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Abstract
Although transformer decoders are quickly be-001
coming the most prominent NLP models, little002
is known about how they embed text in vector003
space and make decisions on downstream tasks.004
In this study, we evaluate the impact of fine-005
tuning on how GPT-2 represents text in vector006
space. In particular, we demonstrate that fine-007
tuning refines the last half of the network, and008
that task specific information is encoded into009
what the literature refers to as “rogue dimen-010
sions”. In contrast to previous work, we find011
that rogue dimensions that emerge when fine-012
tuning GPT-2 are influential to the model deci-013
sion making process. By using a linear thresh-014
old on a single rogue dimension in space, we015
can complete downstream classification tasks016
with an error of 1.6% relative to the full 768-017
dimensional representations of GPT-2.018

1 Introduction019

Several studies have been dedicated to understand-020

ing what types of knowledge are encoded in BERT021

(Devlin et al., 2018) embeddings, from discovering022

patterns in attention matrices to demonstrating that023

BERT embeddings naturally perform word sense024

disambiguation (Rogers et al., 2020; Mickus et al.,025

2019; Kovaleva et al., 2019; Coenen et al., 2019).026

However, there have been far fewer studies inves-027

tigating transformer-decoder-based models, such028

as GPT-1,2,3 (Radford et al., 2018, 2019; Brown029

et al., 2020). Previous studies examining the GPT-x030

family of models typically focus on bias contained031

in short passages produced by a language model032

(Bender et al., 2021; Bordia and Bowman, 2019), or033

on how small perturbations to input text can cause034

the quality of the output text to quickly degrade035

(Heidenreich and Williams, 2021).036

Thus far, studies examining GPT-2 fail to inves-037

tigate how the model embeds text in vector space.038

Further, there is a lack of literature on what features039

of the embedding space are important in determin-040

ing how GPT-2 makes decisions when fine-tuned041

Figure 1: CKA similarity scores among fine-tuned SST-
2 & QNLI GPT-2 models and the original GPT-2 model.

to complete a downstream task. In this paper, we 042

examine: 1) the impact of fine-tuning on GPT-2 043

sentence embeddings and; 2) where task specific 044

information is encoded during the process of fine- 045

tuning. The contributions of this study are as fol- 046

lows: 047

• Using Centered Kernel Alignment, we demon- 048

strate that fine-tuning gives rise to a “bow-tie” 049

pattern among decoder blocks where the last 6 050

decoder blocks specialize on the given tasks. 051

• We find that rogue dimensions emerge in the 052

same location when fine-tuning for different 053

tasks, and encode task specific knowledge. 054

• By comparing representations of fine-tuned 055

GPT-2 and BERT, we show that rogue dimen- 056

sions do not encode task specific information 057

to the same degree in all models 1. 058

2 Distribution of Information Over 059

Decoder Blocks 060

2.1 Methods & Related Works 061

We examine how GPT-2 representations change as 062

a result of fine-tuning by 1) computing centered 063

1Program code is publicly available at: Removed for anony-
mous review
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kernel alignment (CKA) of activations for each064

decoder-block; 2) visualizing sentence embeddings065

using t-SNE and; 3) exploring “outlier” (Kovaleva066

et al., 2021) or “rogue dimensions” Timkey and067

van Schijndel (2021) that exhibit high levels of068

variance compared to the rest of the vector space.069

We fine-tune GPT-2 on two GLUE tasks: SST-2070

(Socher et al., 2013) and QNLI (Wang et al., 2018).071

SST-2 contains short movie reviews that a model072

must label as either positive or negative. QNLI073

tasks models to determine whether or not a given074

answer can be entailed from specified question. In075

both cases, we fine-tune the model for 10 epochs076

and achieve an accuracy of 92.8% and 88.2% on077

the hidden validation data for SST-2 and QNLI,078

respectively.079

Intuitively, CKA is a dot-product-based, model080

agnostic tool that measures how similar represen-081

tations are across different layers or networks (Ko-082

rnblith et al., 2019). A CKA score of 0 indicates083

that representations are independent, while a score084

of 1 implies perfect correlation. Formally, CKA is085

based on the Hilbert Schmidt Independence Crite-086

rion (HSCI) (Gretton et al., 2005), which computes087

the square of the Frobenius norm between the cross-088

covariance matrix of two Gram matrices.089

Previous works have used CKA to compare the090

outputs of layers in ViTs and CNNs to provide091

insights as to whether these two models learn sig-092

nificantly different representations for a given input093

image (Raghu et al., 2021). However, CKA anal-094

ysis has not yet been applied to study the impact095

of fine-tuning language models. We compute CKA096

scores to evaluate the impact of fine-tuning on GPT-097

2 representations on both SST-2 and QNLI. Note098

that, to more easily interpret model outputs, we099

only compute CKA for activation maps on decoder100

blocks instead of every layer in the network. We101

compute CKA scores for each model on the hidden102

validation data for the respective task the models103

are fine-tuned on, and compare representations to a104

pre-trained GPT-2.105

The literature overwhelmingly agrees that con-106

textualized embedding models are anisotropic,107

meaning that they do not uniformly utilize the vec-108

tor space they occupy (Ethayarajh, 2019; Rudman109

et al., 2022; Cai et al., 2021). Anisotropy in point110

clouds induced by contextualized embedding mod-111

els stems from “rogue dimensions” that exhibit112

high levels of variance relative to other dimen-113

sions in space and dominate model representations114

Figure 2: Last token t-SNE embeddings for fine-tuned
SST-2 & QNLI GPT-2 models, respectively.

(Timkey and van Schijndel, 2021). In this study, 115

we examine the impact of fine-tuning on rogue di- 116

mensions and characterize their role in the model’s 117

downstream decision making process. We visual- 118

ize the impact of rogue dimensions by plotting the 119

dimension index on the x-axis and the value of the 120

specific dimension on the y-axis. 121

2.2 Results 122

2.2.1 Locality of Information 123

Computing CKA scores for GPT-2 provides us with 124

a baseline of model behavior. In the original GPT-2 125

model, we see a block diagonal structure where 126

early network layers are similar to one another, 127

middle layers are similar to one another and the 128

final layer is distinct from all other layers in the 129

network (Figure 1). Fine-tuning GPT-2 causes the 130

emergence of a bow-tie pattern in CKA matrices 131

where the first 6 decoder blocks are similar to one 132

another and the last 6 decoder blocks are similar 133

to one another. We find that layers 7-12 produce 134

similar activations to one another as they begin to 135

encode task-specific knowledge. Figure 2 shows 136

that, while none of the first 6 decoder blocks in the 137

fine-tuned GPT-2 are able to separate input texts, 138

layers 7-12 have clearly learned distinct subspaces 139

that separate points by class label. 140

Previous work has used probing methods to ar- 141

gue that the process of fine-tuning encoder models 142

primarily specializes the last few layers of the net- 143

work (Merchant et al., 2020). Figure 1 empirically 144

supports this intuition for transformer decoders. 145

However, our results show that the process of fine- 146

tuning in GPT-2 has a significant impact, not only 147

on the last, but also on intermediate network layers 148

which have been thought to be the “most transfer- 149

able” for different tasks in BERT (Kovaleva et al., 150

2019). Figure 1 shows that the first 3 layers in all 151

three models considered in this study exhibit CKA 152
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Figure 3: We visualize rogue dimensions for last-token representations across decoder blocks on the SST-2 validation
data after fine-tuning. The horizontal axis tracks the dimension’s index and the vertical tracks the value in the given
dimension. The rogue dimensions can be clearly seen as “spikes” in the graph.

scores near 1, demonstrating that information in153

the first 3 decoder blocks is preserved across all154

fine-tuning tasks.155

Figure 4: Rogue dimensions of GPT-2 on QNLI with
no fine-tuning.

2.2.2 Rogue Dimensions156

We extend the understanding in the literature on157

rogue dimensions in several ways: 1) rogue di-158

mensions emerge in later blocks of the network;159

2) fine-tuning exacerbates existing rogue dimen-160

sions; 3) the same dimensions dominate the vector161

space in SST-2 and QNLI fine-tuned models; and162

4) rogue dimensions encode far more class specific163

information in GPT-2 than BERT.164

In Figure 3, we visualize how rogue dimensions165

change/emerge over time. Representations from166

earlier decoder blocks do not exhibit any promi-167

nent dimensions that deviate significantly from the168

distribution mean or exhibit exceedingly high vari-169

ance. However, as we progress further through170

the network, the last token representations become171

dominated by rogue dimensions. In both the SST-172

2 and QNLI fine-tuned models, variance in the173

most prominent rogue dimensions increases. How-174

ever, the mean in these dimensions is much closer175

to zero in the fine-tuned models compared to the176

pre-trained GPT-2 representations, as shown in Fig-177

ure 4. Remarkably, fine-tuning impacts the same178

dimensions for GPT-2 in both SST-2 and QNLI.179

Eight of the top ten rogue dimensions are the same180

in both fine-tuned models. 181

Several authors have argued that the presence 182

of anisotropy in the form of rogue dimensions is 183

detrimental to model performance, and that by re- 184

moving or mitigating rogue dimensions, we can im- 185

prove performance on downstream tasks (Mu et al., 186

2017; Zhou et al., 2020; Timkey and van Schijndel, 187

2021; Liang et al., 2021; Zhang et al., 2022). How- 188

ever, studies examining the impact of rogue dimen- 189

sions on model performance tend to focus either on 190

static word embeddings or transformer encoders, 191

such as BERT. In contrast to previous works that 192

argue rogue dimensions “disrupt” model represen- 193

tations (Kovaleva et al., 2021), we find that rogue 194

dimensions encode crucial task specific informa- 195

tion in GPT-2. Further, Figure 5 shows that while 196

class specific information is concentrated in rogue 197

dimensions in GPT-2, task specific information is 198

distributed across multiple dimensions in BERT. 199

3 Locality of Task-Specific Information 200

3.1 Methods 201

The purpose of this section is to determine where 202

in the model task-specific information is encoded 203

during the process of fine-tuning. We first compute 204

what we refer to as the principal rogue dimension 205

in space, i.e., the single dimension with the highest 206

variance. Next, we use a simple linear 1-D SVM 207

to find the optimal threshold value that linearly 208

separates classes in the principal rogue dimension 209

on the training data. We then make predictions for 210

both SST-2 and QNLI based solely on the value 211

of the principal rogue dimension on the hidden 212

validation data for GPT-2 and BERT. 213

Additionally, we conduct a simple ablation ex- 214

periment to determine how class specific informa- 215

tion is distributed across multiple dimensions in 216

GPT-2. Following a similar ablation strategy to 217

Kovaleva et al. (2021), we ablate a dimension by 218

setting the representations of GPT-2 in a given di- 219
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mension to zero. Removing the k-bottom/top di-220

mensions equates ablating the k-dimensions with221

the lowest/highest variance in the embedding space222

of GPT-2. After ablating the specified dimensions,223

we input the ablated representations of GPT-2 into224

the trained linear classification head for each task225

and evaluate performance.226

3.2 Results227

Using a simple linear threshold, we can predict228

the sentiment of a given input text in SST-2 with229

91.3% accuracy (compared to 92.8% for the full230

model) and achieve a QNLI accuracy of 86.6%231

(compared to 88.2% for the full model). We re-run232

our threshold experiment on BERT fine-tuned on233

QNLI and SST-2 and find that rogue dimensions in234

transformer encoders do not encode task-specific235

information. The optimal decision boundary in the236

principal rogue dimension for BERT yields a mere237

76.03% accuracy on SST-2 (compared to a 92.22%238

using the full representations) and 81.9% (com-239

pared to 89.69% using the full representations).240

Figure 5: SST-2 sentence embedding representations
from decoder block 12 for GPT-2 and BERT.

Figure 6 shows that ablating the 765 dimensions241

with the smallest variance minimally decreases ac-242

curacy. On QNLI, performance abruptly drops243

from ≈85% to ≈50% when we ablate all except244

the top 3 dimensions. We posit the classification245

head has learned to rely on information from the246

top 3 dimension, since QNLI is an inherently more247

difficult task than SST-2. Although model perfor-248

mance minimally increases when removing the top249

92 dimensions on SST-2, performance quickly de- 250

cays if we ablate more than 300 dimensions. This 251

finding indicates that class specific information is 252

stored in less than half of the top dimensions after 253

fine-tuning GPT-2. Further, on QNLI, accuracy 254

steadily decreases as we remove top dimensions. 255

Figure 6: Performance after ablating dimensions from
sentence embeddings in GPT-2.

4 Conclusions & Future Works 256

This paper examines the impact of fine-tuning on 257

GPT-2 embeddings. Bow-tie patterns in CKA simi- 258

larity heat maps demonstrate that fine-tuning spe- 259

cializes the last half of the network to adapt to a 260

given task. We find that task specific knowledge ac- 261

quired during the process of fine-tuning is encoded 262

into what the literature refers to as rogue dimen- 263

sions. In contrast to prior studies, we demonstrate 264

that ablating rogue dimensions removes task spe- 265

cific information and can hurt model performance. 266

There are many promising directions for future 267

work. Several studies have suggested that rogue 268

dimensions may be detrimental for model perfor- 269

mance. However, we posit that encouraging the for- 270

mation of rogue dimensions may be beneficial for 271

transformer decoder models. Given that the largest 272

transformer decoder models rely on prompts, we 273

will further examine how our methods can be ap- 274

plied to understand why certain prompts condi- 275

tion a model to perform well on few-shot tasks. 276

We hope that this study will encourage other re- 277

searchers to examine transformer-decoder architec- 278

tures and give a more complete understanding of 279

how these models represent text in space. 280
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5 Limitations & Ethical Considerations281

Although our study provides key insights on the282

impact that fine-tuning has on how GPT-2 repre-283

sents text in space, there are several limitations.284

Firstly, increasingly large language models such285

as GPT-3 (Brown et al., 2020), Megatron-Turing286

NLG (Smith et al., 2022) and PALM (Chowdh-287

ery et al., 2022) have surpassed the capabilities288

of GPT-2 in recent years. Our methods can eas-289

ily be adapted to larger, more advanced models,290

however, we are forced to restrict our analysis to291

GPT-2 given that the weights of these models are292

not publicly available. Secondly, we only analyze293

the impact that fine-tuning has on GPT-2 for clas-294

sification tasks and not for the more common ap-295

plications of transformer decoders such as natu-296

ral language generation. Even though fine-tuning297

for classification tasks is less common for trans-298

former decoders, our fine-tuned GPT-2 models are299

competitive with early transformer encoder mod-300

els such as BERT. Thus, it is worth studying how301

transformer decoder models adapt when fine-tuned302

for classification tasks. Lastly, we restrict analysis303

to a single model: GPT-2. Our methodology can304

be applied to any transformer decoder and can be305

easily adapted to transformer encoders (by analyz-306

ing CLS tokens instead of last token representa-307

tions). Future work should consider the presence308

of rogue dimensions in more advanced transformer309

encoder models such as RoBERTa (Liu et al., 2019)310

or sequence-to-sequence architectures such as T5311

(Raffel et al., 2019).312

References313

Emily M. Bender, Timnit Gebru, Angelina McMillan-314
Major, and Shmargaret Shmitchell. 2021. On the315
dangers of stochastic parrots: Can language models316
be too big? FAccT ’21, page 610–623, New York,317
NY, USA. Association for Computing Machinery.318

Shikha Bordia and Samuel R. Bowman. 2019. Identify-319
ing and reducing gender bias in word-level language320
models. CoRR, abs/1904.03035.321

Tom Brown, Benjamin Mann, Nick Ryder, Melanie322
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind323
Neelakantan, Pranav Shyam, Girish Sastry, Amanda324
Askell, et al. 2020. Language models are few-shot325
learners. Advances in neural information processing326
systems, 33:1877–1901.327

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth328
Church. 2021. Isotropy in the contextual embedding329
space: Clusters and manifolds. In International Con-330
ference on Learning Representations.331

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 332
Maarten Bosma, Gaurav Mishra, Adam Roberts, 333
Paul Barham, Hyung Won Chung, Charles Sutton, 334
Sebastian Gehrmann, Parker Schuh, Kensen Shi, 335
Sasha Tsvyashchenko, Joshua Maynez, Abhishek 336
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin- 337
odkumar Prabhakaran, Emily Reif, Nan Du, Ben 338
Hutchinson, Reiner Pope, James Bradbury, Jacob 339
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, 340
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, 341
Sunipa Dev, Henryk Michalewski, Xavier Garcia, 342
Vedant Misra, Kevin Robinson, Liam Fedus, Denny 343
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, 344
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, 345
David Dohan, Shivani Agrawal, Mark Omernick, An- 346
drew M. Dai, Thanumalayan Sankaranarayana Pil- 347
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, 348
Rewon Child, Oleksandr Polozov, Katherine Lee, 349
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark 350
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy 351
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, 352
and Noah Fiedel. 2022. Palm: Scaling language mod- 353
eling with pathways. 354

Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam 355
Pearce, Fernanda Viégas, and Martin Wattenberg. 356
2019. Visualizing and measuring the geometry of 357
bert. 358

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 359
Kristina Toutanova. 2018. BERT: pre-training of 360
deep bidirectional transformers for language under- 361
standing. CoRR, abs/1810.04805. 362

Kawin Ethayarajh. 2019. How contextual are contextu- 363
alized word representations? comparing the geom- 364
etry of bert, elmo, and GPT-2 embeddings. CoRR, 365
abs/1909.00512. 366

Arthur Gretton, Olivier Bousquet, Alexander Smola, 367
and Bernhard Schölkopf. 2005. Measuring statisti- 368
cal dependence with hilbert-schmidt norms. volume 369
3734. 370

Hunter Heidenreich and Jake Williams. 2021. The earth 371
is flat and the sun is not a star: The susceptibility of 372
gpt-2 to universal adversarial triggers. pages 566– 373
573. 374

Simon Kornblith, Mohammad Norouzi, Honglak Lee, 375
and Geoffrey E. Hinton. 2019. Similarity of 376
neural network representations revisited. CoRR, 377
abs/1905.00414. 378

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, 379
and Anna Rumshisky. 2021. BERT busters: Outlier 380
dimensions that disrupt transformers. In Findings of 381
the Association for Computational Linguistics: ACL- 382
IJCNLP 2021, pages 3392–3405, Online. Association 383
for Computational Linguistics. 384

Olga Kovaleva, Alexey Romanov, Anna Rogers, and 385
Anna Rumshisky. 2019. Revealing the dark secrets 386
of BERT. CoRR, abs/1908.08593. 387

5

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://arxiv.org/abs/1904.03035
http://arxiv.org/abs/1904.03035
http://arxiv.org/abs/1904.03035
http://arxiv.org/abs/1904.03035
http://arxiv.org/abs/1904.03035
https://openreview.net/forum?id=xYGNO86OWDH
https://openreview.net/forum?id=xYGNO86OWDH
https://openreview.net/forum?id=xYGNO86OWDH
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
http://arxiv.org/abs/1906.02715
http://arxiv.org/abs/1906.02715
http://arxiv.org/abs/1906.02715
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
https://doi.org/10.1007/11564089_7
https://doi.org/10.1007/11564089_7
https://doi.org/10.1007/11564089_7
https://doi.org/10.1145/3461702.3462578
https://doi.org/10.1145/3461702.3462578
https://doi.org/10.1145/3461702.3462578
https://doi.org/10.1145/3461702.3462578
https://doi.org/10.1145/3461702.3462578
http://arxiv.org/abs/1905.00414
http://arxiv.org/abs/1905.00414
http://arxiv.org/abs/1905.00414
https://doi.org/10.18653/v1/2021.findings-acl.300
https://doi.org/10.18653/v1/2021.findings-acl.300
https://doi.org/10.18653/v1/2021.findings-acl.300
http://arxiv.org/abs/1908.08593
http://arxiv.org/abs/1908.08593
http://arxiv.org/abs/1908.08593


Yuxin Liang, Rui Cao, Jie Zheng, Jie Ren, and Ling Gao.388
2021. Learning to remove: Towards isotropic pre-389
trained BERT embedding. CoRR, abs/2104.05274.390

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-391
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,392
Luke Zettlemoyer, and Veselin Stoyanov. 2019.393
Roberta: A robustly optimized BERT pretraining394
approach. CoRR, abs/1907.11692.395

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and396
Ian Tenney. 2020. What happens to BERT embed-397
dings during fine-tuning? CoRR, abs/2004.14448.398

Timothee Mickus, Denis Paperno, Mathieu Constant,399
and Kees van Deemter. 2019. What do you mean,400
bert? assessing BERT as a distributional semantics401
model. CoRR, abs/1911.05758.402

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017.403
All-but-the-top: Simple and effective postprocessing404
for word representations. CoRR, abs/1702.01417.405

Alec Radford, Karthik Narasimhan, Tim Salimans, and406
Ilya Sutskever. 2018. Improving language under-407
standing by generative pre-training.408

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,409
Dario Amodei, Ilya Sutskever, et al. 2019. Language410
models are unsupervised multitask learners. OpenAI411
blog, 1(8):9.412

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine413
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,414
Wei Li, and Peter J. Liu. 2019. Exploring the limits415
of transfer learning with a unified text-to-text trans-416
former. CoRR, abs/1910.10683.417

Maithra Raghu, Thomas Unterthiner, Simon Kornblith,418
Chiyuan Zhang, and Alexey Dosovitskiy. 2021. Do419
vision transformers see like convolutional neural net-420
works? CoRR, abs/2108.08810.421

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.422
2020. A primer in bertology: What we know about423
how BERT works. CoRR, abs/2002.12327.424

William Rudman, Nate Gillman, Taylor Rayne, and425
Carsten Eickhoff. 2022. IsoScore: Measuring the426
uniformity of embedding space utilization. In Find-427
ings of the Association for Computational Linguis-428
tics: ACL 2022, pages 3325–3339, Dublin, Ireland.429
Association for Computational Linguistics.430

Shaden Smith, Mostofa Patwary, Brandon Norick,431
Patrick LeGresley, Samyam Rajbhandari, Jared432
Casper, Zhun Liu, Shrimai Prabhumoye, George433
Zerveas, Vijay Korthikanti, Elton Zheng, Rewon434
Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia435
Song, Mohammad Shoeybi, Yuxiong He, Michael436
Houston, Saurabh Tiwary, and Bryan Catanzaro.437
2022. Using deepspeed and megatron to train438
megatron-turing NLG 530b, A large-scale genera-439
tive language model. CoRR, abs/2201.11990.440

Richard Socher, Alex Perelygin, Jean Wu, Jason 441
Chuang, Christopher D. Manning, Andrew Ng, and 442
Christopher Potts. 2013. Recursive deep models for 443
semantic compositionality over a sentiment treebank. 444
In Proceedings of the 2013 Conference on Empiri- 445
cal Methods in Natural Language Processing, pages 446
1631–1642, Seattle, Washington, USA. Association 447
for Computational Linguistics. 448

William Timkey and Marten van Schijndel. 2021. All 449
bark and no bite: Rogue dimensions in transformer 450
language models obscure representational quality. 451
CoRR, abs/2109.04404. 452

Alex Wang, Amanpreet Singh, Julian Michael, Felix 453
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: 454
A multi-task benchmark and analysis platform for nat- 455
ural language understanding. In Proceedings of the 456
2018 EMNLP Workshop BlackboxNLP: Analyzing 457
and Interpreting Neural Networks for NLP, pages 458
353–355, Brussels, Belgium. Association for Com- 459
putational Linguistics. 460

Haode Zhang, Haowen Liang, Yuwei Zhang, Liming 461
Zhan, Xiao-Ming Wu, Xiaolei Lu, and Albert Y. S. 462
Lam. 2022. Fine-tuning pre-trained language models 463
for few-shot intent detection: Supervised pre-training 464
and isotropization. 465

Wenxuan Zhou, Bill Yuchen Lin, and Xiang Ren. 2020. 466
Isobn: Fine-tuning BERT with isotropic batch nor- 467
malization. CoRR, abs/2005.02178. 468

A Model Hyperparameters and Training 469

Details 470

In this section, we detail all model hyperpa- 471

rameters and expected training times. We 472

used the HuggingFace implementations of 473

GPT2ForSequenceClassification and BERTForSe- 474

quenceClassification to conduct experiments. As 475

the purpose of this paper is focused on analyzing 476

model representations, we perform no hyperparam- 477

eter sweeps and report results on a single run of 478

the model. In order to speed up training we use 479

gradient accumulation with a batch size of 32 and 480

an accumulation step of 4. This creates an effective 481

batch of 128. Fine-tuning GPT-2 and BERT took 482

less than an hour for SST-2 and took less than 2 483

hours for QNLI. 484

6

http://arxiv.org/abs/2104.05274
http://arxiv.org/abs/2104.05274
http://arxiv.org/abs/2104.05274
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2004.14448
http://arxiv.org/abs/2004.14448
http://arxiv.org/abs/2004.14448
http://arxiv.org/abs/1911.05758
http://arxiv.org/abs/1911.05758
http://arxiv.org/abs/1911.05758
http://arxiv.org/abs/1911.05758
http://arxiv.org/abs/1911.05758
http://arxiv.org/abs/1702.01417
http://arxiv.org/abs/1702.01417
http://arxiv.org/abs/1702.01417
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2108.08810
http://arxiv.org/abs/2108.08810
http://arxiv.org/abs/2108.08810
http://arxiv.org/abs/2108.08810
http://arxiv.org/abs/2108.08810
http://arxiv.org/abs/2002.12327
http://arxiv.org/abs/2002.12327
http://arxiv.org/abs/2002.12327
https://aclanthology.org/2022.findings-acl.262
https://aclanthology.org/2022.findings-acl.262
https://aclanthology.org/2022.findings-acl.262
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2109.04404
http://arxiv.org/abs/2109.04404
http://arxiv.org/abs/2109.04404
http://arxiv.org/abs/2109.04404
http://arxiv.org/abs/2109.04404
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.48550/ARXIV.2205.07208
https://doi.org/10.48550/ARXIV.2205.07208
https://doi.org/10.48550/ARXIV.2205.07208
https://doi.org/10.48550/ARXIV.2205.07208
https://doi.org/10.48550/ARXIV.2205.07208
http://arxiv.org/abs/2005.02178
http://arxiv.org/abs/2005.02178
http://arxiv.org/abs/2005.02178

