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Abstract

What can representational similarity matrices tell us about a neural code? As the
popularity of these summary statistics grows, so too does the need for a complete
characterization of their properties. Here, we study how functionally-irrelevant
degrees of freedom affect representational similarity matrices in perhaps the sim-
plest nonlinear neural code: one with localized receptive fields tiling a symmetric
manifold. Stimulus symmetries render many tilings functionally equivalent, but
these configurations yield different similarity matrices provided that the tiling is
sparse. We show that stochastic gradient descent or energetic regularization can
generate sparse, drifting tilings, leading in turn to drifting similarity matrices. Our
results illustrate the challenges inherent in comparing non-linear neural codes,
when functionally-equivalent representations are not related by a simple rotation.

1 Introduction

The brain represents many aspects of the sensory world through manifold-tiling neural representations,
in which the neurons’ receptive fields form a regular lattice over stimulus space [1, 2]. At the same
time, the sensory world is replete with symmetries. This leads to an ambiguity: given a particular
spacing between receptive fields, there exist many possible tilings of the stimulus manifold which are
functionally equivalent given the symmetry. Therefore, to completely specify the representation, one
must fix a gauge; one must anchor the lattice of receptive fields.1

Here, we consider the consequences of this symmetry for common approaches to quantifying neural
representations based on representational similarity matrices (RSMs) [4–9]. We first show that
the RSM in a toy model of neurons with receptive fields tiling a circle is dependent on the global
orientation of the arrangement of receptive fields. However, this dependence rapidly diminishes as
the number of distinct receptive field centers increases, raising the possibility that this effect can be
neglected in large neural populations. We show that this is not always the case: stochastic gradient
descent (SGD) or energetic regularization can lead to solutions where the receptive fields of multiple
neurons collapse together to a common central location. Critically, even after receptive fields collapse,
SGD does not fix the gauge, and the RSM drifts over time. Varying RSMs are also generated upon
training from different initial weight configurations.

1Our use of the term “gauge” is inspired by its use in physics, though the phenomenology we describe here is
not identical, as in this case the gauge is manifestly observable though not functionally relevant [3].
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Figure 1: Neuron tuning and representations in a toy model. a) Left: RF center vectors (wi) of four
neurons tiling a one-dimensional ring. Right: corresponding angular tuning curves. b) Representations
h1 and h2 of two stimuli s1 and s2 in the four-dimensional representation space.

2 Manifold-tiling solutions in a toy model

As a start, consider a simple toy setup where data lies on a one-dimensional ring (x ∈ S1), and n
ReLU neurons tile this space uniformly. The activation of i-th neuron in response to an input x is

hi(x) = ReLU(w⊤
i x), where wi = (cos θi, sin θi) (1)

is the (unit-length) weight vector associated with that neuron, defined by an angle
θi = 2(i− 1)π/n+ φ for i ∈ [n]. (2)

Here, φ is an arbitrary offset angle and the only degree of freedom for this configuration (it is the
gauge variable). Since each neuron has a receptive field (RF) that covers half the space (π radians on
the ring), n = 4 is the minimum number of neurons that can cover this space faithfully (Fig. 1a; see
Appendix A). In this configuration, one can track the neuronal representations of a set of trial stimuli,
s1 = (1, 0)⊤, s2 = (0, 1)⊤, s3 = (−1, 0)⊤ and s4 = (0,−1)⊤, which for φ ∈ [0, π/2) become:

h1 =

cos(φ)
0
0

sin(φ)

 , h2 =

sin(φ)
cos(φ)

0
0

 , h3 =

 0
sin(φ)
cos(φ)

0

 , h4 =

 0
0

sin(φ)
cos(φ)

 . (3)

Increasing φ beyond π/2 is equivalent to circularly permuting the neuron labels and taking the
residue of φ modulo π/2. If H = [h1, h2, h3, h4] is a matrix that contains all the representations of
trial stimuli, its corresponding RSM is:

RSM = H⊤H =

 1 ρ(φ) 0 ρ(φ)
ρ(φ) 1 ρ(φ) 0
0 ρ(φ) 1 ρ(φ)

ρ(φ) 0 ρ(φ) 1

 , where ρ(φ) = sinφ cosφ (4)

should be evaluated using the residue of φ modulo π/2 (see Appendix A). The above suggests that
even in such a simple case where the gauge variable φ corresponds to an overall rotation of the tuning
curves, the RSM depends on it. This is because the global rotation of the tuning curves does not
translate to an overall rotation in the representation space. This is illustrated geometrically in Fig. 1b,
where the angle between the representations of two stimuli can change, yielding a variable RSM.

2.1 The RSM becomes asymptotically gauge-invariant when the tiling is dense

Figure 2: RSM variability as a function
of number of neurons.

The n = 4 case above corresponded to the minimum
number of ReLU neurons needed to tile the ring. Here, we
study how this effect changes as the number of neurons
increases. In Appendix A, we show that for n a multiple
of 4 the RSM has a simple closed-form expression which
generalizes that found above for n = 4; all that changes is
the constant value of the diagonal elements and the details
of the function ρ(φ). We quantify the φ-dependence of
the RSM by its normalized range:

∆n :=
maxφ(RSMoff )−minφ(RSMoff )

RSMdiag
,

where RSMoff and RSMdiag are the unique non-zero
off-diagonal and diagonal parts of the RSM, respectively.
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This is plotted in Figure 2 alongside the theoretical pre-
diction

∆n =
2

n
tan

(π
n

)
, (5)

which holds for n a multiple of 4. As n→ ∞, the variability in the RSM vanishes as O(n−2).

3 Learning-induced manifold-tiling and drift

So far, we showed that a manifold-tiling solution can create a varying RSM as a function of the
functionally-irrelevant gauge variable, provided that the tiling is not too dense. Here, we study this in
a learning scenario. This includes a two-layer autoencoder with ReLU neurons and trained under
SGD and weight decay. We give more details and additional experimental results in Appendix C.

3.1 SGD does not favor solutions with a particular RSM

As shown in Fig. 3, SGD training replicates the uniform-tiling solution for the n = 4 neurons in the
hidden layer. Importantly, over the course of continual training, the tuning curves and the RSM drift
over time without a clear preference for any particular solution. This ambivalence also holds across
different realizations of the learning started from different initializations of the weights (see Fig S1).

Figure 3: Continual training under SGD leads to a variable RSM in a ReLU network with two-
dimensional input and n = 4 neurons. a) Values of RSM over time. b) At two time snapshots of
training, the RSM matrices (top), and the corresponding weight vectors (bottom) are shown.

3.2 SGD inductive bias or energetic regularization can generate sparsely-tiling solutions

We found in Section 2.1 that having a large number of neurons that densely tile the manifold
suppresses variability in the RSM. Here, we demonstrate two ways that learning can lead to solutions
with highly-variable RSMs, even when the number of hidden neurons is large. First, as shown in
Figure 4, SGD can lead the receptive fields of multiple neurons to collapse (align) together, leading
to a solution that effectively only has four neurons. We observed that this collapse can occur when
SGD noise is large (see Fig. S2 for an example of a low-noise regime). Second, regularizing the
activations with an L1 penalty—to mimic energetic costs—can lead to all but four neurons becoming
silent (see Fig. 5). These effects can allow RSM variability to persist.

Figure 4: Collapse of neurons under SGD training for two-dimensional input and n = 15 neurons. a)
Values of RSM over time. b) Entropy of the distribution of cosine of pairwise angles between all
neurons. c) RSMs (top), and the corresponding weight vectors (bottom) at different snapshots during
training. Alignment of neurons’ weights into 4 orthogonal directions is evident through learning.
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Figure 5: RSM plots (top) and neurons’ weight vectors (bottom) for four different runs under l1
penalty on activations (n = 15 neurons). Similar to Figure S2, the batch size is large but the l1
penalty on the hidden-layer activations leads to all but 4 neurons remaining active. Each simulation is
run with 5× 104 samples seen (batch size of 100).

3.3 Structured RSM variability for higher-dimensional stimuli

Figure 6: RSM variability as a result of continual training for three-dimensional input and n = 6
neurons. (Left) Components of the empirical RSM as a function of time. The non-zero off-diagonal
elements are grouped into three distinct sets (ρ1, ρ2, and ρ3) based on the predictions derived in
Appendix B (gray curves correspond to the group members and the colored curves denote the group
averages). (Right) RSM matrices at different snapshots demonstrate variability through time.

We have thus far restricted our attention to a two-dimensional stimulus with a one-dimensional
symmetry group (rotations in the plane). However, the same gauge redundancy is present in neural
codes tiling higher-dimensional symmetric manifolds. Analytical study of tiled representations of
higher-dimensional manifolds is challenging because the maximally uniform arrangement of receptive
field centers is unknown in general, even for the sphere S2 [10]. However, if we tile Sd−1 with a
reflection-symmetric arrangement of 2d neurons—so that each neuron is paired with another that has
an oppositely-oriented receptive field—we can predict the structure of variability in the RSM induced
by the d(d− 1)/2-dimensional O(d) symmetry (see Appendix B). In general, the RSM is given by

RSM =

(
Id +R R
R Id +R

)
, (6)

where R is a d × d symmetric matrix with zeros along the diagonal, which thus has d(d − 1)/2
independent elements. In three dimensions, there are therefore three sets of distinct non-zero off-
diagonal elements of the RSM,

R =

(
0 ρ1 ρ2
ρ1 0 ρ3
ρ2 ρ3 0

)
, (7)

each of which varies over time during continual training (Fig. 6). Not only is the RSM highly
structured in the sense that its elements cluster into groups, but the variability of these groups is
correlated (see also Fig. S3 for d = 10, where there are d(d− 1)/2 = 45 distinct groups).
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4 Discussion

Representational similarity measures have been used extensively in neuroscience and ML to compare
internal representations of artificial and biological networks [4, 8, 9, 11]. A body of theoretical work
on the statistical physics of large ensembles of neurons suggest that various summary statistics—
including RSMs—may be stable when the number of neurons in each hidden layer of the network
tend to infinity [9]. Indeed, our result in Section 2.1 is compatible with those results, as the variability
of RSM asymptotically approaches zero when the tiling is dense. However, we showed that there
are regimes in which learning may lead to solutions with a low effective number of neurons. In
evaluating how high the effective neuron count must be in order to suppress variability in the RSM,
one must of course consider the intrinsic dimensionality of the symmetric stimulus manifold. By the
curse of dimensionality, we expect that the number of neurons must scale exponentially with intrinsic
dimension to achieve comparably low variability (see Appendix B).

Ongoing drift in representations despite stable task performance has been observed in the brain
and in artificial neural networks [12, 13]. Such changes, often associated with symmetries in the
parameter space of the model, may nonetheless lead to stable representational similarity matrices
[13–16]. However, there is also experimental evidence showing changing similarity measures over
time in cortex [13, 17]. Here, we show that, in the presence of nonlinearity, simple transformations
of symmetric inputs could lead to nonlinear deformation of the representations that in turn lead to
drifting RSMs. This is especially striking given that the type of solution is not changing. In this
regard, it is also in contrast to the linear case studied in [18], where for the minimum-norm solutions
the RSM was found to be unique. In more general regularized autoencoders, recent works have
begun to disentangle the conditions under which unique axis-aligned solutions are preferred [19–21].
However, how symmetries in data affect these results remains unknown.

The underlying reason why the RSM is not gauge-invariant is that solutions with different gauge angle
are not related by a simple rotation in representation space. To compare representations in a way that
is invariant to this symmetry, one must design a metric that is invariant to these transformations. Even
though this may require knowledge of the symmetries of the stimulus space—which in many realistic
scenarios are unknown—our study motivates such attempts in the future.
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Appendices

A The toy orientation tuning model with many neurons

In the main text, we focused on the case where the toy orientation tuning model has only n = 4
neurons. This is the minimum number of neurons required to faithfully reconstruct the ring because
(1) at least one neuron must respond to every stimulus, and (2) if only a single neuron responds to
some set of stimuli, then responses may be ambiguous due to the symmetry in each neuron’s response
under reflection about the axis of its preferred stimulus. This, for instance, means that n = 3 neurons
does not suffice, as with equidistributed receptive field centers there are thus regions around each
neuron’s receptive field center where only a single neuron is active. In this Appendix, we consider
n > 4 neurons. We show that the RSM for the toy orientation tuning model has a simple form
whenever the number of neurons is an integer multiple of four.

As in the main text, the activation of the i-th of n neurons is given by hi(x) = ReLU(w⊤
i x),

where wi = (cos θi, sin θi)
⊤ for θi = 2(i − 1)π/n + φ. The four test stimuli of interest are

s1 = (1, 0)⊤, s2 = (0, 1)⊤, s3 = (−1, 0)⊤, and s4 = (0,−1)⊤, and the RSM has elements
RSMab =

∑n
i=1 hi(sa)hi(sb) for a, b ∈ [4].

By symmetry, all diagonal elements of the RSM are equal to:

RSMdiag =

n−1∑
k=0

ReLU

(
cos

(
2πk

n
+ φ

))2

, (A.1)

and non-zero off-diagonal elements are all equal to:

ρ =

n−1∑
k=0

ReLU

(
cos

(
2πk

n
+ φ

))
ReLU

(
sin

(
2πk

n
+ φ

))
. (A.2)

We can see that increasing φ by integer multiples of 2π/n is equivalent to shifting the index k, which
has the effect of circularly permuting neuron labels. As the RSM is invariant under permutation of the
neuron labels, it must therefore be periodic in φ, with period 2π/n. Therefore, it suffices to consider
φ ∈ [0, 2π/n). We therefore put φ = 2πδ/n for δ ∈ [0, 1).

A.1 Evaluation of the similarity matrix elements

First, consider the off-diagonal elements. As cos(θ) and sin(θ) are simultaneously positive only for
θ ∈ [0, π/2), this is equivalent to

ρ =

n−1∑
k=0

cos

(
2π(k + δ)

n

)
sin

(
2π(k + δ)

n

)
10≤k+δ<n/4 (A.3)

Supposing that n = 4q for an integer q ≥ 1, we see that 0 ≤ k + δ < n/4 only if k ≤ q − 1, for any
δ ∈ [0, 1). Therefore,

ρ =

q−1∑
k=0

cos

(
π(k + δ)

2q

)
sin

(
π(k + δ)

2q

)
(A.4)

This is at last a sum that can be evaluated, giving

ρ =
1

2
cot

(
π

2q

)
cos

(
πδ

q

)
+

1

2
sin

(
πδ

q

)
(A.5)

or, in terms of n and φ,

ρ =
1

2
cot

(
2π

n

)
cos(2φ) +

1

2
sin(2φ). (A.6)
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As cos(θ) is positive if θ ∈ [0, π/2)∪ (3π/2, 2π), we can similarly evaluate the diagonal elements as
n−1∑
k=0

cos

(
2π(k + δ)

n

)2

[10≤k+δ<q + 13q<k+δ<4q] (A.7)

=

q−1∑
k=0

cos

(
π(k + δ)

2q

)2

+

4q−1∑
k=3q

cos

(
π(k + δ)

2q

)2

(A.8)

= q. (A.9)

Thus, letting

ρn(φ) =
1

2
cot

(
2π

n

)
cos(2φ) +

1

2
sin(2φ), (A.10)

we find that for any n a multiple of four we have

RSM =


n
4 ρn(φ) 0 ρn(φ)

ρn(φ)
n
4 ρn(φ) 0

0 ρn(φ)
n
4 ρn(φ)

ρn(φ) 0 ρn(φ)
n
4

 (A.11)

for any φ ∈ [0, 2π/n). For larger φ, we can apply this result using φ mod 2π/n.

We can evaluate by a similar argument the population-averaged firing rate for each of the test stimuli:

r̄ =
1

n

n−1∑
k=0

cos

(
2π(k + δ)

n

)
[10≤k+δ<q + 13q<k+δ<4q] (A.12)

=
1

n

q−1∑
k=0

cos

(
π(k + δ)

2q

)
+

1

n

4q−1∑
k=3q

cos

(
π(k + δ)

2q

)
(A.13)

=
1

n
csc

(
π

4q

)
cos

(
π − 2πδ

4q

)
(A.14)

=
1

n
csc
(π
n

)
cos
(π
n
− φ

)
, (A.15)

where again in the last line we consider φ ∈ [0, 2π/n).

A.2 Large-n limit

We now want to study what happens when we take the number of neurons to be large. To do so, it is
convenient to use the parameterization of the mean firing rate and RSM in terms of q and δ, as the
period of these objects in δ is defined to be independent of n. First, the mean firing rate expands as

r̄ =
1

4q
csc

(
π

4q

)
cos

(
π − 2πδ

4q

)
(A.16)

=
1

π
− π(1− 6δ + 6δ2)

48q2
+O

(
1

q4

)
. (A.17)

The normalized non-zero off-diagonal elements of the RSM are given by
1

2q
cot

(
π

2q

)
cos

(
πδ

q

)
+

1

2q
sin

(
πδ

q

)
=

1

π
− π(1− 6δ + 6δ2)

12q2
+O

(
1

q4

)
. (A.18)

This shows that the mean firing rate and RSM are gauge-invariant only asymptotically, in the limit
n→ ∞.

A.3 Normalized variability

As in the main text, we consider the normalized variability

∆n =
maxφRSMoff −minφRSMoff

RSMdiag
. (A.19)
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Using the expression for RSMoff from above, we see that it is maximized at δ = 1/2, where it takes
value

1

2
cot

(
π

2q

)
cos

(
πδ

q

)
+

1

2
sin

(
πδ

q

) ∣∣∣∣
δ=1/2

=
1

2
csc

(
π

2q

)
(A.20)

and minimized at δ = 0, where it takes value
1

2
cot

(
π

2q

)
cos

(
πδ

q

)
+

1

2
sin

(
πδ

q

) ∣∣∣∣
δ=0

=
1

2
cot

(
π

2q

)
. (A.21)

Using the identity csc(θ)− cot(θ) = tan(θ/2), we thus have that

∆4q =
1

2q
tan

(
π

4q

)
, (A.22)

or

∆n =
2

n
tan

(π
n

)
(A.23)

in terms of n. As tan(θ) = θ +O(θ3) as θ ↓ 0, we thus find that

∆4q =
π

8q2
+O

(
1

q4

)
(A.24)

as q → ∞, which is of course equivalent to

∆n =
2π

n2
+O

(
1

n4

)
. (A.25)

A.4 Penalizing the L1 norm of activations does not fix a gauge

In the main text, we showed that one way of promoting RSM variability with a large number of
neurons is the presence of energetic cost (such as the L1-penalty) on the activations. Here, we show
that when data is uniformly distributed on the manifold, L1-penalty does not fix a gauge. Observe
that the response of the i-th neuron to a stimulus x = (cosψ, sinψ)⊤ is simply

hi(x) = ReLU

(
cos

(
2π(i− 1)

n
+ φ− ψ

))
, i ∈ [n]. (A.26)

Then, the Lp norm of the hidden layer activations, assuming a uniform angular distribution, is

∥h∥p =

(∫ 2π

0

dψ

2π
r̄n,p(φ− ψ)

)1/p

, (A.27)

where we let

r̄n,p(φ− ψ) =

n−1∑
k=0

ReLU

(
cos

(
2πk

n
+ φ− ψ

))p

. (A.28)

Though we have assumed that everything is normalized, we remark that if we allowed radial variation
in the stimulus or in the weight vector, we could ignore it in this analysis. This is because the
positive-homogeneity of the ReLU means that adding a variable radius will simply multiply the
formula above by a constant independent of both n and φ.

By an argument identical to our previous analysis, r̄n,p(φ−ψ) must be 2π/n-periodic in its argument.
Therefore, by averaging over ψ ∈ [0, 2π) we are averaging over n periods, which in turn means that
∥h∥1 must be independent of the gauge angle φ.

How do deviations of the stimulus distribution from perfect uniformity affect this result? Recalling
our results from before, we have for n an integer multiple of four that

r̄n,1(φ− ψ) = csc
(π
n

)
cos
(π
n
− (φ− ψ)

)
, (A.29)

where we should plug in the residue of φ− ψ modulo 2π/n, while

r̄n,2(φ− ψ) =
n

4
. (A.30)

This means that for n a multiple of 4 penalizing the L2 norm of activations cannot fix a gauge for the
trivial reason that it is stimulus-independent. In contrast, the L1 norm is sensitive to fluctuations in
the distribution of stimuli.
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B Reflection-symmetric tilings of the sphere in higher dimensions

Performing a similarly-detailed analysis of the RSMs for tiling representations of higher-dimensional
manifolds is challenging. Even for the ordinary sphere S2, explicitly writing down a tiling solution for
an arbitrary number of neurons is challenging—this corresponds to a variant of the classic Thompson
problem in potential theory, to which the general solution remains unknown [10]. On general grounds,
we expect that the number of neurons required to suppress variability in the RSM should scale
exponentially with the intrinsic dimension of the manifold. This intuition follows from the curse of
dimensionality: assuming manifold-tiling localized receptive fields, the density of field centers must
be high enough to compensate for the decay in overlap due to a change in gauge.

Though we cannot write down the RSM explicitly, we can characterize its overall structure for
solutions with an even number of neurons tiling the sphere Sd−1 in d dimensions that obey a reflection-
symmetry condition on the weights: for each neuron, there is another neuron with its receptive field
oriented exactly opposite to the first. This corresponds to assuming that the stimulus-by-neuron
weight matrix W ∈ Rd×2n has the form

W = (U⊤,−U⊤) (B.1)
for some matrix U ∈ Rn×d.2 Generalizing our study of the d = 2 case, we take our probe stimuli to
be the standard basis vectors and their negations, i.e., we have a stimulus matrix3

S = (Id,−Id) ∈ Rd×2d, (B.2)
whose representation is

H = ReLU(W⊤S) =

(
ReLU(U) ReLU(−U)
ReLU(−U) ReLU(U)

)
. (B.3)

We show below that, assuming weight tying, demanding that the probe stimuli are faithfully recon-
structed implies that the matrix U must be semi-orthogonal, i.e.,

U⊤U = Id. (B.4)
If this holds, then the RSM has the general form

RSM =

(
Id +R R
R Id +R

)
(B.5)

where R is a d× d symmetric matrix with zeros along the diagonal.

The main salient feature of this matrix for d > 2 is the fact that its elements obey non-trivial equality
relations (relative to the case of the ring S1, where all non-zero off-diagonal elements of the RSM
were equal). For instance, if d = 3, this yields an RSM of the form

RSM = H⊤H =


1 ρ1 ρ2 0 ρ1 ρ2
ρ1 1 ρ3 ρ1 0 ρ3
ρ2 ρ3 1 ρ2 ρ3 0
0 ρ1 ρ2 1 ρ1 ρ2
ρ1 0 ρ3 ρ1 1 ρ3
ρ2 ρ3 0 ρ2 ρ3 1

 . (B.6)

where ρ1, ρ2, and ρ3 are the three distinct non-zero elements of the matrix R. Here, the three
functions ρ1, ρ2, and ρ3 are continuous piecewise functions of the three gauge angles that appear
in d = 3, which can be computed explicitly using MATHEMATICA—though their particular form
is not illuminating. We see in Figure 6 that the equality relations between different elements of the
RSM implied by (B.6) are in fact obeyed to high accuracy in experiment. In Figure S3 we show that
we observe the corresponding generalized structure (B.5) empirically in SGD-trained networks for
d = 10.

2Our results extend to larger networks where neurons are duplicated so long as the weights are appropriately
normalized. We leave to future work a full investigation of when this form of the RSM applies to larger networks
that are equivalent to these small networks thanks to further internal symmetries of the architecture [22, 23].

3As long as we assume that the test stimuli are given by a set of d orthonormal vectors along with their
negations, we lose no generality in making this choice because the global rotation symmetry implies that we can
rotate the basis so that the test stimuli are axis-aligned.
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B.1 Structure of the reconstruction

We first show that the matrix U must be semi-orthogonal in order to faithfully reconstruct the probe
stimuli S. If we assume weight-tying, we then have the reconstruction

Ŝ =W ReLU(W⊤S) = (A,−A) (B.7)
where

A = U⊤ ReLU(U)− U⊤ ReLU(−U) = U⊤[ReLU(U)− ReLU(−U)
]
. (B.8)

But, as ReLU(x)− ReLU(−x) = x for any x ∈ R, this simplifies to
A = U⊤U. (B.9)

To exactly reconstruct the test stimuli, we should have Ŝ = S and thus
A = Id, (B.10)

which implies that the matrix U must be semi-orthogonal:
U⊤U = Id. (B.11)

B.2 Structure of the RSM

We now show that the RSM has the form (B.5). For this representation, we have the RSM

RSM = H⊤H =

(
Q R
R Q

)
(B.12)

where we have defined the d× d blocks
Q = ReLU(U)⊤ ReLU(U) + ReLU(−U)⊤ ReLU(−U) (B.13)

R = ReLU(U)⊤ ReLU(−U) + ReLU(−U)⊤ ReLU(U), (B.14)
Noting that R is symmetric, to prove that the RSM takes the form (B.5) it suffices to show that R has
zeros along the diagonal and that Q = U⊤U +R.

The fact that R has zeros along the diagonal is easy to see upon expanding in indices:

Rii =

n∑
k=1

[ReLU(Uki)ReLU(−Uki) + ReLU(−Uki)ReLU(Uki)] = 0, (B.15)

as ReLU(x)ReLU(−x) = 0 for all x ∈ R.

To show that Q = U⊤U +R, we observe that for x, y ∈ R we have
ReLU(x)ReLU(y) + ReLU(−x)ReLU(−y)

− ReLU(x)ReLU(−y)− ReLU(−x)ReLU(y)

= xy.

(B.16)

Applying this identity element-wise, we have
Q−R = ReLU(U)⊤ ReLU(U) + ReLU(−U)⊤ ReLU(−U)

− ReLU(U)⊤ ReLU(−U)− ReLU(−U)⊤ ReLU(U) (B.17)

= U⊤U. (B.18)
This proves that Q = U⊤U +R, and thus that in general we have

RSM =

(
U⊤U +R R

R U⊤U +R

)
. (B.19)

Note that this applies for any set of weights obeying the reflection-symmetry condition. For a solution
satisfying U⊤U = Id, this reduces to (B.5). As R is a d× d symmetric matrix with zeros along the
diagonal, it has d(d− 1)/2 independent elements, matching the dimensionality of the gauge group.
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C Additional experimental details and results

C.1 Experimental details

Here we provide experimental details regarding the simulations provided throughout the paper. Neural
networks consisted of a two-layer autoencoder with input dimension d, hidden-layer with ReLU
activation (no bias) consisting of n neurons, and an output layer that was a reconstruction of the
input (y = x). Networks were trained using a vanilla SGD with a fixed learning rate (η), a weight
decay (γ) and varying batch size (b) – see below for the specifics of each simulations. Training was
performed on PyTorch with NVIDIA GeForce RTX 2080 Ti GPU. Data were generated in an online
way from normal Gaussian distribution in Rd. Prior to the online training, a warm-up pretraining
was performed with no weight decay and batch size of 128 (this corresponds to time 0 on the axes of
the training plots). The plots of RSM values over time were created by first saving snapshots of the
model at intervals of 100 time steps, and then applying a moving average filter with the window size
of 5. The specific parameters for each figure are as follows:

Figure 3: d = 2, n = 4, η = 0.1, γ = 0.1, b = 1.

Figure 4: d = 2, n = 15, η = 0.15, γ = 0.1, b = 1.

Figure 5: d = 2, n = 15, η = 0.1, γ = 0.1, b = 100, λ1 = 0.001 (L1-penalty coefficient).

Figure 6: d = 3, n = 6, η = 0.1, γ = 0.1, b = 1.

Figure S1: d = 2, n = 4, η = 0.1, γ = 0.1, b = 1.

Figure S2: d = 2, n = 15, η = 0.1, γ = 0.1, b = 100.

Figure S3: d = 10, n = 20, η = 0.075, γ = 0.05, b = 1.
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C.2 Additional figures

Figure S1: RSM plots (top) and neurons’ weight vectors (bottom) for four different runs and n = 4
neurons. Each simulation is run with 5× 104 samples seen (batch size of 1).

Figure S2: RSM plots (top) and neurons’ weight vectors (bottom) for four different runs and n = 15
neurons. The batch size is large, leading to a relatively low SGD-noise regime where neurons’ weights
do not collapse. Each simulation is run with 5× 104 samples seen (batch size of 100).
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Figure S3: RSM values over time for a network with input dimension d = 10 and n = 20 neurons.
Network is trained with SGD and batch size of one. Based on the predictions in Appendix B, the
non-zero off-diagonal elements are placed into d(d − 1)/2 = 45 groups. Each group contains 4
unique RSM values which, as predicted, are highly correlated (gray curves: members of the group,
orange: group mean).
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