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ABSTRACT

Generative models have achieved great success in image synthesis, and controlla-
bility of the generative process is a key requirement for their successful adoption
in real-world applications. Most existing methods for controllable generation lack
theoretical guarantees and are time-consuming, which weakens their reliability
and applicability. In this paper, we propose an identifiability theorem to provide
a guarantee of controllability. This theorem ensures that semantic attributes can
be disentangled and hence independently controlled by orthogonalization in la-
tent space in a supervised manner. Based on the theoretical analysis, we propose
a general method for controllable generation, which can be integrated with most
latent-variable generative models. We further propose to plug it into a pre-trained
NVAE. Such a scheme significantly reduces the cost of time and has better con-
sistency in image editing due to the merits of NVAE. Experiments show that our
method is comparable with the state-of-the-art methods in attribute-conditional
generation and image editing, and has advantages in efficiency and consistency.

1 INTRODUCTION

In recent years, generative models have achieved great success in image synthesis. Some models can
even synthesize very high-quality images, including generative adversarial networks (GANs) (Good-
fellow et al., 2020; Karras et al., 2019), variational autoencoders (VAEs) (Kingma & Welling, 2013;
Vahdat & Kautz, 2020) and diffusion models (Ho et al., 2020). However, most real-world appli-
cations of these models require the controllability of the generative process. Such controllability
should enable generative models to generate images with some given semantic attributes. Another
goal of controllability is to utilize generative models to edit some designative semantic attributes of
a given image without changing other semantics.

A common paradigm for controllable generation is to train conditional generative models (Kingma
et al., 2014; Mirza & Osindero, 2014; Nie et al., 2020). However, it is expensive to train genera-
tive models from scratch, and involving new attributes in a pre-trained conditional model without
retraining is difficult (Nie et al., 2021). Moreover, such a paradigm limits the image editing ability
of generative models, hence is not a satisfactory scheme for the controllable generation.

Another paradigm is to enforce disentanglement of latent variables in generative models in an un-
supervised (Locatello et al., 2019; Sorrenson et al., 2020) or weakly-supervised manner (Shu et al.,
2019; Locatello et al., 2020). Some of these works have theoretical guarantees (Hyvarinen et al.,
2019; Khemakhem et al., 2020; Yang et al., 2021), but often have obstacles in dealing with real-
world images due to overly restrictive conditions.

Recent works for controllable generation can be categorized into two types. One type aims to dis-
cover the semantically meaningful directions in the latent space of pre-trained generative models by
sophisticated analysis and designs (Karras et al., 2019; Jahanian et al., 2019; Voynov & Babenko,
2020; Härkönen et al., 2020; Shen & Zhou, 2021), or directly converting the models to conditional
versions (Abdal et al., 2021). Another type is to leverage the compositionality of energy-based
models (EBMs) to achieve controllable generation (Du et al., 2020; Nie et al., 2021) in a supervised
manner. The essence of these works is to discover the paths in latent or pixel space for independently
manipulating attributes.
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Although these works have achieved great success in many aspects of controllable generation, they
still have some drawbacks. One is the lack of theoretical guarantees, hence they cannot ensure that
other semantics are unchanged when manipulating some attributes. More importantly, most of them
generally have difficulty in image editing since they base on GANs. Specifically, it is expensive to
obtain the latent code of a given image using GANs. Besides, when editing some attributes, other
semantics like background are often inconsistent due to the GANs’ weak reconstruction ability.
Moreover, those EBM-based methods mainly utilize Markov chain Monte Carlo (MCMC) to edit
attributes, which is also time-consuming.

In this work, we propose a rigorous theory for controllable generation, which guarantees that dif-
ferent attributes can be manipulated independently. Specifically, this theory shows that with some
natural and mild conditions, if different attributes are identified by a set of orthogonal directions
in latent space, then manipulations of them are independent. Based on the theoretical analysis, we
further propose a general method to achieve controllable generation. In this method, we utilize dif-
ferent blocks of latent variables to predict different attributes via linear models, hence the weights
of these linear models form a set of orthogonal directions in latent space. These directions provide
an efficient way to manipulate their corresponding attributes. The proposed method can be plugged
into pre-trained generative models, by involving a normalizing flow to adapt the latent space for
controllable generation.

We further integrate our proposed method with Nouveau VAE (NVAE) (Vahdat & Kautz, 2020).
Such a scheme is efficient for image editing, as the latent code can be directly obtained by NVAE’s
encoder. Besides, when editing some attributes, other semantics (like background in images) is
unchanged (consistent) due to NVAE’s strong reconstruction ability. Experiments on FFHQ show
that our method is comparable with the state-of-the-art methods in attribute-conditional generation,
and is superior in image editing due to efficiency and consistency.

Our contributions are summarized as follows:

• We propose a novel theory, which provides a rigorous guarantee to supervised control-
lable generation. The conditions are natural and mild, hence the theory might be widely
applicable.

• Based on the theory, we propose a general method, which can be integrated with most
latent-variable generative models.

• We integrate our method with NVAE and achieve great success in experiments. To our best
knowledge, this is the first work to develop NVAE for controllable generation, which opens
a new path towards controllable generation.

2 THEORY: CONNECTING DISENTANGLEMENT WITH ORTHOGONALITY

Consider an observed random vector x ∈ Rd with observed attributes y ∈ Rn, where the attributes
can be continuous or discrete. We assume these attributes are conditionally independent and deter-
mined by a set of underlying factors s = f∗(x) ∈ Rn separately:

p(y|x) =
n∏

i=1

p(yi|x) (1)

p(yi|x) = p(yi|si). (2)

These equations mean that all information about yi in x is preserved in si, and hence different
attributes are disentangled as their information is preserved in different dimensions of s. Therefore,
it is possible to control attribute yi by manipulating si.

To identify the s, we involve an estimating model z = fθ(x) ∈ Rm. Rather than directly using
zi to identify si following most prior works (Hyvarinen & Morioka, 2017; Hyvarinen et al., 2019;
Khemakhem et al., 2020), here we choose the projection of z on a direction a⊤

i z, where ai ∈ Rm is
a unit vector (representing a direction). This choice is much more general, as zi is simply a special
projection of z: zi = e⊤i z, where ei is i-th base of Rm. More importantly, ai can be trainable,
hence it can be chosen by optimization, which is possibly much better than a handcrafted one.
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Similar with Eq. 2, we suppose the conditional distribution of yi predicted via the estimating model
is determined by a⊤

i z,
q(yi|x) = q(yi|a⊤

i z). (3)

Our key insight here is that if {ai}ni=1 is a set of orthogonal bases in Rm (and hence m ≥ n), then
manipulating a⊤

j z cannot change the estimated distribution of yi, ∀ j ̸= i. Hence we suppose

a⊤
i aj = 0, ∀i ̸= j. (4)

With some additional mild conditions, we can prove that in the model defined above, si is identified
by a⊤

i z, and manipulating a⊤
j z does not change si, ∀j ̸= i. The proof is reported in Appendix A.

Theorem 1 (Identifiability) If the model defined by Eq. (1)-(4) also fulfills the following two condi-
tions: ∀ i ∈ [n],

(i) ϕi : si → p(yi|si) and ψi : a
⊤
i z→ q(yi|a⊤

i z) are continuous and bijective maps;

(ii) p(yi|x) = q(yi|x).

Then si = gi(a
⊤
i z), ∀ i ∈ [n], where gi is a strictly monotonic function, and manipulating a⊤

j z does
not change si, ∀ j ̸= i.

Conditions (i) and (ii) are natural in the field of identifiable latent models. In condition (i), ‘bijective’
indicates that distributions should preserve all information of the conditions. As for continuity,
intuitively, it means that when the variation of si (or a⊤

i z) approach zero, the variation of p(yi|si)
(or q(yi|a⊤

i z)) should also approach zero. This is true in most cases as long as the parameters of
distributions are continuous and bijective functions of si or a⊤

i z, as will be shown in the following
examples. Condition (ii) requires the ground truth to be well estimated, which is achievable.

For clarity, next we provide two specific examples of the model defined by Eq. (1)-(4) and conditions
(i) and (ii), which are applicable in our experimental setting.

Example 1 (Bernoulli distribution) Suppose yi is a Bernoulli random variable, p(yi|si) =
h∗i (si)

k(1 − h∗i (si))
1−k and q(yi|a⊤

i z) = hi(a
⊤
i z)

k(1 − hi(a
⊤
i z))

1−k, k ∈ {0, 1}, where h∗i
and hi are continuous and bijective functions, then si = h∗−1

i ◦ hi(a⊤
i z). Note that h∗−1

i ◦ hi is
continuous and bijective, and hence is a strictly monotonic function.

Example 2 (Gaussian distribution) Suppose yi is a continuous random variable, p(yi|si) =
N (yi|µ∗

i (si), σi) and q(yi|a⊤
i z) = N

(
yi|µi(a

⊤
i z), σi

)
, where µ∗

i and µi are continuous and bi-
jective functions, and σi is a positive constant, then si = µ∗−1

i ◦ µi(a
⊤
i z). Here µ∗−1

i ◦ µi is also a
strictly monotonic function.

To summarize, we propose an identifiability theorem that connects disentanglement with orthogo-
nality. Specifically, we show that in our introduced model, disentangled attributes can be identified
by a set of orthogonal directions in latent space. This theorem can motivate a general and applicable
method, as will be shown in the next section.

3 METHOD

In this section, we describe a general and applicable method based on our theory. This method can
achieve controllable generation, by mapping attributes into orthogonal directions in latent space of
latent-variable generative models, hence we term it as LAtent Orthogonalization (LAO) through this
work.

3.1 MODEL SETTING

For a generative model with inference module z = fθ(x), our goal is to let z satisfy q(yi|x) =
q(yi|a⊤

i z) (Eq. 3) and p(yi|x) = q(yi|x) (condition (ii)), ∀ i ∈ [n]. Some constraints are imposed
in this process, includes orthogonality of {ai}ni=1 (Eq. 4), and both continuity and reversibility of
ψ : a⊤

i z→ q(yi|a⊤
i z) (condition (i)).
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To achieve the goal, a simple approach is to minimize the cross entropy as follows:

min
θ,A
−
∑
i=1

Ep(yi|x)
[
log q

(
yi|a⊤

i fθ(x)
)]
, (5)

where A = (a1, · · · ,an)
⊤. The optimal solution is q(yi|a⊤

i z) = p(yi|x). Note that in the optimal
case, other information in x (besides a⊤

i z) cannot further improve the estimation of p(yi|x), hence
we have q(yi|x) = q(yi|a⊤

i z) and p(yi|x) = q(yi|x).
To enforce orthogonality of {ai}ni=1, we choose a simple but useful setting: decompose z into many
blocks z = (zi, · · · , zn, zres) (zres represents the residual components for noise or other attributes
apart from y), and then let ai only act on zi. In other words, the entries of ai acting on zj are set
as zero, ∀ j ̸= i, hence a⊤

i aj = 0. For the sake of argument, we denote the entries of ai acting
on zi by αi, then a⊤

i z = α⊤
i zi. Note that there exists many other setting or algorithms to enforce

orthogonality, and they are possible to involved into our method and adapt it to different scenes and
tasks.

As for continuity and reversibility in condition (i), it is sufficient in most cases to use continuous
and bijective functions to transform α⊤

i zi into parameters of q(yi|α⊤
i zi), as shown in Examples 1

and 2. Specifically, we use Sigmoid (denoted by S) and identity for Bernoulli and continuous yi,
respectively. Then the log-likelihood

log q(yi|α⊤
i zi) =

{
yi logS(α

⊤
i zi) + (1− yi) log

(
1− S(α⊤

i zi)
)

if yi is Bernoulli
− 1

2σ2
i
(α⊤

i zi − yi)
2 − c if yi is continuous , (6)

where c is a constant. Substitute it into Eq. 5, we can see that minimizing the cross entropy is equiv-
alent to binomial logistic regression and least square regression when yi is Bernoulli and continuous
random variable, respectively.

Therefore, our method motivated by the proposed theory ultimately becomes a simple but elegant
scheme: z is decomposed into several blocks, and each block is utilized to predict an attribute via
a linear model. Note that the inference model fθ(x) and linear models (parameterized by A) are
jointly optimized, and hence these linear models can be viewed as regularization for the inference
model to enforce the linearity of zi. As will be shown later, such linearity has great advantages for
controllable generation.

3.2 EFFICIENT CONTROLLABLE GENERATION

Most previous works for controllable generation do not require linearity, and as a result, they mainly
utilize Markov chain Monte Carlo (MCMC) to control the estimated latent variables. This is a
time-consuming scheme, and the cost of time is almost proportional to the size of attributes n.
Specifically, the control of each attribute requires hundreds of searching steps in MCMC, which is
the main cost of time for controlling, and the total required steps are proportional to n.

Our method needs only one step for controlling, which is a great advantage. Due to the linearity of
the optimized zi in our method, we can control attributes yi by simply manipulating zi in direction
αi. To see this, consider the conclusion of Theorem 1: si = gi(α

⊤
i zi), we can update si by updating

zi,
zi ← zi + λiαi ⇒ si ← gi(α

⊤
i zi + λi), (7)

where αi is normalized, and λi is the step length.

Such an update leads to manipulation of the distribution of attribute yi, hence controls the attribute.
For example, if yi = 1 represents smiling and yi = 0 represents not smiling in a face image, and si
is the probability of smiling (i.e. h∗i is an identity in Example 1), then we can control the level of
smiling in the face image by updating zi as stated above.

The step length λ is determined by the desirable level of the given attribute. Specifically, if we want
a Bernoulli yi to take value 1 with probability q0, then according to the expression of q(yi|α⊤

i zi),
we can choose

λ∗i = log
q0

1− q0
−α⊤

i zi, (8)

where log q0
1−q0

is the inverse function of Sigmoid.
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3.3 PLUG-IN VERSION

The method described above requires the joint training of inference model fθ(x) and linear models
A, which might be an obstacle in many generative models. First, some generative models have no
explicit inference module like GANs, and some cost a lot of time for training from scratch. More-
over, it is more difficult to simultaneously learn generation and controllability for most generative
models.

To solve these problems, we propose a plug-in version of our method above, which can be easily
plugged into pre-trained generative models to improve their controllability without harming their
generative ability. Specifically, for a pre-trained generative model with latent variables w, we pro-
pose to transform it to another set of latent variables z with a normalizing flow (denoted by fθ
without ambiguity), then z = fθ(w) and linear models A on z are jointly trained to enforce con-
trollability.

Note that if the normalizing flow is volume-preserving, and the prior of it is set as a standard Gaus-
sian, then maximizing the log-likelihood of z is equivalent to penalizing ∥z∥22. This is a regulariza-
tion for the linear models to prevent it form over-fitting. The optimization of non-volume-preserving
normalizing flows is also a similar regularization for linear models.

Such a scheme does not require an explicit inference module, as long as the pair of latent variables
and attributes (w,y) is given for training. Therefore, our plug-in method can be integrated with a
wide range of generative models.

3.4 INTEGRATION WITH NVAE

Figure 1: Comparison of reconstructions by
StyleGAN and NVAE. StyleGAN often fails to
reconstruct some semantics like the background
and some details, while NVAE can almost per-
fectly reconstruct the raw images.

NVAE (Vahdat & Kautz, 2020) has many ad-
vantages for controllable generation. First,
NVAE has an explicit inference module and
hence is much faster to infer the latent vari-
ables from images compared with GAN-based
models, which might make image editing much
more efficient. More importantly, the recon-
structions of images by NVAE are much bet-
ter than GAN-based models, as shown in Fig-
ure 1, and this is vital for the consistency dur-
ing editing. Otherwise, the edits of some se-
mantic attributes in images might changes the
background and some irrelevant details. Be-
sides, NVAE assembles most of the global in-
formation into several top groups of latent vari-
ables, which enables us to achieve controllable
generation by handling several groups of latent
variables. These merits of NVAE are further in-
troduced and discussed in Appendix B.

Figure 2: Pipeline of predicting q(yi|x) by our
method integrated with NVAE. wi is the i-th
group of latent variables encoded by NVAE,
vpfi represents the volume-preserving normaliz-
ing flow for transforming wi, and lmi represents
the linear model for predicting q(yi|x) from zi.

Therefore, in this paper, we integrate our plug-
in method with NVAE. The integration is sum-
marized in Figure 2, named by LAO-NVAE. In
NVAE, the latent variables are divided into L
groups, hence we transform each group with
a normalized flow. Here we choose volume-
preserving normalized flow for simplicity, and
we empirically find it sufficient for the con-
trollability of NVAE. Then for merging the in-
formation between different groups, we exact
one channel from each group and concatenate
them to form zi. Finally zi is utilized to predict
q(yi|x) via a linear model. See Appendix C for
more details and discussions.
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(a) glasses=1 (b) gender=female, smile=1, age=35

Figure 3: Samples conditionally synthesized by LAO-NVAE (t = 0.5) on FFHQ.

Table 1: Comparison against the baselines on attribute-conditional sampling. ‘Gen’ represents the
sigle GPU time for generating a batch of 16 images.

Methods glasses gender smile age
Gen FID↓ ACCgl ↑ Gen FID↓ ACCge ↑ ACCsm ↑ ACCag ↑

StyleFlow 0.61s 42.08 0.899 0.61s 43.88 0.718 0.870 0.874
LACE-LD 1.15s 20.92 0.998 2.40s 22.97 0.955 0.960 0.913
LACE-ODE 0.68s 20.93 0.998 4.81s 24.52 0.969 0.982 0.914
LAO-NVAE 0.64s 21.72 0.982 0.65s 25.78 0.957 0.952 0.895

4 EXPERIMENTS

In this section, we show that our proposed method LAO is powerful in conditional sampling and
semantic editing when integrating with NAVE, named by LAO-NVAE, and is advantageous in effi-
ciency and consistency for image editing.

Experimental setting We use NVAE with officially provided checkpoint as the pre-trained gener-
ative model for experiments on FFHQ. Such NVAE has 36 groups of latent variables, which have
increasing size from top to bottom. We utilize the top 12 groups of latent variables in NVAE and
empirically find them good enough for reconstructions, which largely reduces the cost for control-
lability. The temperature for NVAE is set as 0.5 on FFHQ following (Vahdat & Kautz, 2020).

The normalizing flow for transforming the latent variables is a volume-preserving version of real
NVP (Dinh et al., 2016) with 24 coupling layers. We make real NVP volume-preserving by setting
the sum of scale factor in coupling layers as zero (see Appendix D for details). The prior of normal-
izing flow is simply a standard Gaussian, and the transformed latent variables. To prevent imbalance
between different groups of latent variables in NVAE due to their different size, the log-likelihood
of each normalizing flow is divided by size of their inputs. The linear models for predicting are
simply linear layers, with sigmoid activation for Bernoulli attributes and identity for continuous at-
tributes. The variances of continuous attributes (σi in Example 2) are set as 0.1, and we empirically
find that binary cross entropy loss also works well for continuous attributes. The ranges of all at-
tributes’ labels are set in [0, 1]. The weight of log-likelihood of normalizing flow is set as 0.05 in all
experiments.

For evaluation, the considered attributes on FFHQ include smile, age, glasses, gender, beard and
yaw, in which age and yaw are treated as continuous attributes, and others are Bernoulli. Follow-
ing (Abdal et al., 2021), we use conditional accuracy (ACC) to measure the controllability, and FID
score to measure the quality and diversity of generated images. To compute FID, we sample 1k gen-
erated samples from NVAE with 0.5 temperature to represent the target distribution. Such setting
is common in works about controllable generation (Abdal et al., 2021; Nie et al., 2021). See (Nie
et al., 2021) for detailed introduction.

Model architecture, hyper-parameters and other details are reported in Appendix E.

Baselines For comparisons, we consider the state-of-the-art methods for controllable generation as
baselines, includeing StyleFlow (Abdal et al., 2021), and LACE with Langevin dynamics sampler
(LACE-LD) and ODE sampler (LACE-ODE) (Nie et al., 2021). Both of them are based on pre-
trained StyleGANs (Karras et al., 2019; 2020).
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Figure 4: Samples conditioned on continuous manipulation of given attributes by our methods.
The two rows are synthesized by manipulating smile and age respectively, while maintaining other
attributes unchanged. Each attribute is disentangled with other semantics, including background and
other attributes.
Table 2: Comparison against the baselines on semantic editing. ‘Infer’ represents the sigle GPU
time to obtain the latent code of a image.

Methods yaw smile age glasses
Infer Des↑ ID ↓ FID ↓ ACCy↑ ACCs↑ ACCa↑ ACCg↑

StyleFlow 102s 0.569 0.549 44.13 0.947 0.773 0.817 0.876
LACE-ODE 102s 0.735 0.501 27.94 0.938 0.956 0.881 0.997
LAO-NVAE 0.65s 0.767 0.488 21.59 0.925 0.961 0.823 0.967

4.1 CONDITIONAL SAMPLING

Given a set of fixed attributes, the conditional sampling process of our method consists of three step.
First, randomly sample a latent code with top 12 groups by NVAE’s decoder. Secondly, transform
the code and manipulate it in directions corresponding to the given attributes, where the directions
are given by the normalized weights of linear models. Here the probability of Bernoulli attributes
are manipulated to be 0.95. Finally, reversely transform the manipulated code, fixed them and
generate images with NVAE’s decoder. In this process, the spare 24 groups are randomly sampled
conditioned on the fixed 12 groups. In addition, we use combinations of attributes from training set
for sampling, which is necessary for the computation of FID score (Nie et al., 2021).

We mainly compare our method LAO-NVAE with baselines on two sets of attributes: glasses and
gender smile age, and the results are shown in Figure 3 and Table 1. In Figure 3, we can see
that the conditional samples by LAO-NVAE are high-quality and diverse, and meanwhile have the
corresponding. This result quantitatively demonstrates the effectiveness of LAO-NVAE on attribute-
conditional sampling, hence reflect the controllability of our method. In Table 1, our LAO-NVAE
has competitive performance in terms of FID and ACC compared with baselines. The scores of
our LAO-NVAE are slightly lower than LACEs, but much better than StyleFlow, and we might
further improve the scores by using more powerful normalizing flows. Meanwhile, the time cost
for sampling by LAO-NVAE is much lower than LACEs, and is close to StyleFlow. Especially, the
time for generating conditioned on several attributes by our LAO-NVAE is almost the same as the
one-attribute case, because the manipulation of each attribute by LAO-NVAE merely cost one step,
as discussed in 3.2. While in LACEs, it takes hundreds of steps to search in latent space. Therefore,
our LAO-NVAE combines the advantages of both StyleFlow and LACEs.

We also report the quanlitative results on conditional sampling by continuously manipulating the
attributes, as shown in Figure 4. This result indicates that our LAO-NVAE have indeed learned
the disentanglement of attributes, as the manipulation of each attribute does not change other vi-
sual semantics. In addition, our LAO-NVAE can fast generate a sequence of frames, hence it has
potentiality to generate a video.

4.2 SEMANTIC EDITING

The process of image editing by our LAO-NVAE is natural: encode the given images, transform the
top 12 groups by normalizing flows, manipulate them and then reserve, then use them together with
the original images to infer the spare 24 groups, and finally generate the edited images conditioned
on all groups.
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(a) Edits by LAO-NVAE

(b) Edits by LACE-ODE (top) and StyleFlow (bottom)

Figure 5: Realistic images editing by our method, LACE-ODE and StyleFlow on FFHQ. Figure (b)
is cropped from paper (Nie et al., 2021). Note that the edits by our method maintains the back-
ground, while the edits by GAN-based models (including LACE and StyleFlow) often change the
background (see the red square frame areas in Figure (b)).

The main attributes to edit include yaw, smile, age and glasses. Following (Nie et al., 2021), we
adopt two more metrics for quantitative comparisons: the face identity loss (ID) (Patashnik et al.,
2021; Abdal et al., 2021) to reflect the identity preservation, the disentangled edit strength (DES)
to measure the disentanglement. Besides, we also report the time for infer the latent code, which
is vital for the application of editing real-world images. We refer (Nie et al., 2021) for detailed
introduction.

As shown in Figure 5, our LAO-NVAE successfully edits the realistic face images. The edits of
given attributes does not changes background and other attributes. As for GAN-based methods,
including StyleFlow and LACE, their edits often change the background (see the areas in red square
frames in Figure (b) ) and some details, which is essentially due to the difficulty of reconstruction
by GANs, as discussed in 3.4. Therefore, our LAO-NVAE has better consistency in image editing
than GAN-based models.

The quantitative results are reported in Table 2. We can see that our LAO-NVAE has better perfor-
mance in disentanglement, identity preservation and image quality. This is not surprising, as our
method encourages disentanglement by orthogonality, and leverages the strong reconstruction abil-
ity of NVAE. More importantly, our method takes very short time to encode an image, while both
StyleFlow and LACE-ODE take more than one hundred seconds. Note that the time for image edit-
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ing consists of the time for encoding and the time for generating from the code, hence our method
is far more efficient in image editing than StyleFlow and LACEs. Therefore, our method is more
applicable in real-world scenes, as in most applications especially real-time scenes, the cost of time
is expensive.

5 RELATED WORKS

There are many topics related to controllable generation, including conditional generative mod-
els (Kingma et al., 2014; Mirza & Osindero, 2014; Chen et al., 2016; Nie et al., 2020), disentan-
glement (Locatello et al., 2019; Sorrenson et al., 2020; Shu et al., 2019; Locatello et al., 2020),
identifiable latent-variable model (Hyvarinen et al., 2019; Khemakhem et al., 2020; Yang et al.,
2021), and so on. In the following discussion, we mainly discuss the topics most related to our
theory and method.

Identifibility of linear models A theory closely related to ours is proposed by Roeder et al. (2021),
in which linear models are also mainly considered, but their conditions are different from ours.
In their theory, a large enough number of classes for classification is necessary for identifying the
ground-truth latent variables. While in our theory, even two classes are sufficient (as our result is
mainly derived from orthogonality). Therefore, our theory is more suitable for controllable genera-
tion.

Manipulation of GAN’s latents There are many works that focus on manipulating latent variables
of pre-trained GANs. Some works aim at finding the semantic direction in GANs’ latent space via
subtle methods in an unsupervised manner (Jahanian et al., 2019; Härkönen et al., 2020; Voynov
& Babenko, 2020; Shen et al., 2020; Shen & Zhou, 2021). Our method is supervised, hence has
guaranteed performance. Abdal et al. (2021) propose to convert a pre-trained StyleGAN (Karras
et al., 2019) into a conditional model by involving a conditional normalizing flow to the latent space.
While our method utilizes classifiers to inject conditions, which is more flexible to generalize to new
attributes. Some other works utilize a classifier on the pixel space of GANs to indirectly control the
latent variables (Nguyen et al., 2016; Goetschalckx et al., 2019), while (Nie et al., 2021) directly
involve a classifier in latent space. Compared with these works, our method is more efficient for
image editing due to the linearity of classifiers, as well as integration with NVAE.

Manipulation of AE’s latents A method similar with ours is proposed by Esser et al. (2020). This
method uses a normalizing flow to transform the latent variables of auto-encoders, then decomposes
the obtained latent variables into several blocks, and finally minimizes the distance of two images
with the same attribute in one block. The main difference between this method and ours is the
mode of supervision. Our method push the projections of images in latent space to preserve the
information of attributes, which is more natural and general. Moreover, our method can provide a
semantic direction for each attribute, which is vital for controllable generation and hence is more
applicable.

6 CONCLUSION AND DISCUSSION

In this paper, we propose a rigorous theory for controllable generation, which ensures that attributes
can be disentangled if they are identified by a set of orthogonal directions in latent space. Based on
the theory, we propose a simple but general method for the controllable generation of latent-variable
generative models. We plug our method into NAVE and achieve success in attribute-conditional
generation and semantic editing. The proposed scheme also has the advantages of efficiency and
consistency in image editing.

There are many possible extensions of this work. First, our theory is based on an intuitive defini-
tion of ‘disentangled attributes’ (Eq. 1 and Eq. 2), a close look at this definition might spark new
ideas about disentanglement. Moreover, many orthogonalization algorithms can be integrated with
our methods to accommodate different tasks. Another appealing idea is to apply our method to
multi-modal works like DALL-E (Ramesh et al., 2021). As in this kind of models, the supervised
information is essentially entangled, hence the semantic edits of synthesized images are difficult.
Our method might be a plug-in component to enhance these models’ disentanglement.
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A PROOF OF IDENTIFIABILITY

The proof of the proposed identifiability theorem is simple and clear. According to p(yi|x) =
p(yi|si), q(yi|x) = q(yi|a⊤

i z), and p(yi|x) = q(yi|x), we have p(yi|si) = q(yi|a⊤
i z). Based on

this, as ϕi : si → p(yi|si) and ψi : a⊤
i z → q(yi|a⊤

i z) are continuous and bijective maps, we
can construct a continuous and invertible maps between si and a⊤

i z, i.e. ϕ−1
i ◦ ψi : a⊤

i z → si.
Such a map is a strictly monotonic function, because si and a⊤

i z are real-value and one-dimensional
variables. Therefore, let gi = ϕ−1

i ◦ ψi, we have si = gi(a
⊤
i z), where gi is a strictly monotonic

function. Note that {ai}ni=1 are orthogonal, hence when we manipulate the value of a⊤
j z, the value

of a⊤
i z is unchanged, as well as si, ∀j ̸= i.

B INTRODUCTION AND DISCUSSION ABOUT NVAE

NVAE is a hierarchical VAE with autoregressive latent variables. Specifically, the latent vari-
ables in NVAE are devided into L groups: z = (z1, · · · , zL), and the encoder has the form
of q(z|x) = q(z1|x)q(z2|x, z1) · · · q(zL|x, z<L), while the prior has the form of p(z) =
p(z1)p(z2|z1) · · · p(zL|z<L). As the top groups of latent variables tend to infer the bottom groups,
they are encouraged to preserve as much information of inputs x as possible. Therefore, in NVAE
most semantic information of inputs is preserved in the top groups.

Figure 6: Reconstruction by top 12 groups in
NVAE with 36 groups. The spare groups are ran-
domly sampled conditioned on z≤12.

We visualize this property of NVAE by plotting
the heat map in pixel space of each group, as
shown in Figure 7. We can see that the top two
groups control most attributes in images, while
the following groups control some details, and
the bottom groups only control some mild de-
tails. Another evidence is that we can well re-
construct images using several top groups, as
shown in Figure 6. Therefore, NVAE’s top
groups latent variables preserve major seman-
tics of inputs. Such a property is friendly to
controllable generation, as we can manipulate
merely several top groups of latent variables to control the synthesized image and edit realistic im-
ages.

C INTEGRATION WITH NVAE

The integration of our method and NVAE is non-trivial, because we actually utilize a subtle setting
in NVAE. In the inference process of NAVE, the l-th group of latent variables is given by

q(zl|x, z<l) = N (µl(z<l) + ∆µl(x, z<l), σl(z<l) ·∆σl(x, z<l)), (9)
where ∆µl and ∆σl are the relative location and scale of the approximate posterior with respect
to the prior N (µl(z<l), σl(z<l)). We note that since z<l have preserved some information of x,
the additional information for zl is given by ∆µl(x, z<l) and ∆σl(x, z<l). This is obvious, since
µl(z<l) and σl(z<l) are functions of z<l and hence cannot preserve additional information from x.

Therefore, to disentangle the information of different groups, we actually use samples from
N (∆µl(x, z<l),∆σl(x, z<l)) as the input of normalizing flows, i.e. wl in Figure 2. We empir-
ically find this scheme more stable and have better performance than directly using the original
groups of NVAE.

D A VOLUME-PRESERVING VERSION OF REAL NVP

The real NVP is a normalizing flow architecture consists of several coupling layers. A coupling
layer with inputs x ∈ R2d is

y1:d = x1:d

yd+1:2d = xd+1:2d ⊙ exp(s(x1:d)) + t(x1:d),
(10)
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Figure 7: Heat maps of top 19 groups by a pre-trained NVAE with 36 groups. The first image is a
raw face image, and the residual images from left to right and from top to bottom are the heat maps
of z1 ∼ z19.

where s and t are scale and translation functions from Rd to Rd. The coupling layer above is non-
volume-preserving, and the volume is

d∏
i=1

exp(s(x1:d)i) = exp(

d∑
i=1

s(x1:d)i). (11)

We note that if we set the sum
∑d

i=1 s(x1:d)i as zero, then the coupling layer will be volume-
preserving. Therefore, we let the coupling layers becomes

y1:d = x1:d

yd+1:2d = xd+1:2d ⊙ exp(s(x1:d)−m) + t(x1:d),
(12)

where m = 1
d

∑d
i=1 s(x1:d)i. Such a modification does not harm the reversibility, and works well

in experiments.

E MODEL ARCHITECTURES AND HYPER-PARAMETERS

Model architectures The sizes of top 12 groups of the pre-trained NVAE on FFHQ are 4×(20, 8,
8), 4×(20,16,16), and 4×(20,32,32). We divide each group along width and height dimensions into
4 blocks, and then stack them along channel dimension. Therefore, the inputs of normalizing flows
are 12 groups with sizes of 4×(80, 4, 4), 4×(80,8,8), and 4×(80,16,16). The normalizing flows
for different groups have the same setting. Each normalizing flow consists of 12 layers, and each
layer consists of an ActNorm layer (Kingma & Dhariwal, 2018), a volume-preserving coupling layer
and a Shuffle along the channel. In each coupling layer, the inputs are divided along the channel
dimension, and the scale and translation functions are parameterized by ResNet blocks.

The architecture of each linear model is simply a linear layer with bia. The existence of bias is
actually permitted in our theory, hence we do not set it as zero.
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Hyper-parameters We use an AdaMax (Kingma & Ba, 2014) optimizer with learning rate 0.0005
for optimization. We train the model LAO-NVAE on 4 NVIDIA V100 GPUs with batch size 15
on each GPU, and evaluate it on one single NVIDIA V100 GPU. The number of training epochs is
merely 5.
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