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ABSTRACT

Learning generative models directly from corrupted observations is a long-standing
challenge across natural and scientific domains. We introduce Distillation from
Corrupted Data (DCD), a unified framework for learning high-fidelity, one-step
generative models using only degraded data of the form y = A(x) + σε, x ∼
pX , ε ∼ N (0, Im), where the mapping A may be the identity or a non-invertible
corruption operator (e.g., blur, masking, subsampling, Fourier acquisition). DCD
first pretrains a corruption-aware diffusion teacher on the observed measurements,
then distills it into an efficient one-step generator whose samples are statistically
closer to the clean distribution pX . The framework subsumes identity corruption
(denoising task) as a special case of our general formulation.
Empirically, DCD consistently reduces Fréchet Inception Distance (FID) rela-
tive to corruption-aware diffusion teachers across noisy generation (CIFAR-10,
FFHQ, CELEBA-HQ, AFHQ-V2), image restoration (Gaussian deblurring, ran-
dom inpainting, super-resolution, and mixtures with additive noise), and multi-coil
MRI—without access to any clean images. The distilled generator inherits one-
step sampling efficiency, yielding up to 30× speedups over multi-step diffusion
while surpassing the teachers after substantially fewer training iterations. These
results establish score distillation as a practical tool for generative modeling from
corrupted data, not merely for acceleration. We provide theoretical support for the
use of distillation in enhancing generation quality in the Appendix.

1 INTRODUCTION

Learning from corrupted data is central to many scientific and engineering domains where clean
observations are scarce or costly, including astronomy Roddier (1988); Lin et al. (2024), medical
imaging Reed et al. (2021); Jalal et al. (2021), and seismology Nolet (2008); Rawlinson et al.
(2014). For instance, fully sampled MRI acquisitions are time-consuming and uncomfortable for
patients Knoll et al. (2020); Zbontar et al. (2018), motivating methods that recover the structure of
the underlying clean distribution from corrupted measurements alone.

Problem Statement. We study generative modeling from corrupted observations. Let x ∈ Rd be
drawn from an unknown clean distribution pX . We observe only

y = A(x) + σϵ, ϵ ∼ N (0, Im), (1)

where A : Rd→Rm is a (known) non-invertible corruption operator and σ is the noise level. The
operator may be identity (A = I , i.e., denoising), a deterministic linear map (blur, downsampling), a
random mask (inpainting), or a Fourier-domain undersampling pattern (MRI). Our goal is to learn a
generator whose samples follow pX using only a dataset of N corrupted datapoints {y(i)}Ni=1 of the
form Eq 1.

Background and limitations. Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020)—also
known as score-based generative models Song and Ermon (2019); Song et al. (2021b)—achieve
state-of-the-art results in high-dimensional image synthesis Dhariwal and Nichol (2021); Ho et al.
(2022); Ramesh et al. (2022); Rombach et al. (2022); Saharia et al. (2022); Peebles and Xie (2023);
Zheng et al. (2024); Zhang et al. (2025); Chang et al. (2025). When only measurements are available,
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Figure 1: Overview of Distillation from Corrupted Data (DCD) and some qualitative results across
diverse operators: Gaussian deblurring, random inpainting, and super-resolution. Additional examples
appear in Appendix D and N.

corruption-aware training adapts diffusion objectives to the forward operator: Ambient Diffusion
for masking Daras et al. (2023b), Ambient Tweedie for additive noise Daras et al. (2025), and
Fourier-space variants for MRI Aali et al. (2025). These methods, however, inherit the sampling cost
of multi-step reverse processes. EM-Diffusion Bai et al. (2024) offers broader operator coverage but
requires a few clean images, is computationally expensive, and can struggle under severe corruption.

Distillation beyond acceleration. Score distillation transfers a pretrained diffusion teacher into
a one-step generator while largely preserving fidelity (Poole et al., 2022; Wang et al., 2024b; Luo
et al., 2024; Yin et al., 2024b; Zhou et al., 2024; Xie et al., 2024; Xu et al., 2025; Yin et al.,
2024a). Recent reports indicate that distilled generators can even outperform their diffusion teach-
ers (Zhou et al., 2024), though gains under clean-data training are typically modest. In contrast, under
corrupted-data–only training, we observe substantially larger improvements over the teacher (Sec. 4),
underscoring distillation’s particular advantage in challenging regimes.

Distillation from Corrupted Data (DCD). We introduce DCD, a unified framework for learning
high-fidelity one-step generators directly and only from corrupted observations, with denoising
(A=I) as a special case. DCD proceeds in two stages: (i) corruption-aware diffusion pretraining,
where a teacher is trained on measurements using an objective matched to the forward operator
A (Sec. 3.1); and (ii) score distillation, which transfers the teacher into a single-step generator
while explicitly respecting the measurement operator during training (Sec. 3.2). Concretely, we
synthesize measurements by applying the same corruption pipeline to generator outputs and then align
the induced generator scores with the teacher’s scores under a divergence (e.g., Fisher or KL). The
distillation phase, which includes a corruption-respecting procedure, consistently improves generation
quality upon the diffusion teacher across both denoising and more general operators (Fig. 1).

Contributions. Our work makes three primary contributions. Unified framework for diverse
corruptions: We propose DCD, a unified approach that learns generators directly from diverse
corrupted measurements y = A(x)+σϵ. This formulation encompasses denoising (A = I) as well as
more general operators, including blur, downsampling, random masking, and Fourier undersampling,
under both noisy and noiseless regimes, and achieves state-of-the-art performance across these settings.
Modular training: Our training pipeline is organized into two phases. Phase I accommodates a
variety of corruption-aware techniques, such as standard diffusion, diffusion for denoising, random
inpainting, and masked Fourier-space (F.S.) transformations. Phase II distills the teacher model into
a one-step generator while retaining the corruption pipeline used during training. This modularity
makes it straightforward to plug in new forward operators or training objectives. We also provide
theoretical analysis that explains why the distillation phase can enhance generation quality. Extensive
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Table 1: Summary of corruption-aware diffusion objectives used for pretraining. Our framework can
be seamlessly integrated with existing advanced corruption-aware diffusion objectives.

Suitable Scenario Algorithm Operator Domain Pretrain Objective Notation

Noiseless Corruption Alg(2) A(x) Image LSD = E
[
λ(t)∥fϕ(y + σtε, t)− y∥22

]
y: corrupted data

Noisy Corruption Alg(3) A(x) + σϵ Image LN = E
[
∥ σ̃

2
t−σ

2

σ̃2
t
fϕ(yt, t) +

σ2

σ̃2
t
yt − y∥22

]
σ: data noise level, σ̃t = max{σt, σ}

Random Inpainting Alg(5) Mx Image LRI = E
[
∥M(fϕ(M̃, M̃yt, t)− y)∥22

]
M̃ : further corrupted mask M

Masked F.S. Alg(6) MFx Fourier LFS = E
[
∥Afϕ(M̃, ỹt, t)− y∥22

]
ỹt: further corrupted yt, A defined in Appx.K.4

experiments: We conduct comprehensive evaluations on natural-image benchmarks (CIFAR-10,
CelebA-HQ, FFHQ, AFHQ-v2), restoration tasks (denoising with σ ∈ {0.1, 0.2, 0.4}, Gaussian
deblurring, random inpainting with p ∈ {0.6, 0.8, 0.9}, and 2× super-resolution), and multi-coil
MRI with acceleration factors R ∈ {4, 6, 8}. Across all settings, DCD consistently improves FID
over corruption-aware diffusion teachers while offering substantial speedups via one-step generation
(Sec. 4). Additional ablations (Sec. 4.4) on unknown corruption types and different data size further
underscore the robustness of our framework. Moreover, we demonstrate that the learned clean-image
prior (the generator) can be directly leveraged for downstream conditional inverse problems, achieving
good performance (Sec. 4.6).

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020), also known as score-based generative
models Song and Ermon (2019); Song et al. (2021b), consist of a forward process that gradually
perturbs data with noise and a reverse process that denoises this signal to recover the data distribution
pX(x). Specifically, the forward process defines a family of conditional distributions over noise levels
t ∈ (0, 1], given by qt(xt | x) = N (αtx, σ

2
t I),with marginals qt(xt). We adopt a variance-exploding

(VE) process Song and Ermon (2019) by setting αt = 1, yielding the simple form xt = x + σtε,
where ε ∼ N (0, Id). To model the reverse denoising process, one typically trains a time-dependent
denoising autoencoder (DAE) fϕ(·, t) : Rd × [0, 1]→ Rd Vincent (2011), parameterized by a neural
network, to approximate the posterior mean E[x | xt]. This is achieved by minimizing the following
standard diffusion loss:

LSD(ϕ; {x(i)}Ni=1) := Ex,σt,ε

[
λ(t)∥fϕ(xt, t)− x∥22

]
(2)

where xt = x+ σtε and {x(i)}Ni=1 denotes the dataset. One can also apply the loss to the corrupted
data {y(i)}Ni=1 to directly learn the distribution pY (y). For clarity, we omit the diffusion training
schedule λ(t), p(σt) and the noise term ε ∼ N (0, Im); full details are deferred to Appendix K.1,
Alg 2. The corresponding objectives are summarized in Table 1, with additional discussion below.

2.2 DIFFUSION MODELS FOR CORRUPTIONS

Recent advances have extended diffusion models to address diverse forms of data corruption. We
present several variants of the diffusion loss tailored to different corruption settings, including
objectives for noisy data, random inpainting in the image domain and Fourier domain.

Diffusion for Noisy Corruptions. Daras et al. (2025) generalizes score matching to noisy observa-
tions y = x+ σε, ε ∼ N (0, I). Here, σ > 0 is a known noise level in the measurements. One can
incorporate the known corruption by minimizing the following diffusion for noisy corruptions

LN(ϕ; {y(i)}Ni=1) = Ey,σ̃t,ϵ

[
λ(t)

∥∥∥∥ σ̃2
t − σ2

σ̃2
t

fϕ(yt, t) +
σ2

σ̃2
t

yt − y
∥∥∥∥2
2

]
, (3)

where σ̃t = max{σt, σ}, yt = y + σ̃t, and p(σt) and λ(t) arise from the diffusion training schedule.
This formula models the distribution of the xt := x+ σtε where σt ≥ σ. Full details are deferred to
Appendix K.2, the training algorithm in Algorithm 3 and the sampling algorithm in Algorithm 4.
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Diffusion for Image-Space Random Masked Corruptions. Daras et al. (2023b) learn pX(x)
from randomly inpainted measurements by incorporating mask into the diffusion objective. Given
observations y =Mx for a binary mask M , the teacher is trained with a random-inpainting loss

LRI(ϕ; {y(i)}Ni=1) = E(y,M), M̃, σt, ε

[ ∥∥M(fϕ(M̃, M̃yt, t)− y
)∥∥2

2

]
, (4)

where yt = y + σtε is from diffusion schedule, ε ∼ N (0, I), and M̃ is a secondary mask that
further erases pixels based on M . Details of the diffusion schedule λ(t), p(σt), and the full training
procedure are provided in Appendix K.3, Algorithm 5.

Diffusion for Fourier-Space Random Masked Corruptions. (Aali et al., 2025) extends diffusion
models to handle frequency-domain measurements with random masking, which are used in scientific
imaging (e.g., MRI). Specifically, observations take the form y =MFx, where F denotes the Fourier
transform operator and M is a sampling mask. Formal definitions of the measurement process and
the corresponding training algorithm are provided in Appendix K.4 and Algorithm 6.

These specialized frameworks enable generative modeling from realistic scenarios such as noisy,
missing data, or frequency-domain degradation. All objective functions are summarized in Table 1.

2.3 SCORE DISTILLATION FOR GENERATIVE MODELING

Score distillation compresses multi-step diffusion models into efficient one-step generators. Originally
proposed for text-to-3D generation Poole et al. (2022); Wang et al. (2024b) and later extended to
image synthesis Luo et al. (2024); Yin et al. (2024b); Zhou et al. (2024); Xie et al. (2024), it transfers
knowledge from a pretrained diffusion teacher fϕ to a generator Gθ : Rd → Rd. To bridge the two, a
fake diffusion model fψ approximates the distribution induced by Gθ(·) across diffusion noise levels.
Training encourages consistency between fψ and fϕ over time:

Ldistill(θ) = Eσt, z∼N (0,Id)Ex=Gθ(z)

[
∥fϕ(xt, t)− fψ(xt, t)∥22

]
, (5)

where xt = x + σtϵ and the loss corresponds to Fisher divergence, following SiD Zhou et al.
(2024). This divergence of true and fake distribution can be replaced by KL divergence; ablation
results are reported in Section 4.4 and Appendix G. Intuitively, the fixed teacher fϕ represents
the true data distribution, while fψ captures the generator’s induced distribution. Updating Gθ to
minimize Ldistill(θ) aligns generator samples with the true data. Notably, distilled generators can
even outperform their teachers: for instance, Zhou et al. (2024) reports that on FFHQ the teacher
achieves an FID of 2.39, whereas its distilled generator attains 1.55. In our setting, we find that such
improvements are further amplified when distillation is performed under corrupted-data training.
Details of the distillation training schedules are deferred to Appendix L.

3 DISTILLATION FROM CORRUPTED DATA

Problem Statement. Suppose we are given a finite corrupted dataset of size N , denoted by
{y(i)}Ni=1. Each corrupted observation is generated as y(i) = A(x(i)) + σε(i), where σ is a known
noise level (with extensions available for the unknown-σ setting, see Section 4.4), and ε(i) i.i.d.∼
N (0, Im). Crucially, the clean data {x(i)}Ni=1 is never accessible. In certain scenarios, such as
random inpainting, the corruption operator A may vary across samples, drawn from a common
distribution. In this case, each corrupted observation takes the form y(i) = A(i)(x(i)) + σε(i).

DCD is a two-phase framework for learning generative models solely from corrupted observations.
It decouples the process into: (1) a flexible corruption-aware diffusion pretraining stage, and (2)
a distillation stage that compresses the pretrained model into a single-step generator and further
improves generation quality. The overall procedure is summarized in Algorithm 1. We summarize
different types of pretrained diffusion models in Table 1, and then describe how they can be seamlessly
integrated into DCD to further enhance performance. Notably, even when a suitable corruption-aware
pretrained model is unavailable, employing a standard diffusion model (Tab 1) to learn the corrupted
data distribution still yields substantial improvements after distillation (Tab 4).
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3.1 PHASE I: FLEXIBLE CORRUPTION-AWARE PRETRAINING

The first phase trains a teacher diffusion model fϕ(·, t) directly on corrupted observations y =
A(x)+σϵ, whereA is a potentially non-invertible corruption operator. A straightforward approach is
to train on corrupted data y using the standard diffusion loss (Eq. 2). In practice, we find that this naive
strategy already yields strong performance. To further improve performance across diverse corruption
operators, we incorporate existing corruption-aware diffusion training methods, as summarized in
Table 1. Our choice of pretraining objectives for different corruption scenarios is as follows: 1)
Standard Diffusion is effective under noiseless corruptions, directly modeling the distribution of
y = A(x). 2) Noisy Corruption Daras et al. (2025) targets additive noise settings, learning the
distribution of A(x) from noisy observations y = A(x) + σϵ, with denoising as a special case when
A = I . 3) Random Inpainting Daras et al. (2023b) addresses learning from partial observations
Mx, whereM is a random inpainting mask, and learns the distribution of x. 4) Masked F.S Aali et al.
(2025) extends inpainting to Fourier-domain corruptions, well-suited for frequency-based degradation
such as accelerated MRI, learning from masked Fourier observations MFx.

3.2 PHASE II: ONE-STEP GENERATOR DISTILLATION

After pretraining, we distill the teacher diffusion model fϕ(·, t) into a one-step generator Gθ that
maps latent noise z ∼ N (0, Id) directly to clean samples. To facilitate this distillation, we introduce
an auxiliary fake diffusion model fψ(·, t), initialized from fϕ and trained on corrupted output of
Gθ(z), which is also initialized from fϕ. Note that this is common practice in the distillation literature
to facilitate and stabilize training. In this case, Gθ, fϕ, fψ share the same network structure; see Ap-
pendix L for further discussion. By encouraging fψ to match the teacher’s time-dependent dynamics
(e.g., score fields parameterized by fϕ), we align the behavior of Gθ with the data distribution learned
by fϕ, thereby narrowing the gap between the generated and clean data distributions.

We adopt the SiD Zhou et al. (2024) framework for distillation and optimize the distillation loss
Ldistill(θ) (Eq. 5). An ablation of loss choices is provided in Sec. 4.4. Beyond standard score
distillation, we further corrupt the generated samples xg = Gθ(z) into ỹ using the same corruption
pipeline as the training data (Algorithm 1, Line 6). These corrupted samples are then used to train a
fake diffusion model fψ(·, t). In Algorithm 1, Lines 2 and 7 allow any of the pretraining objectives
summarized in Table 1 (or new objectives tailored to specific corruptions), but the same objective
must be used for both lines; mixing objectives destabilizes training and can lead to divergence. To
complement the empirical results in Section 4, Appendix C offers a theoretical analysis establishing
conditions under which distillation yields improved sample quality.

Algorithm 1 Distillation from Corrupted Data (DCD)

1: procedure DISTILLATION FROM CORRUPTED DATA({y(i)}Ni=1)
2: fϕ ←DIFFUSIONTRAINING({y(i)}Ni=1, Obj) ▷ Diffusion training with Obj ∈ Tab. 1
3: Initialize fψ ← fϕ, Gθ ← fϕ
4: for j = 1, . . . ,K do
5: xg ← Gθ(z), z ∼ N (0, Id) ▷ Generate fake clean images
6: ỹ = A

(
stopgrad(xg)

)
+ σ ε, ε ∼ N (0, Id) ▷ Corrupt xg same way as observation

7: fψ ←DIFFUSIONTRAINING({ỹ(i)}Ni=1, Obj) ▷ Same Obj as above
8: xg ← Gθ(z), z ∼ N (0, Id)
9: Update θ by distillation loss Ldistill(θ) ▷ Eq. 5

10: end for
11: end procedure

3.3 WHY SCORE DISTILLATION BEYOND ACCELERATION?

Score distillation is traditionally viewed as a means of accelerating sampling by compressing a
multi-step diffusion process into a single forward pass. However, our paper aims to reveal a more
fundamental conceptual shift: In corrupted or low-quality data regimes, score distillation serves as a
principled mechanism for improving the sample quality of teacher diffusion models.
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(a) Noisy dataset σ = 0.05 (b) Teacher-Full (c) Teacher-Truncated (d) DCD (one-step)

Figure 2: A toy example of learning from a noisy dataset with σ = 0.05.

A Toy Example: In Fig. 2, the observation is a noisy spiral dataset with σ = 0.05. The core issue
with teacher diffusion models on noisy datasets, i.e., (b) Teacher-Full and (c) Teacher-Truncated, is
that they force the approximating distribution to spread its probability mass across all regions, making
the learned density overly diffuse. In contrast, (d) DCD excels at denoising the original dataset,
producing a narrow, concentrated, and sharp approximation. This effect occurs without providing the
clean data itself during training.

Figure 3: Ablation on Initializa-
tion and Fake Diffusion. Remov-
ing either component severely de-
grades performance.

Intuitive Understanding: Why does this sharpening happen?
Diffusion models are trained using the ELBO objective for max-
imum likelihood, which minimizes the forward KL divergence,
a mode-covering objective. As a result, teacher diffusions are
incentivized to place probability mass on all plausible loca-
tions suggested by the noisy data, even if these regions do not
correspond to the true clean distribution.

In contrast, the reverse distillation objective (Eq. 5) takes its
expectation over the student generator’s distribution, which
naturally induces mode-seeking behavior: the generator does
not need to cover all regions where the teacher assigns non-
zero mass. Instead, it is encouraged to place probability only
where it will actually sample from. Importantly, we stress that
encouraging mode seeking does not imply mode collapse. This
is also evidenced by FID and Recall in Tab. 11 and multiple
qualitative examples in the Appendix. This change in objective
allows the one-step generator to concentrate its probability
mass on the high-density, well-supported regions implied by
the teacher’s score field, while discarding diffuse or low-density
regions that the teacher includes.

Theoretical Support: Due to space limitations, we provide detailed analysis in the appendix.
In Section C.1, under standard capacity and optimization assumptions on both the teacher and the
generator, we derive bounds on the performance of the distilled generator. Section C.2 then specializes
to a linear Gaussian setting, where the optimization landscape can be characterized explicitly, yielding
quantitative error bounds and closed-form descriptions of global minimizers (see Eq. 10). Finally, in
Section C.3, we extend these results to more general linear corruption settings.

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate the effectiveness, flexibility, and generality of our
framework, DCD, across natural and scientific imaging domains. We consider four challenging image
restoration tasks—denoising, Gaussian deblurring, random inpainting, and super-resolution—on
CIFAR-10 (32 × 32), FFHQ (64 × 64), and CelebA-HQ (64 × 64) Liu et al. (2015); Karras et al.
(2017), under both noiseless (σ = 0.0) and noisy (σ = 0.2) regimes. We further show that DCD
can be distilled directly from pretrained teacher models trained with corruption-aware objectives,
including diffusion for denoising Daras et al. (2025), diffusion for random inpainting Daras et al.
(2023a), and diffusion for Fourier-space inpainting Aali et al. (2025), highlighting the framework’s
modularity and flexibility. Sec. 4.1 benchmarks denoising across multiple datasets and noise levels.
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Table 2: Denoising results on CIFAR-10 and CelebA-HQ at σ = 0.2. Rows with σ=0.0 are
clean-data upper bounds. Few-shot methods use 50 clean images. Baseline numbers are from the
original papers or Bai et al. (2024); Lu et al. (2025). The distilled student (DCD, one-step) improves
over teacher models (Full/Truncated/Consistency) and surpasses all few-shot baselines.

Methods CIFAR-10 (32×32) CelebA-HQ (64×64)
σ Type FID σ Type FID

DDPM Ho et al. (2020) 0.0 Full-Shot 4.04 0.0 Full-Shot 3.26
DDIM Song et al. (2021a) 0.0 Full-Shot 4.16 0.0 Full-Shot 6.53
EDM Karras et al. (2022) 0.0 Full-Shot 1.97 – – –

SURE-Score Aali et al. (2023) 0.2 Few-Shot 132.61 – – –
Ambient Diffusion Daras et al. (2023a) 0.2 Few-Shot 114.13 – – –
EM-Diffusion Bai et al. (2024) 0.2 Few-Shot 86.47 – – –
TweedieDiff Daras et al. (2024) 0.2 Few-Shot 65.21 0.2 Few-Shot 58.52
SFBD Lu et al. (2025) 0.2 Few-Shot 13.53 0.2 Few-Shot 6.49
TweedieDiff Daras et al. (2024) 0.2 Zero-Shot 167.23 0.2 Zero-Shot 246.95
Teacher-Full Daras et al. (2025) 0.2 Zero-Shot 60.73 0.2 Zero-Shot 61.14
Teacher-Truncated Daras et al. (2025) 0.2 Zero-Shot 12.21 0.2 Zero-Shot 13.90
Teacher-Consistency Daras et al. (2025) 0.2 Zero-Shot 11.93 0.2 Zero-Shot 12.97
DCD (Ours, One-Step) 0.2 Zero-Shot 4.77 0.2 Zero-Shot 6.48

Sec. 4.2 evaluates general corruption operators in both noiseless and noisy settings, including a sweep
over random-inpainting missing rates p ∈ {0.6, 0.8, 0.9}.
To assess real-world applicability, we evaluate DCD on multi-coil Magnetic Resonance Imaging
(MRI) using the FastMRI dataset Zbontar et al. (2018); Knoll et al. (2020), a setting where fully
sampled ground truth is often unavailable. Across tasks and corruption regimes, DCD consistently
surpasses teacher diffusion models in generative quality as measured by FID Heusel et al. (2017)
without access to clean data (Sec. 4.3).

Finally, DCD exhibits strong distillation–data efficiency (Sec. 4.5)—it quickly surpasses the
teacher—and offers substantial inference-time gains from its one-step design (up to 30×; see Sec. 4.5).
Our ablations (Sec. 4.4) show that the framework accommodates unknown noise levels σ and is robust
with respect to the training-data size; we also examine alternative distillation losses in an ablation
study. Separately, Sec. 4.6 demonstrates that the trained generator achieves superior performance on
downstream conditional inverse problems, indicating broad applicability.

4.1 DENOISING AS A SPECIAL CASE OF DISTILLATION FROM CORRUPTED DATA

Table 3: DCD vs. teachers on CIFAR-10/FFHQ/AFHQ-
v2. DCD (distilled) consistently surpasses teacher diffusion
(Full, Truncated) across datasets and noise levels. (FID).

Methods CIFAR-10 FFHQ AFHQ-v2
Data noise σ=0.1 σ=0.2 σ=0.4 σ=0.2 σ=0.2

Observation 73.74 127.22 205.52 110.83 51.51
Teacher-Full 25.55 60.73 124.28 41.52 17.93
Teacher-Truncated 7.55 12.21 22.12 14.67 9.82

DCD (Distilled) 3.98 4.77 21.63 6.29 5.42

We begin with the denoising special
case y = x + σϵ where the for-
ward operator A = I . We compare
DCD against three groups of base-
lines (Table 2). (1) Teacher diffu-
sion models. A teacher trained with
the noisy corruption loss in Eq. 3
serves as a strong generative baseline.
We adopt the two sampling sched-
ules of Daras et al. (2024)—Teacher-
Full and Teacher-Truncated (Algo-
rithm 4)—and additionally evaluate
the Teacher-consistency variant Daras et al. (2025). There may exist better sampling schedules
for denoising; however, to the best of our knowledge, the schedules we adopt achieve strongest
performance reported in prior work. (2) Few-shot methods. EM-Diffusion Bai et al. (2024) alter-
nates DPS-based reconstructions (E-step) with model refinement (M-step), while SFBD Lu et al.
(2025) casts the problem as density deconvolution; both use 50 clean images for initialization. (3)
Clean-data diffusion (upper bound). DDPM Ho et al. (2020), DDIM Song et al. (2021a), and
EDM Karras et al. (2022) are trained on clean data (σ=0) and serve as upper bounds for any method
trained purely on corrupted observations. Across CIFAR-10 and CelebA-HQ at σ=0.2, DCD (one-
step) outperforms all zero-shot and few-shot baselines and improves over its teachers (Table. 2). For
FFHQ and AFHQ-v2 where prior few-shot results are not reported, DCD also surpasses teacher
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Table 4: CelebA-HQ restoration under noiseless/noisy settings. Baselines are taken from original
papers when available, otherwise reproduced. EM-Diffusion uses 50 clean images for initialization,
while DCD uses none. Best results are highlighted.

Methods σ Gaussian Deblurring Random Inpainting (p = 0.9) Super-Resolution (×2)
Observation

0.0

72.83 396.14 23.94
Teacher Diffusion 94.40 25.53 23.28
EM-Diffusion (Few-Shot) 56.69 104.68 58.99
DCD (Ours, One-Step) 31.90 16.86 12.99
Observation

0.2

264.37 419.92 200.04
Teacher Diffusion 99.19 319.34 23.92
EM-Diffusion (Few-Shot) 51.33 165.60 57.31
DCD (Ours, One-Step) 76.98 79.48 22.00

Table 5: CelebA-HQ random inpainting vs.
missing rate p. Teacher diffusion is trained
as in Daras et al. (2023b).

Method p = 0.6 p = 0.8 p = 0.9

Observation 275.04 383.82 396.14
Teacher Diffusion 6.08 11.19 25.53
DCD 4.44 7.10 16.86

Table 6: FID across acceleration levels R in
multi-coil MRI. Teacher diffusion is trained as
in Aali et al. (2024).

Method R = 2 R = 4 R = 6 R = 8

L1-EDM 18.55 27.64 51.43 102.98
Teacher Diffusion 30.34 32.31 31.50 48.15
DCD 12.95 10.71 14.64 22.51

models (Table 3). Finally, we sweep noise levels σ ∈ {0.1, 0.2, 0.4} on CIFAR-10 and observe
consistent gains over teachers. Quality examples are provided in Appendix D and N.

4.2 GENERAL CORRUPTIONS MIXED WITH NOISE

We now move beyond denoising to the general measurement model y = A(x)+ σϵ, whereA may be
non-invertible. Using CelebA-HQ as a running example, we study both noiseless (σ = 0.0) and noisy
(σ = 0.2) regimes and instantiate A as (i) Gaussian deblurring, (ii) random inpainting, and (iii) 2×
super-resolution. Aggregate results across tasks and noise levels are reported in Table 4. For random
inpainting, we further sweep the missing rate p ∈ {0.6, 0.8, 0.9}; see Table 5. Across settings,
DCD—trained without clean images—consistently improves over its teacher diffusion models and is
competitive with, or exceeds, few-shot methods that rely on clean initialization. Qualitative examples
are provided in Appendix D and N.

4.3 BEYOND NATURAL IMAGES: MULTI-COIL MAGNETIC RESONANCE IMAGING (MRI)

We next apply DCD to a practical medical-imaging setting where fully sampled data are often
unavailable due to time and cost constraints Knoll et al. (2020); Zbontar et al. (2018); Tibrewala
et al. (2023); Desai et al. (2022). This case study demonstrates: (i) the flexibility of DCD to
integrate with advanced corruption-aware diffusion techniques, (ii) robustness across acceleration
factors R, and (iii) an extension from real- to complex-valued signals, x ∈ Cd. Table 6 reports
FID versus acceleration R ∈ {2, 4, 6, 8} comparing DCD, a teacher trained via Fourier-Space
Ambient Diffusion Aali et al. (2025), and a baseline L1-EDM that trains EDM Karras et al. (2022)
on L1–Wavelet reconstructions Lustig et al. (2007). Across all acceleration levels, DCD improves
over the teacher; notably, it also outperforms L1-EDM at low acceleration (R=2), suggesting that
distillation-based regularization is more effective than handcrafted L1 priors in the wavelet domain.
Qualitative examples are shown in Fig. 4, with full algorithmic details in Appendix K.4 and L.

4.4 ABLATIONS: UNKNOWN NOISE LEVEL, DATA SCALE, AND DISTILLATION LOSS CHOICE

We ablate three practical aspects of DCD on the denoising task (A = I): (i) robustness when the
observation noise level σ is unknown and random, (ii) sensitivity to the amount of training data, and
(iii) the choice of distillation loss (see Appendix G for details). We report FID throughout.

Unknown σ. When σ is unavailable at training time, we adopt a simple strategy:
(1) estimate per-image noise level using the off-the-shelf estimator implemented via
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L1-EDM F.S. Ambient Diffusion DCD (ours)Mask GroundtruthObservation

R = 2

R = 4

R = 6

R = 8

Figure 4: Multi-coil MRI: qualitative reconstructions from DCD across acceleration levels R. See
Tab. 6 for corresponding FID trends.

skimage.restoration.estimate_sigma Donoho and Johnstone (1994); (2) for reliability,
select the maximum estimated σ̂ over a small calibration set. Concretely, we sample 100 noisy CIFAR-
10 images, compute σ̂ per image across 100 independent trials, and use the trial-wise maximum as
the working σ̂. As shown in Table 7, this deliberately slightly overestimates the noise, a regime where
DCD remains stable (see experiments in Table 8) and, in line with blind denoising results Zhang et al.
(2018; 2017); Dabov et al. (2007), helps avoid under-regularization.

Table 7: Unknown noise:
true σ vs. σ̂ on CIFAR-10.

σ σ̂ 95% CI
0.05 0.07 [0.073, 0.074]
0.10 0.12 [0.119, 0.121]
0.20 0.22 [0.215, 0.216]
0.30 0.31 [0.311, 0.313]

Table 8: Misspecification study on CIFAR-10. DCD is robust to
slight overestimation when the true σ = 0.2.

Teacher-Full Teacher-Trunc. DCD
σ̂ = 0.15 (under) 80.60 49.78 103.55
σ̂ = 0.20 (true) 60.73 12.21 4.77
σ̂ = 0.25 (over) 42.99 88.11 16.07

Effect of misspecified σ. To isolate the impact of noise misspecification, we fix the ground-truth
level at σ = 0.2 on CIFAR-10 and evaluate three settings: (i) underestimation, σ̂ = 0.15; (ii) correct,
σ̂ = 0.20; and (iii) overestimation, σ̂ = 0.25. The same σ̂ is used consistently in both Phase I
pretraining (noisy corruption objective) and Phase II distillation. As shown in Table 8, DCD attains its
best accuracy under correct specification and remains competitive under mild overestimation, whereas
underestimation is substantially more harmful—echoing observations in blind denoising Dabov et al.
(2007); Zhang et al. (2018; 2017). Thus, when σ is unknown, slight overestimation is a robust
practical choice, consistent with the strategy shown in Table 7. A complementary 2D toy example in
Appendix H corroborates this conclusion. We further include an ablation where the noise level is
drawn from a distribution, i.e., σ ∼ p(σ). Our method remains robust under this setting as well; see
Appendix J for details.

Table 9: Data-size ablation on CelebA-HQ.

Data Size Teacher-Full Teacher-Trunc. DCD
10% 62.25 14.36 10.53
50% 56.09 17.19 9.76
100% 61.14 13.90 6.48

Data scale. We next vary the training set size
on CelebA-HQ to test data efficiency. DCD
maintains strong performance even with 10%
of the data and improves as more data become
available, outperforming both Teacher-Full and
Teacher-Truncated across settings. The results
are shown in Tab 9.
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Choice of distillation loss. We compare several popular distillation losses used to compress
diffusion teachers into one-step generators, including SDS Poole et al. (2022), DMD Yin et al.
(2024b), and SiD Zhou et al. (2024). Unless otherwise noted, we use the default hyperparameters
from the original papers (and public repos) without task-specific tuning. Under these settings, SiD
consistently yields the strongest FID across our datasets, while SDS and DMD underperform. We
report the full per-dataset and per-σ breakdown in Table 14 (Appendix G). We emphasize that we
did not perform a hyperparameter sweep; consequently, better-tuned configurations of SDS or DMD
may close the gap to SiD. Empirically, we find SiD’s default hyperparameters at different setting is a
stable choice in our DCD pipeline.

4.5 SAMPLING AND TRAINING EFFICIENCY FOR DISTILLATION

Figure 5: Efficiency of DCD
(CIFAR-10, σ = 0.2).

After distillation, DCD attains markedly higher inference
throughput than its diffusion teacher. On CIFAR-10 at σ = 0.2,
producing 50,000 samples drops from 10 minutes (teacher)
to 20 seconds (generator), a ∼30× reduction in wall-clock
time. Training is likewise efficient: the Phase II distillation
stage surpasses the teacher’s FID in roughly 4 hours, compared
to 48 hours for Phase I teacher pretraining. Thus, once the
teacher is available, running DCD adds only a minor compu-
tational budget yet yields substantial quality and speed gains.
Figure 5 summarizes both sampling and training efficiency. All
wall-clock times were measured on 8× RTX A6000 (32 GB).
Additional quantitative statistics and efficiency examples are
provided in Appendix F and Table 13.

4.6 AFTER DISTILLATION: SOLVING CONDITIONAL INVERSE PROBLEMS

Table 10: Conditional inverse problem results of
denoising on CIFAR10 at σ = 0.2. Results for the
baselines are taken from [5]. We follow [5] and
sample 250 test images and compute the average
PSNR and LPIPS.

Method Type PSNR↑ LPIPS↓
Observations 18.05 0.047
DPS w/ clean prior [11] Full-Shot 25.91 0.010

SURE-Score [1] Few-Shot 22.42 0.138
AmbientDiffusion [14] Few-Shot 21.37 0.033
EM-Diffusion [5] Few-Shot 23.16 0.022

Noise2Self [6] Zero-Shot 21.32 0.227
DCD (ours) Zero-Shot 24.11 0.025

Because our framework yields a high-quality
clean image generator—which naturally serves
as a prior in conditional inverse solvers Chung
et al. (2022); Zhang et al. (2024); Zhu et al.
(2024); Zhang and Leong (2025)—a direct ex-
tension is to evaluate its utility on downstream
inverse problems. We report a denoising task
performance in Table 10, where DCD substan-
tially outperforms prior zero-shot methods and
achieves performance comparable to few-shot
approaches such as EM-Diffusion. In our imple-
mentation, we solve minz

∥∥A(Gθ(z)) − y
∥∥2
2

for 1000 steps using Adam Kingma (2014) with
a learning rate of 0.05. Exploring alternative
strategies for inverse problems with one-step

generators is an exciting direction. Additional results are provided in Appendix I.

5 CONCLUSION

In this work, we introduced Distillation from Corrupted Data (DCD) to learn clean data distribution
from a broad class of corruption types. Our empirical results on natural images and scientific MRI
datasets show consistent improvements over existing baselines. Moreover, beyond standard diffusion
objectives, the DCD framework is compatible with several corruption-aware training techniques,
enabling flexible integration with recent advances in diffusion modeling. Together, our contributions
highlight the potential of score distillation as a powerful mechanism for robust generative learning in
real-world settings where clean data are scarce or unavailable. A detailed discussion of limitations is
provided in Appendix B.
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ETHICS STATEMENT

This work develops methods for training generative models from corrupted data without requiring
access to clean ground truth. The primary applications we target are scientific and medical imaging
domains where clean acquisitions are expensive or infeasible. Our framework does not involve human
subjects, personal data, or harmful content, and thus poses minimal ethical risks. Nevertheless, as
with all generative models, there is potential for misuse in creating synthetic content; to mitigate this,
we emphasize the intended use of our approach in scientific and restoration contexts.

REPRODUCIBILITY STATEMENT

We provide complete algorithmic and training details in the Appendix. To ensure reproducibility, we
will release all code and model checkpoints upon acceptance of this manuscript.
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A ADDITIONAL EXPERIMENTS

A.1 MORE METRICS

Table 11: Comparison of DCD with teacher diffusion and baselines on CIFAR-10. *Metrics for
DDPM and Rectified Flow (ODE) are copied from the Rectified Flow Liu et al. (2022) paper’s
Table 1.

Method σ FID (↓) IS (↑) Precision (↑) Recall (↑) KID (↓)
Teacher (σ=0.2) 0.2 12.21 8.312 0.595 0.416 0.00593
Ours (σ=0.4) 0.2 21.63 7.934 0.536 0.384 0.01270
Ours (σ=0.2) 0.2 4.77 9.165 0.650 0.564 0.00252
Ours (σ=0.1) 0.2 3.98 9.346 0.643 0.578 0.00157
DDPM* 0.0 3.21 9.46 N/A 0.57 N/A
Rectified Flow (ODE)* 0.0 2.58 9.60 N/A 0.57 N/A

The results show that our distilled DCD generator achieves both strong density modeling (low FID)
and robust mode coverage (high Recall).

A.2 DIFFERENT CORRUPTION DURING DISTILLATION

Figure 6: Mismatched Corruption Levels during Distillation. Our method remains robust even
when the assumed corruption level is mismatched during distillation.

B DISCUSSIONS AND LIMITATIONS

Solving inverse problems. We demonstrate how to use the distilled generator as a learned prior for
inverse problems in Section 4.6 and Appendix I. Concretely, given measurements y = A(x) + noise,
we recover a plausible x by optimizing over the latent z so that the synthesized sample matches the
observations, e.g.,

min
z

∥∥A(Gθ(z))− y∥∥22 (optionally with regularization or priors on z).

A broader treatment—including principled conditioning, data-consistency guidance, and plug-and-
play/score-based solvers—is a promising direction Chung et al. (2022); Zhang et al. (2024); Zhu et al.
(2024); Zhang and Leong (2025); Chen et al. (2024b), with applications in scientific and engineering
domains where reconstructing clean signals from measurements is critical.

Applications in scientific discovery. Our approach is particularly well-suited for scientific discov-
ery, where clean observational data are often scarce or fundamentally unobtainable. Extending our
method to datasets across diverse scientific domains is a promising avenue for future research. For
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instance, ground-truth black hole images are inherently unobservable, yet large collections of cor-
rupted telescope measurements are available, as demonstrated by the Event Horizon Telescope (EHT)
observations Akiyama et al. (2019). EHT relies on Very Long Baseline Interferometry (VLBI), where
the measurement process is modeled as a 2D Fourier transform of the sky brightness distribution.
Specifically, the forward model can be expressed as

V (u, v) =

∫∫
I(x, y)e−2πi(ux+vy)dxdy,

as in Eq. 2 of Akiyama et al. (2019), or in practice as

V t(a,b) = gtag
t
be

−i(ϕt
a−ϕ

t
b)It(a,b)(z) + ηt(a,b),

as described in Eq. 16 of Zheng et al. (2025).

Unknown corruption operator. We first note that in many scientific applications such as backhole
imaging and multi-coil MRI, the corruption operator is known. In settings where the true corruption
operator is unknown, off-the-shelf estimators can provide usable approximations of the corruption
process, as illustrated in Section 4.4. Crucially, our method does not require an explicit closed-form
specification of the operator: it only assumes access to its forward propagation (i.e., the ability
to apply the corruption). This black-box requirement confers a key advantage—our approach can
recover salient properties of the underlying data distribution without explicit knowledge of how the
corruption is parameterized.

C THEORETICAL RESULTS AND PROOFS

We provide theoretical insights to support our empirical results. In Section C.1, we analyze, un-
der distributional assumptions on the data and corruption along with capacity and optimization
assumptions on the teacher and generator, when can the distilled student achieve a strictly smaller
Fisher divergence to the clean distribution than the teacher. Then, in Section C.2, we turn to a linear
Gaussian setting where the optimization landscape can be analyzed explicitly, yielding quantitative
error bounds and characterizations of global minimizers. Finally, we offer several extensions of this
theory in Section C.3.

C.1 GENERAL GUARANTEES FOR DISTILLATION

To begin, we aim to derive a general guarantee showing that, under capacity and optimization
assumptions on the teacher and generator, we can give bounds on the distilled generator’s performance.
This will be for more general corruptions and then we will state a result more tailored to denoising
after where we can give conditions on when the distilled model improves upon the noisy distribution.

To state our results, we set the notation. Let F(p||q) := Ep[∥∇ log p(x)−∇ log q(x)∥22] denote the
Fisher divergence between p and q. For a density p, we let dp = p(x)dx = pdx. Let χ2(p||q) =∫
(p/q− 1)2dq denote the chi-square divergence between p and q. For notational simplicity, we let ≲

denote an inequality up to absolute constants so that a ≲ b if there exists an absolute constant C > 0
such that a ⩽ Cb. We let y = Ax+σϵ with σ > 0 and define pY := T [pX ] := A♯pX ∗N (0, σ2Im).
We will use the notation

xt = x+ σtϵ, yt = y + σtϵ
′

with marginals pX,t, pY,t. For the generator Gθ with clean law pθ and parameters θ ∈ Θ, its
measurement law is pθ,Y := T [pθ] with noise-convolved marginals pθ,Y,t. We consider distilling by
minimizing

Ldistill(θ) := Et,ỹt∼pθ,Y,t
∥fϕ(ỹt, t)− fψ(ỹt, t)∥22

where fϕ is the teacher and fψ is the fake diffusion model. For each t, let sY,t and sθ,Y,t denote
the scores of pY,t and pθ,Y,t, respectively. Throughout, we will assume sufficient regularity of the
densities so that all scores ∇ log p and gradients ∇p are well-defined, including those induced by pθ
for θ ∈ Θ. Moreover, put

δϕ(y, t) := fϕ(y, t)− sY,t(y) δψ(ỹ, t) := fψ(ỹ, t)− sθ,Y,t(ỹ)

ε2ϕ,2 := sup
t

EpY,t
∥δϕ(yt, t)∥22, ε2ϕ,4 := sup

t

(
EpY,t

∥δϕ(yt, t)∥42
)1/2

.
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We will assume we have optimized our parameter θ to a point θ̂. Define the local fake-diffusion error
at θ̂:

ε2ψ(θ̂) := sup
t

Epθ̂,Y,t
∥δψ(ỹt, t)∥22.

Finally, let ∆(θ̂) denote the local density ratio

∆(θ̂) := sup
t

sup
y
wt(y), wt(y) := pθ̂,Y,t(y)/pY,t(y).

We will make the following assumptions on the data and learned parameters:
Assumption 1 (Data distribution). Suppose that the corrupted data distribution pY,t satisfies a
uniform Poincaré-like inequality in the sense that there exists a λ0 > 0 such that

χ2(p||pY,t) ⩽ λ−1
0

∫
∥∇p/pY,t∥2dpY,t, ∀t, p ∈ {pθ,Y,t}θ∈Θ.

Assumption 2 (Capacity and local near-optimality). There exists a θ∗ such that pθ∗,Y = pY and θ̂
satisfies the following for some εopt ⩾ 0:

Ldistill(θ̂) ⩽ Ldistill(θ
∗) + εopt.

Moreover, the fake diffusion network parameters ψ satisfies Et,pY,t
∥fϕ(yt, t) − fψ(yt, t)∥22 ⩽

Et,pY,t
∥fϕ(yt, t)− sY,t∥22. We note that this can be relaxed to an upper bound up to a constant.

We will aim to prove the following:
Theorem 1. Under Assumptions 1 and 2, we have that the following holds:

1. (general bound) the learned distilled distribution in measurement space satisfies

EtF(pθ̂,Y,t||pY,t) ≲

ε2ϕ,4
√

∆(θ̂)

λ0
+

√
ε4ϕ,4

∆(θ̂)

λ0
+ ε2ϕ,2 + ε2ψ(θ̂) + εopt

2

;

2. (measurement injectivity) if the measurement operator T : p 7→ A♯p ∗N (0, σ2Im) satisfies
EtF(pθ̂,t||pX,t) ⩽ κ̂ · EtF(pθ̂,Y,t||pY,t) for some κ̂ > 0, then we have that the learned
distilled distribution in image space satisfies

EtF(pθ̂,t||pX,t) ≲ κ̂

ε2ϕ,4
√

∆(θ̂)

λ0
+

√
4ε4ϕ,4

∆(θ̂)

λ0
+ ε2ϕ,2 + ε2ψ(θ̂) + εopt

2

;

Discussion. This result guarantees a bound on the Fisher divergence between the distilled genera-
tor’s measurement distribution and the true measurement distribution. The key idea is that minimizing
the distillation loss encourages the generator to learn an image distribution whose induced measure-
ments are close the true measurements. Lemma 2 more explicitly connects the distillation loss to the
reverse Fisher divergence between the measurement distributions. The second key component is the
second bound, which shows that if the corruption operator satisfies an injectivity property over the
data, then we can transfer this bound to the distilled distribution in image space. Hence distillation
has the potential to succeed when 1) the distilled generator learns to create images such that, when
corrupted further, look like the measurements and 2) the corruption operator is stable or injective
over our distributions. We show in the following Corollary that in the instructive case of denoising,
the corruption operator is stable and we can give a condition on when distillation can improve over
the noisy distribution.
Corollary 1 (Improvement in denoising). Under the setting of Theorem 1, when A = I , we have
that the measurement injectivity condition holds for some κ̂ > 0 that depends on the noise schedule
and for εϕ,2, εϕ,4, εψ(θ̂), εopt sufficiently small, we have that the distilled distribution improves upon
the noisy distribution

EtF(pθ̂,t||pX,t) < EtF(pY,t||pX,t).
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To prove these results, we require a number of technical lemmas. The first is a change of measure
result that will be useful in transferring expectations.
Lemma 1. For fixed t, let eϕ(y, t) := ∥δϕ(y, t)∥22. Then we have that

Epθ,Y,t
eϕ(y, t) ⩽ ε2ϕ,2 + ε2ϕ,4

√
χ2(pθ,Y,t||pY,t).

Proof of Lemma 1. Suppose we set q = pY,t, p = pθ,Y,t, and w = dp/dq. Recall that for a density
q, the induced L2(q) norm is given by ∥f∥2L2(q) =

∫
f2dq. Then we have via an application of

Cauchy-Schwarz that

|Epeϕ(y, t)− Eqeϕ(y, t)| =
∣∣∣∣∫ (w(y)− 1)eϕ(y, t)dq

∣∣∣∣
⩽ ∥w − 1∥L2(q)∥eϕ∥L2(q)

=
√
χ2(p||q) ·

(
Eqe2ϕ(y, t)

)1/2
.

The result follows by using the definitions of εϕ,2 and εϕ,4.

The next Lemma is crucial, in that it shows how the distillation loss from SiD Zhou et al. (2024)
encourages the generator Gθ to produce images whose measurements match the distribution of the
true measurements.

Lemma 2. For θ̂, define Γ(θ̂) := Et
[
ε2ϕ,4

√
χ2(pθ̂,Y,t||pY,t)

]
. Then we have that the distillation loss

and the Fisher divergence between the measurement distributions exhibit the following relationship:

1

2
EtF(pθ̂,Y,t||pY,t)− 2ε2ψ(θ̂)− 2ε2ϕ,2 − 2Γ(θ̂) ⩽ Ldistill(θ̂) ⩽ 3EtF(pθ̂,Y,t||pY,t) + 3ε2ψ(θ̂) + 3ε2ϕ,2 + 3Γ(θ̂).

Proof of Lemma 2. We first consider the decomposition

fϕ − fψ = (sY,t − sθ̂,Y,t) + δϕ − δψ.

Using ∥x + y − w∥22 ⩽ 3(∥x∥22 + ∥y∥22 + ∥w∥22) for x = sY,t − sθ̂,Y,t, y = δϕ and w = δψ and
taking expectations, we have that for fixed t,

Epθ̂,Y,t
∥fϕ(ỹt, t)− fψ(ỹt, t)∥22 ⩽ 3Epθ̂,Y,t

∥sY,t(ỹt, t)− sθ̂,Y,t(ỹt, t)∥
2
2 + 3Epθ̂,Y,t

eϕ(ỹt, t) + 3Epθ̂,Y,t
∥δψ(ỹt, t)∥22

⩽ 3Epθ̂,Y,t
∥sY,t(ỹt, t)− sθ̂,Y,t(ỹt, t)∥

2
2 + 3

(
ε2ϕ,2 + ε2ϕ,4

√
χ2(pθ̂,Y,t||pY,t)

)
+ 3ε2ψ(θ̂)

where the last line follows by Lemma 1 and the definition of ε2ψ(θ̂). Taking an expectation over t
yields

Ldistill(θ̂) ⩽ 3EtF(pθ̂,Y,t||pY,t) + 3ε2ϕ,2 + 3Γ(θ̂) + 3ε2ψ(θ̂).

The lower bound holds by using the bound ∥x+ y −w∥22 ⩾ 1
2∥x∥

2
2 − 2(∥y∥22 + ∥w∥22), applying the

same bounds, and taking expectations. Note that this bound holds because for any z,

∥x+ z∥22 = ∥x∥22 + 2⟨x, z⟩+ ∥z∥22.

Recall Young’s inequality: |⟨x, z⟩| ⩽ α2

2 ∥x∥
2
2+

1
2α2 ∥z∥22 for α > 0. Hence we have the lower bound

∥x+ z∥22 ⩾ ∥x∥22 − α2∥x∥22 − α−2∥z∥22 + ∥z∥22.
Choosing α2 = 1/2, setting z = y − w, and using ∥y − w∥22 ⩽ 2(∥y∥22 + ∥w∥22) yields the desired
inequality.

An additional ingredient we need is control over the χ2 distance and relating it to the Fisher divergence.
For that, we need the following Lemma.
Lemma 3. Under Assumption 1, we have that

Γ(θ̂) ⩽ ε2ϕ,4

√
∆(θ̂)

λ0
·
(
EtF(pθ̂,Y,t||pY,t)

)1/2
.
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Proof of Lemma 3. We first fix t and set q = pY,t, p = pθ̂,Y,t and w = p/q. Then Assumption 1
yields

χ2(p||q) ⩽ λ−1
0

∫
∥∇w∥22dq = λ−1

0

∫
w
∥∇w∥22
w

dq ⩽
∆(θ̂)

λ0

∫
∥∇w∥22
w

dq =
∆(θ̂)

λ0
F(p||q)

where the first line follows by assumption, the second inequality follows by definition of ∆(θ̂) and
the last equality follows by definition of the Fisher divergence. Ineed, for the last equality, note that if
w = p/q, then∇w = ∇(p/q) = p

q (∇ log p−∇ log q) = w(sp− sq) where sp and sq are the scores
of p and q, respectively. This ensures that∫

∥∇w∥22
w

dq =

∫
w∥sp − sq∥2dq =

∫
∥sp − sq∥2pdx = F(p||q).

Taking square roots and applying an expectation over t along with Jensen’s inequality for the concave
map v 7→

√
v yields the desired bound.

Armed with these technical results, we now prove Theorem 1.

Proof of Theorem 1. First, recall that by Lemma 2, we have the lower bound

Ldistill(θ̂) ⩾
1

2
EtF(pθ̂,Y,t||pY,t)− 2ε2ψ(θ̂)− 2ε2ϕ,2 − 2Γ(θ̂). (6)

Moreover, by definition of θ∗, we have that

Ldistill(θ
∗) = Et,pθ∗,Y,t

∥fϕ − fψ∥22 = Et,pY,t
∥fϕ − fψ∥22 ⩽ Et,pY,t

∥fϕ − sY,t∥22 ⩽ ε2ϕ,2

where we used pθ∗,Y = pY in the second equality and the assumption on ψ in the second-to-last
inequality. Then note that by Assumption 2, we have that

Ldistill(θ̂) ⩽ Ldistill(θ
∗) + εopt ⩽ ε2ϕ,2 + εopt. (7)

Combining equation 6 and equation 7 along with Lemma 3 yields the quadratic inequality 1
2X ⩽

A + B
√
X where we have set X := EtF(pθ̂,Y,t||pY,t), A := 3ε2ϕ,2 + εopt + 2ε2ψ(θ̂) and B :=

2ε2ϕ,4

√
∆(θ̂)
λ0

. Solving this inequality, we have that X ⩽
(
B +

√
B2 + 2A

)2
. Substituting the values

of X , A, and B yields the desired result.

Finally, we show the denoising Corollary.

Proof of Corollary 1. The Corollary is a consequence of the fact that when A = I , we have that
pY,t = T [pX ] ∗ N (0, σ2

t I) = pX ∗ N (0, σ2I) ∗ N (0, σ2
t I) = pX ∗ N (0, (σ2 + σ2

t )I). Hence if we
define the time-shift map τ(t) by σ2

τ(t) = σ2
t + σ2, we have that for any θ and t, F(pθ,Y,t||pY,t) =

F(pθ,τ(t)||pX,τ(t)). Denote the distribution of t ∼ ρ where ρ has support in τ([tmin, tmax]) and set

κ̂ := sup
t∈[tmin,tmax]

ρ(τ(t))τ ′(t)

ρ(t)
∈ (0,∞).

Then we have that

EtF(pθ̂,t||pX,t) ⩽ κ̂ · EtF(pθ̂,τ(t)||pX,τ(t)) = κ̂ · EtF(pθ̂,Y,t||pY,t).

Define ∆σ := EtF(pY,t||pX,t). Then using the measurement injectivity bound in Theorem 1, there
exists a universal constant C such that if

κ̂ ·

ε2ϕ,4
√

∆(θ̂)

λ0
+

√
ε4ϕ,4

∆(θ̂)

λ0
+ ε2ϕ,2 + ε2ψ(θ̂) + εopt

2

⩽ ∆σ/C

then we have

EtF(pθ̂,t||pX,t) < EtF(pY,t||pX,t).
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C.2 QUANTITATIVE ANALYSIS IN A LINEAR SETTING

While Theorem 1 applies under broad conditions, it assumes the distillation loss can be optimized to
near optimality. To further understand the effect of optimization, we study a stylized setting where
the data distribution is Gaussian and the generator family is linear. In particular, we will work under
the following assumptions.
Assumption 3 (Linear Low-Rank Data Distribution). Suppose our underlying data distribution is
given by a low-rank linear model x = Ez ∼ pX and z ∼ N (0, Ir), where E ∈ Rd×r with r < d
and with orthonormal columns (i.e., ETE = Ir).

Assumption 3 is equivalent to pX := N (0, EET ). For a fixed corruption noise level σ > 0, consider
the setting we only have access to the noisy distribution y = x+σϵ, where x ∼ pX and ϵ ∼ N (0, Id).
In other words, pY,σ := N (0, EET +σ2Id). In our setting we assume that we have perfectly learned
the noisy score:
Assumption 4 (Perfect Score Estimation). Suppose we can estimate the score function of corrupted
data y perfectly:

∇ log pY,σ(x) = −
(
EET + σ2Id

)−1
x.

Our goal is to distill this distribution into a distribution pGθ
:= (Gθ)♯(N (0, Id)) given by the push-

forward of N (0, Id) by a generative network Gθ : Rd → Rd. To model a U-Net Ronneberger et al.
(2015) style architecture with bottleneck structure, we assume Gθ satisfies the following low-rank
linear structure detailed in Assumption 5.
Assumption 5 (Low-Rank Linear Generator). Assume the generator is a low-rank linear mapping,
where Gθ is parameterized by θ = (U, V ) where U, V ∈ Rd×r with r < d and has the form:

Gθ(z) := UV T z.

Note that Gθ induces a degenerate low-rank Gaussian distribution pGθ
:= N (0, UV TV UT ). Con-

sider a bounded noise schedule (σt) ⊆ [σmin, σmax] for some 0 < σmin < σmax < ∞ and
perturbed data points xt = x + σtϵ where ϵ ∼ N (0, Id) and x ∼ pGθ

. Then xt ∼ pσt

Gθ
:=

N (0, UV TV UT + σ2
t Id). To distill the noisy distribution, we minimize the score-based loss (or

Fisher divergence) as in Zhou et al. (2024):

L(θ) := Et∼Unif(0,1)Ext∼pσt
Gθ

[∥∥sσ,σt
(xt)−∇ log pσt

Gθ
(xt)

∥∥2
2

]
. (8)

Here, sσ,σt
(x) := −(EET + (σ2 + σ2

t )Id)
−1x. Note this objective is similar to Eq. equation 5, but

with the real score in place of the fake score. This is also considered the idealized distillation loss
(see Eq. (8) in Zhou et al. (2024)). In Theorem 2, we show that minimizing Eq. equation 11 over a
certain family of non-degenerate parameters finds a distilled distribution with smaller Wasserstein-2
distance to the underlying clean distribution.
Theorem 2. Fix σ > 0. Under Assumptions 3, 6, and 5, consider the family of parameters θ = (U, V )
such that

θ ∈ Θ := {(U, V ) : UTU = Ir, V
TV ≻ 0}.

For any bounded noise schedule (σt) ⊆ [σmin, σmax], the global minimizers of L (Eq. equation 11)
over Θ, denoted by θ∗σ := (U∗, V ∗

σ ), satisfy the following:

U∗ = EQ for some orthogonal matrix Q and (V ∗
σ )

TV ∗
σ = (1 + σ2)Ir. (9)

For any such θ∗σ , the induced generator distribution pGθ∗σ
= N (0, (1 + σ2)EET ) satisfies

W 2
2 (pGθ∗σ

, pX) =W 2
2 (pY,σ, pX)− (d− r)σ2 < W 2

2 (pY,σ, pX). (10)

Discussion. This result shows that global minimizers of the distillation loss over a family of
“non-degenerate” parameters induces a distribution close to the ground truth. Moreover, we can
precisely quantify the distance to the underlying distribution due to the fact that all distributions
are now Gaussians and the Wasserstein-2 distance has a closed form. We further explore what the
unconstrained minimizers are in Theorem 4 for the rank-one case.
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Regarding our assumptions, we note that making either Gaussian or potentially more complex
Gaussian mixture model assumptions is common in the generative modeling literature Chen et al.
(2023); Cui et al. (2023); Wang and Vastola (2024). We further note that this result focuses on
the setting where the underlying generator has low-rank structure. While it is common to make
simplifying assumptions on the network architecture to understand score-based models Chen et al.
(2023; 2024a), there is also recent work Wang et al. (2024a) that has shown when trained on data of
low intrinsic dimensionality, score-based models can exhibit low-rank structures. Empirically, we
find that neural-network-based distilled models can find such low-dimensional structures through
noisy data. An interesting future direction of this work is to understand the influence of neural-
network-based parameterizations of the score function along with analyzing the fake score setting.

Before we dive into the proof, we provide the following lemmas.

Lemma 4. [Generalized Woodbury Matrix Identity Higham (2002)]

Given an invertible square matrix A ∈ Rn×n, along with matrices U ∈ Rn×k and V ∈ Rk×n, define
the perturbed matrix: B = A+ UV . If (Ik + V A−1U) is invertible, then the inverse of B is given
by:

B−1 = A−1 −A−1U(Ik + V A−1U)−1V A−1.

Lemma 5. The Wasserstein-2 distance between two mean-zero Gaussians N (0,Σ1) and N (0,Σ2)
whose covariance matrices commute, i.e., Σ1Σ2 = Σ2Σ1, is given by

W 2
2 (N (0,Σ1),N (0,Σ2)) =

d∑
i=1

λi(Σ1) + λi(Σ2)− 2
√
λi(Σ1)λi(Σ2).

Lemma 6 (Mirsky (1975)). Suppose A and B are d × d complex matrices with singular values
σ1(A) ⩾ σ2(A) ⩾ · · · ⩾ σd(A) ⩾ 0 and σ1(B) ⩾ σ2(B) ⩾ · · · ⩾ σd(B) ⩾ 0, respectively. Then

|tr(AB)| ⩽
d∑
i=1

σi(A)σi(B).

Lemma 7. Let E ∈ Rd×r with r < d have orthonormal columns and Σ ∈ Rr×r be symmetric
positive definite. Then

argmax
UTU=Ir

tr(EETUΣUT ) = {EQ : Q orthogonal}.

Proof of Lemma 7. Observe that by the von Neumann trace inequality (Lemma 6), we have that for
any feasible U ,

tr(EETUΣUT ) = tr(UTEETUΣ) ⩽
r∑
i=1

λi(U
TEETU)λi(Σ) =

r∑
i=1

λi(EE
T )λi(Σ) =

r∑
i=1

λi(Σ).

Hence, to maximize U 7→ tr(EETUΣUT ) over {U : UTU = Ir}, we want U∗ to satisfy
tr(EETU∗Σ(U∗)T ) =

∑r
i=1 λi(Σ).

We claim that this occurs if and only if U∗ = EQ for some orthogonal Q. If U∗ = EQ, then
(U∗)TEETU∗ = QTETEETEQ = I so

tr(EETU∗Σ(U∗)T ) = tr((U∗)TEETU∗Σ) = tr(Σ) =

r∑
i=1

λi(Σ).

For the other direction, suppose U∗ maximizes the objective. Then

tr((U∗)TEETU∗Σ) = tr(Σ)⇐⇒ tr
(
((U∗)TEETU∗ − Ir)Σ

)
= 0.

Set Q := ETU∗. Note that the eigenvalues of QTQ are bounded by 1 so QTQ − Ir is negative
semi-definite while Σ is positive definite. But if tr((QTQ− Ir)Σ) = 0, by positive definiteness of Σ,
we must have QTQ− Ir = 0, i.e., QTQ = Ir. This means Q is orthogonal. Since Q is orthogonal
and Q = ETU∗ =⇒ U∗ = EQ, as desired.
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Lemma 8. Fix σ > 0 and consider a noise schedule σt > 0 for t ∈ (0, 1) such that (σt) ⊆
[σmin, σmax] for some 0 < σmin < σmax <∞. Define the function fσ : (0,∞)→ R by

fσ(u) := Et∼Unif(0,1)

[
u

(σ2 + σ2
t + 1)2

− u

σ2
t (u+ σ2

t )

]
.

Then fσ is strictly convex and has a unique minimizer at u∗ = σ2 + 1 which is the unique solution to
the equation

Et∼Unif(0,1)

[
1

(σ2 + σ2
t + 1)2

]
= Et∼Unif(0,1)

[
1

(u∗ + σ2
t )

2

]
.

Proof of Lemma 8. First, note that the conditions on σt ensure that all of the following expectations
are finite. By direct calculation, we have the derivatives of fσ are

f ′σ(u) = Et
[

1

(σ2 + σ2
t + 1)2

]
− Et

[
1

(σ2
t + u)2

]
and f ′′σ (u) = Et

[
2

(σ2
t + u)3

]
.

Hence f ′′σ (u) > 0 for all u > 0 so fσ is strictly convex. To find its minimizer u∗, setting the derivative
equal to 0 yields u∗ must satisfy

Et
[

1

(σ2 + σ2
t + 1)2

]
= Et

[
1

(σ2
t + u∗)2

]
.

Note that the point u∗ = 1 + σ2 clearly satisfies the critical point equation. Uniqueness follows due
to strict convexity.

C.2.1 PROOF OF THEOREM 2

We break down the proof of Theorem 2 into three key steps. First, we show that minimizing the
objective (Eq. equation 11) is equivalent to minimizing a simpler objective. Then, we show that we
can derive exact analytical expressions for the global minimizers of this simpler objective, which
are then global minimizers of the original score-based loss. Finally, we will directly compute the
Wasserstein distance between our learned distilled distribution to the clean distribution and compare
this to the noisy distribution.

Reduction of objective function: For σt > 0, define pσt

Gθ
:= N (0, UV TV UT + σ2

t Id) and
sσ,σt(x) := −(EET + (σ2 + σ2

t )Id)
−1x. For the proof, we will assume our parameters θ =

(U, V ) ∈ Θ so that UTU = Ir and V TV ≻ 0. We consider minimizing the loss

L(θ) := Et∼Unif(0,1)Ext∼pσt
Gθ

[∥∥sσ,σt(xt)−∇ log pσt

Gθ
(xt)

∥∥2
2

]
.

For t ∈ (0, 1), consider the inner expectation of the loss

L̃t(θ) := Ext∼pσt
Gθ

[∥∥sσ,σt
(xt)−∇ log pσt

Gθ
(xt)

∥∥2
2

]
.

For notational convenience, set Σσ,t := EET + (σ2 + σ2
t )Id and Σθ,t := UV TV UT + σ2

t Id. Then
sσ,σt(x) := −Σ−1

σ,tx and ∇ log pσt

Gθ
(x) := −Σ−1

θ,tx. First, recall that for xt ∼ pσt

Gθ
and any matrix Σ,
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Ex∼pσt
Gθ

[∥Σxt∥22] = ∥ΣΣ
1/2
θ,t ∥2F . Using this, we can compute the loss as follows:

L̃t(θ) = Ext∼pσt
Gθ

[
∥(Σ−1

σ,t − Σ−1
θ,t )xt∥

2
2

]
= ∥(Σ−1

σ,t − Σ−1
θ,t )Σ

1/2
θ,t ∥

2
F

= tr
(
Σ

1/2
θ,t (Σ

−1
σ,t − Σ−1

θ,t )(Σ
−1
σ,t − Σ−1

θ,t )Σ
1/2
θ,t

)
= tr

(
Σθ,t(Σ

−1
σ,t − Σ−1

θ,t )(Σ
−1
σ,t − Σ−1

θ,t )
)

= tr
(
(Σθ,tΣ

−1
σ,t − Id)(Σ−1

σ,t − Σ−1
θ,t )
)

= tr
(
Σθ,tΣ

−2
σ,t − Σθ,tΣ

−1
σ,tΣ

−1
θ,t − Σ−1

σ,t +Σ−1
θ,t

)
= tr

(
Σθ,tΣ

−2
σ,t

)
− tr

(
Σθ,tΣ

−1
σ,tΣ

−1
θ,t

)
− tr

(
Σ−1
σ,t

)
+ tr

(
Σ−1
θ,t

)
= tr

(
Σ−2
σ,tΣθ,t

)
− 2tr

(
Σ−1
σ,t

)
+ tr

(
Σ−1
θ,t

)
=: Cσ,t + tr

(
Σ−2
σ,tΣθ,t

)
+ tr

(
Σ−1
θ,t

)
.

Using Lemma 5, it is straightforward to see that

Σ−1
σ,t =

1

σ2 + σ2
t

Id −
1

(σ2 + σ2
t )

2(σ2 + σ2
t + 1)

EET and

Σ−1
θ,t = σ−2

t Id − σ−4
t U

(
(V TV )−1 + σ−2

t Ir
)−1

UT

Hence the third term in L̃t is given by

tr(Σ−1
θ,t ) = tr

(
σ−2
t Id − σ−4

t U
(
(V TV )−1 + σ−2

t Ir
)−1

UT
)
=: Cσt

−σ−4
t tr

((
(V TV )−1 + σ−2

t Ir
)−1
)

where we used the cyclic property of the trace and UTU = Ir in the last equality. For the second
term, let β2

t := σ2 + σ2
t and γσ,t := 1

β2
t (β

2
t+1)

. Then we have by direct computation,

tr
(
Σ−2
σ,tΣθ,t

)
= tr

((
β−2
t Id − γσ,tEET

) (
β−2
t Id − γσ,tEET

)
(UV TV UT + σ2

t Id)
)

= tr
((
β−4
t Id − 2β−2

t γσ,tEE
T + γ2σ,tEE

T
)
(UV TV UT + σ2

t Id)
)

= tr
(
β−4
t UV TV UT − σ2

t β
−4
t Id +

(
γ2σ,t − 2β−2

t γσ,t
)
EETUV TV UT

)
− tr

(
2β−2

t σ2
tEE

T + γ2σ,tσ
2
t Id
)

=: C̃σ,t + β−4
t tr(UV TV UT ) +

(
γ2σ,t − 2β−2

t γσ,t
)
· tr(EETUV TV UT )

= C̃σ,t + β−4
t tr(V TV ) +

(
γ2σ,t − 2β−2

t γσ,t
)
· tr(EETUV TV UT )

where we used the cyclic property of trace and orthogonality of U in the final line. Combining the
above displays, we get that there exists a constant Cσ,σt

:= Cσ,t + Cσt
+ C̃σ,t such that

L̃t(θ) = Cσ,σt
+

(
1

β4
t (β

2
t + 1)2

− 2

β4
t (β

2
t + 1)

)
· tr(EETUV TV UT )

+ β−4
t tr(V TV )− σ−4

t tr
((

(V TV )−1 + σ−2
t Ir

)−1
)

=: Cσ,σt
+Bt(U, V ) +Rt(V )

where we have defined the quantities

Bt(U, V ) :=

(
1

β4
t (β

2
t + 1)2

− 2

β4
t (β

2
t + 1)

)
· tr(EETUV TV UT ) and

Rt(V ) := β−4
t tr(V TV )− σ−4

t tr
((

(V TV )−1 + σ−2
t Ir

)−1
)
.

Recalling the definition of L(·), we have that

L(θ) = Et∼Unif(0,1)

[
L̃t(θ)

]
= Et∼Unif(0,1) [Cσ,σt

+Bt(U, V ) +Rt(U, V )] .

Hence we have the equivalence
argmin
θ∈Θ

L(θ) = argmin
θ∈Θ

Et∼Unif(0,1) [Bt(U, V )] + Et∼Unif(0,1)[Rt(V )].
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Form of minimizers: We use the shorthand notation Et[·] := Et∼Unif(0,1)[·]. First, note that we
can first minimize Et[Bt(U, V )] over feasible U . But note that

Et[Bt(U, V )] = Et
[

1

β4
t (β

2
t + 1)2

− 2

β4
t (β

2
t + 1)

]
︸ ︷︷ ︸

<0

tr(EETUV TV UT )

since for any t, 1
(β2

t+1)2
< 2

(β2
t+1)

. Hence minimizing Et[Bt(U, V )] is equivalent to maximizing

tr(EETUV TV UT ). Taking Σ = V TV in Lemma 7, we have that the minimizer of Et[Bt(U, V )] is
given by

U∗ = EQ for some orthogonal Q.

Moreover, the proof of Lemma 7 shows that tr(EETU∗V TV (U∗)T ) = tr(V TV ). This gives

Et[Bt(U∗, V )] = Et
(

1

β4
t (β

2
t + 1)2

− 2

β4
t (β

2
t + 1)

)
tr(V TV ).

In summary, we now must minimize the following with respect to invertible V :

Et[Bt(U∗, V )] + Et[Rt(V )] = Et
(

1

β4
t (β

2
t + 1)2

− 2

β4
t (β

2
t + 1)

+
1

β4
t

)
tr(V TV )

− Et
[
σ−4
t tr

((
(V TV )−1 + σ−2

t Ir
)−1
)]

= Et

(
1

β4
t

(
1

β2
t + 1

− 1

)2
)
tr(V TV )− Et

[
σ−4
t tr

((
(V TV )−1 + σ−2

t Ir
)−1
)]

= Et

(
1

β4
t

(
β2
t

β2
t + 1

)2
)
tr(V TV )−−Et

[
σ−4
t tr

((
(V TV )−1 + σ−2

t Ir
)−1
)]

= Et
(

1

(β2
t + 1)2

)
tr(V TV )− Et

[
σ−4
t tr

((
(V TV )−1 + σ−2

t Ir
)−1
)]

where in the second equality, we completed the square.

We now claim that Et[Bt(U∗, V )] + Et[Rt(V )] solely depends on the eigenvalues of V TV . In
particular, for invertible V , note that V TV ≻ 0 so it admits the decomposition V TV = QΛQT

where QTQ = QQT = Ir and Λ is a diagonal matrix with positive entries Λii = λi(V
TV ) > 0.

Hence tr(V TV ) = tr(QΛQT ) = tr(QTQΛ) = tr(Λ) =
∑r
i=1 λi(V

TV ). Likewise, we have using
the orthogonality of Q that for any ε > 0,

tr
((

(V TV )−1 + ε−2Ir
)−1
)
= tr

((
(QΛQT )−1 + ε−2Ir

)−1
)

= tr
((
QΛ−1QT + ε−2QQT

)−1
)

= tr
((
Q
(
Λ−1 + ε−2Ir

)
QT
)−1
)

= tr
(
Q
(
Λ−1 + ε−2Ir

)−1
QT
)

= tr
((

Λ−1 + ε−2Ir
)−1
)

=

r∑
i=1

1

λi(V TV )−1 + ε−2

=

r∑
i=1

λi(V
TV ) · ε2

λi(V TV ) + ε2
.
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In sum, the final objective is a particular function of the eigenvalues of V TV :

Et[Bt(U∗, V )] + Et[Rt(V )] =

r∑
i=1

Et
[
λi(V

TV )

(β2
t + 1)2

− λi(V
TV )

σ2
t (λi(V

TV ) + σ2
t )

]

=

r∑
i=1

Et
[

λi(V
TV )

(σ2 + σ2
t + 1)2

− λi(V
TV )

σ2
t (λi(V

TV ) + σ2
t )

]

=:

r∑
i=1

fσ(λi(V
TV )).

In Lemma 8, we show that the function u 7→ fσ(u) is strictly convex on (0,∞) with a unique
minimizer at 1 + σ2. Thus V 7→ B(U∗, V ) + R(V ) for invertible V is minimized when the gram
matrix of V ∗

σ has equal eigenvalues λi((V ∗
σ )

TV ∗
σ ) = 1+σ2 for all i ∈ [r]. Since all of its eigenvalues

are the same, by the Spectral Theorem, we must have that (V ∗
σ )

TV ∗
σ = (1 + σ2)Ir.

Wasserstein bound: We now show the Wasserstein error bound. Note that θ∗σ = (U∗, V ∗
σ ) induces

the distribution pGθ∗σ
defined by

x = Gθ∗σ (z), z ∼ N (0, Id)⇐⇒ x ∼ pGθ∗σ
:= N (0, EQ(V ∗

σ )
TV ∗

σQ
TET ) = N (0, (1+σ2)EET ).

Then by Lemma 5, we have

W 2
2 (pY,σ, pX) = r

(
1 + σ2 + 1− 2

√
1 + σ2

)
+ (d− r)σ2,

W 2
2 (pGθ∗σ

, pX) = r
(
1 + σ2 + 1− 2

√
1 + σ2

)
.

This gives
W 2

2 (pGθ∗σ
, pX) =W 2

2 (pY,σ, pX)− (d− r)σ2 < W 2
2 (pY,σ, pX).

C.3 EXTENSIONS OF THE THEORY IN SECTION C.2

We now discuss three extensions of Theorem 2: 1) we allow for additional corruption in y, 2)
characterize the full optimization landscape in the rank-one case, and 3) analyze the global minimizers
when we may have varying noise levels in the training data.

C.3.1 ADDITIONAL MEASUREMENT CORRUPTION

We will now consider the case when the data is not simply noisy, but also exhibits more general
corruption. For a fixed corruption noise level σ > 0, consider the setting we only have access to
the noisy distribution y = A(x) + σϵ, where ϵ ∼ N (0, Im) and A(x) = Ax with A ∈ Rm×d is a
linear corruption operator. By our assumption on pX (see Assumption 3) and the noise, pY,σ :=
N (0, AEETAT + σ2Im). In order to get rid of error in estimating score, we assume that we have
perfectly learned the noisy score:
Assumption 6 (Perfect Score Estimation with A). Suppose A ∈ Rm×d with rank(A) = m and we
can estimate the score function of corrupted data y perfectly:

sA,σ2(x) := ∇ log pY,σ2(x) = −
(
AEETAT + σ2Im

)−1
x.

Our goal is to match the corrupted noise distribution’s score with the score of pGθ
under Assumption

5 corrupted by A over a series of noise schedules (σt), which is given by

p̃σt

Gθ
(y) = N (0, AUV TV UTAT + σ2

t Im).

To distill the noisy distribution, we minimize the score-based loss (or Fisher divergence) as in Zhou
et al. (2024):

L(θ) := Et∼Unif[0,1]Eyt∼p̃σt
Gθ

[
∥sA,σ2+σ2

t
(yt)−∇ log p̃σt

Gθ
(yt)∥22

]
. (11)

We show that we can characterize the global minimizers of this loss, which correspond to a noise-
dependent scaling of the true eigenspace of pX plus perturbations in the kernel of A. If we penalize
the norm of our solution, we can nearly recover the true data distribution in Wasserstein-2 distance
up to the noise in our measurements. We consider the rank-r = 1 case for simplicity.
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Theorem 3. Fix σ > 0 and consider e ∈ Rd with unit norm and Ae ̸= 0. Under Assumptions 3, 6,
and 5 and any bounded noise schedule (σt) ⊆ [σmin, σmax], the set of global minimizers of the loss
equation 11 under the parameterization u 7→ θ(u) = (u, u/∥u∥) is given by

Θ∗ :=

{
±

√
1 +

σ2

∥Ae∥2
· e

}
+ ker(A).

If e ∈ Im(AT ), we have that θ∗ = θ∗(u∗) with the minimum norm solution u∗ ∈ argminu∈Θ∗
∥u∥

satisfies

W 2
2 (pX , pGθ∗ ) =

(√
1 +

σ2

∥Ae∥2
− 1

)2

.

Discussion. Theorem 3 aims to provide a quantitative bound of the Wasserstein distance between
the distribution learned via distillation and the target clean distribution. To do this, we characterize
the global minimizers of the loss, which correspond to scalings of the true principal component
e plus perturbations in the kernel of A. The scaling depends on an effective signal-to-noise ratio
SNR := ∥Ae∥2/σ2 Note that terms involving perturbations in the kernel of A are expected since
the corruption compresses the data, leaving many plausible images that could give rise to the same
measurements (a fundamental part of the ill-posedness in inverse problems). Furthermore, we
show that if we penalize the norm of our parameter, the Wasserstein distance simplifies into a more
interpretable quantity. A more general bound for all elements in the set of global minimizers is shown
at the end of the proof. The intuition for the Theorem is that if we encourage finding a “simple” model
(i.e., one with low-norm), the Wasserstein distance decreases and is effectively inversely proportional
to the SNR. The distance between our learned distilled distribution and the true distribution goes to
zero whenever 1) the noise goes to zero or 2) the signal strength increases. This result recovers the
rank-1 version of Theorem 3 whenA = I , showing that the learned distilled distribution’s Wasserstein
distance to the true distribution is less than the noisy distribution’s Wasserstein distance to the true
distribution subtracted by a factor of (d− 1)σ2, showing a clear improvement in distribution learning.
Finally, we note that the condition e ∈ Im(AT ) we use is akin to assumptions in the compressed
sensing literature on stable recovery via the construction of dual certificates Foucart and Rauhut
(2013).

To prove the Theorem, we first show that the objective under the parameterization θ = (u, u/∥u∥)
simplifies into a form that we directly analyze.
Lemma 9. Consider the setting of Theorem 3. For t ∈ [0, 1], let at := σ2

t , ct := at + σ2, and
ηt :=

2ct+∥Ae∥2

c2t (ct+∥Ae∥2)2
. Then the objective L(θ) with θ = (u, u/∥u∥) satisfies the following: there

exists a constant C independent of u ∈ Rd such that

L(θ) = C + L(u)

where

L(u) := Et∼Unif[0,1]

[
1

c2t
∥Au∥2 − ηt(eTATAu)2 −

∥Au∥2

at(at + ∥Au∥2)

]
.

Proof of Lemma 9. Consider the loss function L(θ) under the parameterization θ = (u, u/∥u∥) for
u ̸= 0:

L(θ) := Et∼Unif[0,1]Eyt∼p̃σt
Gθ

[∥∥∥∥(Σ−1
t,e,A − Σt,θ,A

)−1

yt

∥∥∥∥2
2

]
]

where
Σt,e,A := AeeTAT + ctIm and Σt,θ,A := AuuTAT + atIm.

Using a similar reduction in the proof of Theorem 2, we get that the above loss equals

L(θ) = Et∼Unif[0,1] [Cσ,t] + Et∼Unif[0,1]

[
tr
(
Σ−2
t,e,AΣt,θ,A

)]
+ Et∼Unif[0,1]

[
tr
(
Σ−1
t,θ,A

)]
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where Cσ,t is a constant that depends only on time and σ and not on θ. Note that Using the Woodbury
matrix identity in Lemma 4, we get

Σ−2
t,e,A = (AeeTAT + ctIm)−2 = c−2

t Im −
2ct + ∥Ae∥2

c2t (ct + ∥Ae∥2)2
AeeTAT

which implies

Σ−2
t,e,AΣt,θ,A =

(
c−2
t Im −

2ct + ∥Ae∥2

c2t (ct + ∥Ae∥2)2
AeeTAT

)
AuuTAT

+ c−2
t atIm − at

2ct + ∥Ae∥2

c2t (ct + ∥Ae∥2)2
AeeTAT

= c−2
t AuuTAT − ηtAeeTATAuuTAT + c−2

t atIm − atηtAeeTAT .
Also, we have that

Σ−1
t,θ,A = (AuuTAT + atIm)−1 = a−1

t Im −
AuuTAT

at(at + ∥Au∥2)
.

Thus computing the trace, taking an expectation, and collecting terms that only involve u, we see that
there exists a constant C depending on (σt), σ, A, and e (independent of u) such that

L(θ) = C + Et[c−2
t ]tr(AuuTAT )− Et[ηt]tr(AeeTATAuuTAT )− Et

[
tr(AuuTAT )

at(at + ∥Au∥2)

]
= C + Et[c−2

t ]∥Au∥2 − Et[ηt](eTATAu)2 − Et
[

∥Au∥2

at(at + ∥Au∥2)

]
=: C + L(u).

Proof of Theorem 3. Note that Lemma 9 shows that we have the simpler formula

L(θ) = C + L(u)

where

L(u) := Et
[
1

c2t
∥Au∥2 − ηt(eTATAu)2 −

∥Au∥2

at(at + ∥Au∥2)

]
For notational simplicity, let G = ATA, g(u) = uTGu, h(u) = eTGu, ϕt(g) = g/(at(at + g)),
and ηt := (2ct + ∥Ae∥2)/(c2t (ct + ∥Ae∥2)2). Then our objective results in

L(u) := Et[c−2
t ]g(u)− Et[ηt]h(u)2 − Et[ϕt(g(u))] =: c̃g(u)− η̃h(u)2 − Et[ϕt(g(u))].

We claim that any global minimizer of L is of the form u∗ = ±λ∗e+ q for some constant λ∗ to be
defined and q ∈ ker(A). First, note that we can lower bound L(u) by another function Ψ(g(u)) as
follows: since G is PSD, note that we have the generalized Cauchy Schwarz inequality:

h(u)2 = (eTGu)2 ⩽ (eTGe)(uTGu) = g(e)g(u).

Moreover, this holds with equality if and only if Au and Ae are collinear, i.e., Au = λAe or
equivalently u = λe+ v for v ∈ ker(A). Then we get the lower bound

L(u) = c̃g(u)− η̃h(u)2 − Et[ϕt(g(u))] ⩾ (c̃− η̃∥Ae∥2)g(u)− Et[ϕt(g(u))] =: Ψ(g(u))

where we have defined the new function Ψ(g) := (c̃ − η̃∥Ae∥2)g − Et[ϕt(g)] for g ⩾ 0. Since
g(u) ⩾ 0 for every u, we have that

L(u) ⩾ min
g⩾0

Ψ(g).

We first analyze the minimizers of Ψ and then construct u∗ such that L(u∗) = Ψ(g∗). First let
∆ = (c̃− η̃∥Ae∥2) which is given by

∆ = Et
[
c−2
t − ηt∥Ae∥2

]
= Et

[
1

c2t
− (2ct + ∥Ae∥2)∥Ae∥2

c2t (ct + ∥Ae∥2)2

]
.
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We claim that ∆ > 0. Indeed, note that for any g > 0,

g(2ct + g)

(ct + g)2
=

g(2ct + g)g

c2t + (2ct + g)g

=
g(2ct + g) + c2t − c2t
c2t + (2ct + g)g

= 1− c2t
(ct + g)2

.

Applying this to ∆ with g = ∥Ae∥2 yields

∆ = Et
[
1

c2t
− (2ct + ∥Ae∥2)∥Ae∥2

c2t (ct + ∥Ae∥2)2

]
= Et

[
1

c2t

(
1− (2ct + ∥Ae∥2)∥Ae∥2

(ct + ∥Ae∥2)2

)]
= Et

[
1

c2t

(
1− 1 +

c2t
(ct + ∥Ae∥2)2

)]
= Et

[
1

(ct + ∥Ae∥2)2

]
> 0

as desired. This gives
Ψ(g) = ∆g − Et[ϕt(g)].

Observe that

Ψ′(g) = ∆− ∂

∂g

∫ 1

0

g

a2t + atg
dt = ∆−

∫ 1

0

a2t
(a2t + atg)2

dt = ∆− Et
[

1

(at + g)2

]
and

Ψ′′(g) = −∂/∂gEt[(at + g)−2] = 2Et[(at + g)−3] > 0 ∀g.
Hence the function Ψ is strictly convex. Moreover, a sign analysis reveals that

Ψ′(0) = ∆− Et[1/a2t ] = Et
[

1

(ct + ∥Ae∥2)2
− 1

a2t

]
= Et

[
1

(σ2 + at + ∥Ae∥2)2
− 1

a2t

]
< 0

while for g > σ2 + ∥Ae∥2, we have

Ψ′(g) = Et
[

1

(σ2 + at + ∥Ae∥2)2
− 1

(at + g)2

]
> 0

so there must exist a unique root g∗ such that Ψ′(g∗) = 0. In fact, g∗ = σ2 + ∥Ae∥2 achieves
Ψ′(g∗) = 0. Finally, we have that

L(u) ⩾ min
g⩾0

Ψ(g) = Ψ(g∗) = ∆(σ2 + ∥Ae∥2)− Et[ϕt(σ2 + ∥Ae∥2)].

We claim that u∗ = ±
√
g∗/∥Ae∥2e achieves L(u∗) = Ψ(g∗). Indeed, note that g(u∗) =

(u∗)
TGu∗ = g∗/∥Ae∥2eTGe = g∗/∥Ae∥2 · ∥Ae∥2 = g∗ and

h(u∗)
2 = (eTGu∗)

2 =
g∗
∥Ae∥2

(eTGe) = g∗∥Ae∥2.

Hence

L(u∗) = c̃g(u∗)− η̃h(u∗)− Et[ϕt(g(u∗))]
= c̃g∗ − η̃g∗∥Ae∥2 − Et[ϕt(g∗)]
= (c̃− η̃∥Ae∥2)g∗ − Et[ϕt(g∗)]
= ∆g∗ − Et[ϕt(g∗)]
= Ψ(g∗).
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The only other cases include h∗ = u∗ + v for v ∈ ker(A) since these are precisely the equality cases
of the generalized Cauchy-Schwarz inequality. Note that for such h∗,

g(h∗) = (h∗)
TGh∗ = (u∗ + v)TG(u∗ + v) = g(u∗) + 2vTGu∗ + vTGv = g∗

and h(u∗ + v) = eTG(u∗ + v) = h(u∗). These cases are also global minimizers, which gives us the
total set of globally optimal solutions:

Θ∗ :=

{
±

√
σ2 + ∥Ae∥2
∥Ae∥2

e

}
+ ker(A).

Finally, we consider the Wasserstein distance bound. Note that for any u ̸= 0, we have that

W 2
2 (N (0, eeT ),N (0, uuT )) = tr

(
eeT + uuT − 2

(
(uuT )1/2eeT (uuT )1/2

)1/2)
= 1 + ∥u∥2 − 2tr

[(
uuT

∥u∥
eeT

uuT

∥u∥

)1/2
]

= 1 + ∥u∥2 − 2tr

[(
(eTu)2

∥u∥2
uuT

)1/2
]

= 1 + ∥u∥2 − 2tr

[
|eTu|
∥u∥2

uuT
]

= 1 + ∥u∥2 − 2|eTu|.

In our case, note that u∗ = q ± λ∗e where q ∈ ker(A) and λ∗ =
√
1 + σ2/∥Ae∥2 > 1. Since

e ∈ Im(AT ), eT q = 0. Hence |eTu∗| = λ∗ and ∥u∗∥2 = ∥q∥2 + λ2∗ where we used ∥e∥ = 1 in both
equalities. Using the previous result and these properties of u∗, we see that for any u∗ ∈ Θ∗,

W 2
2 (N (0, eeT ),N (0, u∗u

T
∗ )) = 1 + ∥q∥2 + λ2∗ − 2λ∗ = ∥q∥2 + (λ∗ − 1)2.

The minimum norm element of Θ∗ is precisely given by either λ∗e or −λ∗e. This is because e and q
are orthogonal for any q ∈ ker(A), so for any u∗ ∈ Θ∗, ∥u∗∥2 = λ2∗∥e∥2 + ∥q∥2 ⩾ λ2∗ = ∥λ∗e∥2.
Taking q = 0 minimizes the norm of u∗ ∈ Θ∗.

C.3.2 STRICT SADDLE PROPERTY

We now analyze the rank-one case and show that the objective landscape has a strict saddle property,
namely that all critical points are either global minimizers or strict saddles, i.e., points for which the
gradient is zero, but the Hessian exhibits a negative eigenvalue, hence a descent direction.

Theorem 4. Consider the setting of Theorem 2 with r = 1 and E = e ∈ Rd with unit norm. Then the
objective L under the parameterization θ(u) = (u, u/∥u∥) satisfies the following: the set of critical
points for u ̸= 0 is precisely given by

Ω := {
√
1 + σ2e,−

√
1 + σ2e} ∪ Ω⊥ where Ω⊥ :=

{
u ∈ Rd : ⟨u, e⟩ = 0, ∥u∥ = σ

}
.

Each point in {
√
1 + σ2e,−

√
1 + σ2e} is a global minimizer. Moreover, each point in Ω⊥ is a strict

saddle, meaning that for any u ∈ Ω⊥, the Hessian ∇2L(u) is a strictly negative eigenvalue. Hence
all local minima are global minima.

Proof of Theorem 4. By Lemma 9, we have the simpler formula

L(θ) = C + L(u)

where

L(u) := Et
[
1

c2t
∥u∥2 − ηt(eTu)2 −

∥u∥2

at(at + ∥u∥2)

]
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We will use the notation al = σ2
l , cl = al + σ2, and ηl = (2cl + ∥e∥2)/(c2l (cl + ∥e∥2)2) for

l ∼ Unif[0, 1]. Furthermore, let c̃ := El[c−2
l ], η̃ := El[ηl] and ϕl(g) := g

al(al+g)2
for g > 0. Further

setting g(u) = uTu, and h(u) = eTu our objective can be written as

L(u) := c̃uTu− η̃(eTu)2 − El[ϕl(uTu)].

An elementary calculation shows that ϕ′l(g) =
1

(at+g)2
and ϕ′′l (g) = −2(at + g)−3 for g > 0.

Note that

∇L(u) = 2
(
(c̃− Et[ϕ′t(∥u∥2)])u− η̃eTue

)
= 0

if and only if

(c̃− Et[ϕ′t(∥u∥2)])u = η̃eTue.

Note that u ∈ {±
√
1 + σ2e} satisfies this condition. On the other hand, consider a decomposition

u = βe+ s where s ⊥ e. Set F (r) = c̃−Et[ϕ′t(r)]. Then u = βe+ s is a critical point if and only if

β(F (β2 + ∥s∥2)− η̃)e+ F (β2 + ∥s∥2)s = 0.

Suppose β = 0. Then this above equation requires F (∥s∥2)s = 0. If s ̸= 0, then we need ∥s∥ = σ
since F (σ2) = 0. If β ̸= 0, then we require F (β2 + ∥s∥2) = η̃ > 0 so s = 0 which means
F (β2) = η̃. This indeed satisfied by β2 = 1+ σ2, i.e., β = ±

√
1 + σ2. Hence the critical points are{

±
√

1 + σ2e
}⋃

{u : u ⊥ e, ∥u∥ = σ} .

Note that the Hessian is

∇2L(u) = 4F ′(∥u∥2)uuT + 2F (∥u∥2)Id − 2η̃eeT .

Note that for critical points u such that u ⊥ e and ∥u∥ = σ, we have

∇2L(u)e = 4F ′(∥u∥2)uuT e+ 2F (∥u∥2)e− 2η̃e = 2(F (σ2)− η̃) = −2η̃e

so e is an eigenvector of∇2L(u) with eigenvalue −2η̃ < 0, which is strictly negative. Hence e is a
descent direction of the objective L(u) so u is a strict saddle point. If u = ±

√
1 + σ2e, then

∇2L(u) = 4(1+σ2)F ′(1+σ2)eeT+2F (1+σ2)Id−2η̃eeT =
(
4(1 + σ2)F ′(1 + σ2)− 2η̃

)
eeT+2η̃Id.

Note that for directions orthogonal to e, v ⊥ e,

∇2L(u)v = 2η̃v with 2η̃ > 0.

Along e, we have

∇2L(u)e = (2η̃ + 4(1 + σ2)F ′(1 + σ2)− 2η̃)e = 4(1 + σ2)F ′(1 + σ2)e

where 4(1 + σ2)F ′(1 + σ2) > 0 so ∇2L(u) is in fact positive definite at u = ±
√
1 + σ2e. Hence

such points are global minimizers while other points are strict saddles.

C.3.3 MULTIPLE NOISE SCALES

It is possible to extend Theorem 2 to the setting in which one has access to a dataset of varying
noise levels σ ∼ p(σ) (as in the experiments discussed in Appendix J). An illustrative example is
the case when we have noisy images y = x + σz where σ comes from a finite set of noise levels
{σ1, . . . , σK}. This can be modeled as σ ∼ p(σ) =

∑K
k=1 πkδσk

where πk ⩾ 0,
∑K
k=1 πk = 1 and

σk > 0 for each k ∈ [K]. We will minimize the following objective that also considers noise at
different scales:

L̃(θ) := Eσ∼p(σ)L(θ) := Eσ∼p(σ),t∼Unif(0,1)Ext∼pσt
Gθ

[∥∥sσ,σt
(xt)−∇ log pσt

Gθ
(xt)

∥∥2
2

]
We prove that, when the noise levels follow a general distribution σ ∼ p(σ), we can also characterize
minimizers to the above loss. In particular, the scaling of the covariance now depends on the p(σ)
and (σt). We will show through an example for a finite set of noise levels how the distilled generator
can outperform any of the noisy teachers.
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Theorem 5. Consider the same setting as Theorem 2. Then for any distribution p(σ) supported on
(0,∞) with Ep(σ),t

[
(σ2 + σ2

t + 1)−2
]
< Et[σ−4

t ], there is exists a unique λ∗ > 0 that depends on
(σt) and p(σ) such that the global minimizers of L̃ over Θ, denoted by θ∗σ := (U∗, V ∗

σ ), satisfy the
following:

U∗ = EQ for some orthogonal matrix Q and (V ∗
σ )

TV ∗
σ = λ∗Ir. (12)

In particular, λ∗ is the unique solution to the equation

Ep(σ),t
[
(σ2 + σ2

t + 1)−2
]
= Et

[
(λ∗ + σ2

t )
−2
]
.

Hence the learned distilled distribution is given by pGθ∗σ
= N (0, λ∗EET ).

Proof. The proof of Theorem turns out to be very similar to the proof of Theorem 2, with a particular
modification of Lemma 8 needed to find the precise form of the minimizer. In particular, one can
show using similar arguments that the optimal U is given by U∗ = EQ for orthogonal Q. To find the
form of V , one needs to minimize the following function over feasible V , which only depends on the
eigenvalues of V TV :

r∑
i=1

F (λi(V
TV )) :=

r∑
i=1

Ep(σ),t
[

λi(V
TV )

(σ2 + σ2
t + 1)2

− λi(V
TV )

σ2
t (λi(V

TV ) + σ2
t )

]
where F (u) := Ep(σ)[fσ(u)] and fσ is the function defined in Lemma 5 in the Appendix. We claim
that F is strictly convex and has a unique minimizer λ∗. Note that for any u > 0, its derivatives are

F ′(u) = Ep(σ),t
[

1

(σ2 + σ2
t + 1)2

]
− Et

[
1

(σ2
t + u)2

]
and

F ′′
σ (u) = Ep(σ),t

[
2

(σ2
t + u)3

]
> 0.

Moreover, note that u 7→ ψ(u) := Ep(σ),t
[
(σ2
t + u)−2

]
is strictly decreasing with limu→∞ ψ(u) =

0 and limu→0+ ψ(u) = Et[σ−4
t ] > Ep(σ),t

[
(σ2 + σ2

t + 1)−2
]

by assumption. Hence there must ex-
ist a unique λ∗ ∈ (0,∞) that minimizes F satisfying F ′(λ∗) = 0, i.e., Ep(σ),t

[
(σ2 + σ2

t + 1)−2
]
=

Et
[
(λ∗ + σ2

t )
−2
]
. Thus the above function for invertible V TV is minimized when the gram matrix

of V ∗
σ has equal eigenvalues λi((V ∗

σ )
TV ∗

σ ) = λ∗ for all i ∈ [r]. Since all of its eigenvalues are the
same, by the Spectral Theorem, we must have that (V ∗

σ )
TV ∗

σ = λ∗Ir.

Example with a finite number of noise levels: Consider the case when p(σ) =
∑K
k=1 πkδσk

for
σk > 0 with πk ⩾ 0 and

∑K
k=1 πk = 1. Then λ∗ is the unique solution to

K∑
k=1

πkEt
[
(σ2
k + σ2

t + 1)−2
]
= Et

[
(λ∗ + σ2

t )
−2
]
.

Since the right-hand side is strictly decreasing with respect to λ∗, one can show that we always have

1 + σ2
min ⩽ λ∗ ⩽ 1 + σ2

max, σmin := min
k
σk, σmax := max

k
σk.

The precise value of λ∗ interestingly depends now on the noise schedule (σt). In particular, when the
noise schedule σt has much smaller values, the right-hand side increases, requiring λ∗ to decrease to
satisfy the equation. Likewise, when σt focuses on larger noise levels, the right-hand side goes down,
requiring a larger λ∗ for the equation to be satisfied.

One can also give a mathematical condition on when the distilled distribution is closer in Wasserstein
distance to each of the noisy distributions to the ground-truth. In particular, consider the low-rank
regime r ≪ d. Then if λ∗ satisfies

λ∗ < min
k∈[K]

1 +
√(√

1 + σ2
k − 1

)2

+
d− r
r

σ2
k

2

≈ 1 +
d

r
σ2
min
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then
W 2

2 (pGθ∗σ
, pX) < min

k∈[K]
W 2

2 (pY,σk
, pX),

i.e., the distilled generator is closer to the ground-truth distribution than every noisy teacher. Note that
if the difference between σmax and σmin is not too large and the data is low-rank enough d≫ r, then
this can be satisfied. For example, if the largest noise level is less than a multiple of the smallest noise
level σmax <

√
d/r · σmin, then this would ensure λ∗ ⩽ 1 + σ2

max < 1 + d
rσ

2
min. As an example,

suppose d/r = 10. Then as long as σmax < 3σmin, the above condition would be satisfied.

D QUALITATIVE SNAPSHOTS OF GENERATED RESULTS

In this section, we present visual examples highlighting the quality of outputs produced by our model
across various tasks and corruption settings. A full version of qualitative examples are in Appendix
N.

Training Dataset Training DatasetOurs (one-step generation)

FID: 110.83 FID: 6.29 FID: 51.51 FID: 5.42

Ours (one-step generation)

Figure 7: Qualitative results for the Denoising task. Each pair shows the corrupted input and the
generation output from our DCD at σ = 0.2. The left two panels are from FFHQ, while the right two
are from AFHQ-v2.

(a) Dataset (σ = 0) (b) DCD (ours) (c) Dataset (σ = 0.2) (d) DCD (ours)

Figure 8: Qualitative results for the Gaussian blur task. Each pair shows the corrupted input and the
generation output from our DCD.

(a) Dataset (σ = 0) (b) DCD (ours) (c) Dataset (σ = 0.2) (d) DCD (ours)

Figure 9: Qualitative results for the Super Resolution task. Each pair shows the corrupted input and
the generation output from our DCD.
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(a) Dataset (σ = 0) (b) DCD (ours) (c) Dataset (σ = 0.2) (d) DCD (ours)

Figure 10: Qualitative results for the Random Inpainting task with missing probability (p = 0.9).
Each pair shows the corrupted input and the generation output from our DCD.

(a) Dataset (p = 0.6) (b) DCD (ours) (c) Dataset (p = 0.8) (d) DCD (ours)

Figure 11: Qualitative results for the Random Inpainting task with different missing probability
(p = 0.6, p = 0.8). Each pair shows the corrupted input and the generation output from our DCD.

E PROXIMAL FID

When only corrupted data are available, model selection must proceed without clean references. In
standard image generation, FID is the de facto criterion, but in our setting computing FID against
clean ground-truth images is infeasible.

Prior baselines—Ambient Diffusion Daras et al. (2023a) and EM-Diffusion Bai et al. (2024)—report
FID scores yet do not specify how to perform model selection under corruption during training. To
address this gap, we introduce Proximal FID, a model-selection metric tailored to corrupted-data
regimes. Concretely, we generate 50k clean samples {x(i)}50k

i=1 from the current generator, corrupt
them to match the training noise and operator—yielding

{
A
(
x(i)
)
+ σ ϵ(i)

}50k
i=1

,

and compute FID against the corrupted training set {y(i)}ni=1. As shown on CIFAR-10 in Fig. 12,
Proximal FID tracks the true FID closely throughout distillation. Quantitatively, Table 12 shows that
the model chosen by Proximal FID attains near-optimal true FID across datasets (e.g., 6.12 vs. best
6.08 on FFHQ) for denoising task, and Table 15 for general corruption task. We further visualize
the dynamics on FFHQ, CelebA-HQ, and AFHQ-v2 in Fig. 13, and extend the analysis to multiple
corruption operators in Fig. 14. Taken together, these results support Proximal FID as a practical and
reliable proxy for model selection when clean data are unavailable.
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Figure 12: CIFAR-10 (denoising, σ = 0.2):
Evolution of true FID (computed to clean refer-
ences for analysis only) and Proximal FID dur-
ing distillation. Proximal FID closely tracks true
FID and selects a near-optimal checkpoint.

Table 12: Model selection by Proximal FID.
Best true FID obtained by selecting checkpoints
via Proximal FID vs. selecting via true FID (ora-
cle). The red (+·) indicates the gap to the best
achievable true FID during training.

Dataset Proximal FID (selected) Best true FID (oracle)
CIFAR-10 5.21 (+0.45) 4.76
FFHQ 6.12 (+0.04) 6.08
CelebA-HQ 6.90 (+0.54) 6.36
AFHQ-v2 5.45 (+0.06) 5.39

(a) FFHQ (σ = 0.2) (b) CelebA-HQ (σ = 0.2) (c) AFHQ-v2 (σ = 0.2)

Figure 13: Across datasets: True FID vs. Proximal FID during distillation on FFHQ, CelebA-HQ,
and AFHQ-v2 (denoising, σ = 0.2). In all cases, Proximal FID reliably identifies checkpoints with
near-optimal true FID.

(a) Gaussian deblurring (σ = 0.0) (b) Random inpainting (c) Super-resolution (×2, σ = 0.0)

Figure 14: Across corruption operators: True FID vs. Proximal FID during training for Gaussian
deblurring, random inpainting, and super-resolution. Proximal FID consistently tracks the true FID
and supports reliable model selection across operators.

F TRAINING AND INFERENCE EFFICIENCY

We use the denoising setting with σ = 0.2 as a running example to quantify efficiency. Our approach
improves not only accuracy but also end-to-end efficiency in both training and inference. All
experiments were conducted on a Linux system with 8×NVIDIA RTX A6000 GPUs unless otherwise
stated.

Training. The additional distillation phase introduces only a minor overhead: the FID of the
one-step generator rapidly decreases and surpasses the Teacher (Teacher-Truncated) within 4 hours.
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Table 13: Training and inference efficiency of our method. During training, the additional
distillation phase introduces only a minor overhead, as FID decreases rapidly and surpasses the
teacher diffusion model, Teacher-Truncated, within just 4 hours. For inference, our one-step generator
enables the generation of 50k images in only 20 seconds, achieving a 30× speedup.

Datasets Pretraining Time Distillation Time to Achieve the Same FID as Time to Generate 50k Images
Teacher-Full Teacher-Truncated Best Diffusion DCD

CIFAR-10

~2 days

7 minutes ~3 hours ~3 days 10 minutes 20 seconds

FFHQ 56 minutes ~3 hours ~9 hours
15 minutes 30 secondsCelebA-HQ 34 minutes ~2 hours ~13 hours

AFHQ-v2 80 minutes ~3 hours ~13 hours

Table 14: Ablation of distillation losses on CIFAR-10 denoising (σ ∈ {0.1, 0.2, 0.4}; FID)

Method σ = 0.1 σ = 0.2 σ = 0.4

SDS > 200 > 200 > 200
DMD 12.52 ±0.04 7.48 ±0.06 30.09 ±0.23
SiD 3.98 ±0.04 4.77 ±0.03 21.63 ±0.03

Table 15: Comparison between the best true FID and the FID of the model selected by proximal FID
for general corruption task.

Noise (σ) Task Best FID FID Selected by Proximal FID

σ = 0.0
Gaussian Deblurring 31.90 35.68
Random Inpainting (p = 0.9) 16.79 20.59
Super Resolution (×2) 12.99 14.66

σ = 0.2
Gaussian Deblurring 76.98 88.29
Random Inpainting (p = 0.9) 79.48 83.98
Super Resolution (×2) 22.00 27.42

Representative wall-clock times across datasets are summarized in Table 13. During distillation, we
employ early stopping when the validation FID begins to diverge.

Inference. Our one-step generator produces 50k images in ∼20 s on 4×NVIDIA RTX A6000
GPUs with batch size 1024, compared to ∼10 min for the diffusion teacher—yielding a 30× speedup.
Inference wall-clock measurements are reported in the rightmost columns of Table 13.

G CHOICE OF DISTILLATION LOSS

In our experiments (Sec. 4), the distillation phase adopts the SiD loss (Eq. 5) by default. Other
distillation objectives are also applicable—e.g., KL-based variants such as SDS Poole et al. (2022),
DMD Yin et al. (2024b) (also referred to as Diff-Instruct Luo et al. (2023) or VSD Wang et al.
(2024b)), and SiD Zhou et al. (2024). For completeness, we report their generator-level results below
and defer implementation details (e.g., time-scheduling and hyperparameters) to the original papers.

We ablate this design choice on the CIFAR-10 denoising task; results are summarized in Table 14.

Notes. All distillation variants use the default hyperparameters from their official repositories; we
did not tune hyperparameters. The relatively weaker performance of D-SDS and D-DMD in Table 14
may therefore reflect suboptimal default settings for the corrupted-data regime rather than intrinsic
limitations of the losses. Empirically, SiD is robust under defaults and already yields strong results,
hence our choice to use SiD for all main experiments (Sec. 4). Importantly, the distillation stage in
our framework is modular and can be replaced by more advanced objectives; future work may close
the gap—or even surpass SiD—via principled hyperparameter tuning and improved losses.
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H VISUALIZATION FOR OVERESTIMATED DATA NOISE LEVEL

In Section 4.4, we discussed handling an unknown data-noise level σ and showed that slight overes-
timation preserves strong performance, consistent with blind inverse-problem solvers Zhang et al.
(2017; 2018). Here, we provide an intuitive 2D toy example demonstrating that modest overestimation
yields clean generations, whereas underestimation produces noticeably noisier samples.

We construct a noisy training set with ground-truth σ = 0.05. During both pretraining and distillation,
we vary the assumed noise σ̂ to represent underestimation (σ̂ < σ), accurate estimation (σ̂ = σ),
and overestimation (σ̂ > σ). As shown in Fig. 15, a slight overestimation increases effective
regularization, helping generated samples better adhere to the data manifold.

(a) σ̂ = 0 (underestimation) (b) σ̂ = 0.05 (accurate) (c) σ̂ = 0.10 (overestimation)

Figure 15: Effect of noise-level misspecification in a 2D toy example. We train with a noisy dataset
at σ = 0.05 and vary the assumed noise σ̂ during pretraining and distillation. Underestimation
(σ̂ < σ) yields noisy generations; accurate estimation recovers the target structure; and slight
overestimation (σ̂ > σ) acts as additional regularization, improving adherence to the data manifold.
See also Section 4.4 for ablations.

I MORE CONDITIONAL INVERSE PROBLEM RESULTS

Our primary goal is to learn a strong generative prior solely from corrupted data. Once such a prior
is obtained via DCD, it is agnostic to the forward operator, enabling conditional generation under
arbitrary measurement models. A natural approach with our one-step generator is to solve

min
z

∥∥A(Gθ(z))− y∥∥22, (13)

which enforces data consistency through the measurement process.

Setup. Beyond the denoising task discussed in Section 4.4, we consider an additional conditional
inverse problem. Specifically, we use the generator trained on the ×2 super-resolution task and
evaluate it in a conditional inverse setting where A corresponds to a ×2 down-sampling operator. We
conduct experiments on 100 CelebA-HQ images and compare DCD against EM-Diffusion (few-shot)
and the Teacher Diffusion prior. For a fair comparison, DCD optimizes Eq. equation 13 for 1000
steps using Adam with a learning rate of 0.1, while both EM-Diffusion and Teacher Diffusion adopt
DPS Chung et al. (2022), a classical solver for diffusion priors, with 1000 diffusion sampling steps.
LPIPS is computed using AlexNet.

Results. Table 16 reports PSNR, SSIM, LPIPS, and the prior’s FID. DCD attains the best perfor-
mance across all metrics (e.g., PSNR = 27.803, LPIPS = 0.047), and its learned prior achieves a
strong FID of 12.99, highlighting the benefit of high-quality priors for conditional generation.

J RANDOM NOISE ABLATION

We conducted an additional experiment in a more challenging setting where each sample is corrupted
with a different noise level. Specifically, we adopt the corruption model:
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Table 16: ×2 super-resolution on CelebA-HQ (100 images). We compare a pseudo-inverse baseline
(A†y), EM-Diffusion (few-shot) with DPS, Teacher Diffusion with DPS, and our DCD prior with
latent optimization (Eq. 13). Higher PSNR/SSIM and lower LPIPS/FID are better.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Prior FID ↓
A†y 24.065 0.816 0.125 23.94
EM-Diffusion (few-shot, DPS) 25.678 0.839 0.056 58.99
Teacher Diffusion (DPS) 23.810 0.778 0.056 23.28
DCD (ours, latent opt.) 27.803 0.909 0.047 12.99

Table 17: Comparison of FID scores. Lower is better.

Method FID
Teacher-Full 50.29
Teacher-Truncated (σ = 0.25) 16.21
Teacher-Truncated (σ = 0.15) 11.80
DCD (ours) 5.67

y = x+ σϵ, σ ∼ p(σ)

where p(σ) = Uniform[0.15, 0.25]. This naturally introduces variability across samples both in terms
of noise level and corruption behavior.

To accommodate this setup, we made a minimal modification to Algorithm 1—replacing Lines 6 from
the fixed-noise setting (ỹ = xg + σϵ) to the sample-dependent corruption (ỹ = xg + σϵ, , σ ∼ p(σ)).
With this simple change, DCD can be applied directly to heterogeneous corruption settings.

We tested this on the CIFAR-10 dataset, and the results are reported below in Table 17.

K PHASE I: VARIANTS OF PRETRAINING DETAILS

In Section 3.1, we introduced four variants of diffusion model pretraining methods. Here, we provide
the training details for each of these variants.

K.1 STANDARD DIFFUSION

Standard Diffusion aims to learn the distribution of y(i) = A(x(i)) + σε directly. To do this, we train
the diffusion model on the corrupted dataset {y(i)}Ni=1. The training objective is given by:

LSD = Eσt,y,ε

[
λ(t) ∥fϕ(y + σtε, t)− y∥22

]
, (14)

where λ(t) is a time-dependent weighting function and σt is sampled from a predefined noise
schedule. We are using the EDM schedule for λ(t) and σt same as in Karras et al. (2022).

The detailed training procedure is summarized in Algorithm 2.
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Algorithm 2 Standard Diffusion Training

1: procedure STANDARD-DIFFUSION({y(i)}Ni=1, σ, p(σt), K)
2: for k = 1 to K do
3: Sample a batch y ∼ {y(i)}Ni=1
4: Sample noise level σt ∼ p(σt)
5: Sample noise ε ∼ N (0, Id)
6: Construct noisy input: yt = y + σt · ε
7: Update parameters ϕ via gradient descent on LSD (Eq. 14)
8: end for
9: return Trained diffusion model fϕ

10: end procedure

K.2 DIFFUSION FOR DENOISING

Diffusion for denoising aims to learn the distribution of A(x(i)) from noisy observations y(i) =
A(x(i)) + σε, where σ is a known (constant) noise level. The objective is to mitigate the impact of
additive noise during training. Related denoising strategies have been explored in Daras et al. (2025).

The Tweedie adjustment is compatible with more advanced diffusion training techniques (Ap-
pendix K.3 and Appendix K.4), tailored for random inpainting and Fourier-space inpainting, respec-
tively.

Training loss. We use the following objective:

LD = Eσt, y, ε

[∥∥∥∥σ2
t − σ2

σ2
t

fϕ(yt, t) +
σ2

σ2
t

yt − y
∥∥∥∥2
2

]
, (15)

where σt is sampled from the diffusion noise schedule and clipped so that σt ≥ σ, and yt :=

y +
√
σ2
t − σ2 ε.

This formulation induces differences in both training and inference. Full details are given in Algo-
rithm 3 and Algorithm 4. For sampling, we denote by Teacher-Full the standard EDM sampling
from σmax down to 0, and by Teacher-Truncated the EDM sampling truncated at the data noise
level σ. See Algorithm 4 for details.

Algorithm 3 Diffusion for Denoising (Training)

1: procedure DIFFUSION-FOR-DENOISING-TRAINING({y(i)}Ni=1, σ, p(σt),K)
2: for k = 1 to K do
3: Sample a minibatch y ∼ {y(i)}Ni=1, σt ∼ p(σt), ε ∼ N (0, Id)
4: σt ← max{σ, σt} ▷ Clip noise level
5: yt ← y +

√
σ2
t − σ2 ε

6: Update fϕ by descending ∇ϕ LD in Eq. equation 15
7: end for
8: return trained diffusion model fϕ
9: end procedure
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Algorithm 4 Diffusion for Denoising (Sampling)

1: procedure DIFFUSION-FOR-DENOISING-SAMPLING(fϕ, σ, {σt}Tt=0)
2: Sample xT ∼ N (0, σ2

T Id)
3: for t = T, T − 1, . . . , 1 do
4: x̂0 ← fϕ(xt, t)
5: if truncation enabled ∧ σt−1 < σ then
6: return x̂0 ▷ Teacher-Truncated
7: end if
8: xt−1 ← xt − σt−σt−1

σt

(
xt − x̂0

)
▷ EDM-style update

9: end for
10: return x̂0 ▷ Teacher-Full
11: end procedure

K.3 DIFFUSION FOR RANDOM INPAINTING TASK

Daras et al. Daras et al. (2023a) introduced a diffusion training objective specifically designed for the
random inpainting task. The goal is to learn the underlying clean data distribution pX from partial
observations of the form y(i) =Mx(i), where M is a binary inpainting mask applied to the image.
To introduce further stochasticity, a secondary corruption mask M̃ is applied during training.

The training loss for random inpainting is given by:

LRI = Eσt,y,ε

[∥∥∥M (
fϕ(M̃, M̃yt, t)− y

)∥∥∥2
2

]
, (16)

where yt = y + σtε, and fϕ is conditioned on both the corrupted observation and the masking
pattern. All training schedules and hyperparameters follow the same configuration as in the original
paper Daras et al. (2023b).

The full training procedure is outlined in Algorithm 5.

Algorithm 5 Diffusion Training for Random Inpainting

1: procedure DIFFUSION-INPAINTING-TRAINING({y(i)}Ni=1, M , p(σt), K)
2: for k = 1 to K do
3: Sample batch y ∼ {y(i)}Ni=1
4: Sample noise level σt ∼ p(σt)
5: Sample noise ε ∼ N (0, Id)

6: Sample a further corruption mask M̃ conditioned on M
7: Compute yt ← y + σt · ε
8: Update fϕ using gradient descent on LRI in Eq. 16
9: end for

10: return Trained diffusion model fϕ
11: end procedure

K.4 DIFFUSION TRAINING FOR FOURIER SPACE INPAINTING

Aali et al. (2025) introduced a diffusion training objective specifically designed for the multi-coil
MRI on Fourier Space. The goal is to learn the underlying clean data distribution pX from

y = (

Nc∑
i=1

SHi F−1MFSi)︸ ︷︷ ︸
A

x,
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where Si denotes the coil sensitivity profile of the i-th coil, F is the Fourier transform, and M is the
masking operator in Fourier space. The further corrupted observation would be

ỹ = (

Nc∑
i=1

SHi F−1M̃FSi)︸ ︷︷ ︸
Ã

x.

The training loss for multi-coil MRI is given by:

LFS = Eσt,y,ε

[∥∥∥A(fϕ(ỹt, M̃ , t)− y)
∥∥∥2
2

]
, (17)

where yt = y+σtε, and fϕ is conditioned on both the corrupted observation and the masking pattern.

The full training procedure is outlined in Algorithm 6. All training schedules and hyperparameters
follow the same configuration as in the original paper Aali et al. (2025).

Algorithm 6 Diffusion Training for Fourier Space Inpainting

1: procedure DIFFUSION-FSINPAINTING-TRAINING({y(i)}Ni=1, M , p(σt), K, S)
2: for k = 1 to K do
3: Sample batch y ∼ {y(i)}Ni=1
4: Sample noise level σt ∼ p(σt)
5: Sample noise ε ∼ N (0, Id)

6: Sample a further corruption mask M̃ conditioned on M
7: Compute yt ← y + σt · ε
8: Update fϕ using gradient descent on LRI in Eq. 17
9: end for

10: return Trained diffusion model fϕ
11: end procedure

L PHASE II: DISTILLATION

In Section 2.3, we introduced the SiD generator loss (Eq. 5). The SiD objective admits additional
design choices, as discussed in the original paper Zhou et al. (2024). For completeness, we present
the exact generator-loss formulation used in our implementation and defer details such as time-step
scheduling and hyperparameter settings to the cited work.

SiD generator loss. Let xg = Gθ(z) and xt = xg + σtε with z, ε ∼ N (0, Id). The loss is

LSiD(wg) = E z, t, ε

[
(1− α)λ(t)

∥∥fψ(xt, t)− fϕ(xt, t)∥∥22
+ λ(t)

(
fϕ(xt, t)− fψ(xt, t)

)⊤(
fψ(xt, t)− xg

)]
, (18)

where fϕ is the teacher (pretrained diffusion model), fψ is the fake diffusion model, λ(t) is a
time-dependent weight, and α balances the two terms. Unless otherwise noted, we use α = 1.2,
following Zhou et al. (2024), which reports strong performance across tasks.

Note that, following common practice, we initialize both the auxiliary diffusion model fψ and the
generator Gθ from the teacher diffusion model fϕ Zhou et al. (2024); Yin et al. (2024a;b), which
is crucial for facilitating and stabilizing training. Importantly, all three networks share the same
architecture and capacity. Nonetheless, the generator has been shown to outperform the teacher Zhou
et al. (2024), as it avoids the accumulation error inherent in multi-step sampling.

M IMPLEMENTATION DETAILS

Hardware and measurement. Unless otherwise noted, all pretraining and distillation runs use
8×NVIDIA A6000 GPUs. Inference wall-clock time is measured on 4× NVIDIA A6000 GPUs with
a batch size of 1024. Images are normalized to [−1, 1] prior to adding Gaussian noise.
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Teacher pretraining: denoising task. For the denoising task, we follow the EDM setup Karras
et al. (2022). On CIFAR-10, we train for 200M image iterations to match the EDM computational
budget; on FFHQ, CelebA-HQ, and AFHQ-v2 we train for 100M iterations (half of EDM’s budget).
We adopt EDM hyperparameters verbatim Karras et al. (2022). All images are corrupted with additive
Gaussian noise at the prescribed level.

Distillation: denoising task. For the distillation phase, we train the one-step generator on CIFAR-
10 for 100M image iterations and on FFHQ, CelebA-HQ, and AFHQ-v2 for 15M iterations; this
budget suffices to reach competitive FID. Unless stated otherwise, hyperparameters mirror those of
SiD Zhou et al. (2024). For CelebA-HQ, we use the same configuration as FFHQ/AFHQ-v2 except
for a dropout rate of 0.15.

Teacher-consistency. For experiments in Tab 2 involving Teacher-Consistency Daras et al. (2024),
we use 8 reverse steps and 32 Monte Carlo samples to approximate expectations. The consistency-loss
weight is selected from {0.1, 1.0, 10.0} as a fixed coefficient to maximize performance.

General corruption tasks: pretraining. We again follow the EDM training protocol Karras et al.
(2022) and pretrain for 100M image iterations: (i) For Gaussian deblurring and super-resolution
with σ = 0, we use the Standard Diffusion objective (Eq. equation 14). (ii) For the same tasks with
σ = 0.2, we adopt the Diffusion for denoising loss (Eq. equation 15). (iii) For random inpaint-
ing with σ = 0, we use the publicly available Diffusion for random inpainting checkpoint at
https://github.com/giannisdaras/ambient-diffusion/tree/main. (iv) For
random inpainting with σ = 0.2, we train with the Diffusion for denoising loss (Eq. equation 15); we
avoid the dedicated inpainting loss (Eq. equation 16) in this noisy regime due to instability, consistent
with Daras et al. (2023b). (v) For Fourier-space random inpainting on MRI, we initialize from the
checkpoint at https://github.com/utcsilab/ambient-diffusion-mri.git. Un-
less noted, pretrained diffusion models use EDM hyperparameters Karras et al. (2022).

General corruption tasks: distillation. During distillation we train the one-step generator for
50–100M image iterations, with early stopping if the validation FID begins to diverge.

Reproducibility. Upon acceptance, we will release code and checkpoints to facilitate reproduction
and further research.
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Figure 16: CIFAR-10 32x32 noisy dataset with σ = 0.1 (FID: 73.74).

N ADDITIONAL QUALITATIVE RESULTS

In this section, we present additional qualitative results. A quick view is in Appendix D.
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Figure 17: Unconditional CIFAR-10 32x32 random images generated with DCD training with noisy
dataset with σ = 0.1 (FID: 3.98).
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Figure 18: CIFAR-10 32x32 noisy dataset with σ = 0.2 (FID: 127.22).
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Figure 19: Unconditional CIFAR-10 32x32 random images generated with DCD training with noisy
dataset with σ = 0.2 (FID: 4.77).
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Figure 20: CIFAR-10 32x32 noisy dataset with σ = 0.4 (FID: 205.52).
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Figure 21: Unconditional CIFAR-10 32x32 random images generated with DCD training with noisy
dataset with σ = 0.4 (FID: 21.63).
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Figure 22: Unconditional FFHQ 64x64 random images generated with DCD training on noisy dataset
with σ = 0.2 (FID: 6.29).
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Figure 23: Unconditional CelebA-HQ 64x64 random images generated with DCD training on noisy
dataset with σ = 0.2 (FID: 6.48).
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Figure 24: Unconditional AFHQ-v2 64x64 random images generated with DCD training on noisy
dataset with σ = 0.2 (FID: 5.42).
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Figure 25: Examples from the training dataset used for the Gaussian blur task with σ = 0.
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Figure 26: Qualitative results of DCD generation for the Gaussian blur task with σ = 0.
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Figure 27: Dataset samples for the random inpainting task with p = 0.9 and σ = 0.
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Figure 28: DCD generation results for the random inpainting task with p = 0.9 and σ = 0.
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Figure 29: Dataset samples for Super Resolution ×2 Task with σ = 0
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Figure 30: DCD generation results for Super Resolution ×2 Task with σ = 0
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Figure 31: Dataset samples for Gaussian Blur with σ = 0.2
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Figure 32: DCD generation results for Gaussian Blur with σ = 0.2

59



3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Figure 33: Dataset samples for Random Inpainting with p = 0.9 and σ = 0.2
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Figure 34: DCD generation results for Random Inpainting with p = 0.9 and σ = 0.2
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Figure 35: Dataset samples for Super Resolution ×2 Task with σ = 0.2
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Figure 36: DCD generation results for Super Resolution ×2 Task with σ = 0.2
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Figure 37: Dataset samples for Random Inpainting with p = 0.8 and σ = 0
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Figure 38: DCD generation results for Random Inpainting with p = 0.8 and σ = 0
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Figure 39: Dataset samples for Random Inpainting with p = 0.6 and σ = 0
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Figure 40: DCD generation results for Random Inpainting with p = 0.6 and σ = 0
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