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Abstract

Graph Neural Networks (GNNs) training often necessitates gathering raw user1

data on a central server, which raises significant privacy concerns. Federated2

learning emerges as a solution, enabling collaborative model training without3

users directly sharing their raw data. However, integrating federated learning with4

GNNs presents unique challenges, especially when a client represents a graph5

node and holds merely a single feature vector. In this paper, we propose a novel6

framework for node-level federated graph learning. Specifically, we decouple the7

message-passing and feature vector transformation processes of the first GNN layer,8

allowing them to be executed separately on the user devices and the cloud server.9

Moreover, we introduce a graph Laplacian term based on the feature vector’s latent10

representation to regulate the user-side model updates. The experiment results on11

multiple datasets show that our approach achieves better performance compared12

with baselines.13

1 Introduction14

Graph Neural Networks (GNNs) have attracted significant attention both within academic circles and15

across diverse industries. Their remarkable achievements span a multitude of domains, including16

fraud detection in social networks [32], cancer classification in biology science [20], and materials17

design in molecular chemistry [4]. In real-world applications, graph data tied to individuals or human18

behaviors often contains sensitive details. For example, the user’s comments, friend list, and profiles19

on a social platform, as well as their purchase records, browsing history, and transactions on an20

economic network, are typically deemed private. With increasing emphasis on user privacy, legal21

restrictions like the General Data Protection Regulation (GDPR) in Europe (EU) and the Health22

Insurance Portability and Accountability Act (HIPAA) in the US have rendered data-sharing practices23

infeasible. However, the conventional graph machine learning paradigm requires uploading raw user24

data to a central server. This is infeasible due to privacy restrictions, hindering the deployment of25

many real-world graph-based applications.26

Federated learning (FL) [16] offers a collaborative learning method, allowing multiple clients to27

train a model without revealing their raw training data. The workflow of FL follows an iterative28

training procedure, including multiple communication rounds between the clients and a central server.29

Specifically, the central server maintains a global model and orchestrates the training process. In30

each round, the selected clients fetch the global model and perform several epochs of updating using31

their local training data. The updated local model is later uploaded to the server to produce the latest32

global model. The training process terminated until the model meets the pre-defined criteria.33

Some efforts have recently been devoted to training GNN models over graph data with the preservation34

of user privacy. One straightforward approach is extending FL to graph machine learning. Depending35

on the available data possessed by the clients, these research studies [30, 10, 38, 11, 34, 2] assume36
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Figure 1: Node-level collaborative training framework for GNNs: a motivating example.

either graph-level FL, where multiple graphs are distributed among clients, or subgraph-level FL,37

where a big graph is partitioned into several subgraphs and each client has access to the subgraph.38

With at least one (sub)-graph possessed by the client, local training could proceed as standard FL39

algorithm plus certain adaptations (e.g., missing link retrieve) tailored for graph data. Note these40

methods fail under node-level data availability, where each client only possesses data of one node41

locally (one feature vector). Another line of research work [22] aims to mitigate the privacy risk by42

introducing Differential-Private (DP) noise to user data, and the model training process follows the43

conventional machine learning paradigm. As the added DP noise inevitably degrades the quality of44

training data, this approach suffers from an inherent privacy-performance trade-off. Consequently,45

the potential of the GNNs to achieve better performance is restricted. In summary, fewer prior works46

(see Appendix A for detailed related work) have explored training GNNs under node-level user data47

privacy protection.48

Motivating Example. As depicted in Fig. 1, our motivating example showcases how industries49

often use graphs wherein each node represents an individual user. Take mobile social networks as an50

instance: here, a node represents a mobile user, and an edge signifies the social ties between them.51

These platforms are interested in using additional user data in user’s mobile devices, such as users’52

locations, activity records, and app usage histories, to perform tasks such as Sybil detection [25],53

online advertisements [15], and recommendations of social media content [7]. Similarly, telecom54

giants such as AT&T and Spectrum possess vast amounts of phone call logs between users. These55

logs can be depicted as a graph where each node symbolizes a user, and an edge indicates a call record56

shared between two users. To enhance user experience, these companies might desire access to richer57

user datasets, such as users’ app usage statistics, geolocation data, and device sensor information.58

Such details are instrumental in understanding user preferences and needs.59

Challenges. Implementing node-level FL within GNNs presents several unique challenges. Foremost,60

each user’s training data is remarkably limited, consisting merely of one feature vector. This is61

different from existing FL settings, where each client has enough data (a graph or sub-graph) to train62

a local model. Moreover, the graph-based node classification task belongs to the transductive learning63

(semi-supervised learning) regime, wherein the unlabeled nodes also contribute to the model training.64

However, conventional FL algorithms such as FedAvg [16] inherently assume user data to be labeled65

(or partially labeled). It is untrivial to integrate the knowledge from unlabeled nodes (clients) into the66

GNNs under the node-level FL setting.67

In this paper, we introduce a node-level FL framework for GNNs, termed nFedGNN. This framework68

facilitates collaborative training across multiple clients, with each client only possessing data of a69

single node1 in the graph, specifically, one feature vector. Importantly, this feature vector remains70

localized throughout the training, ensuring no external disclosure. Moreover, we assume that the71

server has labeled some nodes, and the learning objective is to assign the label for the unlabeled72

nodes. We also assume the central server has access to the graph topology. Note the research73

community usually believes the graph topology is private in graph-level and subgraph-level FL.74

However, under node-level data availability of the client, it is unnecessary to consider the privacy75

of the graph topology. As illustrated in the motivating example, this assumption aligns with many76

real-world GNN applications.77

Key ideas of our solution. To facilitate GNN training across distributed users, our method involves78

splitting the GNN model between the clients and the server, similar to the technique used in split79

learning or vertical federated learning [26, 29, 3]. Specifically, the user-side model processes the local80

1We will use client, user, and node interchangeably in this paper when it does not introduce ambiguity.
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Figure 2: An illustration of the proposed node-level FL framework nFedGNN. Here, each node of
the graph is a client of the FL system. The server knows the topology of the graph and the label of a
small subset of nodes. The server has no access to the user’s raw data while it wants to train a GNN
model to assign the label for unlabeled nodes.

private feature vector, yielding a latent representation vector. Subsequently, the server gathers these81

latent vectors and integrates them with graph topology through the server-side model. To update the82

client-side model, the server computes the gradient of the latent representation vectors and transmits83

it back to the clients. The entire training process needs multiple communication rounds until the84

model meets the predefined criteria. We conducted a preliminary experiment, and the result shows85

this approach is prone to overfitting, leading to subpar generalization performance.86

We analyze the potential causes and conclude that the user-side model of labeled nodes easily fits87

their local data. To address this, we introduce an explicit graph regularization loss Lreg based on the88

received latent vectors. Our solution is motivated by the fundamental assumption of graph-based89

semi-supervised learning: connected nodes in a graph are likely to share the same label [40, 33].90

This implies that connected nodes are likely to share a similar node embedding. In the preliminary91

experiment, this assumption is broken as each user-side model has enough flexibility in its embedding.92

The regularization loss imposes constraints on the distribution of latent representations, effectively93

limiting the degree of freedom in the latent space. Consequently, the user-side model is not only94

required to fit its own local data but also has a strong motivation to learn from its neighbors. As95

a result, the learned model achieves better performance. We conducted the experiment on several96

datasets using split GCN and GAT models. The experiment result shows that nFedGNN significantly97

surpasses the baselines. The contributions of this paper are summarized as follows:98

• We propose a node-level FL framework for training GNNs, where each participating user99

only has access to the data of a single node. The framework inherits the privacy advantage100

of FL and enables efficient utilization of distributed graph data. Our approach is one of101

the very few early works in this field, and we are the first to provide a general FL-based102

approach in this setting.103

• We instantiate two popular GNN models, GCN and GAT, within our proposed framework.104

For both models, the first layer is divided into the server and the users. The remaining layers105

reside on the server side, functioning as the conventional GCN and GAT models do. Our106

framework allows us to train the cutting-edge GNN model and achieve better performance107

without collecting the user’s data.108

• We perform extensive experiments to evaluate the proposed framework on multiple datasets.109

The results show that the proposed method outperforms the baselines on all datasets for both110

GCN and GAT models.111

The remainder of this paper is organized as follows. In Section 2, we present details of the GNN112

and FL system. In Section 3, we describe the proposed algorithm nFedGNN. Then, in Section 4, we113
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demonstrate experiment results and analysis. Finally, we conclude the paper and discuss the future114

direction in Section 5.115

2 Preliminary116

2.1 Graph Neural Networks117

Let G = (V, E , X) be an attributed graph, where V is set of nodes, and E is set of edges. The graph118

topology can be represented as an adjacency matrix A ∈ Rn×n, Ai,j = 1 if there is an edge (i, j) ∈ E119

between node i and node j, and Ai,j = 0 otherwise. Here n = |V| denotes the number of nodes.120

X ∈ Rn×d is the feature matrix, where each row corresponds to a node’s feature vector xi ∈ Rd.121

Denote Y ∈ Rn×c as a matrix of the one-hot labels, where each row corresponds to a one-hot vector122

of a labeled node and c is the number of classes. Note only a subset of the nodes V0 ⊂ V are labeled.123

Given a graph dataset G, the K-layer GNN consists of K consecutive layers, where each layer k124

receives as input the node embeddings {hk−1
i ,∀i ∈ V} from layer k − 1 and outputs a new node125

embedding hk
i for each node i by aggregating the current embeddings of its adjacent neighbors126

followed by a learnable transformation as follows:127

hk
Ni

:= Aggk

(
{hk−1

j ,∀j ∈ Ni}
)
,

hk
i := Updatek

(
hk
Ni

)
,

(1)

where Ni is the set of neighbors of node i, including itself, in the graph G. Here Aggk(·) is the128

aggregator function (e.g., mean, sum, and max) for k-th layer, and Updatek(·) is the k-th layer129

trainable non-linear function (e.g., neural network) for k-th layer. The initial embedding of each130

node i is its feature vector, i.e., h0
i = xi, and the node embeddings from the last layer’s output131

{hK
i ,∀i ∈ V} will be used for downstream tasks such as predicting the labels of nodes from the132

unlabeled set V \ V0.133

2.2 Problem Definition134

In this paper, we explore learning a GNN model under the node-level federated graph learning135

setting, where each node in the graph represents a user, and the node feature xi is private to user136

i. Furthermore, we assume a central server has access to the graph topology A as well as the label137

of the node in V0, but can not observe the feature matrix X . The central server aims to cooperate138

with the users to train a GNN model over the graph G without requiring the private data xi to leave139

the users. We focus on the node classification task, where the server wants to assign labels to the140

remaining unlabeled nodes (users) V \ V0 in the graph.141

2.3 FL Objective142

Let fs(θs, A, ·) be the server-side model, parameterized by θs, and fu(θ
u
i , ·) be the user-side model,143

parameterized by θui . The user-side model’s output is x̄i = fu(θ
u
i , xi). Then, the GNN model’s final144

output is:145

Z = fs(θ
s, A, [x̄1, · · · , x̄n]

T )

= fs(θ
s, A, [fu(θ

u
1 , x1), · · · , fu(θun, xn)]

T ).
(2)

Define θ = {θs}
⋃
{θui }ni=1 be the set of all trainable parameters on both user-side and server-side.146

Then, the goal of GNN training under node-level FL is to minimize the following classification loss:147

min
θ

LCE(θ) :=
∑
l∈V0

CE(Zl(X, θ), Yl). (3)

Here, CE denotes the cross-entropy loss, and V0 is the set of labeled nodes.148

3 The Proposed Method149

3.1 Algorithm to address (3).150
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Algorithm 1 nFedGNN
1: Input: training data X = [x1, x2, · · · , xn]

T

2: Output: learned model θ = {θs}
⋃
{θui }ni=1

3: for round t = 1, 2, . . . , T do
4: for user i = 1, 2, . . . , n, in parallel do
5: Compute the output of user-side model: x′

i = fu(θ
u
i , xi).

6: Upload x′
i to the server.

7: end for
8: Server updates θs through gradient decent.
9: Server computes ∂LCE

∂x̄i
and send it back to user.

10: for each user i = 1, 2, . . . , n, in parallel do
11: Compute the gradient for θui using ∂L

∂x′
i
.

12: Update θui through gradient decent.
13: end for
14: end for

We summarize the details for addressing (3) in Algorithm 1. Specifically, at the beginning of the151

t-th communication round, every user (node) in the graph computes the latent output of the user-side152

model and uploads x′
i to the server (lines 5-6). Subsequently, the server computes the classification153

loss based on equations (2) and (3). Following this, the server-side model parameter θs can be154

updated using standard back-propagation and gradient descent (lines 8). The server then computes155

the gradient for the user-side model’s output ∂LCE

∂x̄i
and sends it to the corresponding user (line 9).156

The user receives ∂LCE

∂x̄i
and computes the gradient of the user-side model through back-propagation157

(line 11). Finally, the user-side model parameter θui is updated via gradient descent (line 12).158

3.2 Model Splitting Strategy159

Implementing a layer-wise split of the GNN model is unfeasible in a node-level FL setting as the160

resultant user-side model still requires the entire graph as input. To address this problem, we start from161

the message-passing mechanism of the GNN layer and suggest splitting the Agg(·) and Update(·)162

functions of the first GNN layer. A detailed discussion of the general model splitting process can be163

found in Appendix B. In this section, we elucidate this concept through a simplified example of a164

two-layer GCN model.165

Let Â = D̃− 1
2 ÃD̃− 1

2 be the normalized adjacency matrix, where Ã = A+ I is the adjacency matrix166

with self-connections, D̃ii =
∑

j Ãij is the degree matrix, and I ∈ Rn×n is the identity matrix.167

Then, the forward pass of the standard 2-layer GCN model [14] can be expressed as follows168

Z = softmax (Ã ReLU(ÃXW (0))W (1)), (4)

where W (0) and W (1) are the learnable weight matrix of the first and second layers, respectively.169

Following the proposed model splitting strategy, we split the first GCN layer into two parts: every170

user retains a local W (1), while Ã is located on the server side. The training process of the split171

GCN model unfolds as follows. In each round, the user-side model first maps its feature vector xi172

into latent representation x̄i = xW
(0)
i , where W

(0)
i is the weight matrix of the user i. Subsequently,173

xi is uploaded to the server. The server-side model computes the loss based on the topology and174

the received latent vectors. Let X̄ = [x̄1, . . . , x̄n]
T . The forward pass of the server-side model is175

expressed as:176

Z = softmax (ÃReLU(ÃX̄)W (1)) (5)

3.3 Preliminary Evaluation177

We train the split GCN model on the Cora dataset [24] to assess the performance of the nFedGNN.178

The training curves are shown in Fig.(3). From the figure, we can observe that the training loss quickly179

decreases after only a few rounds of updating and then does not change much, and improvement in180

testing accuracy is only seen in the first few rounds. We also plot the testing accuracy of the GCN181
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Figure 3: Training curves of a split two-layer GCN on the Cora dataset. Here, we run the experiment
with three random seeds and report the average result. The grey line shows the accuracy of the
centralized GCN: 81.5 % [14].

in the centralized training setting [14] as reference. Although the proposed method works, the final182

testing accuracy still leaves room for improvement.183

We examine the internal state of the GNN model after splitting. In nFedGNN, we instantiate a local184

model for every node in the graph. For the user who possesses the labeled node, their local model185

only undergoes minor adjustments (as the local data is extremely scarce) to fit the local feature vector186

during training. Consequently, the local model of a labeled user rapidly adapts to their local data,187

diminishing the training loss to a near-zero value. However, the user-side model from the unlabeled188

nodes still remains un-updated.189

3.4 nFedGNN with regularization190

To improve the performance of nFedGNN, we revisited the foundational assumption of graph-based191

semi-supervised learning: the connected nodes in the graph are likely to share the same label [40, 33].192

If two nodes are connected in the graph, a properly trained GNN model is likely to assign the same193

label to them. This suggests that the latent representations of two connected nodes should become194

increasingly similar as the model’s layers become deeper, even if they have distinct feature vectors.195

Drawing from this observation, in the context of the split GNN model, if two users are intercon-196

nected, their respective latent representations should ideally manifest analogous patterns. However,197

as discussed previously, the user-side model is only responsible for one feature vector locally. Conse-198

quently, the node’s latent representation shares less similarity with neighbor nodes. If we restrict the199

distribution of latent representations and let the connected users have a similar latent representation,200

the performance of the learned model should be improved. Motivated by this, we introduce the graph201

Laplacian regularization based on the received latent representations:202

Lreg =
1∑n

i=1 |Ni|

n∑
i=1

Ni∑
j=1

∥fu(θui , xi)− fu(θ
u
j , xj)∥2. (6)

The overall training loss can be formulated as203

L = LCE + λLreg. (7)

Here, λ ≥ 0 is the hyperparameter that balances the weight of classification loss and regularization.204

3.5 Discussion205

Graph Regularization: Graph regularization-based approach has a long history and is widely206

used for various applications. It’s noteworthy that the state-of-the-art GNN models [14] relax the207

assumption behind the regularization-based approaches, where the connected nodes in the graph are208

likely to share the same label. Instead, they directly encode the topology with the feature matrix209
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Figure 4: nFedGNN vs baseline in terms of testing accuracy and training loss of a two-layer GCN on
the Cora, Citeseer, and Pubmed datasets.

by a neural network, as the graph topology does not necessarily encode similarity but contains the210

information that does not appear in the feature matrix X . Nevertheless, this assumption still holds for211

a large portion of nodes within the graph, a fact evidenced by the success of regularization-based212

strategies. In nFedGNN, we use the graph Laplacian regularization to restrict the distribution of latent213

representation from the user-side model. The remaining layers of the GNN model (located on the214

server side) still encode the graph topology with the (latent)-feature matrix as the state-of-the-art GNN215

model. Consequently, the model still utilizes the knowledge from graph topology as state-of-the-art216

GNNs.217

Communication Cost: In cross-device federated learning environments, the communication bot-218

tleneck is one of the major concerns in prior graph-level and subgraph-level FL researches [38, 13].219

However, within nFedGNN, the data exchanged between the user and server each round consists220

solely of a latent representation vector and a corresponding gradient vector, as opposed to the entire221

model parameter. Typically, the length of the latent representation vector is in the range of tens to222

hundreds depending on the tasks and models, substantially smaller compared to the total count of223

neural network parameters. Thus, within the framework of nFedGNN, communication cost does not224

pose as a constraining factor.225

4 Experiments226

4.1 Experimental Setup227

We evaluate nFedGNN on six datasets: Cora, Citesser, Pubmed [24], Chameleon, Squirrel [21], and228

Wiki-CS [18]. The details and statistics of these datasets can be found in Appendix C. Currently, we229

assume all users participate in the learning process at every communication round. The algorithm230

was implemented using DGL [31] with the Pytorch backend, and the training/testing data partition is231

the same as prior works [14, 28, 19, 18]. All experiments were conducted on a GPU server with 4232

NVIDIA RTX A6000 (48GB GPU memory).233

We employ two well-established GNN models – GCN[14] and GAT[28] – for the node classification234

task across all datasets. The model splitting strategy for GCN follows the strategy discussed in235
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Figure 5: Impact of λ of nFedGNN on the Cora, Citeseer, and Pubmed datasets.

Section 2. For GAT, a two-layer model is utilized, and the details of the model splitting strategy are236

discussed in Appendix D. To ensure a fair comparison, we let the model structure be the same as the237

model in centralized training counterparts before splitting. Specifically, the GCN model parameters238

are as follows: 16 hidden neurons, 0.5 dropout rate, and a learning rate of 0.1. For GAT, the dropout239

rate is 0.6, the number of attention heads is 8, the number of hidden neurons is 16, and the learning240

rate is 0.01. For both models, we employ the Adam optimizer with weight decay as 5e−4 to update241

the model parameter both on the server side and the user side. The total FL round number is set to be242

200 for all experiments. We run each experiment with three random seeds and report the averaged243

training loss and testing accuracy.244

Baseline: Given limited exploration in prior studies regarding node-level federated graph learning,245

establishing a baseline for comparison is challenging. A study close to ours is CNFGNN [17],246

which advocates for the transmission of both model parameters and latent representations between247

the user and the server. However, their focus is traffic prediction using time-series user data,248

employing an encoder-decoder architecture in their user-side model to handle sequence data, rendering249

their model and algorithm incompatible with our setting. Nonetheless, we adapt their conceptual250

framework by allowing users to upload both the model parameter and the latent vector, with the251

server subsequently averaging the received local models and broadcasting the updated global model252

to all users. It’s important to note that their approach simultaneously uploads the local model and253

the latent representation, significantly increasing the risk of privacy leakage. Prior research [5] has254

shown that adversaries could infer sensitive information from model parameters.255

4.2 Experiment Results256

We first compare our method with the baseline. In Fig. 4, we illustrate the training loss and testing257

accuracy of the split GCN model on the Cora, Citeseer, and Pubmed datasets. Note additional258

experiment results on Chameleon, Squirrel, and Wiki-CS datasets can be found in Fig. 6 in Appendix E.259

From the figure, we can observe that nFedGNN significantly outperforms the CNFGNN on all260

datasets. To show the effectiveness of regularization loss, we search the best value of λ within261

the range {0.1, 1, 10, 100, 300} for Cora, Citeseer, and Pubmed, and the range {1, 10, 100, 500}262

for Chameleon, Squirrel, and Wiki-CS. We select the best λ for each dataset, and the optimal263

hyperparameter can be found in each image. In the figure, the performance improvement of nFedGNN264
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Table 1: Communication cost of GCN and GAT on different datasets (in MB).

Method nFedGNN CNFGNN
GCN GAT GCN GAT

Cora 34.06 264.45 4.74× 104 3.79× 105

Citeseer 40.61 324.90 1.50× 105 1.20× 106

Pubmed 240.69 1.93× 103 1.21× 105 9.64× 105

Chameleon 27.80 222.36 6.47× 104 5.17× 105

Squirrel 63.49 507.91 1.33× 105 1.06× 106

Wiki-CS 142.83 1.14× 103 4.31× 104 3.44× 105

with the regularization can be clearly observed. The best accuracy reaches 71.9% for the GCN model265

on the Cora dataset. Here, we also plot the testing accuracy of the GCN model on these datasets266

in centralized training [14] as references. Although there is still a gap between nFedGNN and the267

centralized GNN model in testing accuracy, it is significantly reduced compared with the baseline and268

the no regularization counterpart. Note our goal is not to achieve the state-of-the-art but to demonstrate269

the effectiveness of the proposed approach. It is worth noting that CNFGNN needs to transmit the270

extra local model parameters between the users and server at every FL round, necessitating more271

communication resources. In Appendix E, we demonstrate the comparison results for the GAT in272

Fig. 7, 8, similar trends and conclusions can be observed in these figures. In summary, nFedGNN has273

better performance, clearly proving the advantages of nFedGNN compared with baseline.274

Subsequently, we investigate the influence of λ on the model convergence. As shown in Figure 5,275

we display the testing accuracy and training loss under different magnitudes of λ. A general trend276

emerging from these figures is the testing accuracy increases when λ is getting higher. However,277

when λ exceeds some threshold value, the testing accuracy starts to decrease. For the training loss,278

a higher λ, the value is larger. Another observation is the convergence speed of testing accuracy is279

slower with higher λ, e.g., it takes more rounds for the testing accuracy to achieve the plateau. We280

conclude that with a higher value of λ, the training task is more “difficult”, and training requires more281

time to converge. By properly determining the value of λ, the learned models’ performance can be282

improved. In Appendix E, we also illustrate the impact of λ on model convergence for the GAT in283

Fig. 9. Similar observations can be found in these figures. Note that due to the stochastic nature of284

the learning process, a few curves may not match the above observations. However, the general trend285

is clear, and the conclusions are reliable.286

4.3 Communication Cost Comparison287

We count the total communication cost (in MB) of both nFedGNN and CNFGNN for the GCN288

model and the GAT models in Table 1. This includes the cumulative communication cost spanning289

200 training rounds for all users within the graph, with the data transmitted in float32 format. For290

nFedGNN, we record the size of the latent feature vector. For CNFGNN, we record the size of the291

latent feature vector and the number of user-side model parameters. In all cases, nFedGNN consumes292

less communication resources than CNFGNN. Moreover, the total transmitted data size is very small,293

verifying the conclusion that communication cost is not the bottleneck for our method.294

5 Conclusion295

We introduce nFedGNN, a novel federated learning algorithm for GNNs where each user only has296

access to the data of a single node. Our method provides an opportunity to utilize the distributed297

graph data without compromising user privacy. We compare nFedGNN with nFedGNN over multiple298

datasets and demonstrate the advantage of our method. Despite our extensive efforts, we recognize299

the limitations in the scope of our study. For example, we have not explored the training on larger300

datasets and inductive frameworks like GraphSage [9]. In the future, we will extend nFedGNN to301

adopt partial user participation and to provide rigorous privacy protection (e.g., differential privacy).302
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393

Appendix394

395

A Related Work396

Federated Learning. FL has drawn great attention recently due to its benefits in privacy and397

communication efficiency [27]. The goal of FL is to allow multiple users to collaboratively train a398

model under the orchestration of a central server without sharing their raw data [12]. In conventional399

FL algorithms such as FedAvg [16], model training takes place on the user side, and only the model or400

model update is transferred between the user and a server. An aggregator on the server subsequently401

aggregates the models from the users for the next training round. In FL, the user’s raw data is never402

shared.403

One branch of FL is vertical federated learning (VFL) [36, 35]. In conventional FL [16], the user404

has different data samples, while the samples from different users share the same feature space. In405

VFL, the user owns a common sample space, but disparate feature spaces. The first few layers of the406

model are partitioned width-wise to accommodate different feature spaces. Each user owns a portion407

of the whole model corresponding to their feature spaces. The user who possesses the labels holds408

the remaining layers of the model and coordinates the training process.409

Another relevant notion of FL is split learning [8, 29]. Specifically, the model is partitioned layer-410

wise between the users and the server. Only the intermediate results, e.g., the activation maps411

and related gradients, are exchanged between the user and server during training. As opposed to412

FL, split learning requires users to communicate with the server every iteration, incurring heavy413

communication overhead and high training latency.414

GCN in Distributed Setting. There has been an increasing research interest in training GNN in415

a distributed setting. Most of the work focuses on either graph-level FL, where small graphs are416

distributed among multiple parties [10, 37], or subgraph-level FL, where each party holds a sub-graph417

of the whole large graph [10, 39, 1, 30, 23].418

Specifically, Baek et al.[1] propose a personalized sub-graph FL algorithm, which allows each user to419

train a personalized model by selectively sharing knowledge across users. Zhang et al. [39] trains a420

missing neighbor generator to handle the missing edges of the subgraphs across users. Wang et al.421

[30] employs the model-agnostic meta-learning (MAML) approach to tackle the Non-IID distributed422

data for the graph-based semi-supervised node classification task. Hu et al. [11] suggested an online423

adjustable attention mechanism to aggregate the local models. These prior works mainly focus on the424

setting that each user holds a graph/sub-graph, where a local GNN model could be independently425

trained and serves as a base model for FedAvg.426

In this paper, we consider a more challenging case where each user represents only one node in the427

graph and does not have access to other’s data. It is, in fact, a special but the most challenging case of428

subgraph-level FL and could not be addressed by any of the prior work. The closest work to ours429

is [17]. They consider the spatiotemporal dynamic modeling tasks and propose an approach that430

explicitly encodes the underlying graph structure using GNNs. Their approach is specifically crafted431

to fit the problem and may be unsuitable for general GNN tasks.432

B General Model Splitting Strategy433

Generally, GNN can be described within the Message Passing Neural Networks (MPNN) framework434

[6]. As shown in (1), the hidden state of each node hk
i relies on the message from their neighboring435

nodes. Thus, user i requires hk
Ni

from its neighbor users to compute hk
i . This leads to excessive436

privacy leakage. Therefore, layer-wise splitting for GNN is infeasible under the node-level FL setting.437

Alternatively, we seek to split the first layer of the GNN model. However, the conventional GNN438

layer follows the message-passing-then-encoding protocol. Directly splitting a GNN layer results in439

the message aggregation function Agg0(·) located on the user side. To deal with this problem, we440
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Table 2: Dataset statistics

Dataset Nodes Edges Classes Features Label Rate

Cora 2,708 10,556 7 1,433 5.2 %
Citeseer 3,327 9,228 6 3,703 3.6 %
Pubmed 19,717 88,651 3 500 0.3 %
Wiki-CS 11,701 431,726 10 300 5 %

Chameleon 2277 36101 5 300 50.0 %
Squirrel 5201 217073 5 2089 50.0 %

reformulated the GNN layer as an encoding-then-message-passing process:441

h̄k
i := Updatek

(
hk
i

)
,

hk+1
i := Aggk

(
{h̄k

j ,∀j ∈ Ni}
)
,

(8)

Note (8) usually results in the same model as message-passing-then-encoding. Then we can split442

the first GNN layer into two parts: the update function Update0(·) on the user side and the message443

aggregation function Agg0(·) on the server side. Taking the split GCN model 5 as an example, we444

can find the first layer’s hidden state update function Updatek(·) is a linear projection with parameter445

W (0), and the message aggregation function Aggk(·) is the matrix multiplication with normalized446

adjacency matrix Ã. Switching the order of the Updatek(·) and Aggk(·) implies the different matrix447

multiplication orders. The associativity property of matrix multiplication immediately proves the448

same GCN model after reformulation.449

C Dataset statistics450

Cora, Citeseer, and Pubmed serve as citation graphs in which nodes symbolize scientific publications451

and edges denote citation relationships. Wiki-CS is a dataset grounded in Wikipedia, where nodes452

represent articles related to Computer Science, and edges signify hyperlinks between them. Similarly,453

Squirrel and Chameleon are networks comprised of page-to-page connections where nodes are articles454

from English Wikipedia, and edges depict mutual links between these articles. A summary detailing455

the number of nodes, edges, and labels for these datasets is provided in Table 2.456

D GAT Splitting Strategy457

A GAT layer comprises a learnable weight matrix W ∈ RF ′×F and a shared attention mechanism458

a : RF ′ × RF ′ → R, where F and F ′ are the number of input and output of the GAT layer. Note459

that a is used to compute the attention coefficient eij , which further depends on the feature vectors460

of nodes i and j. Therefore, the user-side model contains the trainable weight matrix W , while461

the shared attention mechanism a should be located on the server side. At each training round, the462

user-side model first transforms the local feature vector xi into x′
i = Wixi, which is uploaded to the463

server later. The server uses x′
i to compute the attention coefficients eij = a(x′

i, x
′
j) and update the464

model. Moreover, the GAT model usually employs the multi-head attention mechanism to stabilize465

the training process. To achieve this, we let the user have multiple weight matrices. Each weight466

matrix transforms the input feature independently: x′
i,l = W l

ix
′
i, where W l

i is the weight of l-th467

attention mechanism on i-th user. Subsequently, the user uploads a set of latent features {x′
i,l}Ll=1 to468

the server, where L is the number of attention mechanisms. Finally, the output of the first GAT layer469

is470

x
′′

i =

L

∥
l=1

σ

∑
j∈Ni

αl
ijx

′
i,l

 , (9)

where σ is the activation function and αl
ij = softmax(elij) is the normalized attention coefficients471

computed by the l-th attention mechanism.472

The second GAT layer is the same as that in the GAT model for the task on the Cora dataset in [28].473

For the multi-head GAT model, the regularization term of nFedGNN has two variations. The first474
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Figure 6: nFedGNN vs CNFGNN for GCN on the Chameleon, Squirrel, and Wiki-CS datasets.

approach treats every element in {x′
i,l}Ll=1 equally and computes the regularization for each x′

i,l475

independently. Alternatively, we first compute the average latent representation x̄′
i =

1
L

∑L
l=1 x

′
i,l,476

and then obtain the regularization term based on x̄′
i. In this work, we adopt the first scheme. The477

performance of the second scheme and the comparison between the two variations are beyond the478

scope of this work, and we left it for future exploration.479

E Extra Experiment Result480
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Figure 7: nFedGNN vs CNFGNN for GAT on the Cora, Citeseer, and Pubmed datasets.
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Figure 8: nFedGNN vs CNFGNN for GAT on the Chameleon and Squirrel datasets.
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Figure 9: Impact of λ for GAT on the Cora, Citeseer, and Pubmed datasets.
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