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ABSTRACT

Derivative-free optimization algorithms play an important role in scientific and
engineering design optimization problems, especially when derivative informa-
tion is not accessible. In this paper, we study the framework of classification-
based derivative-free optimization algorithms. By introducing a concept called
hypothesis-target shattering rate, we revisit the computational complexity upper
bound of this type of algorithms. Inspired by the revisited upper bound, we pro-
pose an algorithm named “RACE-CARS”, which adds a random region-shrinking
step compared with “SRACOS” (Hu et al., 2017). We further establish a theorem
showing the acceleration of region-shrinking. Experiments on the synthetic func-
tions as well as black-box tuning for language-model-as-a-service demonstrate
empirically the efficiency of “RACE-CARS”. An ablation experiment on the in-
troduced hyperparameters is also conducted, revealing the mechanism of “RACE-
CARS” and putting forward an empirical hyperparameter-tuning guidance.

1 INTRODUCTION

In recent years, there has been a growing interest in the field of derivative-free optimization (DFO)
algorithms, also known as zeroth-order optimization. These algorithms aim to optimize objec-
tive functions without relying on explicit gradient information, making them suitable for scenarios
where obtaining derivatives is either infeasible or computationally expensive (Conn et al., 2009;
Larson et al., 2019). For example, DFO techniques can be applied to hyperparameter tuning, which
involves optimizing complex objective functions with unavailable first-order information (Falkner
et al., 2018; Akiba et al., 2019; Yang & Shami, 2020). Moreover, DFO algorithms find applications
in engineering design optimization, where the objective functions are computationally expensive to
evaluate and lack explicit derivatives (Ray & Saini, 2001; Liao, 2010; Akay & Karaboga, 2012).

Classical DFO methods such as Nelder-Mead method (Nelder & Mead, 1965) or directional direct-
search (DDS) method (Céa, 1971; Yu, 1979) are originally designed for convex problems. Conse-
quently, their performance is compromised when the objective is nonconvex. One kind of well-
known DFO algorithms for nonconvex problems is evolutionary algorithms (Bäck & Schwefel,
1993; Fortin et al., 2012; Hansen, 2016; Opara & Arabas, 2019). These algorithms have been
successfully applied to solve optimization problems with black-box objective functions. However,
theoretical studies on these algorithms are rare. As a consequence their performance lacks theo-
retical supports and explanations, making it confusing to select hyperparameters. In recent years,
Bayesian optimization (BO) methods have gained significant attention due to their ability to effi-
ciently optimize complex and expensive-to-evaluate functions (Snoek et al., 2012; Shahriari et al.,
2015; Frazier, 2018). By leveraging probabilistic models, BO algorithms can guide the search pro-
cess automatically, balancing the processes of exploration and exploitation. However, BO suffers
from scalability issues when dealing with high-dimensional problems (Bickel & Levina, 2004; Hall
et al., 2005; Fan & Fan, 2008). Another class of surrogate modelling algorithms called gradient ap-
proximation have also been extensively explored in the context of DFO (Nesterov & Spokoiny, 2017;
Chen et al., 2019; Ge et al., 2022; Ragonneau & Zhang, 2023). These methods aim to estimate the
gradients of the objective function using finite-difference or surrogate models combined with trust
region. However, although some recent researches have shown the view that DFO algorithms using
finite-difference are sensitive to noise should be re-examined (Shi et al., 2021; Scheinberg, 2022),
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this kind of algorithms are intrinsically computationally demanding for high-dimensional problems
(Yue et al., 2023) and difficult to tackle nonsmooth problems.

“RACOS” is a batch-mode classification-based DFO algorithm proposed by Yu et al. (2016). Com-
pared with aforementioned algorithms, it shares the advantages of faster convergence rate, lower
sensitivity to noise, available to high-dimensional problems and easy to implement (Qian et al.,
2016a;b; Hu et al., 2017; Liu et al., 2017; 2019b). Additionally, “RACOS” has been proven to con-
verge to global minimum in polynomial time when the objective is locally Holder continuous (Yu
et al., 2016). The state-of-the-art classification-based DFO algorithm is “SRACOS” proposed by
Hu et al. (2017), namely, the sequential-mode classification version. As proofs show, the sequential-
mode classification version “SRACOS” performs better compared to the batch-mode counterpart
“RACOS” under certain mild condition (more details can be found in Hu et al. (2017)).

However, “SRACOS” is a model-based algorithm whose convergence speed depends on the positive
region of classification model, meaning that its convergent performance can be impacted by the
dimensionality and measure of the solution space. Additionally, we find that the upper bound given
in Yu et al. (2016); Hu et al. (2017) cannot completely dominate the complexity of “SRACOS”.
Moreover, we construct a counterexample (see in equation 3) showing that the upper bound on the
other hand is not tight enough to describe the convergence speed.

We notice that a debatable assumption on the concept invoked by Yu et al. (2016) called error-target
dependence (see Definition 2.2) takes charge of these minor deficiencies. In this paper we propose
another concept called hypothesis-target η-shattering rate to replace the debatable assumption, and
revisit the upper bound of computational complexity of the “SRACOS” (Hu et al., 2017). Inspired
by the revisited upper bound, we propose a new classification-based DFO algorithm named “RACE-
CARS” (the abbreviation of “RAndomized CoordinatE Classifying And Region Shrinking”), which
inherits the characterizations of “SRACOS” while achieves acceleration theoretically. At last, we
design experiments on the synthetic functions and black-box tuning for language-model-as-a-service
comparing “RACE-CARS” with some state-of-the-art DFO algorithms and sequential “RACOS”,
illustrating the superiority of “RACE-CARS” empirically. In discussion, we empirically show (also
under theoretical support) the ability of “RACE-CARS” beyond continuity. In addition, ablation
experiment is performed to shed light on hyperparameter selection of the proposed algorithm.

The rest of the paper is organized in five sections, sequentially presenting the background, theoretical
study, experiments, discussion and conclusion.

2 BACKGROUND

Let Ω be the solution space in Rn, we presume that Ω is an n dimensional compact cubic. In this
work, we mainly focus on optimization problems reading as

min
x∈Ω

f(x), (1)

where only zeroth-order information is accessible for us, namely, once we input a potential solution
x ∈ Ω into the oracle, merely the objective value f(x) will return. In addition, we will not stipulate
any convexity, smoothness or separability assumptions on f.

Assume f(x) is lower bounded in Ω and f∗ := minx∈Ω f(x). For the sake of theoretical analysis,
we make some blanket notations: Denoted by F the Borel σ-algebra defined on Ω and P the prob-
ability measure on F . For instance, when Ω is continuous, P is induced by Lebesgue measure m:
P(B) := m(B)/m(Ω) for all B ∈ F . Let Ωε := {x ∈ Ω: f(x) − f∗ ≤ ε} for some ε > 0. We
always assume that for all ε > 0, it holds |Ωε| := P(Ωε) > 0.

A hypothesis (or classifier) h is a function mapping the solution space Ω to {0, 1}. Define

Dh(x) :=

{
1/P({x ∈ Ω: h(x) = 1}), h(x) = 1

0, otherwise,
(2)

a probability distribution in Ω. Let Xh be the random vector in (Ω,F ,P) drawn from Dh, meaning
that Pr(Xh ∈ B) =

∫
x∈B Dh(x)dP for all B ∈ F . Denoted by T := {1, 2, . . . , T} and filtration

F := (Ft)t∈T a family of σ-algebras on Ω indexed by T such that F1 ⊆ F2 ⊆ · · · ⊆ FT ⊆ F .
A typical classification-based optimization algorithm learns an F-adapted stochastic process X :=
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(Xt)t∈T, where Xt is induced by Xht and ht is the hypothesis learned at step t. Then samples new
data with a stochastic process Y := (Yt)t∈T generated by X (Yu & Qian, 2014; Yu et al., 2016).
Normally, the new solution at step t ≥ r + 1 is sampled from

Yt :=

{
Xt, with probability λ
XΩ, with probability 1− λ,

where XΩ is random vector drawn from uniform sampling UΩ and 0 ≤ λ ≤ 1 is the exploitation
rate. A simplified batch-mode classification-based optimization algorithm is presented in appendix
A Algorithm 2. At each step t, it selects a positive set Spositive from S containing the best m sam-
ples, and the rest belong to negative set Snegative. Then it trains a hypothesis ht which partitions the
positive set and negative set such that ht(xj) = 0 for all (xj , yj) ∈ Snegative. At last samples r new
solutions with the sampling random vector Yt. The sub-procedure ht ← T (Spositive,Snegative)
trains a hypothesis under certain rules. “RACOS” is the abbreviation of “RAndomized COordi-
nate Shrinking”. Literally, it trains the hypothesis by this means (Yu et al., 2016), i.e., shrinking
coordinates randomly such that all negative samples are excluded from positive region of resulting
hypothesis. Algorithm 3 in appendix A shows a continuous version of “RACOS”. The main dif-
ference between sequential-mode and batch-mode classification-based DFO is that the sequential
version maintains a training set of size r at each step t, then it samples only one solution after learn-
ing the hypothesis ht. It replaces the training set with this new one under certain rules to finish step
t. In the rest of this paper, we will omit the details of replacing sub-procedure which can be found in
Hu et al. (2017). The pseudocode of sequential-model classification-based optimization algorithm
is presented in Algorithm 4 in appendix A.

Classification-based DFO algorithms admit a performance bound on the query complexity, see Defi-
nition 2.1 (Yu & Qian, 2014), which counts the total number of calls to the objective function before
finding a solution that reaches the approximation level ε with high probability 1− δ. Definition 2.2
and 2.3 are given by Yu et al. (2016). The first one characterizes the so-called dependence between
classification error and target region, which is expected to be as small as possible. The second one
characterizes how large the positive region of hypothesis, which is also expected to be small.
Definition 2.1 ((ε, δ)-Query Complexity). Given f, 0 < δ < 1 and ε > 0, the (ε, δ)-query complex-
ity of an algorithm A is the number of calls to f such that, with probability at least 1− δ, A finds at
least one solution x̃ ∈ Ω satisfying

f(x̃)− f∗ ≤ ε.
Definition 2.2 (Error-Target θ-Dependence). The error-target dependence θ ≥ 0 of a classification-
based optimization algorithm is its infimum such that, for any ε > 0 and any t,

||Ωε| · P(Rt)− P
(
Ωε ∩Rt

)
| ≤ θ|Ωε|,

whereRt := Ωαt∆{x ∈ Ω: ht(x) = 1} denotes the relative error, the operator ∆ is the symmetric
difference of two sets defined as A1∆A2 = (A1 ∪A2)− (A1 ∩A2). Similar to the definition of Ωε,
Ωαt := {x ∈ Ω: f(x)− f∗ ≤ αt} with αt := min

1≤i≤t
f(xi)− f∗.

Definition 2.3 (γ-Shrinking Rate). The shrinking rate γ > 0 of a classification-based optimization
algorithm is its infimum such that P(x ∈ Ω: ht(x) = 1) ≤ γ|Ωαt | for all t.
Theorem 2.1. (Hu et al., 2017) Given 0 < δ < 1 and ε > 0, if a sequential classification-based op-
timization algorithm has error-target θ-dependence and γ-shrinking rate, then its (ε, δ)-query com-
plexity is upper bounded by

O
(
max

{
1

|Ωε|
(
λ+

1− λ
γ(T − r)

T∑
t=r+1

Φt
)−1

ln
1

δ
, T

})
,

where the Φt =
(
1 − θ − P(RDt) −m(Ω)

√
1
2DKL(Dt‖UΩ)

)
· |Ωαt |−1 with the notations Dt :=

λDht + (1− λ)UΩ and P(RDt) :=
∫
Rt DtdP.

3 THEORETICAL STUDY

3.1 DEFICIENCIES CAUSED BY ERROR-TARGET DEPENDENCE

(i) The query complexity of Algorithm 4 cannot be upper-bounded by Theorem 2.1.
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On the basis of error-target θ-dependence and γ-shrinking rate, Theorem 2.1 gives a general
bound of the query complexity of the sequential-mode classification-based DFO algorithm
4. As assumptions entailed in Yu et al. (2016); Hu et al. (2017), it can be easily observed
that the smaller θ or γ the better the query complexity. However, in some cases even though
these two factors are small, something wrong happens. Following the lemma given by Yu

et al. (2016): P(Rt) ≤ P(RDt) +m(Ω)
√

1
2DKL(Dt‖UΩ), it holds

Φt =
(
1−θ−P(RDt)−m(Ω)

√
1

2
DKL(Dt‖UΩ)

)
· |Ωαt |−1 ≤ (1−θ−P(Rt)) · |Ωαt |−1.

According to the definition of error-target θ-dependence, small θ does not indicate small
relative error P(Rt). Contrarily, small θ and big (P(Ωε ∩ Rt))/|Ωε| implies big P(Rt),
which can even be 1 as long as Ωαt is totally out of the positive region of ht, namely the
situation that hypothesis ht is 100% wrong. Then Φt ≤ (1 − θ − P(Rt)) · |Ωαt |−1 ≤ 0,
which is unacceptable since Φt performs as a divisor in the proof of Theorem 2.1, the
negative divisor will change the sign of inequality relationship. Actually, in order that
Φt ≤ 0, P(Rt) is not necessary to be 1 since θ is nonnegative. In other words, a sequence
of inaccurate hypotheses suffice to make the upper bound wrong.

(ii) The upper bound is not tight enough.
Let us consider an extreme situation. Assume that the hypotheses at each step are all

ht(x) =

{
1, x ∈ Ωε
0, x /∈ Ωε.

(3)

Since the size of training sets used to train the hypothesis ht is tiny and the training data
is biased in the context of sequential-mode classification-based optimization algorithm, it
is quite reasonable to assume that the relative errors P(Rt) are large. In other words,
in this situation we learn a series of “inaccurate” hypotheses with respect to Ωαt while
accidentally “accurate” with respect to Ωε. Consequently, the error-target dependence θ =
max1≤t≤T P(Rt) is large. Even though Φt are all positive, the query complexity bound
given in Theorem 2.1 can be large. However, in this situation, it can be easily proven that
the probability an ε-minimum is not found until step T is

Pr
(

min
1≤t≤T

f(xt)− f∗ ≥ ε
)

= (1− |Ωε|)r
(
(1− λ)(1− |Ωε|)

)T−r
,

which is smaller than δ for not very large T. It means that the upper bound in Theorem 2.1
is not tight.

3.2 REVISIT OF QUERY COMPLEXITY UPPER BOUND

Considering the minor deficiencies caused by error-target dependence, it can be observed that re-
gardless how small error-target dependence is, deficiencies happen due to large relative error of clas-
sification, since error-target dependence cannot dominate relative error. It seems that an assumption
on small relative error should be supplemented. However, this kind of assumption is not reasonable
since the size of training sets is tiny and the training data is biased in the context of sequential-mode
classification-based optimization algorithm. To this end, we give a new concept that is independent
to the influence of relative error:
Definition 3.1 (Hypothesis-Target η-Shattering Rate). Given η ∈ [0, 1], for a family of hypotheses
H defined on Ω, we say Ωε is η-shattered by h ∈ H if

P(Ωε ∩ {x ∈ Ω: h(x) = 1}) ≥ η|Ωε|,
and η is called hypothesis-target shattering rate.

Similar to error-target dependence, hypothesis-target shattering rate is relevant to certain accuracy
of the hypothesis. Moreover, the error-target dependence can be bounded by relative error and
hypothesis-target shattering rate: θ ≤ max{P

(
Rt
)
, |1− P

(
Rt
)
− η|}. Hypothesis-target shattering

rate η describes how large the intersection of target Ωε and positive region of hypothesis. Addition-
ally, it eliminates the impact of relative error on error-target dependence. In the following theorem,
we revisit the upper bound of (ε, δ)-query complexity with hypothesis-target shattering rate.
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Theorem 3.1. Consider sequential-mode classification-based DFO Algorithm 4, let Xt = Xht ,
assume that for ε > 0, Ωε is η-shattered by ht for all t = r + 1 . . . , T and max

t=r+1,...,T
P({x ∈

Ω: ht(x) = 1}) ≤ p ≤ 1. Then for 0 < δ < 1, the (ε, δ)-query complexity is upper bounded by

O
(

max{
(
λ
η

p
+ (1− λ)

)−1( 1

|Ωε|
ln

1

δ
− r
)

+ r, T}
)
.

The detailed proof of Theorem 3.1 can be found in appendix F.1.

3.3 AN ACCELERATION FOR SEQUENTIAL-MODE CLASSIFICATION-BASED DFO

Actually, in terms of the (ε, δ)-query complexity analysis of classification-based optimization algo-
rithm, the relative error P(Rt) does not play a decisive role since we aim at finding the optimum
rather than learning a series of accurate classifier. As the counterexample equation 3 which is lit-
erally the most desirable hypothesis although the relative error can be large, we should focus more
on the intersection of Ωε and positive region of hypotheses, namely the hypothesis-target shattering
rate.

Shrinking rate defined in Definition 2.3 describes the decaying speed of P(x ∈ Ω: ht(x) = 1).
However, on the one hand, training a well-fitted hypothesis to Ωαt is not our original intention; On
the other hand |Ωαt | decreases rapidly as αt → 0, whereas it is also unrealistic to maintain such
a series of small γ-shrinking hypotheses by means of sequential randomized coordinate shrinking
method. Therefore, γ-shrinking assumption is usually not guaranteed for small γ.

Instead of pursuing small relative error and γ-shrinking with respect to |Ωαt |,we propose the follow-
ing Algorithm 1 “sequential RAndomized CoordinatE Classifying And Region Shrinking” (sequen-
tial “RACE-CARS”), which shrink the positive region of the sampling random vector Yt proactively
and adaptively via a projection sub-procedure. We put a 2-dimensional illustration as follows:

The left subfigure is the intersection before projection,
where the ellipse centered on x∗ is the intersection of
Ωε and the rectangle containing xbest is the positive
region of ht such that ht(x) = 1. The right one shows
the intersection after projection, where the positive re-
gion of ht shrinks to the positive region. Ω

x *

xbest

Ωε

{x∈Ω:ht(x) = 1}

Ω

x *

xbest

Ωε

{x∈Ω:h̃t(x) = 1}

Algorithm 1: Sequential Randomized Coordinate Classifying and Region Shrinking Algorithm
Input:

Ω: Boundary; T ∈ N+: Budget; r = m+ k; Replace: Replacing sub-procedure;
γ: Region shrinking rate; ρ: Region shrinking frequency.

Output: (xbest, ybest).

Collect S = {(x1, y1), . . . , (xr, yr)} i.i.d. from UΩ;
(xbest, ybest) = arg min{y : (x, y) ∈ S};
Initialize k = 1, Ω̃ = Ω;
for t = r + 1, . . . , T do

Train: ht ← T (Spositive,Snegative) through “RACOS”;
s← random(0, 1);
if s ≤ ρ then

Shrink region: Ω̃ = [xbest − 1
2γ

k‖Ω‖, xbest + 1
2γ

k‖Ω‖] ∩ Ω;
k = k + 1;

Project: Yt ← Proj(ht, Ω̃);
Sample: (xt, yt) ∼ Yt;
Replace: S ← Replace((xt, yt),S);
(xbest, ybest) = arg min{y : (x, y) ∈ S};

return (xbest, ybest)

The operator ‖ · ‖ returns a tuple comprised of the diameter of each dimension of the region. For
instance, when Ω = [ω1

1 , ω
1
2 ]× [ω2

1 , ω
2
2 ],we have‖Ω‖ = (ω1

2−ω1
1 , ω

2
2−ω2

1). The projection operator
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Proj(ht, Ω̃) generates a random vector Xt with probability distribution

Dh̃t
:= h̃t/P({x ∈ Ω: h̃t(x) = 1}),

where h̃t(x) = 1 when ht(x) = 1 and x ∈ Ω̃. The sampling random vector Yt is induced from Xt.
The following theorem gives the query complexity upper bound of Algorithm 1.

Theorem 3.2. Consider Algorithm 1. Assume that for ε > 0, Ωε is η-shattered by h̃t for all
t = r+1 . . . , T. Let the region shrinking rate 0 < γ < 1 and region shrinking frequency 0 < ρ < 1,
then for 0 < δ < 1, the (ε, δ)-query complexity of “RACE-CARS” is upper bounded by

O
(

max{
(γ−ρ + γ−(T−r)ρ

2
λη + (1− λ)

)−1( 1

|Ωε|
ln

1

δ
− r
)

+ r, T}
)
.

The detailed proof of Theorem 3.2 can be found in appendix F.2.

0 < γ < 1 implies 2p
γ−ρ+γ−(T−r)ρ � 1. Theorem 3.2 indicates that the upper bound of the (ε, δ)-

query complexity of sequential “RACE-CARS” is smaller than “SRACOS” as long as η > 0.

Definition 3.2 (Dimensionally local Holder continuity). Assume that x∗ = (x1
∗, . . . , x

n
∗ ) is the

unique global minimum such that f(x∗) = f∗. We call f dimensionally local Holder continuity if

Li1|xi − xi∗|β
i
1 ≤ |f(x1

∗, . . . , x
i, . . . , xn∗ )− f∗| ≤ Li2|xi − xi∗|β

i
2 , ∀i = 1, . . . , n,

for all x = (x1, . . . , xn) in the neighborhood of X∗, where βi1, β
i
2, L

i
1, L

i
2 are positive constants for

i = 1, . . . , n.

Under the assumption that f is dimensionally locally Holder continuous, it is obvious that

Ωε ⊆
n∏
i=1

[xi∗ − (
ε

Li1
)−β

i
1 , xi∗ + (

ε

Li1
)−β

i
1 ].

Denoted by x̃t = (x̃1
t , . . . , x̃

n
t ) := arg minj=1,...,t f(xj), the following theorem gives a lower

bound of region shrinking rate γ and shrinking frequency ρ, such that “RACE-CARS” meets the
assumptions in Theorem 3.2.
Theorem 3.3. For a dimensionally local Holder continuous objective f. Assume that for ε > 0, Ωε
is η-shattered by ht for all t = r+ 1, . . . , T. In order that Ωε being η-shattered by h̃t, it is sufficient
when the region shrinking rate γ and shrinking frequency ρ satisfy:

1

2
γtρ‖Ω‖ ≥

(
x̃1
t − x1

∗ + (
ε

L1
1

)−β
1
1 , . . . , x̃nt − xn∗ + (

ε

Ln1
)−β

n
1

)
.

However, βi1, L
i
1 and x∗ are unknown generally, γ and ρ are hyperparameters should be carefully se-

lected. Although new hyperparameters are introduced, they make practical sense and there are traces
to follow when tuning them. Empirical hyperparameter-tuning guidance is conducted in section 5.

4 EXPERIMENTS

In this section, we design 2 experiments to test “RACE-CARS” on synthetic functions, and a
language model task respectively. We use same budget to compare “RACE-CARS” with several
state-of-the-art DFO algorithms, including sequential “RACOS” (“SRACOS”) (Hu et al., 2017),
zeroth-order adaptive momentum method (“ZO-Adam”) (Chen et al., 2019), differential evolution
(“DE”) (Opara & Arabas, 2019) and covariance matrix adaptation evolution strategies (“CMA-ES”)
(Hansen, 2016). All the baseline algorithms are fine-tuned.

4.1 ON SYNTHETIC FUNCTIONS

We first test on four well-known benchmark test functions: Ackley, Levy, Rastrigin and Sphere. An-
alytic expressions can be found in appendix B and Figure 3 shows the surfaces of four 2-dimensional
test functions. It can be observed that they are highly nonconvex with many local minima except
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Figure 1: Comparison of the synthetic functions with n = 500.

for Sphere. These functions are minimized within the boundary Ω = [−10, 10]n, and the mini-
mum of them are all 0. We choose the dimension of solution space n to be 50 and 500, and the
budget of function evaluation is set to be 5000 and 50000 respectively (as the results show, in order
to make the algorithm converge, only a few portions of the budget is enough for “RACE-CARS”).
Region shrinking rate is set to be γ = 0.9, 0.95 and region shrinking frequency is ρ = 0.01, 0.001
respectively when n = 50, 500. Each of the algorithm is repeated 30 runs and the convergence tra-
jectories of mean of the best-so-far value are presented in Figure 4 (in appendix C) and Figure 1.
The numbers attached to the algorithm names in the legend of figures are the mean value of obtained
minimum. It can be observed that “RACE-CARS” performs the best on both convergence speed
and optimal value, except for the strongly convex function Sphere, where it is slightly worse than
“CMA-ES”. However, it should be emphasized that “CMA-ES” involves an n-dimensional covari-
ance matrix, which is very time-consuming and suffers from scalability issue compared with the
other four algorithms.

4.2 ON BLACK-BOX TUNING FOR LANGUAGE-MODEL-AS-A-SERVICE

Prompt tuning for extremely large pre-trained language models (PTMs) has shown great power.
PTMs such as GPT-3 (Brown et al., 2020) are usually released as a service due to commercial
considerations and the potential risk of misuse, allowing users to design individual prompts to query
the PTMs through black-box APIs. This scenario is called Language-Model-as-a-Service (LMaaS)
(Sun et al., 2022; Diao et al., 2022). In this part we follow the experiments designed by Sun et al.
(2022) 1, where language understanding task is formulated as a classification task predicting for a
batch of PTM-modified input texts X the labels Y in the PTM vocabulary, namely we need to tune
the prompt such that the black-box PTM inference API f takes a continuous prompt p satisfying
Y = f(p;X). Moreover, to handle the high-dimensional prompt p, Sun et al. (2022) proposed
to randomly embed the D-dimensional prompt p into a lower dimensional space Rd via random
projection matrix A ∈ RD×d. Therefore, the objective becomes:

min
z∈Z
L
(
f(Az + p0;X), Y

)
,

where Z = [−50, 50]d is the search space and L(·) is cross entropy loss. In our experiments, we
set the dimension of search space as d = 500, prompt length as 50, let RoBERTa (Liu et al., 2019a)

1Code can be found in https://github.com/txsun1997/Black-Box-Tuning
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be backbone model. We test on datasets SST-2 (Socher et al., 2013), Yelp polarity and AG’s News
(Zhang et al., 2015), and RTE (Wang et al., 2018). Under the same budget of API calls T = 8000,
we compare “RACE-CARS” with “SRACOS” and the default DFO algorithm “CMA-ES” employed
in Sun et al. (2022) 2. The shrinking rate is γ = 0.7 and shrinking frequency is ρ = 0.002. Each of
the algorithm is repeated 5 runs independently with different seeds. Figure 2 shows comparisons on
the performance of mean and deviation of training loss. In appendix C, results on training accuracy
(Figure 5), development loss (Figure 6) and development accuracy (Figure 7) can be found. Results
show that “RACE-CARS” accelerates “SRACOS” in each case. “CMA-ES” outperforms “RACE-
CARS” on Yelp polarity, AG’s News and RTE, while it is a bit overfitting compared to “RACE-
CARS” (see Figure 6 and 7). “RACE-CARS” realizes comparable performance to “CMA-ES”.
In contrast to the well-tuned “CMA-ES”, the hyperparameters of “RACE-CARS” are only tuned
empirically w.r.t. SST-2 dataset, and then directly applied on three other datasets.
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Figure 2: Comparison of black-box tuning for LMaaS (Training loss).

5 DISCUSSION

5.1 BEYOND CONTINUITY

(i) For discontinuous objective functions.
The sufficient condition Theorem 3.3 gives a hyperparameters selection strategy when the
objective is dimensionally local Holder continuous (see Definition 3.2), in which the objec-
tive is restricted by several continuous envelopes whereas not supposed to be continuous.
Aside from continuous cases in the last section, when dealing with discontinuous objec-
tives, “RACE-CARS” is still valid. See appendix E for details.

(ii) For discrete optimization.
Similar to “SRACOS”, “RACE-CARS” maintains the ability to solve discrete optimization
problems. Theorem 3.1 and 3.2 can fit this situation when altering the measure of probabil-
ity space to be for example, induced by counting measure. We further conduct experiments
on mixed-integer programming problems, showing the acceleration of “RACE-CARS” em-
pirically. See appendix E for details.

2As section 4.1 shows, neither “ZO-Adam” nor “DE” achieves satisfactory result when the objective is
a high-dimensional nonconvex black-box function. In the consideration of concision and explicitation, we
discard these two methods in this section.

8
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5.2 ABLATION EXPERIMENTS

Generally, the word “black-box” implies objective-agnosticism or partial-cognition. Just like what
“No Free Lunch” theorem tells, it is desirable but not realistic to design a universal well-performed
DFO algorithm for black-box functions while hyperparameter-free. We propose “RACE-CARS”
carrying 2 hyperparameters shrinking-rate γ and shrinking-frequency ρ. For an n-dimensional opti-
mization problem, we call γnρ shrinking factor of “RACE-CARS”. In Theorem 3.3 we give a lower
bound of shrinking factor in the expectation sense. In this subsection we take Ackley for a case
study, design ablation experiments on the 2 hyperparameters of “RACE-CARS” to reveal the mech-
anism. We stipulate that we do not aim to find a best composition of hyperparameters, whereas to
put forth an empirical hyperparameter-tuning guidance. See appendix E for details.

5.3 ON THE NEWLY INTRODUCED ASSUMPTION

In the former studies, Hu et al. (2017) establish query complexity upper bound based on two quan-
tities, namely the error-target θ-dependence (see Definition 2.2) and the γ-shrinking rate (see Def-
inition 2.3). According to the analysis in subsection 3.1 and the second paragraph in subsection
3.3, these two quantities may lead to inaccurate upper bound under certain extreme conditions. The
pertinence of these two quantities is therefore debatable. In the present study, we deprecate these
quantities and introduce a more straightforward concept, i.e. “hypothesis-target η-shattering” (see
Definition 3.1), which describes the percentage η of the intersection of hypotheses and target. Ac-
cording to the derived Theorem 3.1 and Theorem 3.2, region-shrinking accelerates the classification-
based DFO as long as η > 0. Following the idea of this newly introduced assumption, training a
series of accurate hypotheses is not necessary, while pursuing bigger shattering rate η is more pre-
ferred. This radical strategy is in contrast to Hashimoto et al. (2018), who propose a batch-mode
classification-based DFO using a conservative Training sub-procedure, namely consistent selec-
tive strategy (CSS) (El-Yaniv & Wiener, 2012). They prove that for a hypothesis class H of VC-
dimension V C(H), an accurate hypothesis needs O(ε−1(V C(H) log(ε−1))) per-batch samples for
Training.Although they propose a computationally efficient approximation, only successes on low
dimensional problems are provided and performance on high dimensional remains unclear.

However, it is not trivial to identify the applicable scope of the newly introduced assumption,
given the complexity of the stochastic process corresponding to the Training and Replacing sub-
procedure (see equation 2, Algorithm 3 and Algorithm 4). To our best knowledge, the conditional
expectation of such process cannot be determined analytically. We plan to address this gap via two
routes in our future work. Firstly, despite the provided empirical test results, numerical tools com-
promising black-box function exploration and computational cost may be useful to further clarify the
applicability of the proposed algorithm. Furthermore, altering the Training and Replacing sub-
procedures inherited from “RACOS”, which may ideally lead to a bigger shattering rate and maintain
the easy-to-sample characterization, will be another extension direction of the current study.

6 CONCLUSION

In this paper, we propose a concept called hypothesis-target shattering rate and revisit the query
complexity upper bound of sequential-mode classification-based DFO algorithms:

O
(

max{
(
λ
η

p
+ (1− λ)

)−1( 1

|Ωε|
ln

1

δ
− r
)

+ r, T}
)
.

Inspired by the computational complexity upper bound under the new framework, we propose a
region-shrinking technique to accelerate the convergence. Computational complexity upper bound
of the derived sequential classification-based DFO algorithm “RACE-CARS” is:

O
(

max{
(γ−ρ + γ−(T−r)ρ

2
λη + (1− λ)

)−1( 1

|Ωε|
ln

1

δ
− r
)

+ r, T}
)
.

The 2 newly introduced hyperparameters γ ∈ (0, 1) is shrinking rate and ρ ∈ (0, 1) is shrinking
frequency. Since 2p

γ−ρ+γ−(T−r)ρ � 1, “RACE-CARS” outperforms “SRACOS” theoretically. In
empirical analysis, we study the performance of “RACE-CARS” on synthetic functions and black-
box tuning for language-model-as-a-service, showing its superiority over “SRACOS” and other 4
DFO algorithms.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Bahriye Akay and Dervis Karaboga. Artificial bee colony algorithm for large-scale problems and
engineering design optimization. Journal of intelligent manufacturing, 23:1001–1014, 2012.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.
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A ALGORITHMS

Algorithm 2: Batch-Mode Classification-Based Optimization Algorithm
Input:
T ∈ N+: Budget; r: Training size; m: Positive size.

Output: (xbest, ybest).

Collect: S = {(x0
1, y

0
1), . . . , (x0

r, y
0
r)} i.i.d. from UΩ;

(xbest, ybest) = arg min{y : (x, y) ∈ S};
for t = 1, . . . , T/r do

Classify: (Spositive,Snegative)← S;
Train: ht ← T (Spositive,Snegative);
Sample: {(xt1, yt1), . . . , (xtr, y

t
r)} i.i.d. with Yt;

Select: S ← best r samples within S ∪ {(xt1, yt1), . . . , (xtr, y
t
r)};

(xbest, ybest) = arg min
{
y : (x, y) ∈ S

}
.

return (xbest, ybest)

Algorithm 3: RACOS
Input:

Ω: Boundary; (Spositive,Snegative): Binary sets; I = {1, . . . , n}: Index of dimensions.
Output: h: Hypothesis.

Randomly select: x+ = (x1
+, . . . , x

n
+)← Spositive;

h(x) ≡ 1;
while ∃x ∈ Snegative s.t. ht(x) = 1 do

Randomly select: k ← I;
Randomly select: x− = (x1

−, . . . , x
n
−)← Snegative;

if xk+ ≤ xk− then
s← random(xk+, x

k
−);

Shrink: h(x) = 0, ∀x ∈ {x = (x1, . . . , xn) ∈ Ω: xk > s};
else

s← random(xk−, x
k
+);

Shrink: h(x) = 0, ∀x ∈ {x = (x1, . . . , xn) ∈ Ω: xk < s};
return h

Algorithm 4: Sequential-Mode Classification-Based Optimization Algorithm
Input:
T ∈ N+: Budget; r: Training size; m: Positive size;
Replace: Replacing sub-procedure.

Output: (xbest, ybest).

Collect S = {(x1, y1), . . . , (xr, yr)} i.i.d. from UΩ;
(xbest, ybest) = arg min{y : (x, y) ∈ S};
for t = r + 1, . . . , T do

Classify: (Spositive,Snegative)← S;
Train: ht ← T (Spositive,Snegative);
Sample: (xt, yt) ∼ Yt;
Replace: S ← Replace((xt, yt),S);
(xbest, ybest) = arg min{y : (x, y) ∈ S};

return (xbest, ybest)
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B SYNTHETIC FUNCTIONS
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Figure 3: Synthetic functions with n = 2.

• Ackley:

f(x) = −20 exp(−0.2

√√√√ n∑
i=1

(xi − 0.2)2/n)− exp(

n∑
i=1

cos 2πxi/n) + e+ 20.

• Levy:

f(x) = sin2(πω1) +

n−1∑
i=1

(ωi − 1)2
(
1 + 10 sin2(πωi + 1)

)
+ (ωn − 1)2

(
1 + sin2(2πωn)

)
where ωi = 1 + xi−1

4 .

• Rastrigin:

f(x) = 10n+

n∑
i=1

(
x2
i − 10 cos(2πxi)

)
.

• Sphere:

f(x) =

n∑
i=1

(xi − 0.2)2.
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Figure 4: Comparison of the synthetic functions with n = 50.
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Figure 5: Comparison of black-box tuning for LMaaS (Training accuracy).
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Figure 6: Comparison of black-box tuning for LMaaS (Development loss).
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Figure 7: Comparison of black-box tuning for LMaaS (Development accuracy).
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D TABLES

Table 1: Comparison of shrinking frequencies ρ for Ackley on Ω = [−10,10]n with shrinking
rate γ = 0.95. Mean and standard deviation of function value at the 30n step are listed in the table. The first
row of the table with ρ = 0 is the results of “SRACOS” for reference. We omit the results of ρ bigger than 0.1
for concision. The bold fonts are relative better results in each dimension.

ρ
n 50 100 150 200 250 300 350 400 450 500

0 3.8 ± 0.2 3.9 ± 0.2 5.9 ± 0.1 5.7 ± 0.1 5.8 ± 0.2 5.8 ± 0.1 5.9 ± 0.0 5.8 ± 0.0 5.9 ± 0.1 5.8 ± 0.1
0.002 3.7 ± 0.2 3.5 ± 0.2 4.3 ± 0.3 4.4 ± 0.3 4.0 ± 0.6 3.9 ± 0.5 3.7 ± 0.4 3.3 ± 0.4 3.3 ± 0.3 2.6 ± 0.4
0.004 3.4 ± 0.3 3.2 ± 0.1 3.8 ± 0.6 3.7 ± 0.2 2.8 ± 0.5 2.1 ± 0.5 1.9 ± 0.2 1.9 ± 0.2 1.8 ± 0.6 1.7 ± 0.4
0.006 3.3 ± 0.3 2.9 ± 0.2 2.9 ± 0.4 2.0 ± 0.1 2.1 ± 0.4 1.8 ± 0.2 1.9 ± 0.2 2.4 ± 0.3 2.7 ± 0.3 3.1 ± 1.5
0.008 3.0 ± 0.3 2.4 ± 0.4 2.3 ± 0.5 1.7 ± 0.2 1.8 ± 0.4 2.3 ± 0.7 2.5 ± 0.4 3.9 ± 0.8 4.5 ± 0.9 5.5 ± 1.0
0.010 2.8 ± 0.4 1.8 ± 0.5 1.9 ± 0.4 2.1 ± 0.2 2.3 ± 0.6 3.6 ± 0.8 4.1 ± 0.6 4.9 ± 0.9 7.5 ± 0.7 6.3 ± 0.8
0.012 2.5 ± 0.1 1.4 ± 0.2 1.6 ± 0.4 1.8 ± 0.2 3.1 ± 0.7 4.4 ± 1.1 5.4 ± 0.5 5.6 ± 1.4 6.6 ± 0.8 7.5 ± 0.7
0.014 2.6 ± 0.3 1.5 ± 0.3 2.5 ± 0.5 2.2 ± 0.5 3.9 ± 0.6 5.0 ± 0.8 7.1 ± 1.2 6.3 ± 0.6 8.3 ± 0.7 8.3 ± 0.5
0.016 2.6 ± 0.4 1.3 ± 0.4 2.0 ± 0.3 3.4 ± 1.3 4.4 ± 0.9 6.1 ± 1.0 7.0 ± 1.1 6.9 ± 0.8 8.0 ± 0.6 8.9 ± 0.8
0.018 2.3 ± 0.2 1.3 ± 0.4 2.8 ± 0.8 4.1 ± 0.6 5.1 ± 0.9 6.9 ± 1.0 7.1 ± 1.3 8.3 ± 0.5 9.1 ± 0.9 9.3 ± 0.4
0.020 2.0 ± 0.6 2.0 ± 0.5 3.2 ± 1.2 4.4 ± 0.8 6.3 ± 1.3 7.2 ± 1.1 7.4 ± 0.6 9.1 ± 0.8 10.2 ± 0.9 10.0 ± 0.6
0.022 1.7 ± 0.3 2.0 ± 1.0 3.9 ± 1.3 5.3 ± 1.0 6.8 ± 1.0 7.5 ± 1.1 8.8 ± 0.6 9.1 ± 0.8 10.7 ± 0.5 10.0 ± 0.3
0.024 1.9 ± 0.2 3.3 ± 0.9 4.3 ± 1.1 6.0 ± 0.9 7.0 ± 0.3 8.5 ± 0.7 9.3 ± 0.4 10.1 ± 0.7 10.7 ± 0.5 10.8 ± 0.6
0.026 1.5 ± 0.4 2.7 ± 1.2 4.3 ± 0.6 7.0 ± 0.7 8.3 ± 0.4 9.0 ± 0.4 9.8 ± 0.7 10.1 ± 0.7 10.7 ± 0.6 11.6 ± 0.4
0.028 1.3 ± 0.2 3.8 ± 0.6 4.9 ± 0.7 7.2 ± 0.7 8.8 ± 1.0 8.8 ± 0.9 9.5 ± 0.5 10.7 ± 0.4 10.9 ± 0.2 11.3 ± 0.4
0.030 1.3 ± 0.4 4.0 ± 0.4 5.0 ± 0.4 7.1 ± 0.9 8.2 ± 1.0 9.2 ± 0.6 10.3 ± 0.5 10.6 ± 1.0 10.9 ± 0.4 11.8 ± 0.4
0.032 1.5 ± 0.5 6.1 ± 1.2 6.2 ± 1.1 7.3 ± 0.6 9.1 ± 0.8 9.9 ± 0.5 10.6 ± 0.4 10.5 ± 0.8 11.2 ± 0.6 12.0 ± 0.3
0.034 1.9 ± 0.6 5.1 ± 0.8 5.9 ± 0.7 8.2 ± 0.7 9.0 ± 0.3 10.4 ± 0.4 10.6 ± 0.6 11.2 ± 0.4 11.9 ± 0.5 12.1 ± 0.4
0.036 1.5 ± 0.2 6.4 ± 0.5 6.8 ± 0.6 7.9 ± 1.0 9.3 ± 1.0 10.4 ± 0.4 10.9 ± 0.3 11.3 ± 0.5 11.9 ± 0.3 12.0 ± 0.3
0.038 2.2 ± 1.6 5.1 ± 0.8 6.1 ± 0.6 8.2 ± 1.0 9.6 ± 0.8 10.8 ± 0.5 10.9 ± 0.5 11.6 ± 0.3 11.8 ± 0.4 12.3 ± 0.5
0.040 2.2 ± 1.1 7.3 ± 1.6 7.6 ± 0.4 8.7 ± 0.4 9.3 ± 0.7 10.4 ± 0.5 11.4 ± 0.4 11.7 ± 0.6 12.3 ± 0.2 12.2 ± 0.3
0.042 2.2 ± 0.8 6.4 ± 1.2 7.6 ± 0.8 9.3 ± 0.8 10.0 ± 0.8 10.4 ± 0.5 11.6 ± 0.3 12.3 ± 0.4 12.0 ± 0.5 12.5 ± 0.5
0.044 1.8 ± 0.6 6.8 ± 1.0 6.9 ± 0.9 9.6 ± 0.5 10.3 ± 0.4 11.0 ± 1.0 11.1 ± 0.3 12.0 ± 0.3 12.4 ± 0.4 12.6 ± 0.3
0.046 2.1 ± 0.3 7.4 ± 0.7 8.1 ± 0.8 9.4 ± 0.3 10.4 ± 0.9 11.3 ± 0.4 11.6 ± 0.5 12.1 ± 0.4 12.4 ± 0.2 12.7 ± 0.2
0.048 3.2 ± 1.1 6.6 ± 1.0 7.5 ± 1.3 9.9 ± 0.4 10.1 ± 0.4 11.3 ± 0.2 12.2 ± 0.4 12.0 ± 0.5 12.3 ± 0.3 12.5 ± 0.3
0.050 3.5 ± 1.0 7.7 ± 0.8 8.6 ± 0.3 10.0 ± 0.3 10.6 ± 0.6 11.1 ± 0.5 12.4 ± 0.2 12.5 ± 0.4 12.6 ± 0.3 12.8 ± 0.2
0.052 3.6 ± 0.7 8.8 ± 0.9 8.1 ± 0.6 10.0 ± 0.8 11.0 ± 0.4 11.6 ± 0.7 12.7 ± 0.2 12.5 ± 0.1 12.8 ± 0.4 13.3 ± 0.1
0.054 3.8 ± 1.5 7.3 ± 0.9 8.5 ± 0.3 10.1 ± 0.9 11.3 ± 0.3 11.7 ± 0.2 12.7 ± 0.3 12.9 ± 0.2 12.8 ± 0.2 13.0 ± 0.3
0.056 3.8 ± 1.3 8.8 ± 1.0 9.1 ± 0.8 10.5 ± 0.7 11.1 ± 0.7 11.8 ± 0.4 12.4 ± 0.2 12.6 ± 0.4 13.1 ± 0.1 13.0 ± 0.2
0.058 4.1 ± 1.0 9.1 ± 1.1 9.3 ± 1.3 10.7 ± 0.5 10.9 ± 0.2 11.9 ± 0.3 12.1 ± 0.4 12.7 ± 0.4 13.1 ± 0.2 13.2 ± 0.3
0.060 4.1 ± 1.0 8.8 ± 0.4 9.1 ± 0.9 10.8 ± 0.5 11.2 ± 0.5 11.8 ± 0.3 12.5 ± 0.2 12.8 ± 0.2 13.0 ± 0.3 13.2 ± 0.2
0.062 4.1 ± 1.7 9.2 ± 1.0 9.1 ± 0.6 10.9 ± 0.5 11.9 ± 0.5 12.1 ± 0.3 12.4 ± 0.2 12.9 ± 0.4 13.0 ± 0.3 13.3 ± 0.1
0.064 4.5 ± 1.2 8.6 ± 0.5 9.7 ± 0.4 11.1 ± 0.8 11.7 ± 0.2 12.3 ± 0.5 12.6 ± 0.3 13.1 ± 0.2 13.3 ± 0.2 13.4 ± 0.2
0.066 4.7 ± 0.3 9.5 ± 0.9 9.2 ± 0.4 11.0 ± 0.5 12.0 ± 0.3 12.1 ± 0.3 12.8 ± 0.4 12.9 ± 0.2 13.3 ± 0.2 13.3 ± 0.2
0.068 4.7 ± 0.7 9.2 ± 1.0 9.7 ± 0.7 11.0 ± 0.7 11.7 ± 0.4 12.8 ± 0.4 12.5 ± 0.6 13.0 ± 0.2 13.4 ± 0.1 13.4 ± 0.2
0.070 5.4 ± 1.5 9.5 ± 0.9 10.1 ± 0.6 10.8 ± 0.4 12.3 ± 0.3 12.4 ± 0.4 12.5 ± 0.7 13.1 ± 0.4 13.3 ± 0.2 13.5 ± 0.1
0.072 5.3 ± 1.2 9.1 ± 0.8 10.1 ± 0.4 11.7 ± 0.5 12.2 ± 0.6 12.5 ± 0.4 13.0 ± 0.4 13.3 ± 0.2 13.2 ± 0.2 13.7 ± 0.2
0.074 5.8 ± 1.0 10.1 ± 0.8 10.3 ± 0.4 11.4 ± 0.3 12.0 ± 0.4 12.5 ± 0.4 12.7 ± 0.3 13.0 ± 0.4 13.3 ± 0.3 13.7 ± 0.1
0.076 5.2 ± 1.3 9.8 ± 0.5 10.6 ± 0.5 11.3 ± 0.9 12.3 ± 0.3 12.7 ± 0.5 13.0 ± 0.2 13.2 ± 0.2 13.5 ± 0.3 13.7 ± 0.2
0.078 5.9 ± 0.5 10.3 ± 0.5 9.8 ± 0.6 11.8 ± 0.1 12.1 ± 0.1 12.7 ± 0.4 13.2 ± 0.3 13.3 ± 0.3 13.6 ± 0.1 13.7 ± 0.2
0.080 5.6 ± 0.7 10.1 ± 0.1 10.6 ± 0.4 11.4 ± 0.4 12.3 ± 0.5 13.0 ± 0.3 13.1 ± 0.1 13.4 ± 0.3 13.5 ± 0.4 13.7 ± 0.2
0.082 4.3 ± 1.3 10.3 ± 0.8 10.2 ± 0.7 11.8 ± 0.5 12.5 ± 0.4 12.8 ± 0.3 13.1 ± 0.3 13.4 ± 0.2 13.5 ± 0.3 13.8 ± 0.2
0.084 6.7 ± 0.9 10.6 ± 0.3 10.9 ± 0.2 11.8 ± 0.3 12.5 ± 0.3 13.0 ± 0.3 13.3 ± 0.2 13.4 ± 0.3 13.6 ± 0.2 13.8 ± 0.2
0.086 4.9 ± 0.6 10.2 ± 0.6 11.0 ± 0.4 11.9 ± 0.3 12.4 ± 0.2 12.6 ± 0.5 13.0 ± 0.3 13.5 ± 0.2 13.7 ± 0.2 13.9 ± 0.2
0.088 5.8 ± 1.0 10.7 ± 0.6 10.9 ± 0.2 11.7 ± 0.6 12.5 ± 0.2 13.0 ± 0.5 13.3 ± 0.2 13.6 ± 0.3 13.6 ± 0.1 13.9 ± 0.1
0.090 6.6 ± 1.4 10.2 ± 0.6 11.1 ± 0.4 12.1 ± 0.3 12.6 ± 0.5 13.0 ± 0.2 13.5 ± 0.1 13.4 ± 0.2 13.6 ± 0.2 13.8 ± 0.2
0.092 7.0 ± 1.0 10.4 ± 0.6 11.1 ± 0.7 12.2 ± 0.3 12.8 ± 0.3 13.0 ± 0.2 13.3 ± 0.2 13.5 ± 0.3 13.7 ± 0.2 13.8 ± 0.2
0.094 7.9 ± 0.5 10.2 ± 0.2 11.2 ± 0.6 12.3 ± 0.2 12.5 ± 0.3 12.8 ± 0.3 13.2 ± 0.2 13.5 ± 0.2 13.6 ± 0.2 13.9 ± 0.2
0.096 6.7 ± 0.5 10.9 ± 0.6 11.1 ± 0.2 12.2 ± 0.5 12.8 ± 0.2 13.1 ± 0.3 13.4 ± 0.3 13.4 ± 0.2 13.8 ± 0.3 13.9 ± 0.1
0.098 7.6 ± 0.5 10.7 ± 0.5 11.1 ± 0.2 12.2 ± 0.3 12.6 ± 0.3 13.0 ± 0.4 13.3 ± 0.2 13.6 ± 0.2 13.7 ± 0.2 14.0 ± 0.1
0.100 8.2 ± 1.0 10.8 ± 0.3 11.3 ± 0.8 11.9 ± 0.4 13.0 ± 0.2 13.3 ± 0.3 13.4 ± 0.1 13.6 ± 0.2 13.8 ± 0.1 13.8 ± 0.2
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E DISCUSSION

E.1 BEYOND CONTINUITY

E.1.1 FOR DISCONTINUOUS OBJECTIVE FUNCTIONS

We design experiments on discontinuous objective functions by adding random perturbation to syn-
thetic functions in appendix B. For example, the perturbation is set to be

P (x) =

m∑
i=1

εi · δB(xi,0.5)(x).

B(xi, 0.5) is the open ball centering at xi with radius equals to 0.5, with xi, i = 1, . . . ,m, randomly
generated within the solution region. δB(xi,0.5)(x) is an indicator function, equals to 1 when x ∈
B(xi, 0.5) otherwise 0. The perturbations εi are uniformly sampled from [0, 1] for every single ball
center xi, i = 1, . . . ,m. The objective function is set to be

f̃(x) := f(x) + P (x),

which is lower semi-continuous. We use the same settings as in section 4.1 with dimension n = 50,
the perturbation size m = 5n and budget T = 100n. Similarly, region shrinking rate is set to be
γ = 0.9 and region shrinking frequency is ρ = 0.01. Each of the algorithm is repeated 30 runs
and the convergence trajectories of mean of the best-so-far value are presented in Figure 8. The
numbers attached to the algorithm names in the legend of figures are the mean value of obtained
minimum. It can be observed that the acceleration of “RACE-CARS” to “SRACOS” is still valid.
Comparing with baselines, “RACE-CARS” performs the best on both convergence, and obtain the
best optimal value. As we anticipated, the performance of “SRACOS” and “RACE-CARS” are
almost impervious to discontinuity, whereas the other three baselines, whose convergence relies on
the continuity, suffers from oscillation or early-stopping to different extent.
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Figure 8: Comparison on discontinuous objectives
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E.1.2 FOR DISCRETE OPTIMIZATION

In order to switch “RACE-CARS” to discrete optimization, Training, Region-shrinking and
Projection sub-procedures in Algorithm 1 should be modified. In all cases, we employ the discrete
version of “RACOS” (Yu et al., 2016) for Training. Furthermore, we presume counting measure #
as the inducing measure of probability space (Ω,F ,P),where P(B) := #(B)/#(Ω) for allB ∈ F .
The Region-shrinking and Projection is therefore similar only to set the operator ‖ · ‖ return the
count of each dimension of the region.

We design experiments on the following formulation:

min f(x, y) (4)
s.t. x ∈ Ωc

y ∈ Ωd,

where Ωc is the continuous solution subspace and Ωd is discrete. Equation 4 encompasses a wide
range of continuous, discrete and mixed-integer programming problems. In our experiments, we
specify equation 4 as a mixed-integer programming problem:

min Ackley(x) + LTabs(y)

s.t. x ∈ [−1, 1]n1

y ∈ {−10,−9, . . . , 9, 10}n2 ,

where L ∈ Rn2 is sampled uniformly from [1, 2]n2 , thus the global optimal value is 0. We choose
the dimension of solution space as n1 = n2 = 50 and 250, the budget of function evaluation is
set to be 3000 and 10000 respectively. Region shrinking rate is set to be γ = 0.95 and region
shrinking frequency is ρ = 0.01, 0.005 respectively. Each of the algorithm is repeated 30 runs and
the convergence trajectories of mean of the best-so-far value are presented in Figure 9. As results
show, “RACE-CARS” maintains acceleration to “SRACOS” in discrete situation.
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Figure 9: Mixed-integer programming.

E.2 ABLATION EXPERIMENTS

(i) Relationship between shrinking frequency ρ and dimension n.
For Ackley on Ω = [−10, 10]n, we fix shrinking rate ρ = 0.95 and compare the perfor-
mance of “RACE-CARS” between different shrinking frequency ρ and dimension n. The
shrinking frequencies ρ ranges from 0.002 to 0.2 and dimension n ranges from 50 to 500.
The function calls budget is set to be T = 30n for fair. Experiments are repeated 5 times
for each hyperparameter and results are recorded in appendix D Table 1 and the normalized
results is presented in heatmap format in Figure 10. The black curve represents the trajec-
tory of best shrinking frequency with respect to dimension. Results in Figure 10 indicate
the best ρ is in reverse proportion to n, therefore maintaining nρ as constant is preferred.

(ii) Relationship between shrinking factor γnρ and dimension n of solution space.
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Figure 10: Comparison of shrinking frequencies ρ for Ackley on Ω = [−10,10]n with shrink-
ing rate γ = 0.95. The horizontal axis is dimension and the vertical axis is shrinking frequency. The heat
of each pixel represents the y-wise normalized mean function value at the 30n step. The black curve is the best
frequency in each dimension.

For Ackley on Ω = [−r, r]n, we compare the performance of “RACE-CARS” between dif-
ferent shrinking factors and radius r. Different shrinking factors are generated by varying
shrinking rate γ and dimension times shrinking frequency nρ. We design experiments on 4
different dimensions nwith 4 radii r. The function calls budget is set to be T = 30n. Exper-
iments are repeated 5 times for each hyperparameter and results are presented in heatmap
format in Figure 11. According to the results, the best shrinking factor is insensitive to
the variation of dimension. Considering that the best nρ maintains constant as n varying,
slightly variation of the corresponding best γ is preferred. This observation is in line with
what we anticipated as in section 4.
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(a) Radius r = 1
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(b) Radius r = 5
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(c) Radius r = 10
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(d) Radius r = 25

Figure 11: Comparison of shrinking factor γnρ and dimension n of the solution space
Ω = [−r, r]n. Results of different solution space radius are presented in each subfigure respectively. In
each subfigure, the horizontal axis is the dimension and the vertical axis is shrinking factor. Each pixel repre-
sents the heat of y-wise normalized mean function value at the 30n step. The black curve is the best shrinking
factor in each dimension.

(iii) Relationship between shrinking factor γnρ and radius r of solution space.
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For Ackley on Ω = [−r, r]n, we compare the performance of “RACE-CARS” between
different shrinking factors and radius r.Different shrinking factors are generated by varying
shrinking rate γ and dimension times shrinking frequency nρ. We design experiments on
4 different radii r with 4 dimensions n. The function calls budget is set to be T = 30n.
Experiments are repeated 5 times for each hyperparameter and results are presented in
heatmap format in Figure 12. According to the results, the best shrinking factor γnρ should
be decreased as radius r increases.
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(a) Dimension n = 50
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(b) Dimension n = 100
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(c) Dimension n = 250
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(d) Dimension n = 500

Figure 12: Comparison of shrinking factor γnρ and radius r of the solution space Ω = [−r, r]n.
Results of different dimension are presented in each subfigure respectively. In each subfigure, the horizontal
axis is the radius of solution space and the vertical axis is shrinking factor. Each pixel represents the heat of
y-wise normalized mean function value at the 30n step. The black curve is the best shrinking factor of each
solution space radius.
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F PROOFS

Theorem F.1. Let Xt = Xht , assume that for ε > 0, Ωε is η-shattered by ht for all t = r+1 . . . , T
and max

t=r+1,...,T
P({x ∈ Ω: ht(x) = 1}) ≤ p ≤ 1. Then for 0 < δ < 1, the (ε, δ)-query complexity

is upper bounded by

O
(

max{
(
λ
η

p
+ (1− λ)

)−1( 1

|Ωε|
ln

1

δ
− r
)

+ r, T}
)
.

Proof. Let x̃ := arg min
t=1,...,T

f(xt), then

Pr (f(x̃)− f∗ > ε)

=E
[
I{Y1,...,YT−1∈Ωcε}E[I{YT∈Ωcε}|FT−1]

]
=E
[
I{Y1,...,YT−2∈Ωcε}E

[
I{YT−1∈Ωcε}E[I{YT∈Ωcε}|FT−1]|FT−2

]]
= · · · · · ·
=E
[
I{Y1,...,Yr∈Ωcε}E

[
I{Yr+1∈Ωcε} · · ·E

[
I{YT−1∈Ωcε}E[I{YT∈Ωcε}|FT−1]|FT−2

]
· · · |Fr

]]
.

Where IB(x) is the identical function on B ∈ F such that IB(x) ≡ 1 for all x ∈ B and IB(x) ≡ 0
otherwise. At step t ≥ r + 1, since XΩ is independent to Ft−1, it holds

E[I{Yt∈Ωcε}|Ft−1] =E[I{λXt+(1−λ)XΩ∈Ωcε}|Ft−1]

=λ(1− E[I{Xht∈Ωε}|Ft−1]) + (1− λ)(1− |Ωε|).
Under the assumption that Ωε is η-shattered by ht, it holds the relation that

E[I{Xht∈Ωε}|Ft−1] =
P({x ∈ Ωε : ht(x) = 1})
P({x ∈ Ω: ht(x) = 1})

≥ η

p
|Ωε|.

Therefore,

E[I{Yt∈Ωcε}|Ft−1] =λ(1− E[I{Xht∈Ωε}|Ft−1]) + (1− λ)(1− |Ωε|)

≤1−
(
λ
η

p
+ (1− λ)|

)
Ωε|.

Apparently, the upper bound of E[I{Yt∈Ωcε}|Ft−1] satisfies 0 < 1−
(
ληp + (1− λ)

)
|Ωε| < 1, thus

E
[
I{Yt∈Ωcε}E[I{Yt+1∈Ωcε}|Ft]|Ft−1

]
≤
(
1− (λ

η

p
+ (1− λ))|Ωε|

)
E[I{Yt∈Ωcε}|Ft−1]

≤
(
1− (λ

η

p
+ (1− λ))|Ωε|

)2
.

Moreover,

Pr (f(x̃)− f∗ > ε)

=E
[
I{Y1,...,Yr∈Ωcε}E

[
I{Yr+1∈Ωcε} · · ·E

[
I{YT−1∈Ωcε}E[I{YT∈Ωcε}|FT−1]|FT−2

]
· · · |Fr

]]
≤
(
1− (λ

η

p
+ (1− λ))|Ωε|

)T−rE[Y1, . . . ,Yr ∈ Ωcε]

=
(
1− (λ

η

p
+ (1− λ))|Ωε|

)T−r
(1− |Ωε|)r

≤ exp

{
−
(

(T − r)(λη
p

+ (1− λ)) + r

)
|Ωε|

}
.

In order that Pr (f(x̃)− f∗ > ε) ≤ δ, it suffices that

exp

{
−
(

(T − r)(λη
p

+ (1− λ)) + r

)
|Ωε|

}
≤ δ,

hence the (ε, δ)-query complexity is upper bounded by

O
(

max{
(
λ
η

p
+ (1− λ)

)−1( 1

|Ωε|
ln

1

δ
− r
)

+ r, T}
)
.
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Theorem F.2. Consider Algorithm 1. Assume that for ε > 0, Ωε is η-shattered by h̃t for all
t = r+1 . . . , T. Let the region shrinking rate 0 < γ < 1 and region shrinking frequency 0 < ρ < 1,
then for 0 < δ < 1, the (ε, δ)-query complexity is upper bounded by

O
(

max{
(γ−ρ + γ−(T−r)ρ

2
λη + (1− λ)

)−1( 1

|Ωε|
ln

1

δ
− r
)

+ r, T}
)
.

Proof. Let x̃ := arg min
t=1,...,T

f(xt), then

Pr (f(x̃)− f∗ > ε)

=E
[
I{Y1,...,YT−1∈Ωcε}E[I{YT∈Ωcε}|FT−1]

]
=E
[
I{Y1,...,YT−2∈Ωcε}E

[
I{YT−1∈Ωcε}E[I{YT∈Ωcε}|FT−1]|FT−2

]]
= · · · · · ·
=E
[
I{Y1,...,Yr∈Ωcε}E

[
I{Yr+1∈Ωcε} · · ·E

[
I{YT−1∈Ωcε}E[I{YT∈Ωcε}|FT−1]|FT−2

]
· · · |Fr

]]
.

At step t ≥ r + 1, since XΩ is independent to Ft−1, it holds

E[I{Yt∈Ωcε}|Ft−1] =E[I{λXt+(1−λ)XΩ∈Ωcε}|Ft−1]

=λ(1− E[I{Xt∈Ωε}|Ft−1]) + (1− λ)(1− |Ωε|).

The expectation of probability that h̃t hits positive region is upper bounded by

E
[
P({x ∈ Ω: h̃t(x) = 1})|Ft−1

]
≤ γ(t−r)ρP[Ω] = γ(t−r)ρ.

Under the assumption that Ωε is η-shattered by h̃t, it holds the relation that

E
[
I{Xt∈Ωε}|Ft−1

]
=

P
(
{x ∈ Ωε : h̃t(x) = 1}

)
E
[
P({x ∈ Ω: h̃t(x) = 1})|Ft−1

]
≥γ−(t−r)ρη|Ωε|.

Therefore,
E[I{Yt∈Ωcε}|Ft−1] ≤ 1−

(
λγ−(t−r)ρη + (1− λ)|

)
Ωε|.

Moreover,

Pr (f(x̃)− f∗ > ε)

=E
[
I{Y1,...,Yr∈Ωcε}E

[
I{Yr+1∈Ωcε} · · ·E

[
I{YT−1∈Ωcε}E[I{YT∈Ωcε}|FT−1]|FT−2

]
· · · |Fr

]]
≤

T∏
t=r+1

(
1−

(
λγ−(t−r)ρη + (1− λ)|

)
Ωε|
)
(1− |Ωε|)r

≤ exp

{
−

(
T∑

t=r+1

λγ−(t−r)ρη + (T − r)((1− λ)) + r

)
|Ωε|

}

= exp

{
−
(

(T − r)(γ
−ρ + γ−(T−r)ρ

2
λη + (1− λ)) + r

)
|Ωε|

}
.

In order that Pr (f(x̃)− f∗ > ε) ≤ δ, it suffices that

exp

{
−
(

(T − r)(γ
−ρ + γ−(T−r)ρ

2
λη + (1− λ)) + r

)
|Ωε|

}
≤ δ,

hence the (ε, δ)-query complexity is upper bounded by

O
(

max{
(γ−ρ + γ−(T−r)ρ

2
λη + (1− λ)

)−1( 1

|Ωε|
ln

1

δ
− r
)

+ r, T}
)
.
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