
we compare GAT, GCN, and Graphormer to evaluate whether higher-order attention mechanisms
improve action planning performance. This ablation isolates the contribution of edge selection (k)
and relational modeling capacity (graph backbone) to overall system performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 7: Ablation study on hard obstacle avoidance: Top-k selection vs. graph model choice.
Performance is highly sensitive to both hyperparameters: k = 2 with GPT-4o provides the best trade-
off in success rate and planning stability, while Graphormer shows moderate gains over GAT/GCN.
Mini variants fail across all settings, underscoring the need for both sufficient LLM capacity and
structured graph filtering.

Ablation k/Model LLM CFR↑ AST (s)↑ IAR(%)↓ Latency (s)↓

Top-k

k = 1 gpt-4o-mini 0/5 7.17 0 0.74
k = 2 gpt-4o-mini 0/5 6.38 0 0.73
k = 4 gpt-4o-mini 0/5 7.53 0 0.74
k = 1 gpt-4o 0/5 4.97 0 0.94
k = 2 gpt-4o 2/5 6.58 0 1.25
k = 4 gpt-4o 2/5 5.58 0 1.29

Graph Model

GAT gpt-4o-mini 0/5 2.85 0 0.89
GCN gpt-4o-mini 0/5 7.08 0 0.85
Graphormer gpt-4o-mini 0/5 7.59 0 0.76
GAT gpt-4o 0/5 4.99 0 0.62
GCN gpt-4o 0/5 5.26 0 0.70
Graphormer gpt-4o 1/5 5.44 0 1.24

4.4 EVALUATION SUMMARY

APEX substantially augments LLM capabilities in physical reasoning across structured tasks, dy-
namic adaptation, and real-time obstacle avoidance. Our findings indicate that APEX consistently
outperforms standard LLMs, achieving over 90% accuracy in multi-object dynamics (Experiment 1),
efficient long-horizon planning (Experiment 2), and proactive collision avoidance (Experiment 3).

In Experiment 1, APEX demonstrates superior accuracy in predicting circular motion and collision
dynamics, with baseline GPT-4o achieving less than 20% in Table 3.

In Experiment 2 (Tetris), APEX leverages predictive foresight to minimize structural irregularities,
optimizing placements and significantly improving task performance in Table 5.

Experiment 3 further underscores APEX’s advantage in real-time obstacle avoidance, effectively
mitigating collision risks through predictive modeling, a critical gap in baseline GPT and VLM
systems in Table 6.

5 CONCLUSION

In this paper, we introduced APEX, a novel framework that enhances LLMs with predictive physical
reasoning capabilities by integrating graph-based physical modeling, and physics simulation. Unlike
prior methods that rely on static observations or constraint filtering, APEX enables LLMs to anticipate
future physical interactions and adapt task plans accordingly. Experimental results demonstrate that
APEX significantly improves performance on physical reasoning benchmarks, outperforming standard
LLMs, VLM-based task planning, and grounded decoding techniques.

Furthermore, APEX’s structured approach to physical modeling opens new opportunities for future
research in AI-driven task planning, robotics, and autonomous decision-making. This study provides
a new perspective on enhancing LLMs’ physical reasoning capabilities by replacing RL-based trial-
and-error learning with predictive physical modeling. This direction presents new possibilities for
future robotic task planning and can be combined with existing VLM+RL-based methods to further
improve LLMs’ ability to handle physical interaction tasks.

6 FUTURE WORK

As a next step, we aim to extend APEX into APEX++, where the language model serves not only as a
planner, but as a core component in a recurrent, interpretable perception-prediction-action loop. This
would allow for the emergence of grounded intelligence capable of proactive behavior, structured
foresight, and physical adaptability, unlocking new possibilities across robotics, self-driving, and
embodied AI.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–23736,
2022.

Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, and Ross Girshick. Phyre:
A new benchmark for physical reasoning. Advances in Neural Information Processing Systems, 32,
2019.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
interactive environments. In Forty-first International Conference on Machine Learning, 2024.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied
multimodal language model. 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in neural information processing
systems, 35:30583–30598, 2022.

Scott Glover. Planning and control in action. Behavioral and brain sciences, 27(1):57–78, 2004.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan Kim,
Yaqi Xie, Tianyi Zhang, Hao-Shu Fang, et al. Toward general-purpose robots via foundation
models: A survey and meta-analysis. arXiv preprint arXiv:2312.08782, 2023a.

Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the
power of gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023b.

Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A Smith, and Jiebo Luo. Promptcap:
Prompt-guided image captioning for vqa with gpt-3. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2963–2975, 2023c.

Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang, and Yang Gao. Copa: General robotic
manipulation through spatial constraints of parts with foundation models. In 2024 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 9488–9495. IEEE, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wanjing Huang, Tongjie Pan, and Yalan Ye. Graphormer-guided task planning: Beyond static rules
with llm safety perception. arXiv preprint arXiv:2503.06866, 2025.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In
Conference on Robot Learning, pp. 991–1002. PMLR, 2022.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
prompts. arXiv preprint arXiv:2210.03094, 2(3):6, 2022.

Kento Kawaharazuka, Tatsuya Matsushima, Andrew Gambardella, Jiaxian Guo, Chris Paxton, and
Andy Zeng. Real-world robot applications of foundation models: A review. Advanced Robotics,
38(18):1232–1254, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Olivia Y Lee, Annie Xie, Kuan Fang, Karl Pertsch, and Chelsea Finn. Affordance-guided reinforce-
ment learning via visual prompting. arXiv preprint arXiv:2407.10341, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-world robotic manipula-
tion through mark-based visual prompting. arXiv preprint arXiv:2403.03174, 2024.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui, Denny Zhou,
and Andrew M Dai. Mind’s eye: Grounded language model reasoning through simulation. arXiv
preprint arXiv:2210.05359, 2022.

Runyu Ma, Jelle Luijkx, Zlatan Ajanovic, and Jens Kober. Explorllm: Guiding exploration in
reinforcement learning with large language models. arXiv preprint arXiv:2403.09583, 2024a.

Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-language-
action models for embodied ai. arXiv preprint arXiv:2405.14093, 2024b.

Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Jason Ma, Claire Chen, Sneha Silwal, Aryan Jain,
Vincent-Pierre Berges, Tingfan Wu, Jay Vakil, et al. Where are we in the search for an artificial
visual cortex for embodied intelligence? Advances in Neural Information Processing Systems, 36:
655–677, 2023.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Shin’ya Nishida, Takahiro Kawabe, Masataka Sawayama, and Taiki Fukiage. Motion perception:
From detection to interpretation. Annual review of vision science, 4(1):501–523, 2018.

Shivansh Patel, Xinchen Yin, Wenlong Huang, Shubham Garg, Hooshang Nayyeri, Li Fei-Fei,
Svetlana Lazebnik, and Yunzhu Li. A real-to-sim-to-real approach to robotic manipulation with
vlm-generated iterative keypoint rewards. arXiv preprint arXiv:2502.08643, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world models
are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Conference on robot learning, pp. 894–906. PMLR, 2022.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Kevin A Smith, Eyal Dechter, Joshua B Tenenbaum, and Edward Vul. Physical predictions over time.
In Proceedings of the annual meeting of the cognitive science society, volume 35, 2013.

Fan-Yun Sun, SI Harini, Angela Yi, Yihan Zhou, Alex Zook, Jonathan Tremblay, Logan Cross, Jiajun
Wu, and Nick Haber. Factorsim: Generative simulation via factorized representation. Advances in
Neural Information Processing Systems, 37:87438–87472, 2024.

Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, and Ashish
Kapoor. Smart: Self-supervised multi-task pretraining with control transformers. arXiv preprint
arXiv:2301.09816, 2023.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Beichen Wang, Juexiao Zhang, Shuwen Dong, Irving Fang, and Chen Feng. Vlm see, robot do: Hu-
man demo video to robot action plan via vision language model. arXiv preprint arXiv:2410.08792,
2024a.

Chen Wang, Fei Xia, Wenhao Yu, Tingnan Zhang, Ruohan Zhang, C Karen Liu, Li Fei-Fei, Jie Tan,
and Jacky Liang. Chain-of-modality: Learning manipulation programs from multimodal human
videos with vision-language-models. arXiv preprint arXiv:2504.13351, 2025.

Jiaqi Wang, Enze Shi, Huawen Hu, Chong Ma, Yiheng Liu, Xuhui Wang, Yincheng Yao, Xuan Liu,
Bao Ge, and Shu Zhang. Large language models for robotics: Opportunities, challenges, and
perspectives. Journal of Automation and Intelligence, 2024b.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693, 2024.

Cedegao Zhang, Lionel Wong, Gabriel Grand, and Josh Tenenbaum. Grounded physical language
understanding with probabilistic programs and simulated worlds. In Proceedings of the annual
meeting of the cognitive science society, volume 45, 2023.

Weijie Zhou, Manli Tao, Chaoyang Zhao, Haiyun Guo, Honghui Dong, Ming Tang, and Jinqiao
Wang. Physvlm: Enabling visual language models to understand robotic physical reachability.
arXiv preprint arXiv:2503.08481, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Appendix
• A. Design Principle:

Perception–Graph–Language–Physics–Action (PGLPA) vs.
Vision–Language–Action (VLA)

• B. Supplementary Experiments on More LLMs

• C. Supplementary Experiments on the Phyre Benchmark

• D. Supplementary Experiments on Real World Application

• E. Prompt Formats and Model Inputs

• F. Implementation and System Configurations

• G1. Graph Models

• G2. Physical Engine / World Model

• G3. Action Space Analysis

• H1. Error Analysis for Physics QA

• H2. Case Studies for Tetris Planning

• H3. Dynamic Obstacle Avoidance Examples

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

6.1 DESIGN PRINCIPLE: PERCEPTION–GRAPH–LANGUAGE–PHYSICS–ACTION (PGLPA) VS.
VISION–LANGUAGE–ACTION (VLA)

A key design principle underlying our framework diverges from the conventional Vi-
sion–Language–Action (VLA) paradigm, to connect real-to-sim-to-real with LLM reasoning,
while keeping the blackbox models isolated from numerical/physical information. We refer to
our modular approach as Perception–Graph–Language–Physics–Action (PGLPA). Figures 3 and 4
contrast the conventional VLA pipeline with our proposed PGLPA paradigm, highlighting the struc-
tural differences that motivate our approach. We further compare the two paradigms in terms of
accuracy and hallucination, training and data requirements, and interpretability as follows.

Figure 3: Illustration of the conventional Vision–Language–Action (VLA) paradigm. Visual per-
ception encodes the real world into language features, which are then mapped directly to action
commands. The execution loop closes by applying actions back to the real world. Although concep-
tually simple, VLA tightly couples perception, reasoning, and control within a single embedding
space, limiting interpretability and robustness.

Figure 4: Illustration of our Perception–Graph–Language–Physics–Action (PGLPA) paradigm.
Perception constructs a relational graph from the real world; this graph informs both symbolic
reasoning and an explicit SE(3)-consistent physics simulator. The simulator evaluates candidate
actions via rollouts, producing structured feedback that is integrated with LLM-based reasoning
before execution. This “real-to-sim-to-real” loop decouples numerical physical computation from
probabilistic inference, improving stability, interpretability, and zero-shot transfer.

Accuracy and Hallucination. Planning in dynamic scenes is inherently spatio-temporal: agents
must reason over objects’ states and transitions in 4D under the constraints of Newtonian mechanics.
With full observation, physical laws enable forward prediction of future states; the residual difficulty
comes from action selection, which is combinatorially hard (often treated as a weakly NP-type
search problem; see e.g., classical results on planning/search). Under partial observation, priors (e.g.,

1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

plausible mass ranges) and online updates (e.g., quick weighing) are required to reduce uncertainty.
Modern deep models, including transformers, approximate such unknowns probabilistically; however,
their physical modeling is implicit, which leads to two issues: (i) numerical instability for arithmetic
operations1, and (ii) lack of strict SE(3) consistency (viewpoint changes can disrupt spatial constancy).

PGLPA addresses both by performing all physics in an explicit, SE(3)-consistent environment
(sim/engine) and using perception/graph/LLM only for probabilistic inference and decision. Explicit
physics also constrains VLM/LLM hallucinations, and solving partial observability in a structured
physical model is substantially simpler than tackling it end-to-end in a monolithic VLA.

Training and Data Requirements. VLA typically demands joint vision×language×action datasets
and end-to-end training. In contrast, PGLPA trains mature modules independently and composes them
via stable interfaces. Adding a new modality (e.g., LiDAR) requires retraining only the perception
module rather than the full stack. For action selection, we can leverage simulator-backed search
(e.g., RL/MCTS/CEM) directly in the physics environment; this is generally more data-efficient than
learning a vision→action mapping end-to-end, and aligns with simulator-to-real fine-tuning practices.

Interpretability. All PGLPA modules expose explicit outputs with clear supervision:
• The perception model performs object categorization and 2D/3D localization.
• The graph module acts as a filter, surfacing salient interactions (see Appendix roadmap for a

definition of “salient”).
• The LLM is pre-trained for commonsense and reasoning (task decomposition, option

selection, safety-aware judgments).
• The physics module conducts forward and counterfactual rollouts; their combination enables

capabilities beyond standard RL (e.g., “if I do not block at (0, 0, 1), the car will hit the child,
which is immoral and unaffordable.”).

• The action module follows from the training discussion above.

1Transformers and related architectures are not reliable for exact arithmetic/iteration operations, especially
exponential or iterative routines (Garg et al., 2022). It aligns with our results in Table 3.

2

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

6.2 SUPPLEMENTARY EXPERIMENTS ON MORE LLMS

We further conduct the three experiments on five recent LLMs, with detailed results presented in
Tables 8 to 13.

Table 8: Generalization across LLM backbones - Physical QA. This table compares the accuracy
and response latency of five recent LLMs across diverse physical reasoning tasks. While these
models demonstrate varying capabilities, none surpass the accuracy achieved by our GPT-4o + APEX
framework reported in Table 3.

LLM Linear Circular Projectile Multi Obj Collision

Acc (%)↑ Time (s)↓ Acc (%)↑ Time (s)↓ Acc (%)↑ Time (s)↓ Acc (%)↑ Time (s)↓ Acc (%)↑ Time (s)↓
GPT-4.1 52.00 3.767 44.00 4.120 92.00 3.093 12.00 4.723 28.00 8.170
DeepSeek-R1* 100.00 193.934 80.00 356.351 100.00 349.337 86.65 310.937 40.00 363.831
Claude Sonnet 4 100.00 6.845 16.00 4.387 100.00 6.808 6.67 8.686 38.00 10.019
Gemini 2.5 Flash 80.00 10.593 40.00 7.434 92.00 11.766 32.00 19.168 70.00 58.761
LLaMA 4 Scout 0.00 6.141 4.00 5.583 72.00 6.687 1.33 5.770 10.00 5.824

For DeepSeek-R1, only 20% of the dataset was evaluated due to its significantly longer reasoning time, which
made full-scale benchmarking impractical within our resource constraints.

Table 9: Performances of LLMs for the Tetris Experiment. Gemini achieved the best structural control
with the lowest stack height, though its latency was very high. Claude and Gemini occasionally
cleared lines and maintained moderate structure. GPT-4.1 was fast but structurally weak, while
LLaMA failed all cases with rigid stacking behavior. Overall, Gemini appears to perform the best,
achieving the lowest average max stack height (9.2±2.48). For reference, the APEX (GPT-4o)
baseline maintains an average max height of 5±2.97.

Model Final Score↑ Max Stack Height↓ Holes↓ Bumps↓ Resp. Time (s)↓
GPT-4.1 0.0 ± 0.0 15.0 ± 2.61 38.4 ± 17.67 27.4 ± 7.36 0.778 ± 0.116
Claude Sonnet 4 (20250514) 20.0 ± 40.0 14.4 ± 0.80 36.4 ± 6.86 17.8 ± 3.92 1.557 ± 0.049
Gemini 2.5 Flash 20.0 ± 40.0 9.2 ± 2.48 14.2 ± 5.84 13.6 ± 5.68 85.391 ± 7.625
LLaMA 4 Scout 0.0 ± 0.0 17.0 ± 0.00 32.2 ± 5.46 30.2 ± 5.19 0.852 ± 0.054

For clarity, we removed the “Height/move” metric, which was effectively redundant with max stack height as it
was not normalized by the number of moves.

Table 10: Performances of LLMs for the Tetris Experiment with Vision. All models failed to
clear lines with image input. Gemini maintained the lowest stack height but had high latency,
Claude showed balanced structural metrics, GPT-4.1 was fast but unstable, and LLaMA consistently
terminated at max height due to rigid behavior.

Model Final Score↑ Max Stack Height↓ Holes↓ Bumps↓ Resp. Time (s)↓
GPT-4.1 0.0 ± 0.0 12.6 ± 2.73 24.4 ± 9.05 26.0 ± 10.35 1.162 ± 0.096
Gemini 2.5 Flash 0.0 ± 0.0 10.8 ± 1.47 23.2 ± 7.19 15.8 ± 4.02 47.490 ± 8.011
LLaMA 4 Scout 0.0 ± 0.0 17.6 ± 1.36 34.8 ± 11.89 35.2 ± 2.71 0.892 ± 0.105
Claude Sonnet 4 (20250514) 0.0 ± 0.0 12.2 ± 2.23 22.4 ± 7.45 21.6 ± 8.96 1.736 ± 0.114

3

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Performances of LLMs and LLM+Vision models on the Simple dynamic obstacle avoidance
task. Claude and GPT-4.1 reached 80% task success, while DeepSeek and Gemini showed extremely
long latencies.

Type Model CFR↑ AST (s)↑ IAR (%)↓ Avg Latency (s) ↓
LLM+Vision Claude Sonnet 4 (20250514) 4/5 9.98 2.00 2.00
LLM+Vision Gemini 2.5 Flash 1/5 6.73 4.00 27.45
LLM+Vision LLaMA 4 Scout 1/5 5.24 0.00 1.27
LLM+Vision GPT-4.1 0/5 6.84 0.00 1.19
LLM DeepSeek-R1 (0528) 0/5 2.55 7.00 88.08
LLM Claude Sonnet 4 (20250514) 0/5 5.79 0.00 1.54
LLM Gemini 2.5 Flash 0/5 6.64 7.00 2.36
LLM LLaMA 4 Scout 0/5 6.83 0.00 0.88
LLM GPT-4.1 4/5 8.89 0.00 0.92

Table 12: Performances on the Medium difficulty setting. Most models failed to generalize. DeepSeek
and Gemini still exhibited long planning times, while Claude and GPT-4.1 remained efficient.

Type Model CFR↑ AST (s)↑ IAR (%)↓ Avg Latency (s) ↓
LLM+Vision Claude Sonnet 4 (20250514) 0/5 2.58 0.00 1.92
LLM+Vision Gemini 2.5 Flash 0/5 4.47 4.00 28.07
LLM+Vision LLaMA 4 Scout 0/5 5.35 0.00 1.24
LLM+Vision GPT-4.1 0/5 1.86 0.00 1.25
LLM DeepSeek-R1 (0528) 0/5 2.43 13.00 179.01
LLM Claude Sonnet 4 (20250514) 0/5 3.96 2.00 2.68
LLM Gemini 2.5 Flash 0/5 2.53 11.00 33.03
LLM LLaMA 4 Scout 0/5 4.28 0.00 0.82
LLM GPT-4.1 0/5 3.16 0.00 0.71

Table 13: Performances on the Hard setting. No model succeeded, but latency differences remained
stark. Gemini and DeepSeek remain impractical for time-sensitive planning.

Type Model CFR ↑ AST (s)↑ IAR (%)↓ Avg Latency (s) ↓
LLM+Vision Claude Sonnet 4 (20250514) 0/5 4.63 2.00 2.14
LLM+Vision Gemini 2.5 Flash 0/5 3.57 0.00 35.65
LLM+Vision LLaMA 4 Scout 0/5 1.66 0.00 1.26
LLM+Vision GPT-4.1 0/5 3.04 0.00 1.23
LLM DeepSeek-R1 (0528) 0/5 3.18 9.00 228.02
LLM Claude Sonnet 4 (20250514) 0/5 3.55 0.00 1.65
LLM Gemini 2.5 Flash 0/5 3.77 4.00 34.34
LLM LLaMA 4 Scout 0/5 2.33 7.00 0.67
LLM GPT-4.1 0/5 4.20 0.00 1.42

4

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

6.3 SUPPLEMENTARY EXPERIMENTS ON THE PHYRE BENCHMARK

We additionally evaluate APEX on the Phyre benchmark (Bakhtin et al., 2019), a widely used suite
of physical reasoning puzzles that require agents to anticipate object dynamics and plan interventions
in diverse 2D environments. Each task is defined by a goal condition (e.g., make the green ball touch
the blue box) and requires reasoning about gravity, collisions, and multi-object interactions. Unlike
synthetic kinematics tests, Phyre emphasizes generalization: models must solve both seen and unseen
templates, making it a strong proxy for zero-shot physical reasoning. This benchmark allows us to
assess whether APEX’s graph–simulation loop provides advantages in standardized tasks beyond our
custom environments.

To simulate potential sim-to-sim or sim-to-real discrepancies in real-world settings, we implemented
a disturbed simulator in the 256× 256 environment: each object was perturbed with up to 2 pixels in
position and 1◦ in rotation. We did not repeat standard sim-to-sim comparisons for two reasons: (1)
time constraints, and (2) most RL agents, except those that explicitly address vision or sim-to-sim
transfer, are trained in the original simulation environment and are not typically designed to generalize
across simulators.

Table 14: GPT-4.1 nearly completely failed to solve the task. DeepSeek-R1 took a significantly
long time (∼150s per case) but still solved only a small number of problems. In contrast, our
APEX-enhanced GPT-4.1, even under disturbed conditions, consistently produced valid rollouts and
outperformed analytical methods by a wide margin.

Model Task Type Total Tasks Solved↑ Solved (%)↑ Avg Resp. Time (s)↓ Avg Sim Time (s)↓ AUCCESS↑ Attempts / Task↓
GPT-4.1 ball_cross_template 500 2 0.40% 5.188 0.000 0.004 2.918
GPT-4.1 ball_within_template 500 6 1.20% 4.945 0.000 0.0114 2.958
DeepSeek-R1 ball_cross_template 20 0 0.00% 170.915 0.000 0.000 2.800
DeepSeek-R1 ball_within_template 20 3 15.00% 133.611 0.000 0.119 2.800
APEX (GPT-4.1) ball_cross_template 500 261 52.20% 5.735 14.654 0.487 3.978
APEX (GPT-4.1) ball_within_template 500 289 57.80% 5.689 12.181 0.542 3.826

All simulations were run sequentially on CPU without GPU or distributed computing. Parallelization would
significantly reduce total runtime.
The action space was explored using 10,000 actions sampled uniformly at random.
Due to DeepSeek-R1’s high inference cost, only 20 out of 500 test cases were evaluated.

6.4 SUPPLEMENTARY EXPERIMENTS ON REAL WORLD APPLICATION

We further validate APEX in a real-world robotic setting, using a reactive collision avoidance task.

Experimental Setup. The platform is a HiWonder Mini Arm (5 DOF) controlled by a Raspberry
Pi 4B (Arm32, Python 3.7). An onboard RGB-D camera is mounted on the end-effector for visual
input. Perception is implemented with classical CV techniques including color-based segmentation,
bounding box tracking, and depth estimation, followed by a 5-frame sliding-window filter for position
smoothing. The agent receives prompts in the format specified in the following. Baseline comparisons
use GPT-4o directly, queried once per second without trigger or simulation.

Prompt of Explicit intervention setting(APEX and GPT-4o)

You are controlling a robot arm in a 2D tabletop environment.
Two balls are moving on the table: a red ball and a green ball.
The red ball is stationary, and the green ball is moving toward it.

Your task is to **prevent a collision** between them
by moving the robot arm to intercept the green ball.

Please choose a 2D target position (x, y),
where the robot arm should go to block the green ball’s path.
The robot arm will then move to the position (x, y, 0.5) in 3D space,
hovering slightly above the table.

5

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Make sure the chosen position is effective in preventing the collision,
but also avoid placing the robot arm too close to the red ball.

Current_state:{state}
Physical Engine Result: {rolling_results} (Prompt Injection)
Return your result as a JSON dictionary: {{"x": ..., "y": ...}}
or {{"x":-99, "y":-99}} if you think no need of action
Return Only The JSON without Markdown

Prompt of Implicit intervention setting(APEX and GPT-4o)

You are controlling a robot ball on 2D board.
It can stop any object near in any movement
You can move the ball to a location (x,y) in 1 sec
Current_state:{state}
The green car is reaching the child in red T-shirt in 5 sec.

Physical Engine Result: {rolling_results}

Return your result as a JSON dictionary: {{"x": ..., "y": ...}}
or {{"x":-99, "y":-99}} if you think no need of action
Return Only The JSON without Markdown

Task. Explicit intervention setting: A human moves a green block toward a static red block. The
agent must detect the potential collision and move the manipulator to prevent contact. Implicit
intervention setting: In the same setting, but We do not explicitly tell the LLM that it needs to
intervene in a collision. We only inform it that it controls a ball that can stop any object, and that a
green car is approaching a kid in a red T-shirt from the graph model.

Metrics. We measure response rate, collision rate, and planning latency.

Table 15: In the no-moving condition, we provide the LLM with the ball’s position and velocity.
When prompted to intervene, GPT-4o tends to react.

Model FIR↓ Resp. Time (s)↓
GPT-4o 8/10 4.534
APEX (GPT-4o) 0/10 –

Table 16: In the collision condition, we evaluate the intervention behavior of GPT-4o and APEX-
augmented GPT-4o in the same linear collision scenario. APEX significantly improves both the
validity and success rate of interventions, while also reducing response time and simulation delay.

Model Resp. Rate↑ Valid↑ Success ↑ Resp. Time (s)↓ Sim Time (s)↓
GPT-4o 10/10 5/10 3/10 5.342 –
APEX (GPT-4o) 10/10 8/10 8/10 1.6562 0.1855

Limitations Our deployment platform was a Raspberry Pi 4B (ARM32 architecture) with a system-
level Python version restricted to 3.7. Under these constraints, PyTorch installation was infeasible. We
therefore employed a lightweight linear classifier to estimate whether a selected object would collide
with an obstacle within a 5-second horizon. This linear predictor can also serve as a pseudo-label
generator for training a graph-based collision forecasting model.

In this hardware setting, Mujoco deployment was also not feasible. Given the simplicity of the task,
we implemented a custom forward Euler integrator as a proxy simulator. For each object, trajectories

6

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 17: Five consecutive trials for the implicit intervention setting. In this condition, we do not
explicitly tell the LLM that it needs to intervene in a collision. The LLM only knows it controls a
ball that can stop any object, and that a green car is approaching a kid in a red T-shirt from the graph
model. Among the two failure cases: one was due to a simulation error where no feasible stopping
point was found; the other was because the LLM did not respond and chose not to intervene.

Model Success↑
APEX (GPT-4o) 3/5

Figure 5: Frame montage from the real-world deployment video, with one frame sampled per second.
The sequence illustrates three key phases of the experiment: (6s) human moving a green object toward
a static red object, (18s) physical evaluations by the APEX simulation loop, and (19s) intervention
performed by the robotic arm to prevent collision. This visualization highlights how APEX integrates
perception, simulation, and LLM reasoning into grounded physical action.

7

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 6: Filtered top-5 safe nodes from physical analysis from 1412 points in 0.186 seconds.

were computed using the first-order update:

pos[t+ 1] = pos[t] + v[t] ·∆t, v[t+ 1] = v[t] + a[t] ·∆t.

Since Mujoco also defaults to Euler integration unless explicitly reconfigured with higher-order
solvers, our approximation remains consistent with the default dynamics fidelity. On the Raspberry
Pi 4B, simulating 1412 points over a 5-second window with ∆t = 0.01s takes approximately 0.2s,
which is negligible compared to LLM inference latency (1.5–5.0s).

8

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

6.5 PROMPT FORMATS AND MODEL INPUTS

To ensure consistency and replicability across models and tasks, we provide the exact prompt
templates used in each experimental setting. All inputs are designed to maintain clarity while
preserving the reasoning and response structure expected by LLMs.

Physics QA Prompt Format (APEX and GPT-4o):

You are a physics expert.(System Prompt)

Solve the following problem and return the answer in JSON format.

Problem: {q["question"]}

The external physical engine predictions: {ref} (Prompt Injection)

Expected JSON response:
{{

"reasoning": "Explanation of how you arrived at the answer"
"answer": "Your final numerical answer(without unit and equation)"
as {str(q[’answer_json’])},

}}

Respond the JSON string only without any markdown symbol.

Tetris Planning Prompt Format (APEX and GPT-4o):

You are a Tetris AI agent.(System prompt)

You are playing Tetris. Your goal is to maximize the score by:
- Clearing as many lines as possible.
- Keeping the board as flat as possible.
- Avoiding unnecessary stacking.

Here is the current board state(0-blank,,1-current piece, 2-landed piece):
{state}

Here are physical engine analysis:{APEX_results} (Prompt Injection)

Available moves:
- "left": Move the piece left by one column.
- "right": Move the piece right by one column.
- "rotate": Rotate the piece 90 degrees clockwise.
- "down": Instantly drop the piece to the lowest possible position.(max times = 1)

Decide the best move sequence in JSON format as a list of actions.
Each action should include the move and how many times to perform it.

Example:
[

{{"move": "left", "times": 2}},
{{"move": "rotate", "times": 1}},
{{"move": "down", "times": 1}}

]

Allowed moves are: "left", "right", "rotate", and "down".
Only return the JSON array without any explanation or markdown. No Markdown

9

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Obstacle Avoidance Prompt (APEX and GPT-4o):

You are an AI robot that avoids dynamic obstacles.(System Prompt)
You are controlling a robot in a 3D physical environment with moving obstacles.
Your goal is to avoid collisions with cats while progressing toward the target
location.

Current state
(The map has square walls located at x = ±5 meters and y = ±5 meters):
{state}

Obstacles:
{summary}

Available Moves:
{available_move}

Physical Engine Analysis:
{apex_results} (Prompt Injection)

Output the decision in this format:
{{
"move": "stay",
"duration": 1.0,
}}

Only return the JSON object with no explanation or markdown.

Here is the screenshot
(Red balls cat, green ball-your controlled agent): {image} (VLM only)

6.6 IMPLEMENTATION AND SYSTEM CONFIGURATIONS

All experiments were conducted using:

• Hardware: A laptop with NVIDIA RTX 4070 for MuJoCo simulations and forward
predictions.

• Language Models: GPT-4o via OpenAI API;
• Physics Simulators: MuJoCo for environment modeling and trajectory evaluation.
• Evaluation Interface: A custom Python simulator for Tetris and real-time rendering with

frame capture for trajectory visualization.

6.7 GRAPH MODELS

6.7.1 TRAINING OF DG-MOTION ATTENTION

Training data generation. We synthesize star-graphs with n=6 nodes (one master and five targets).
Each node is assigned a random 3D position x∼ U(−10, 10)3, a random unit direction, and a speed
s∼ U(0.5, 1.0), yielding v = s v̂. Half of the samples are labeled collision: we pick a random
target and set its velocity to intercept the master’s future position at horizon t=3s; the remaining
half are safe. We compute a physically interpretable risk score at t+∆t (∆t=0.01s) by combining
(i) inverse distance, (ii) directional alignment (cosine), and (iii) speed via sigmoids with weights
(wd, wdir, wv) = (0.34, 0.33, 0.33). Edges from the master to each target are labeled positive if risk
> τ (τ=0.75 by default). Node features are [isMaster,xt,vt] at t and t+∆t, and edge attributes are
relative displacements w.r.t. the master, yielding a star graph of O(n) edges per sample.

10

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

DiffGraphormer (DG-Motion Attention). Our model is a lightweight variant inspired by
Graphormer (Ying et al., 2021), but implemented with TransformerConv (PyG) and explicit edge
features. We encode nodes and edges with linear layers and apply a TransformerConv (with edge
features) as the relational backbone. During the forward pass, differential motion (xt+∆t − xt)/∆t
provides velocity cues to construct edge attributes aligned with the data generator (distance, direction,
speed). An edge head aggregates endpoints (hij=hi+hj) and outputs a sigmoid probability for
each master→target edge. We train with binary cross-entropy; in deployment, we favor high-recall
thresholds (e.g., >90% recall with ∼70% accuracy) to minimize missed hazards that would prevent
APEX from triggering physics rollouts.

Training setup. We train edge-level hazard predictors on the synthetic star-graph dataset. We split
data 80/20 for train/val and use a batch size of 1 (variable-size graphs), Adam (lr=10−3), 100 epochs,
and ∆t=0.01s. Models include DiffGraphormer (TransformerConv with edge features) and ablations
DiffGAT/DiffGCN.

Loss & class balance. We optimize binary cross-entropy with logits and a positive class weight
w+=(1− π)/π computed from the dataset prior π (positive ratio). Evaluation. We report edge-level
accuracy and recall on the validation split with a 0.5 decision threshold, prioritizing high recall to
avoid missed hazards that would bypass APEX’s simulation trigger. Trained weights are saved for
deployment.

6.7.2 DESIGN PRINCIPLE

Although our goal is not to benchmark graph architectures, one might ask why we place a graph
module after the perception stack. This is an engineering choice. The graph plays two complementary
filtering roles: (i) interaction filtering: in a cluttered scene, not all pairwise (or higher-order)
interactions are task-relevant. Curating a sparse, task-conditioned interaction set prevents overlong
contexts for LLM/VLM-based reasoning; and (ii) temporal saliency filtering: selecting only the most
informative current frames (triggers) substantially reduces compute and relaxes the FPS requirements
for downstream modules.

Beyond filtering, a scene graph offers a clean interface for switching between the physical world
and natural language while retaining spatial structure and object state. Concretely, it preserves
object-centric coordinates and attributes, implicitly maintaining an approximate SE(3) consistency
that can be online updated.

The practical upside is that graph modeling is a mature area: from annotation pipelines to training
recipes, we can leverage well-established methods rather than inventing bespoke machinery.

Directions and Examples. We highlight several graph-based avenues that align with our system:

• Physical Interaction Graphs (e.g., falling/moving dynamics): encode contact, support, and
relative motion to gate physics queries and rollouts.

• Semantic Hybrid Graphs: integrate symbolic object categories with continuous physical
states, enabling reasoning that links high-level semantics (e.g., “cup”) with contextual
properties (e.g., “full of water”, “hot”).

• Safety Graphs: augment nodes and edges with risk labels and constraints, supporting
safety-aware planning and intervention (Huang et al., 2025).

• Partial Complement Graphs: expand partial observations (e.g., “a hand”) into complete
object groups (e.g., articulated human joints).

• Spatio-Temporal Graphs: capture objects whose motion patterns deviate from typical
dynamics, such as those that suddenly appear or exhibit anomalous trajectories.

• Counterfactual Graphs: represent causal structures that support “what-if” reasoning
(e.g., if object A had not collided with object B, would B still move?), enabling stronger
generalization and interpretability.

11

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

6.8 PHYSICAL ENGINE / WORLD MODEL

Simulation-based methods inevitably face both sim-to-real shift and partial observability. If we
restrict the scope to Newtonian mechanics, information-theoretic considerations suggest that, given
sufficiently rich observations of the real world, the Newtonian laws provide the most compact and
faithful model. Under partial observation, the primary challenge is therefore accurate sensing and
identification of the entities present in the scene, rather than entangling object categories (e.g., “apple,”
“cup”) with specific motion patterns (e.g., free fall). Although one may train a model to approximate
linear operators, and linearity is central to Newtonian mechanics, this introduces additional training
cost and instability: we cannot guarantee that the model has internalized the gravitational constant or
that such constants scale coherently across all motions.

Attempts to realize a purely learned world model that performs physical forward prediction with
large sequence models (e.g., Transformers) inherit these issues (see Appendix 6.1). A lightweight,
hybrid world model layered on top of a physics engine may be promising, but we leave a thorough
exploration to future work.

Limitations. Beyond sim-to-real shift, partial observability, and the deliberate restriction to Newto-
nian regimes, both real and simulated environments exhibit chaotic dynamics. Measurement noise
implies that long-horizon simulations accumulate bounded error. For physics engines, however,
existing numerical analysis provides stability and error bounds, enabling principled confidence as-
sessments. In contrast, black-box learned world models generally lack such calibrated uncertainty
and verifiable error guarantees, which remains a key limitation.

6.9 ACTION SPACE ANALYSIS

Assume an agent with n degrees of freedom (DOF) and k-step rollouts. A naive complexity is:

O
(
(n · l)k

)
,

where l denotes the discretization granularity.

In practice, we employ a coarse-to-fine search strategy: early steps use low-resolution discretization
(e.g., 5◦), and the resolution is progressively refined near step k−1. Thanks to the Markov property,
redundant rollouts are avoided by caching and pruning previously visited states.

Thus, the effective complexity becomes:

O
(
min

(
(n · l1)k, s · l2

))
,

where s is the number of reachable states, and l1, l2 denote coarse and fine resolutions, respectively.

Unlike Bellman-style methods, APEX avoids learning a high-dimensional value function, naturally
supports heuristic pruning, and scales efficiently.

Computational Overhead. A common concern is the computational cost of simulation-based
rollouts. In APEX, rollout simulates n objects for k seconds with step size ∆t, resulting in:

O

(
n · k
∆t

)
operations.

For example, with n = 100, k = 1, and ∆t = 10−4, the rollout involves 104 steps. A standard CPU
core can handle approximately 109 FLOPs/s, so this costs less than 1 ms runtime per rollout. Since
simulations are fully parallelizable, APEX runs efficiently on CPUs without requiring specialized
hardware.

The physics engine ensures both interpretability and real-time feasibility. Despite relying on high-
fidelity simulations, APEX remains efficient and tractable.

Moreover, the combined complexity of action rollout and simulation is multiplicative. However,
all simulations are independent, and each frame involves only linear-time physics computation per
object. This structure naturally enables GPU-level parallelism.

12

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

As an illustration, consider a brute-force rollout of 100,000 actions over 1 second with timestep
∆t = 0.01. Assuming 10 objects are active per frame, each requiring ∼ 103 FLOPs, the total cost is:

(100,000 actions)× (100 frames)× (10 objects)× (103 FLOPs) = 1011 operations.

Such a workload is easily handled by modern GPUs and can be completed within milliseconds
through parallel computation.

Replacement. The APEX rollout module is drop-in replaceable with pretrained RL policies or
Monte Carlo Tree Search (MCTS) planners for candidate action generation; our caching/pruning and
simulation interfaces remain unchanged and continue to provide the same complexity and parallelism
benefits.

13

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

6.10 ERROR ANALYSIS FOR PHYSICS QA

Despite its general reasoning strength and applying of correct physical laws, GPT-4o often struggles
with numerical accuracy especially on displacement calculations, which is crucial in real-world
application like auto driving. We sampled failure cases across five representative tasks to understand
the underlying issues.

(1) 3D Linear Motion: Numerical Errors

Linear Motion Numerical Error

Question: An object starts at (0, 0, 0) with an initial velocity of [13.15, 1.48, 6.23] m/s and
an acceleration of [−2.77, 2.36, 1.77] m/s. What are its velocity vx, vy, vz and displacement
dx, dy, dz after 9.03 seconds?

LLM Reasoning: To find the velocity and displacement of the object after 9.03 seconds, we
use the kinematic equations. The final velocity in each direction can be calculated using
the formula v = u + at, where u is the initial velocity, a is the acceleration, and t is the
time. The displacement in each direction can be calculated using the formula s = ut+0.5at2.

For the x-direction: Initial velocity (ux) = 13.15 m/s, acceleration (ax) = -2.77
m/s2. Final velocity (vx) = 13.15 + (−2.77)× 9.03 = −11.8851 m/s. Displacement (dx) =
13.15× 9.03 + 0.5× (−2.77)× (9.03)2 = 59.364315 m.

For the y-direction: Initial velocity (uy) = 1.48 m/s, acceleration (ay) = 2.36 m/s2.
Final velocity (vy) = 1.48 + 2.36 × 9.03 = 22.7708 m/s. Displacement (dy) =
1.48× 9.03 + 0.5× 2.36× (9.03)2 = 114.94686 m.

For the z-direction: Initial velocity (uz) = 6.23 m/s, acceleration (az) = 1.77 m/s2.
Final velocity (vz) = 6.23 + 1.77 × 9.03 = 22.2101 m/s. Displacement (dz) =
6.23× 9.03 + 0.5× 1.77× (9.03)2 = 147.014145 m.

LLM Answer:
{

"velocity_x": "-11.8851",
"velocity_y": "22.7708",
"velocity_z": "22.2101",
"displacement_x": "59.3643154",(wrong)
"displacement_y": "114.94686",
"displacement_z": "147.014145"

}

Ground Truth:
{

"velocity_x": -11.86,
"velocity_y": 22.79,
"velocity_z": 22.21,
"displacement_x": 5.81,
"displacement_y": 109.58,
"displacement_z": 128.42

}

Error: Miscalculation on displacement.

(2) 3D Circular Motion: Numerical Errors

14

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(2) 3D Circular Motion Numerical Error

Question:
• Motion Type: Circular Motion
• Radius: 2.49 meters
• Speed: 8.75 m/s
• Angular velocity: 3.51 rad/s
• Time: 5.95 s
• Plane: xy-plane
• Task: Compute its position (xB , yB , zB), assuming it starts at (r, 0, 0).

LLM Reasoning:
To find the position of the object in circular motion, we use the parametric equations for
circular motion. The object starts at position (r, 0, 0) and rotates in the xy-plane. Its position
at any time t is given by:

(xB , yB) = (r · cos(θ), r · sin(θ))
where θ is the angular displacement. The angular displacement θ is calculated as:

θ = ω × t = 3.51× 5.95 = 20.8845 rad
Thus:

xB = 2.49 · cos(20.8845) and yB = 2.49 · sin(20.8845)
Since the motion is in the xy-plane, zB = 0.

LLM Answer:
{

"x_B": "0.57",
"y_B": "-0.51",
"z_B": "0"

}

Ground Truth:
{

"x_B": 0.3206,
"y_B": -0.7001,
"z_B": 0.0

}

Error: Miscalculated both xB and yB . Likely due to incorrect theta or trig eval.

(3) 3D Projectile Motion: Axis Misinterpretation

(3) 3D Projectile Motion: Axis Misinterpretation

Question:
A projectile is launched from (0, 0, 0) with an initial velocity of [7.68, 18.83, 11.81] m/s from
x-y plane. Calculate its flight time, maximum height (h), and range (dx, dy, dz).

LLM Reasoning:
To solve the problem, we break down the motion into its components. The initial velocity
vector is given as [7.68, 18.83, 11.81] m/s, where 7.68 m/s is the x-component, 18.83 m/s
is the y-component, and 11.81 m/s is the z-component. The projectile motion is influenced
by gravity acting in the negative y-direction with an acceleration of −9.81 m/s. The flight

15

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

time can be found by determining when the projectile returns to the y = 0 plane. Using the
kinematic equation for vertical motion y = v0y ∗ t + 0.5 ∗ a ∗ t2, we set y = 0 and solve
for t. The maximum height is achieved when the vertical velocity is zero, calculated using
v = v0y + a ∗ t. The range in each direction is calculated using the horizontal components
of motion, which are not affected by gravity. The horizontal ranges (dx, dz) are calculated as
v0x ∗ t and v0z ∗ t, respectively. The maximum height is calculated using the vertical motion
equation with the time at maximum height.

LLM Answer:
{

"flight_time": "3.84",
"maximum_height": "18.06",
"range_x": "29.47",
"range_y": "0",
"range_z": "45.32"

}

Ground Truth:
{

"flight_time": 2.41,
"maximum_height": 7.11,
"range_x": 18.49,
"range_y": 45.34,
"range_z": any.

}

Error: The model confuses the vertical axis with the forward direction, mistakenly assigning
horizontal motion to the z-axis and ignoring vertical displacement on y.

(4) 3D Multi-Object Motion: Complex Reasoning with Mixed Physics Types

3D Multi-Object Motion Error (LLM Inaccuracy in Hybrid Settings)

Question:
We have three objects moving in different types of motion in 3D space:

1. Object A - Linear Motion
• Initial Velocity: [11.41, 1.01, 6.45]m/s

• Acceleration: [−0.7, 0.8, 1.55]m/s2

• Time: 5.18 s
• Compute the final position (xA, yA, zA), assuming it starts at (0, 0, 0).

2. Object B - Circular Motion
• Radius: 2.49m
• Angular Velocity: 1.17 rad/s
• Time: 5.26 s
• Rotating in the xy-plane.
• Compute the position (xB , yB , zB), assuming it starts at (rB , 0, 0).

3. Object C - Projectile Motion
• Initial Speed: [21.47, 12.09, 21.6]m/s

• Time: 6.57 s
• Compute the position (xC , yC , zC), assuming it starts from (0, 0, 0) in the

xy-plane.

Reasoning:

16

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• For Object A (Linear Motion), we use the kinematic equation for linear motion:

Position = Initial Velocity × t+ 0.5× Acceleration × t2

• For Object B (Circular Motion), the position is calculated using the parametric
equations:

(xB , yB) = (r · cos(ω · t), r · sin(ω · t)) , zB = 0

• For Object C (Projectile Motion), the position is calculated for each component as:

xC = vx × t

yC = vy × t

zC = vz × t− 0.5× g × t2

where g is the gravitational acceleration.

LLM Answer:
{

’pos_A’: {’x_A’: ’51.698247’, ’y_A’: ’8.06772’, ’z_A’:
’48.568195’},
’pos_B’: {’x_B’: ’1.176498’, ’y_B’: ’2.140898’,
’z_B’: ’0’},
’pos_C’: {’x_C’: ’141.0939’, ’y_C’: ’79.46213’,
’z_C’: ’48.842055’}

}

Ground Truth:
{

’pos_A’: {’x_A’: 49.71, ’y_A’: 15.96, ’z_A’: 54.21},
’pos_B’: {’x_B’: 2.47, ’y_B’: -0.32, ’z_B’: 0},
’pos_C’: {’x_C’: 141.06, ’y_C’: 79.43, ’z_C’: any}

}

Error: The questions are too complex, and the reasoning parts are correct, but the calculations
are wrong.

(5) 3D Collision: Fails to Predict Future Collision

(5) 3D Collision: Fails to Predict Future Collision

Question:
Two objects with masses 8.4 kg and 5.91 kg are located at positions:

Object 1 Position: [−2.8817,−0.4259,−2.0413]

Object 2 Position: [−0.4778, 1.7133, 0.4933]

The radius of both spheres is 0.5.
They are moving with velocities:

Object 1 Velocity: [1.999, 1.779, 2.108]m/s

Object 2 Velocity: [−1.273,−1.133,−1.342]m/s

Assuming an elastic collision, determine:

• Will they collide?
• If they collide, what are their final velocities?

17

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

LLM Reasoning:
To determine if the two objects will collide, we first calculate the distance between their
centers using the Euclidean distance formula:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

If the distance d is less than or equal to the sum of their radii (1.0), they are already colliding.
If not, we proceed to check their relative velocities to determine whether they are moving
towards each other.
The relative velocity vector vrel is given by:

vrel = v2 − v1

We then compute the dot product of vrel and the vector connecting the centers. If the dot
product is **negative**, it indicates that the objects are moving towards each other.
In this case:
- The initial distance is approximately 4.558, which is greater than the sum of the radii 1.0. -
The dot product of the relative velocity vector and the center-to-center vector is **negative**,
indicating that the objects will collide.
For an elastic collision, we apply the conservation of momentum and kinetic energy to
calculate the final velocities of both objects.

LLM Answer:
{

"will_collide": "true",
"velocity_1":

{"vel_1_x": "-1.2731450866327967",
"vel_1_y": "-1.1329265996055307",
"vel_1_z": "-1.3423728509665511"},

"velocity_2":
{"vel_2_x": "1.9989536980325082",
"vel_2_y": "1.7787979073700424",
"vel_2_z": "2.107647590798081"}

}

Ground Truth:
{

"will_collide": "true",
"velocity_1":
{"vel_1_x": -0.7, "vel_1_y": -0.63, "vel_1_z": -0.74},
"velocity_2":
{"vel_2_x": 2.57, "vel_2_y": 2.29, "vel_2_z": 2.71}

}

Error:

Although LLM correctly identified the two object will collide, it failed to calculate the
velocities by Newton’s third law of motion but just swap them.

6.11 CASE STUDIES: TETRIS PLANNING

We analyze qualitative behavioral differences across four models on identical Tetris configurations,
with visualizations shown in Figures 7–10. Each model was given the same initial board states and
action budget.

These case studies highlight the crucial role of physics-based foresight in long-horizon spatial
planning. APEX not only reacts to the present state, but also reasons about the physical impact of
future placements, resulting in more strategic and compact gameplay.

18

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 7: Performance of GPT-4o-mini. Despite various prompt engineering attempts, GPT-4o-mini
consistently defaulted to the down action regardless of board state. As a result, the pieces were
dropped directly without any lateral movement or rotation, quickly leading to high towers and early
termination. The model lacks basic spatial foresight and cannot anticipate block alignment or stability.

19

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 8: Performance of GPT-4o. The full GPT-4o model shows slight improvement over its
miniature counterpart by occasionally moving blocks laterally. However, it frequently misjudges
horizontal distances and fails to align pieces with open gaps. This often results in suboptimal
placements and growing bumpiness. The model demonstrates some reactive planning but lacks
consistent spatial optimization.

20

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 9: Performance of VLM. Incorporating visual perception enables better state awareness, but
the VLM model exhibits a strong reluctance to rotate pieces. For instance, long vertical bars are
often dropped in upright orientation at the center of the board, creating tall columns that destabilize
subsequent placements. The inability to rotate blocks limits the model’s flexibility and leads to
inefficient spatial usage.

21

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 10: Performance of APEX. In contrast, APEX consistently produces compact, flat stack
configurations with minimal bumpiness and high spatial efficiency. It is the only model capable of
clearing lines and accumulating positive scores. By simulating multi-step outcomes using a physics
engine and selecting actions based on predicted results, APEX avoids naive placement and optimizes
long-term board stability. Notably, the resulting stack heights are approximately one-fourth that of
the baseline models, clearly demonstrating the benefits of anticipatory physical reasoning.

22

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

6.12 EXAMPLES FROM DYNAMIC OBSTACLE AVOIDANCE

Figures 11–15 contrasts navigation behaviors under four conditions, highlighting the role of APEX
in guiding physically informed decision-making in dynamic obstacle environments. In Table 6, we
found that GPT-4o-mini tends to exploit a shortcut in decision-making: it selects any path labeled as
"Safe" without considering the actual distance to the obstacle. Specifically, in the final timestep of
one scenario, we labeled a move as "Safe" if the distance to the nearest obstacle exceeded a threshold
of 0.5 meters. One such option (moving left) had a distance of 0.54 meters, just above the threshold,
while alternative paths offered significantly safer margins (over 2.0 meters). GPT-4o-mini simply
selected the first available “Safe” option without comparison.

GPT-4o occasionally made similar mistakes when not explicitly prompted with instructions such
as “choose the path farthest from the obstacle.” However, GPT-4o-mini consistently followed this
suboptimal policy, defaulting to a static heuristic.

Figure 11: Performance of GPT-4o-mini. GPT-4o-mini fails to react altogether, remaining static
even as a moving obstacle approaches. This indicates a lack of temporal prediction or awareness of
imminent collision.

23

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 12: Performance of GPT-4o. GPT-4o recognizes the presence of a moving object but selects
an incorrect evasive direction, resulting in a direct collision. While perceptual awareness is present,
the absence of predictive modeling leads to poor decision quality.

24

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Figure 13: Performance of VLM. We observe consistent failure patterns in the VLM-based baseline
across multiple scenarios. In some cases, the model produces responses such as "Sorry, I can’t help
with that", indicating that it is unable to generate actionable plans when faced with ambiguous or
dynamic input. More critically, the model often misjudges object displacement or relative movement,
leading to physically invalid plans, such as walking into obstacles that are visibly approaching.
This suggests a lack of grounded numerical estimation and forward reasoning capability, which are
necessary for real-world spatial tasks.

25

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure 14: Performance of APEX(GPT-4o-mini). GPT-4o-mini operates under APEX guidance but
occasionally disregards simulated risk evaluations, choosing paths that minimize immediate distance
to the goal, ironically aligning with the obstacle’s trajectory. This suggests limited integration of
long-term consequence awareness.

26

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Figure 15: Performance of APEX(GPT-4o). GPT-4o, with full APEX support, exhibits anticipatory
behavior, dynamically adjusting its trajectory to avoid the obstacle while maintaining movement
toward the goal. Notably, the agent even "orbits" around the obstacle when direct paths are unsafe,
demonstrating flexible foresight and real-time risk mitigation.

27

	Introduction
	Related Work
	Vision-Language Models: Perception Without Physical Consequence
	World Models: Foresight Without Guarantees
	Reinforcement Learning: Expensive Mastery, Poor Generalization
	Physical Simulation in LLM Reasoning: Beyond Conceptual Hallucinations

	Methodology
	Graph: Relational Scene Representation
	Trigger: Difference-Graph Motion Attention
	Simulate: Physics-Grounded Action Rollouts
	LLM: Guided Decision Synthesis
	Act: Execution of the Optimal Plan
	Replacement of Models

	Experiments
	Experiment 1: Physical Reasoning Accuracy in Structured Tasks
	Experiment 2: Real-time Physical Planning in Tetris
	Experiment 3: Dynamic Obstacle Avoidance
	Evaluation Summary

	Conclusion
	Future Work
	Design Principle: Perception–Graph–Language–Physics–Action (PGLPA) vs. Vision–Language–Action (VLA)
	Supplementary Experiments on More LLMs
	Supplementary Experiments on the Phyre Benchmark
	Supplementary Experiments on Real World Application
	Prompt Formats and Model Inputs
	Implementation and System Configurations
	Graph Models
	Training of DG-Motion Attention
	Design Principle

	Physical Engine / World Model
	Action Space Analysis
	Error Analysis for Physics QA
	Case Studies: Tetris Planning
	Examples from Dynamic Obstacle Avoidance

