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ABSTRACT

To deploy large language models (LLMs) in high-stakes application domains
that require substantively accurate responses to open-ended prompts, we need
reliable, computationally inexpensive methods that assess the trustworthiness of
long-form responses generated by LLMs. However, existing approaches often
rely on claim-by-claim fact-checking, which is computationally expensive and
brittle in long-form responses to open-ended prompts. In this work, we introduce
semantic isotropy—the degree of uniformity across normalized text embeddings
on the unit sphere—and use it to assess the trustworthiness of long-form responses
generated by LLMs. To do so, we generate several long-form responses, embed
them, and estimate the level of semantic isotropy of these responses as the angular
dispersion of the embeddings on the unit sphere. We find that higher semantic
isotropy—that is, greater embedding dispersion—reliably signals lower factual
consistency across samples. Our approach requires no labeled data, no fine-tuning,
and no hyperparameter selection, and can be used with open- or closed-weight
embedding models. Across multiple domains, our method consistently outperforms
existing approaches in predicting nonfactuality in long-form responses using only
a handful of samples—offering a practical, low-cost approach for integrating trust
assessment into real-world LLM workflows.

1 INTRODUCTION

Large language models (LLMs) increasingly serve as front-line knowledge workers (Mayer et al.,
2025). Yet the application of LLMs to high-stakes settings that require long-form responses to open-
ended prompts is hamstrung by the fact that reliably ascertaining the trustworthiness of long-form
text generated by LLMs remains challenging.

Without scalable, computationally-inexpensive methods that are able to reliably indicate the level
of trustworthiness of long-form responses generated by a language model, deployment to high-
stakes application domains that require substantively accurate responses to open-ended prompts will
remain risky. Manual approaches are often infeasible at scale, and the standard stop-gaps—prompt
engineering, system messages, and ensemble voting—remain brittle and expensive (Shorinwa et al.,
2024). What is needed is a lightweight, model-agnostic, and data-agnostic method that is able to
flag potentially untrustworthy text generations without needing to resort to slow, claim-by-claim
fact-checking.

Prior work has attempted to gauge factuality in long-form natural language generation (NLG) by
aligning atomic claims with a knowledge graph or by training auxiliary classifiers on annotated
corpora (Wang et al., 2023). However, these approaches fall short in three important ways. First, they
require structured references or costly ground-truth labels that may not exist in specialized domains.
Second, they struggle with open-ended, multi-sentence answers where relevant facts are implicit
rather than explicit (Nikitin et al., 2024). Third, their computational footprint grows rapidly with the
number of sentences or claims, making them ill-suited to real-time applications (Jiang et al., 2024;
Liu et al., 2024; Farquhar et al., 2024; Zhang et al., 2024; Manakul et al., 2023).

We address these limitations by introducing semantic isotropy—the degree of uniformity across
normalized text embeddings on the unit sphere—and use it as a proxy for nonfactuality in long-form
text generation. Intuitively, if a prompt admits a single, factually grounded explanation, independently
sampled responses should cluster tightly in embedding space (Qiu and Miikkulainen, 2024; Wang
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Prompt: 
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paragraphs on:
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major centers of culture and
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Figure 1: Overview of the Semantic Isotropy Scoring Pipeline.

and Holmes, 2024). Conversely, when an LLM hallucinates, subtle changes in semantics and content
pull the embeddings apart, inflating angular dispersion. To measure the semantic isotropy of a set of
embeddings—and gauge the trustworthiness of the corresponding long-form text generations—we
compute a semantic isotropy score according to the following simple and computationally inexpensive
steps: We first generate a handful of responses, we then embed them with any off-the-shelf text
encoder, and finally, we compute a semantic isotropy score by estimating the von Neumann entropy
of the cosine kernel under the set of embeddings. No labels, fine-tuning, or hyperparameter search
are required.

To enable broad evaluation of semantic isotropy as a proxy for nonfactuality—particularly across
varying text lengths and at scale—we develop Segment-Score, a new factuality scoring method.
Segment-Score is designed to address key limitations of existing approaches (Min et al., 2023): It
is more efficient in terms of token usage, scales effectively to longer responses, and offers clearer,
more consistent criteria for labeling statements as true or false. Using Segment-Score, we assess
the reliability of semantic isotropy scoring in predicting nonfactuality long-form text generation.
Computing semantic isotropy scores is model-agnostic and can be done with off-the-shelf embedding
models, making this approach inexpensive and easy to use in practice.

In our empirical evaluation, we find that semantic isotropy scoring achieves state-of-the-art perfor-
mance across relevant benchmarks. It does so robustly across a wide range of models, response
lengths, and evaluation settings, demonstrating its effectiveness and generalizability as a lightweight
and scalable proxy for trustworthiness.

To summarize, our key contributions are:
1. We introduce semantic isotropy and describe a simple and computationally inexpensive method

for semantic isotropy scoring as a means to assess nonfactuality in long-form natural language
generation.

2. We develop the Segment-Score protocol to generate and score datasets of long-form LLM genera-
tions for open-ended prompts and create a dataset of 1, 182 unique entities along with ≈65, 450
scored responses by three different models, each containing roughly between 25 and 60 distinct
claims.

3. We demonstrate the efficacy of using semantic isotropy scores as a proxy for factual inconsistency
in long-form natural language generation across a range of generative models, embeddings, and
relevant experimental settings.

2 RELATED WORK

2.1 UNCERTAINTY QUANTIFICATION IN LARGE LANGUAGE MODELS

Early work on uncertainty quantification in LLMs largely involved analyzing token-level logits
and derived distributions. OpenAI (2023) demonstrated the differences in token-level calibration
dynamics of pre-trained and RLHF post-trained LLMs with Kirk et al. (2024) inferring that the latter
process led to model miscalibration.

On the other hand, Monte Carlo sampling-based approaches (Zhang, 2020; Malinin and Gales, 2021;
Lin et al., 2024; Lakshminarayanan et al., 2017) have shown promise in estimating uncertainty in
LLMs. However, a key challenge highlighted by these approaches is the need to standardize LLM
responses to effectively compare them. In multiple-choice style discrete finite class output settings,
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studies have used a combination of Natural Language Inference (NLI) (Williams et al., 2018), Oracle
LLMs (Band et al., 2024), and Embedding Models (Qiu and Miikkulainen, 2024; Grewal et al., 2025)
to standardize model responses for precise class attribution. However, in NLI methods specifically,
models have historically had limited context windows and several of the comparison algorithms grow
quadratically in the number of inputs (Farquhar et al., 2024; Zhang et al., 2024; Manakul et al., 2023;
Wang et al., 2024c; Chen et al., 2025). As a result, while the techniques used are in principle capable
of addressing the semantic variations introduced by short-form responses, several limitations remain
that hinder widespread adoption in practical settings.

A direction that addresses some of the pain points of NLI methods is the introspection of the model’s
internal state to estimate uncertainty. Kadavath et al. (2022) use the activations in the model’s last
hidden layer to train a linear classifier probe that indicates whether the model knows the answer to
the prompt. Kossen et al. (2024) adopt a similar approach by developing a cheap predictive model
on top of the LLM’s internal state that is capable of estimating semantic entropy (Farquhar et al.,
2024) without repeated sampling; Nikitin et al. (2024) extend this approach to analyze a graph
representation and its Laplacian. Ji et al. (2024) use the state information to specifically predict the
likelihood of hallucination while Ao et al. (2024) use latent representations in a multi-modal context
to develop an uncertainty quantification method for both text and images simultaneously. While
the success of these approaches justify the value of leveraging latent representations for uncertainty
quantification, these existing methods generally do not scale well with increases in response size and
model complexity.

Recently, several studies have made meaningful advances in addressing uncertainty quantification,
specifically for longer-format settings. Long Uncertainty Quantification (LUQ) (Zhang et al., 2024)
and INSIDE (EigenScore) (Chen et al., 2024) are most relevant to our method and serve as key
benchmarks in our analysis. While LUQ uses NLI methods to calculate a similarity matrix between
samples, the LUQ-Atomic variant that we benchmark against averages normalized entailment at a
sentence / statement level, providing a much more fine-grained and robust measure of similarity.
EigenScore also samples a batch of responses and computes the Eigen-distribtion over the batch of
latent representations in the generating model.

2.2 FACTUALITY AND LONG-FORM NLG

While several NLP datasets are designed for multiple choice-style tasks (Joshi et al., 2017; Rajpurkar
et al., 2016; Lin et al., 2022; Reddy et al., 2019), the options for open-ended long-form responses
are much more limited. A key challenge is defining a suitable metric that is a meaningful measure
of quality but also tractable to compute. Factuality, or the degree to which a response is supported
by a ground truth, has been a go-to metric for several studies (Guo et al., 2022). Min et al. (2023)
developed FactScore, a popular scoring algorithm for generating factuality scores using a ground
truth text. FactScore operates by decomposing a text into a set of atomic facts by using an oracle
model (LLM) and scoring each of these facts with the help of the ground truth reference document.
This method has been applied to create datasets such as FactScore-Bio (Zhang et al., 2024), that
operates on biographies taken from Wikipedia.

FactScore has given rise to several derivative methods such as LongFact & SAFE (Wei et al., 2024)
(which uses dynamic web searches to find supporting references), FELM (Chen et al., 2023) (applied
to Math and Reasoning problems), Multi-FAct (Shafayat et al., 2024) (multi-lingual setting), FactAl-
ign (Huang and Chen, 2024) and LoGU (Yang et al., 2024b) (post-training / RLHF to incorporate
uncertainty phrasing into model generations), and VeriScore (Song et al., 2024) (better precision
by scoring verifiable facts only) to name a few. But most of these methods share key limitations of
the FactScore framework, scaling poorly with response length and requiring several LLM calls per
sample. We address some of these drawbacks through our method, Segment-Score (see Algorithm 1),
that utilizes capabilities of more modern LLMs such as longer context windows and the ability to
respond with structured outputs.

3 SEMANTIC ISOTROPY IN LONG-FORM LANGUAGE GENERATION

In this section, we introduce semantic isotropy, a measure of semantic variation in long-form text
generations, and use it to motivate semantic isotropy scoring, a method that expresses the level of
semantic isotropy in long-form responses and can serve as a proxy for nonfactuality.
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Algorithm 1 SEGMENT-SCORE(t)

Require: Topic t, LLM response Y (t), reference document D(t), Oracle LLM O
1: S(t)← SegmenterO

(
Y (t)

)
= ⟨s1, s2, . . . , sm⟩, where m← |S(t)| ▷ Partition Y (t) into m

atomic segments
2: Initialize v← []
3: for i = 1 to m do
4: Ci ← ⟨s1, s2, . . . , si−1⟩ ▷ Context before segment si
5: vi ← ScoreO

(
Ci, si,D(t)

)
▷ Verify si against D(t) in context

6: Append vi to v
7: end for
8: ϕ← 1

m

∑m
i=1 1(vi = True) ▷ Fraction of segments verified as True

9: return ϕ

3.1 SEMANTIC ISOTROPY

We start with the conventional definition of isotropy. Intuitively, isotropy describes a state where a set
of vectors or a distribution has no preferred direction—its properties are the same in all orientations.
More formally, for a set of unit vectors, we can express this property as follows:

Definition (Isotropy). The column vectors x1, ..., xN ∈ RD with ∥xi∥2 = 1 for all
i ∈ {1, ..., N} are said to be isotropic if for the matrix X = [x1, ..., xN ]: X⊤X = IN .

This condition means that, on average, the transformation represented by X preserves directions
and spreads uniformly across all directions in RD. Geometrically, if the unit vectors x1, ..., xN are
isotropic, this implies that the unit vectors they are uniformly dispersed across the unit sphere, giving
us an intuitively meaningful measure of variation within x1, ..., xN .

We will now build on this intuition to define semantic isotropy. LetR = {r1, ..., rN} ∈ T N be a set
of N long-form NLG responses given a prompt p and let Γθ(·) : T → RD be an embedding model
parameterized by neural network parameters θ. We define E = {e1, ..., eN} to be the collection of
embedding vectors, where ei = Γθ(ri) ∈ RD is the embedding vector of response ri, ēi ∈ RD is
the corresponding normalized embedding vector, ēi = ei/||ei||, and Ē is the matrix of normalized
embedding vectors, Ē = [ē1, ..., ēN ]⊤ ∈ RN×D. The cosine kernel function for two embedding
vectors, ei, ej ∈ RD, is then defined as

kcos(ei, ej) = [ĒĒ⊤]i,j = ē⊤i ēj . (1)

We denote the cosine kernel matrix for E by Kcos
E ∈ RN×N .

With these preliminaries in place, we are now ready to formally define semantic isotropy to represent
uniform dispersion of the normalized embedding vectors:

Definition (Semantic Isotropy). A setR = {r1, ..., rN} of long-form responses with corre-
sponding embeddings E = {e1, ..., eN} is semantically isotropic if Kcos

E = IN .

3.2 MEASURING SEMANTIC ISOTROPY IN LONG-FORM LANGUAGE GENERATION

As defined, isotropy represents a strict condition that is either met or not met. Therefore, to use
semantic isotropy in practice as a means of ascertaining nonfactuality in long-form natural language
generation, we need to be able to gauge the level of isotropy of a given cosine kernel. We want to
formalize the intuition that factuality corresponds to a high level of semantic alignment within a set
of long-form generations (highly anisotropic), whereas uncertainty and non-facuality correspond to a
high level of dispersion (very isotropic).

To estimate the level of isotropy of a set of long-form text generations, we use the von Neumann
entropy (vNE) (von Neumann and Beyer, 2018) of the cosine kernel Kcos

E , normalized to have
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Figure 2: Main Experimental Results. Bar Charts comparing the performance (as measured by
the R2 of a linear model of Factuality ∼ Semantic Isotropy); implemented using various embedding
models and benchmark uncertainty metrics on two datasets: TriviaQA Entities [TriviaQA] (Top
Row) and FactScore-Biographies [FS-BIO] (Bottom Row); scored using the Segment-Score (SS)
algorithm. Responses are ≈500 words. 1500 Bootstrapped samples are used to generate 1-SD error
bars. Semantic isotropy I (ours) outperforms all other baselines for all embedding models.

trace = 1, which allows us to view the eigenvalues as defining a discrete probability distribution. Let
K̄cos

E = Kcos
E /trace(Kcos

E ) and define

vNE(Kcos
E ) = −trace(K̄cos

E log K̄cos
E ). (2)

To be precise, we view the above definition in the eigenspace of the positive semidefinite matrix
Kcos

E , that is, vNE(Kcos
E ) = −

∑N
i λi log λi, where λ1, ..., λN are the eigenvalues of K̄cos

E . Note
that vNE(Kcos

E ) attains its maximum value of logN for semantically (perfectly) isotropic responses
(i.e., isotropic normalized embedding vectors) and is minimized at 0 when all embedding vectors are
aligned (parallel). It thus measures the degree of dispersion of {ēi}Ni=1 on the unit sphere and serves
as a measure of the level of isotropy within the set of text embeddings.

We are now ready to define the semantic isotropy score I(·) that will serve as our proxy for factuality.
Consider N sampled long-form text generations in response to a prompt and define

I(Kcos
E ) = vNE(Kcos

E )/ logN, (3)

with 0 ≤ I(Kcos
E ) ≤ 1. Under this definition, (i) a lower degree of semantic isotropy (a semantic

isotropy score closer to 0) is associated with stronger alignment/lower dispersion and consequently
higher certainty and factuality, whereas (ii) a higher degree of semantic isotropy (a semantic isotropy
score closer to 1) is associated with weaker alignment/higher dispersion and consequently lower
certainty and factuality. In a nutshell: The lower the semantic isotropy score, the more trustworthy
the generating model’s long-form responses to the prompt are.

We also considered alternative matrix measures—like the Frobenius norm, ∥Kcos
E ∥F , and the log

determinant, log(det(Kcos
E ))—for estimating the level of embedding isotropy and found that using

the von Neumann entropy works best (see Table 1). This is consistent with the findings of Nikitin
et al. (2024). When assessing the efficacy of other measures of isotropy, we found that several other
measures performed well, suggesting that even under different measurement approaches, isotropy is
a robust proxy for nonfactuality.
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Figure 3: Main Experimental Results. Bar Charts comparing the performance (as measured by the
R2 of a linear model of factuality with semantic isotropy as the explanatory variable; implemented
using various embedding models and benchmark uncertainty metrics on the FS-BIO dataset using
the FactScore (FS) scoring algorithm. Left hand side: Benchmark UQ metrics. Right Hand Side:
semantic isotropy (I) implemented using various embedding models. Same experimental setting as
in Figure 2. We observe that our method’s performance is robust to the scoring scheme.

4 EMPIRICAL EVALUATION

In this section, we conduct an empirical evaluation to assess whether semantic isotropy scores can
serve as effective a proxy for nonfactuality in long-form natural language generation with LLMs.
First, we will describe the creation of a ground truth evaluation dataset using Segment-Score and
present our evaluation metrics and benchmarks. We will then present our main findings about the
efficacy of semantic isotropy scoring as a means to predict nonfactuality in long-form text generation.

4.1 CREATION OF A DATASET OF LONG-FORM RESPONSES TO OPEN-ENDED PROMPTS

To construct a dataset of long-form response to open-ended prompts, we must select a corpus of
entities such that each is associated with an underlying ground truth reference document. These
entities are used to create a set of open-ended prompts that can be fed into an LLM to generate
long-form responses. We use two sources—FactScore-Bio [FS-BIO] (182 unique entities) (Min et al.,
2023; Zhang et al., 2024) and TriviaQA (Joshi et al., 2017) (1,000 unique entities). Both datasets
use Wikipedia as their ground truth to source reference documents. For TriviaQA, we exclude all
entities that correspond to days, dates or numerical values and only select those that match the title
of the underlying Wikipedia page. Of the 5,245 qualifying TriviaQA entities across the training
and validation set, we randomly select a subset of 1,000 entities to create open-ended prompts for
long-form text generation.

To generate long-form responses, we use Meta Llama 3.1 8B Instruct (Touvron et al., 2023), Microsoft
Phi 3.5 Mini Instruct (Abdin et al., 2024), and OpenAI GPT 4.1 Mini (OpenAI, 2023) to generate
responses for TriviaQA and FS-BIO. For TriviaQA we sample up to k = 20 responses while for
FS-BIO we sample k = 10 responses, targeting approximately 500 words for each response. For
TriviaQA using Llama 3.1 8B Instruct, we also generate a longer dataset of approximately 1, 000
words and derived datasets of intermediate word counts of approximately 125, 250, 375, 500, and
750 words by truncating the 1, 000 word variant to the nearest sentence. Model inference is run with
temperature τ = 0.7 and FP16 quantization using the vLLM framework (Kwon et al., 2023). Finally,
we compute factuality scores for the datasets using the Segment-Score (SS) procedure (Algorithm 1).
Implementation details and prompts are presented in Appendix B.3. The dataset and Segment-Score
algorithm are released to allow future benchmarking by the research community.

We also generate FactScore (FS; Min et al., 2023) scores for the FS-BIO datasets from each model.
This allow us to benchmark our scoring algorithm (SS) to the existing state-of-the-art method, and we
can show that our results hold robustly. See Appendix C.2 for a comparison of the scoring methods.
We use GPT 4.1 Mini (OpenAI, 2023) as the oracle LLM in both algorithms.
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Figure 4: Performance by Response Length: Comparing Semantic Isotropy in terms of explained
variance (R2) of Factuality (SS) across various response lengths, contrasted by model size: Small (up
to 3B parameters) and Large (≈7B or more parameters). 1500 Bootstrapped samples are used to
generate 1-SD error bars.

4.2 EVALUATION METRICS

To assess the performance of our methods and compare them to appropriate baselines from the
literature, we measure the degree of the relationship between each individual measure and the average
factuality of a given topic, aggregated across all responses. First, we selected a set of embedding
models that rank highly on the MTEB Benchmark (Muennighoff et al., 2023) to use in computing
our isotropy scores. We measure predictiveness of these scores using R2, the explained variance of a
linear model with factuality scores as the dependent variable and isotropy scores as the independent
variable. To estimate error bounds, we perform bootstrap sampling and generate 1-σ error bars for
each measure. We compare Semantic Isotropy to the following baseline measures: Perplexity -
Exponential of the average negative log-likelihood of the generation (Ren et al., 2023); LN-Entropy
- Length Normalized Entropy (Malinin and Gales, 2021); U.Eign - Sum of Eigenvalues of the Graph
Laplacian, U.Deg - Average pairwise distance measured using an NLI model (Lin et al., 2024);
U.NLI - NLI uncertainty derived using SelfCheckNLI (Manakul et al., 2023); Semantic Entropy -
Entropy of the probability distribution of semantic clusters over the responses (Farquhar et al., 2024);
LUQ-Atomic - Long Uncertainty Quantification using atomic facts via LLM based fact extraction
(Zhang et al., 2024); EigenScore - the log-determinant of the centered embedding matrix of the
generating model’s internal state activations over a set of sampled responses Chen et al. (2024).

While relevant to our study, we do not include comparisons with Kernel Language Entropy (KLE)
(Nikitin et al., 2024) and Graph Longform Uncertainty (Jiang et al., 2024). We found that the KLE
computation was highly numerically unstable given the degree of semantic entailment overlap among
the sampled long-form responses and did not produce meaningful results. For Graph Uncertainty, the
distinct claim union algorithm proved computationally difficult to implement at the response lengths
considered in our study. For context, a typical set of responses had over 600 distinct claims, which
implied 6,000 LLM calls to measure claim to response entailment for one topic, assuming N = 10.

Sampling the appropriate embedding. Unlike closed-weight models that return just an embedding
vector, for open-weight models we select the activations corresponding to the last token in the final
hidden state, except for Nomic v1 (Nussbaum et al., 2025) where we take the average of the activations
over the token dimension instead. For further details, see Appendix B.2.

4.3 MAIN RESULT: FACTUALITY IN LONG-FORM RESPONSES TO OPEN-ENDED PROMPTS

We present our main empirical results in Figure 2 (see also Table 2 in Appendix A). We find that
semantic isotropy scores are superior to existing methods in predicting nonfactuality as per the (SS)
algorithm on the FS-BIO and TriviaQA datasets. Using R2 (i.e., the OLS-explained variance) as
our performance measure, I outperforms all existing metrics, in most cases by a wide margin. We
see some variance in the performance under different embedding models, and discuss this finding
in more detail in Section 5. While certain embedding models are better suited to specific tasks,
semantic isotropy scoring outperforms existing state-of-the-art methods across the board. Notably,
the Nomic V1 embedding (Nussbaum et al., 2025) demonstrates exceptional performance on all
datasets, occasionally surpassing even larger and closed-source models such as Gemini (Team, 2024)
and OpenAI Embeddings (OpenAI, 2023).
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(a) Model Agnostic Performance Comparison: Performance dif-
ference between current state-of-the-art LUQ-Atomic (Zhang
et al., 2024) and semantic isotropy based on different embed-
ding models across each dataset using Phi 3.5 Mini Instruct
as the generator model. In each case, all versions of semantic
isotropy are more predictive than LUQ. 1500 bootstrapped
samples are used to generate 1-SD error bars.

0.30

0.35

0.40

0.45

0.50

0.55

R
2

Small Models (~3B)
Nomic v1 Embed
Qwen 3 (0.6B)
OpenAI (S)
Cohere v3.0 (Lite)

2 4 6 8 10
# of Samples

0.30

0.35

0.40

0.45

0.50

0.55

R
2

Large Models (~7B)
Qwen 2 (7B)
OpenAI (L)
Gemini v1
Cohere v4.0
Cohere v3.0

(b) Performance by # of Samples: Line Charts comparing the
performance of semantic isotropy by number of sampled re-
sponses on FS-BIO (SS) dataset of ≈500 words, contrasted
by model size: Small (up to 3B parameters) and Large (≈7B
or more parameters). 1,500 Bootstrapped samples are used to
generate 1-SD error regions.

Figure 5: Ablation Studies: Comparing the performance of semantic isotropy when varying (a)
Embedding Model Used [Left] and (b) Number of samples used to measure Isotropy [Right].

4.4 FACTSCORE EVALUATION

To ensure that our results are not merely an artifact of the Segment-Score method, we also evaluate
semantic isotropy scoring under the FactScore (FS) algorithm applied to the FS-BIO dataset (see
Figure 3). We find that the results mirror those in Figure 2 even improving the predictive performance
of semantic isotropy scoring. This consistency across scoring schemes highlights the robustness and
generalizability of semantic isotropy as a measure of nonfactuality. A more detailed comparison of
the two scoring methods can be found in Appendix C.2.

5 SENSITIVITY STUDIES

Effect of Response Length. One important study we undertake is to understand the relationship
between measure performance and response length. While our main study focuses on ≈500 word
responses, we explore the relationship between semantic isotropy and factuality for shorter and longer
texts as well. We outline these results in Figure 4. While certain models perform better (Gemini and
Nomic v1), performance is generally consistent across the board. OpenAI’s Text Embedding 3 is a
notable exception, with performance consistently increasing with response length, independent of
model size.

Effect of Choice of Embedding Model. We analyze how the size and type of embedding model
impact performance. As shown in Figure 5a, Semantic Isotropy consistently outperforms LUQ
across all three datasets/scoring methods and embedding models. Notably, even the least effective
embedding model yields improvements over LUQ, while the best performs substantially better. These
results highlight the robustness of Semantic Isotropy, demonstrating its effectiveness regardless of
the embedding model used. We compare small and large variants of closed source models such as
those provided by OpenAI and Cohere. In both cases, the performance difference is negligible and
likely attributable to sampling noise. This finding demonstrates that semantic isotropy is robust even
at small model sizes.

Effect of Number of Sampled Responses. Figure 5b illustrates how performance scales with
the number of sampled responses. Encouragingly, semantic isotropy scoring does not require many
samples (≈6-8) to achieve comparable performance to its implied asymptotic level (at N = 10
samples), across both small and large models. While the method is generally scalable, this result
confirms that it can deliver consistent truthfulness indicators with minimal overhead.
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Effect of Generator Capability Level. In addition to the results discussed in Section 4.3, where
we used long-form responses generated by Phi 3.5 Mini Instruct and Llama 3.1 8B Instruct, we also
considered long-form responses generated by a more capable, closed-weight model, GPT 4.1 Mini.
Applying the Segment-Score method to long-form responses for FS-BIO and TriviaQA, we find that
the absolute performance of semantic isotropy scoring as well as its relative performance compared
to the baselines significantly increases on FS-BIO but decreases on TriviaQA. On TriviaQA, semantic
isotropy scoring achieves a higher R2 than all baselines using Nomic v1 embeddings, but the best
absolute R2 value is barely above 10%, implying that almost none of the variation in the factuality
scores can be explained by any of the methods used. Since, for FS-BIO, semantic isotropy scoring
performs better on long-form responses generated by GPT 4.1 Mini than on long-form responses
generated by Phi 3.5 Mini Instruct and Llama 3.1 8B Instruct, the poor performance (across methods)
on TriviaQA is unlikely due to increased model capability per se and more likely due to dataset
idiosyncrasies, such as inherent entity ambiguities, or model pre-training artifacts. We present a
detailed analysis and discussion in Appendix C.1.

Table 1: Comparison of different isotropy measures: Anal-
ysis of various isotropy measures, each of which can represent
the isotropy condition. Comparing explained variance (R2)
of Factuality on ≈500 word length responses generated using
Phi 3.5 Mini Instruct on the TriviaQA (SS) dataset, across
various embedding models. 1,500 Bootstrapped samples are
used to generate 1-SD error bars.

Model Frobenius Inv. Trace LogDet vNE(OURS)

Gemini 0.412 ± 0.02 0.376 ± 0.02 0.431 ± 0.02 0.43 ± 0.02
Nomic V1 0.326 ± 0.02 0.329 ± 0.02 0.393 ± 0.02 0.354 ± 0.02
OpenAI (L) 0.257 ± 0.02 0.208 ± 0.02 0.255 ± 0.02 0.266 ± 0.02
OpenAI (S) 0.274 ± 0.02 0.167 ± 0.02 0.241 ± 0.02 0.279 ± 0.02
Cohere v4.0 0.272 ± 0.02 0.222 ± 0.02 0.259 ± 0.02 0.276 ± 0.02
Cohere v3.0 0.272 ± 0.02 0.221 ± 0.02 0.261 ± 0.02 0.276 ± 0.02
Qwen 2 (7B) 0.27 ± 0.02 0.169 ± 0.02 0.232 ± 0.02 0.268 ± 0.02
SFR Mistral (7B) 0.291 ± 0.02 0.186 ± 0.02 0.268 ± 0.02 0.297 ± 0.02

Effect of Choice of Isotropy Measure.
In Table 1 we ablate a variety of alterna-
tive measures of isotropy, among them the
Frobenius norm ∥Kcos

E ∥, log(det(Kcos
E ))

and trace(Kcos
E )−1. We find that von Neu-

mann entropy-based isotropy scoring per-
forms best overall, outperforming other
measures on average across different em-
bedding model choices and dataset settings.
However, most of these measures demon-
strate nearly equivalent performance, fur-
ther underscoring the robustness of seman-
tic isotropy as a proxy for nonfactuality.

Computational Considerations. One of the key drawbacks of existing methods such as LUQ and
Graph Uncertainty is the O(MN2) complexity, where M is the average number of facts or segments
per response and N is the number of sampled responses. Even for Semantic Entropy and derived
methods, the computation of entailment scores is O(N2). Entailment scores are also computationally
expensive as premises and hypothesis cannot be naively entailed in a vectorized fashion. In contrast,
while semantic isotropy is naively O(N2), where N is the number of samples, the ability to compute
it in a parallelized vectorized way yields significant performance improvements. We generally find
that for scoring one batch of N = 20 responses for a given topic of ≈500 words using I requires
1.8± 0.05 seconds on a V100 GPU (amortizing the overhead over 20 trials), compared to 302± 48
seconds for LUQ-Atomic, using models of comparable parameter counts—that is, Nomic v1 for I
and Deberta V3 Large (MNLI) (Manakul et al., 2023) for LUQ.

6 CONCLUSION

In this work, we introduced Semantic Isotropy, proposed a computationally inexpensive method for
semantic isotropy scoring, presented Segment-Score for cheap long-form ground truth data generation,
and demonstrated that semantic isotropy scores yield state-of-the-art factuality prediction in long-form
natural language generation. We found that semantic isotropy is highly predictive of nonfactuality
in long-form LLM responses to open-ended prompts and that semantic-isotropy scores outperform
alternative approaches—in most cases by a large margin. We also found that, in most of the cases
considered in our analysis, semantic isotropy scoring is robust to the choice of embedding model,
the choice of isotropy measure, the response length, and the number of samples used. We release
code to reproduce the empirical evaluation and implement the Segment-Score method, and we make
the Segment-Score-annotated dataset publicly available to facilitate further research into assessing
factuality in long-form text generation. Our findings suggest that semantic isotropy is a simple and yet
effective predictor of nonfactuality and open the door to more reliable and cost-effective evaluation
of long-form LLM text generation at scale.
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REPRODUCIBILITY STATEMENT

We have made a significant effort to ensure the reproducibility of our results. An anonymized
implementation of our method is provided at anonymous.4open.science/r/semantic_isotropy-C927,
which includes training, evaluation, and analysis scripts. The experimental setup—including hy-
perparameters, model configurations, and sampling parameters are described in Section 4.1. All
datasets used in our experiments are publicly available, and we additionally provide scripts for data
preparation. Our experiments rely on open-weight language models and certain API-only models;
instructions for reproducing results with both included in the README.md file in the released code.
Infrastructure and compute requirements are documented in Appendix B.1. Finally, we intend to
release the dataset constructed for this study upon completion of the review process, enabling direct
benchmarking of our results.
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A FULL EXPERIMENTAL RESULTS

TriviaQA Entities (Segment Score) FactScore-BIO (Segment Score) FactScore-BIO (FactScore)
Measure / Metric Llama 3.1 8B Phi 3.5 Mini GPT 4.1 Mini Llama 3.1 8B Phi 3.5 Mini GPT 4.1 Mini Llama 3.1 8B Phi 3.5 Mini GPT 4.1 Mini
Perplexity (Ren et al., 2023) 0.092 ± 0.02 0.263 ± 0.03 0.00074 ± 0.003 0.0933 ± 0.04 0.0305 ± 0.03 0.0137 ± 0.007 0.0578 ± 0.04 0.0622 ± 0.04 0.0158 ± 0.02
LN Entropy (Malinin and Gales, 2021) 0.091 ± 0.02 0.26 ± 0.03 0.0306 ± 0.01 0.0872 ± 0.04 0.0316 ± 0.03 0.0241 ± 0.02 0.0535 ± 0.04 0.0608 ± 0.04 0.00625 ± 0.009
U.Eign (Lin et al., 2024) 0.062 ± 0.02 0.181 ± 0.03 0.00166 ± 0.002 0.275 ± 0.05 0.0529 ± 0.03 0.0155 ± 0.02 0.344 ± 0.06 0.0279 ± 0.02 0.0185 ± 0.02
U.Deg (Lin et al., 2024) 0.0457 ± 0.01 0.117 ± 0.03 0.00286 ± 0.003 0.255 ± 0.07 0.0452 ± 0.03 0.0254 ± 0.02 0.28 ± 0.05 0.0224 ± 0.02 0.0255 ± 0.02
U.NLI (Manakul et al., 2023) 0.0767 ± 0.02 0.167 ± 0.03 0.00164 ± 0.002 0.144 ± 0.06 0.0552 ± 0.03 0.0128 ± 0.01 0.0916 ± 0.04 0.0299 ± 0.02 0.0263 ± 0.02
EigenScore (Chen et al., 2024) 0.0158 ± 0.009 0.00131 ± 0.002 N/A 0.0683 ± 0.04 0.021 ± 0.02 N/A 0.107 ± 0.05 0.0309 ± 0.03 N/A
LUQ (Zhang et al., 2024) 0.03 ± 0.01 0.231 ± 0.03 0.1 ± 0.02 0.381 ± 0.05 0.104 ± 0.05 0.116 ± 0.04 0.657 ± 0.07 0.367 ± 0.06 0.192 ± 0.06
Semantic Entropy (Farquhar et al., 2024) 0.0291 ± 0.01 0.0817 ± 0.02 0.00242 ± 0.003 0.156 ± 0.07 0.0298 ± 0.02 0.00692 ± 0.009 0.136 ± 0.06 0.00868 ± 0.01 0.0152 ± 0.02
I: Gemini† (Team, 2024) 0.244 ± 0.03 0.427 ± 0.02 0.028 ± 0.01 0.435 ± 0.04 0.235 ± 0.07 0.342 ± 0.04 0.7 ± 0.06 0.661 ± 0.05 0.48 ± 0.08
I: OpenAI Small† (OpenAI, 2023) 0.156 ± 0.02 0.282 ± 0.02 0.00196 ± 0.003 0.441 ± 0.04 0.265 ± 0.07 0.314 ± 0.04 0.65 ± 0.06 0.593 ± 0.05 0.38 ± 0.08
I: OpenAI Large† (OpenAI, 2023) 0.155 ± 0.02 0.269 ± 0.02 0.00215 ± 0.003 0.44 ± 0.03 0.268 ± 0.06 0.315 ± 0.04 0.649 ± 0.06 0.614 ± 0.05 0.376 ± 0.08
I: Nomic v1 Embed (Nussbaum et al., 2025) 0.27 ± 0.02 0.356 ± 0.02 0.136 ± 0.03 0.446 ± 0.04 0.273 ± 0.06 0.417 ± 0.04 0.737 ± 0.05 0.6 ± 0.05 0.547 ± 0.08
I: Qwen 2 (7B) (Yang et al., 2024a) 0.0811 ± 0.02 0.268 ± 0.03 0.0203 ± 0.01 0.488 ± 0.04 0.355 ± 0.06 0.42 ± 0.04 0.733 ± 0.05 0.589 ± 0.05 0.569 ± 0.08
I: Mistral (SalesForce) (Meng et al., 2024) 0.0842 ± 0.02 0.296 ± 0.03 0.0128 ± 0.01 0.446 ± 0.04 0.29 ± 0.06 0.46 ± 0.04 0.714 ± 0.05 0.533 ± 0.06 0.607 ± 0.08
I: Mistral (E5) (Wang et al., 2024a) 0.112 ± 0.02 0.318 ± 0.02 0.00276 ± 0.004 0.445 ± 0.04 0.281 ± 0.06 0.471 ± 0.04 0.714 ± 0.06 0.508 ± 0.06 0.604 ± 0.08
I: Cohere v4.0 † (AI, 2025) 0.11 ± 0.02 0.277 ± 0.03 0.0035 ± 0.004 0.504 ± 0.03 0.299 ± 0.07 0.408 ± 0.04 0.747 ± 0.06 0.671 ± 0.05 0.5 ± 0.08
I: Cohere v3.0 † (AI, 2023) 0.111 ± 0.02 0.277 ± 0.03 0.00325 ± 0.004 0.502 ± 0.04 0.265 ± 0.07 0.408 ± 0.04 0.75 ± 0.06 0.665 ± 0.05 0.503 ± 0.08
I: Cohere v3.0 (Lite) † (AI, 2023) 0.11 ± 0.02 0.278 ± 0.03 0.00324 ± 0.004 0.502 ± 0.03 0.236 ± 0.06 0.41 ± 0.04 0.749 ± 0.05 0.661 ± 0.05 0.503 ± 0.08
I: Qwen 3 (0.6B) (Yang et al., 2025) 0.0477 ± 0.02 0.172 ± 0.02 0.0147 ± 0.01 0.466 ± 0.04 0.305 ± 0.06 0.421 ± 0.04 0.719 ± 0.06 0.525 ± 0.06 0.593 ± 0.08
I: Qwen 3 (4B) (Yang et al., 2025) 0.00524 ± 0.006 0.165 ± 0.03 0.135 ± 0.03 0.441 ± 0.04 0.307 ± 0.06 0.368 ± 0.05 0.713 ± 0.06 0.588 ± 0.05 0.554 ± 0.08
I: Qwen 3 (8B) (Yang et al., 2025) 0.00247 ± 0.004 0.116 ± 0.02 0.126 ± 0.03 0.432 ± 0.04 0.279 ± 0.06 0.331 ± 0.05 0.709 ± 0.06 0.561 ± 0.06 0.528 ± 0.07

Table 2: Main Experimental Results. Comparison of semantic isotropy with other uncertainty met-
rics across TriviaQA Entities (Segment Score) and FactScore-Bio (Segment Score and FactScore).
Each dataset column is subdivided by base model: Llama 3.1 8B, Phi 3.5 Mini, and OpenAI 4.1 Mini.
Values are R2 (explained variance) of a simple linear model of Factuality ∼ Isotropy score. 1500
Bootstrapped samples are used to generate 1-SD error bars. †denotes API-only models. Note that
Eigenscore values are not generated for GPT 4.1 Mini as it is a black-box model and the internal
layer activations are not available.

B EXPERIMENTAL DETAILS

B.1 INFRASTRUCTURE REQUIREMENTS

Our work was performed using Google Cloud Platform compute to run inference on the white-box models using
a single node with up to 4 NVIDIA Tesla V100 GPUs. GPT 4.1 Mini was used as the Oracle LLM in Algorithm
1. OpenAI text-embedding-3-small, text-embedding-3-large, Gemini gemini-embedding-001, Cohere
Embedding v4.0, v3.0 (AI, 2023; 2025) were also used to compute response embeddings for semantic isotropy
computation. Additionally, OpenAI GPT 4.1, Anthropic Claude 3.5 Sonnet, and DeepSeek V3 were also used in
verification runs to study robustness of the scoring pipeline. Overall, we utilize approximately 1,440 GPU hours
(in addition to CPU compute time) to generate samples and score the responses.

B.2 SELECTING THE APPROPRIATE EMBEDDING

Our experimental results require an embedding vector zi ∈ RD . Closed-weight models return a single vector
per response and allow the user to configure embedding side (D) as an input. We use the model default for
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Figure 6: Nomic v1 Embedding Choice. Kcos
E for two sample topics: Adam Faith (low factuality,

top row) and Nelson Mandella (high factuality, bottom row). The number in the parenthesis next
to the topic name is the average factuality across sampled responses. ∆I for each pooling method
denotes the percentage difference in semantic isotropy scores between the two topics (as a percentage
of I for Nelson Mandella). We infer that Mean Pooling for Nomic V1 yields the most informative
matrices for an isotropy analysis.

Gemini (768), OpenAI (1536) and Cohere (1024). However, Open-weight embedding models like Qwen2 (Yang
et al., 2024a) and Mistral (Meng et al., 2024) specify using the last token embedding in the final hidden state.
This can be found in their reference implementations on HuggingFace. In contrast, for Nomic V1 (Nussbaum
et al., 2025), authors do not recommend a pooling method and encourage users to find methods that work
well for their use case. We find that the last token embedding method yields a weak semantic isotropy score.
Instead, we use the mean pooling over the token dimension. Given model activations of the last hidden layer
as a matrix E ∈ RL×D , where L is the number of tokens in the response and D the embedding dimension,
we produce Znomic = mean(E, dim=1) such that Znomic ∈ RD . In Figure 6, we show the difference between a
highly trustworthy and a low trustworthy topic by mean, max and last token pooling for Nomic v1.

B.3 SEGMENT-SCORE IMPLEMENTATION SPECIFICS

Unlike FactScore, the Segment-Score algorithm is achieved through a single prompt per response. The basic
prompt template for our method can be found in Figure 11. The prompt is structured into three components.
First, an instruction block that covers the overall objective of the scoring exercise, expected data, desired output
structure, and specific handling for edge cases. Next, we provide two manually curated examples to guide the
model’s output. One such example can be found in Figure 12. Last, we provide the entity name, contents of the
reference document and response to be scored. The model is prompted to respond using a XML tag structure
which simplifies the data extraction process. We also force the model to respond with only ‘0’ or ‘1’ for the
output classes. For 99.8% of segments, the top 2 tokens are the ‘0’ or ‘1’ class labels, and we can use the
log-probabilities from the API to generate a normalized probability score for each labeled segment.

C ABLATION STUDIES

C.1 RESPONSE GENERATION USING OPENAI GPT 4.1 MINI

To understand the impact of the generator model on the performance of the semantic isotropy score, we also
generate responses using OpenAI GPT 4.1 Mini (OpenAI, 2023), scored using Segment-Score. Figure 7 shows
the results of this experiment in the same format as our main results. For the FS-BIO dataset, we see semantic
isotropy remains predictive of overall response factualtiy. However, we see a notable drop in performance in
the case of TriviaQA. Notably, this extends to all benchmark metrics as well. We also observe much greater
variance in the performance across embedding models, suggesting there are some settings where the choice of
embedding model is crucial.
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Figure 7: Experimental Results using OpenAI GPT 4.1 Mini. Bar Charts comparing the per-
formance (as measured by the R2 of a linear model of factuality with semantic isotropy as the
explanatory variable; implemented using various embedding models and benchmark uncertainty
metrics on both the FS-BIO ant TriviaQA datasets using the Segment-Score (SS) scoring algorithm.
Left hand side: Benchmark UQ metrics. Right Hand Side: semantic isotropy (I) implemented using
various embedding models. Same experimental setting as in Figure 2. We observe that performance
on generations using OpenAI GPT 4.1 Mini is significantly lower than other generation models,
however this extends to all benchmark metrics as well. Semantic isotropy continues to outperform all
other baselines. Note that Eigenscore values are not generated for GPT 4.1 Mini as it is a black-box
model and the internal layer activations are not available.

Consequently, it was important to understand the impact of the generation model on the performance of the
semantic isotropy score. Zhang et al. (2024) note that the LUQ method does not perform well using GPT 4, a
fact we were able to replicate.

"We also observe that LUQ is better suited for models with relatively lower factuality
and a lack of self-expressiveness regarding uncertainty. For models with high factuality
capabilities, such as GPT-4, LUQ only demonstrates a moderate correlation with factuality
scores" - Zhang et al. (2024)

One would expect that GPT 4.1 Mini would perform better in terms of instruction following and maintaining
consistent structure. This is anecdotally observed in the token count distribution (see Figure 9b), where GPT
4.1 Mini adhere’s much better to the 500 word guidance given in the prompt across different topic areas, as
compared to the other generative models being considered.

When studying the distribution of semantic isotropy scores, in Figure 9a, we observe that OpenAI GPT 4.1
Mini’s scores are smaller in magnitude and more tightly clustered. This highlighted that there may be some
inherrent structural properties of the OpenAI GPT 4.1 Mini generations that manifested in the embeddings in
this specific way. To tackle this, we performed a comparitive study between generations from GPT 4.1 Mini
(OpenAI, 2023), Phi 3.5 Mini (Abdin et al., 2024) and Llama 3.1 8B (Touvron et al., 2023). Using a LLM as
a judge setup, we asked OpenAI GPT 4.1 to compare and contrast 10 generations from GPT 4.1 Mini vs 10
from either Phi 3.5 Mini or Llama 3.1 8B for 50 different topics where the all the models had relatively low
factuality (i.e. ≤ 33% accuracy on average). The LLM geneerated comparisons were summarized into a brief
analysis (See Figure 8). This highlighted that properties such as structure, tone and other qualitative aspects of a
generation materially impacted the resulting embeddings. We expect that improvements in embedding models or
models specifically tuned to disregard qualtitative aspects of a generation could improve the performance of the
semantic isotropy score, but leave this exploration for future work.

C.2 COMPARING THE EFFICIENCY OF THE TWO SCORING METHODS

Segment-Score’s overall process closely follows the FactScore algorithm. However, we make several key
optimizations that improve runtime. First, unlike FactScore, we break the input text into atomic segments rather
than extracting atomic facts. As a result, each sentence may be broken into at most 2-3 segments that need to be
scored whereas FactScore may generate several atomic facts pertaining to each sentence segment. For FS-BIO,
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Across the comparisons, Model A consistently demonstrates formal, polished, and
structured writing with high factual accuracy, depth, and analytical rigor.
Its responses are typically essay-like, varied in perspective, and nuanced,
often employing advanced vocabulary, rhetorical devices, and critical
engagement with broader themes such as legacy, cultural context, and impact.

In contrast, Model B tends to be more informal, conversational, and formulaic,
frequently exhibiting repetition, superficial coverage, and factual errors.
Model B's diversity often arises from inconsistency or error rather than true
creativity, and it outputs are generally less coherent, less organized, and
less engaging than Model A's.

Figure 8: Summary Analysis of Low Factuality Generations by GPT 4.1 Mini (Model A) vs Llama
3.1 8B (Model B).
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(a) Kernel Desity Estimation plots of semantic isotropy scores for
TriviaQA. Kernel Density Estimation plots of semantic isotropy
scores for TriviaQA, comparing the distributions of scores for
GPT 4.1 Mini, Phi 3.5 Mini and Llama 3.1 8B. The embedding
used in Gemini v001 (Team, 2024). We observe that GPT 4.1
Mini’s scores are larger in magnitude and more tightly clustered.
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(b) Word Count by Generation Model and Dataset: Density
histograms comparing the response length (in tokens) for each
generative model and dataset for a prompt with a guidance
length of 500 words. We observe that GPT 4.1 Mini is much
better at instruction following that Llama 3.1 and Phi 3.5 Mini,
sticking fairly closely to the intended word limit.

Figure 9: Response Characteristics: Comparing the characteristics of generated responses by
model type and dataset. Distribution of semantic isotropy scores for TriviaQA using Gemini [Left]
and Histogram of response lengths in tokens by dataset and generative model [Right].

this translates to 28 ± 6 distinct segments for each response in Segment-Score, while FactScore produces
100 ± 20 atomic facts (2-σ interval).

Second, FactScore does not distinguish between verifiable and ambiguous facts which increases noise in the
final results. We explicitly prompt the model to classify such examples as False. This generally biases our result
lower, which can be seen in the middle plot of Figure 10.

Finally, our entire process is achieved using one single query to the oracle, while FactScore may use an order of
magnitude more depending on the number of atomic facts extracted and the length of the ground truth document.
Consequently, our method scales more favorably as the length of the response to be scored increases. Despite
these differences, we see comparable results for FS-BIO in Table 2 for both scoring methods when considereing
the various isotropy configurations and response generating models.
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Figure 10: FS vs SS [FS-BIO]. Comparison of FactScore and Segment-Score on the FS-BIO
dataset. Segment-Score yields a dataset with lower overall factuality and higher variance, however
the relationship between the two scores is robust and consistent.
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D LIMITATIONS

The main drawback of our method is the need for repeated sampling, which can be expensive to generate.
Approaches such as Kossen et al. (2024) have shown that it is possible to train cheap probes that can a priori
estimate uncertainty scores without needing repeated sampling. With the advent of reasoning models with long
Chain-of-Thought reasoning contexts (Zhao et al., 2024) and Monte-Carlo Tree Search (Wang et al., 2024b), as
well as fast inference engines with significantly higher throughput (Kwon et al., 2023), the relative overhead
of repeated sampling has been greatly diminished, making methods like ours compelling. Additionally, while
studies such as Manakul et al. (2023) have observed that hallucinated responses tend to diverge, and generally are
inconsistent with each other, Ricco et al. (2025) find that this effect is not universal and introduce the taxonomy
of extrinsic (characterized by arbitrary and orthogonal content) vs intrinsic (contradictory or anti-parallel content)
hallucination. The semantic isotropy framework would likely fail in cases of intrinsic hallucinations. However,
in practice this intrinsic hallucinations would be exceedingly rare, especially in the long-form response format.
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// INSTRUCTION PROMPT FOR SEGMENT SCORE
You are an NLP segmentation and evaluation engine.
Examine the scenario below. You are given:
1. The name of an entity/person/place/thing etc. in <entity> tags.
2. A reference document regarding the entity in <reference_doc> tags.
3. A response about the entity to evaluate in <response> tags.

### Your Tasks:
1. **Segmentation Task:**

Segment the `<response>` into individual statements. Each statement can be a sentence,
phrase or word and should convey a single, complete, and independent piece of
information about the `<entity>`. Do not modify, rephrase, or paraphrase the
original text. Ensure no semantic overlaps exist between statements. Individual
proper nouns should be part of their own statement however when determining the
appropriate classification, preceeding context can be used when appropriate.

Verify that the concatenated content of all statements exactly matches the original
response.

Format the segmented response as follows:
```
<statements>
<statement>Statement 1</statement> <class>Class 1</class>
<statement>Statement 2</statement> <class>Class 2</class>
...
</statements>
```

2. **Factual Classification Task:**
For each segmented `<statement>`, classify it as 1 (True) or 0 (False) based solely

on the information in the `<reference_doc>`. Follow these guidelines:
- If a statement is factually accurate and supported by the `<reference_doc>`,

classify it as '1'.
- If a statement is inaccurate, unverifiable, or not supported by the `<reference_doc

>`, classify it as '0'.
- If a statement is partially true, but contains incorrect or unsupported information,

classify it as '0'.
- Do not rely on any external knowledge or context beyond the `<reference_doc>`.
- Include only the classification for each statement. Do not provide any explanations

or additional information.
- Specify the class in <class> tags.
- The ONLY valid class values are `1` and `0`. No other values or words should appear

within the `<class>` tags.

3. **Error Handling:**
- If the `<response>` contains unparseable text, incomplete sentences, or conflicting

information that cannot be resolved using the `<reference_doc>`, include the
flagged statement as is and classify it as 'False'.

Examples:
####### EXAMPLE 1 ######
{{example_one}}
########################
####### EXAMPLE 2 ######
{{example_two}}
########################

Entity:
<entity>
{entity}
</entity>

Reference Document:
<reference_doc>
{reference_doc}
</reference_doc>

Response to Evaluate:
<response>
{response}

Figure 11: Segment-Score Prompt Template with instructions
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<entity>
London, UK
</entity>

Reference Document:
<reference_doc>
London, England's capital, boasts a rich history spanning millennia. Founded by the

Romans as Londinium around 47 AD, it became a major port and trading center. After
the Roman withdrawal, Anglo-Saxons established Lundenwic, which later fell to
Viking raids. The Norman Conquest in 1066 led to the construction of the Tower of
London, a symbol of royal power. London thrived during the medieval period,
becoming a major center for trade, finance, and culture. It weathered plagues,
fires, and civil wars, emerging as a global metropolis and the heart of the British
Empire. Today, London remains a vibrant hub, blending its historical legacy with
modern dynamism, home to over 9 million people.

</reference_doc>

Response to Evaluate:
<response>
London, the capital city of England and the United Kingdom, is a vibrant metropolis

steeped in history and brimming with modern energy. With a population of over 9
million people, it stands as one of the world's most influential global cities,
known for its diverse culture, iconic landmarks, and rich heritage.

The city's history stretches back over three millennia, founded by the Romans as
Londinium in 43 AD. Throughout the centuries, London has played a pivotal role in
world affairs, serving as the heart of the British Empire and surviving tumultuous
events such as the Great Fire of 1666 and the Blitz during World War I.

Today, London is a melting pot of cultures, with over 300 languages spoken within its
boundaries. This diversity is reflected in its neighborhoods, each with its own
unique character and charm. From the trendy streets of Shoreditch to the upscale
boutiques of Mayfair, there's something for everyone in this cosmopolitan city.

</response>

Segmented and classified response:
<statements>
<statement>London, the capital city of England and the United Kingdom</statement> <class

>1</class>
<statement>is a vibrant metropolis steeped in history and brimming with modern energy</

statement> <class>1</class>
<statement>With a population of over 9 million people</statement> <class>1</class>
<statement>it stands as one of the world's most influential global cities, known for its

diverse culture, iconic landmarks, and rich heritage.</statement> <class>1</class>
<statement>The city's history stretches back over three millennia, founded by the Romans

as Londinium in 43 AD</statement> <class>0</class>
<statement>Throughout the centuries, London has played a pivotal role in world affairs,

serving as the heart of the British Empire</statement> <class>1</class>
<statement>and surviving tumultuous events such as the Great Fire of 1666</statement> <

class>1</class>
<statement>and the Blitz during World War I</statement> <class>0</class>
<statement>Today, London is a melting pot of cultures, with over 300 languages spoken

within its boundaries</statement> <class>1</class>
<statement>This diversity is reflected in its neighborhoods, each with its own unique

character and charm.</statement> <class>1</class>
<statement>From the trendy streets of Shoreditch to the upscale boutiques of Mayfair,

there's something for everyone in this cosmopolitan city</statement> <class>1</
class>

</statements>

Figure 12: Segment-Score Example used as part of model in-context training for oracle LLM.
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