
Workshop track - ICLR 2016

SEQUENCE MODELING WITH RECURRENT TENSOR
NETWORKS

Richard Kelley∗
Eigenmancy, LLC
Reno, NV 89501, USA
richard@eigenmancy.com

ABSTRACT

We introduce the recurrent tensor network, a recurrent neural network model that
replaces the matrix-vector multiplications of a standard recurrent neural network
with bilinear tensor products. We compare its performance against networks that
employ long short-term memory (LSTM) networks. Our results demonstrate that
using tensors to capture the interactions between network inputs and history can
lead to substantial improvement in predictive performance on the language mod-
eling task.

1 INTRODUCTION

Sequence modeling is a fundamental task in many domains of interest in artificial intelligence, rang-
ing from machine translation and speech recognition to robot state estimation and localization. Re-
cently, a number of sequence modeling problems have been successfully approached by way of
recurrent neural networks (RNNs), which achieve state-of-the-art results on a wide array of tasks.
Recurrent neural networks allow directed cycles in the connections between units, which commonly
feed into hidden state units that implement a form of “memory” for the network.

Although there are a number of variations on the basic concept of recurrent neural networks, one
feature all current models share is that interactions between input vectors and hidden state vectors
take place indirectly, through addition and some kind of nonlinear transformation. In this paper,
we introduce the recurrent tensor network, which uses a bilinear tensor product to facilitate direct
interaction between an input and a hidden state vector from the previous time step. We apply this
approach to language modeling, and show how it can improve over long short-term memory (LSTM)
models.

2 RECURRENT AND RECURSIVE NEURAL NETWORKS

Given a sequence of input vectors xt, each of dimension n, an RNN model Elman (1990) consists
of a hidden state vector ht of dimension k, weight matrix Whx with dimensions k × n, a weight
matrix Whh with dimensions k × k, and a bias vector bh of dimension k. The sequence of hidden
state vectors is updated according to the equation

ht = σ(Whxxt +Whhht−1 + bh),

where σ is a pointwise nonlinearity such as 1/(1 + exp(−x)) or tanh. The model may produce
a sequence of output vectors yt, each of dimension m. In this case, the model also consists of a
matrixWyh with dimensionm×k and a bias vector by of dimensionm. The model produces output
vectors according to the equation

yt =Wyhht + by.

Recurrent neural networks are typically trained by “unrolling” the model in time and applying the
backpropagation algorithm Rumelhart et al. (1986) Werbos (1988).

∗Also on the faculty at the University of Nevada, Reno.

1



Workshop track - ICLR 2016

A popular variant of RNNs is the long short-term memory (LSTM) network, which mitigates some
of the difficulty of training a recurrent model by using “gates” that control the flow of gradient
information Hochreiter & Schmidhuber (1997).

2.1 RECURSIVE NEURAL TENSOR NETWORKS

A recursive neural network is structured as a tree: each node in the tree is a transformation that
accepts a set of vectors as input and produces a single vector as its output. In a standard recursive
neural network the inputs may be combined by concatenation before applying a linear transformation
to the result.

Generalizing the simple recursive neural network, the recursive neural tensor network uses bilinear
tensor products to combine input vectors into a single output vector Socher et al. (2013b) Socher
et al. (2013a). Given two input vectors e1, e2 ∈ Rd, the model combines its inputs by computing

f(e1, e2) = tanh

(
eT1W

[1:k]e2 + V

[
e1
e2

]
+ b

)
,

where W [1:k] ∈ Rk×d×d is a tensor and the product eT1W
[1:k]e2 produces a vector h ∈ Rk whose

ith component is computed by the equation

hi = eT1W
[i]e2,

where W [i] is the ith slice of the tensor.

3 RECURRENT TENSOR NETWORKS

One of the challenges associated with standard recurrent neural network architectures is that at any
time t, the input xt and the history vector ht−1 only interact indirectly, through linear combination.
In the case of binary tree-structured models, the recursive neural tensor network addresses this prob-
lem by using a bilinear tensor product to directly capture the interaction between each node’s inputs:
the bilinear product allows the two inputs to interact directly, and each slice of the tensor is capable
of capturing a different aspect of the inputs’ interaction.

We propose the recurrent tensor network (RTN), which updates its hidden state vector using a bi-
linear tensor product instead of matrix multiplications. In particular, suppose that ht ∈ Rk and
xt ∈ Rn. Then the vector ht is updated via the equation

ht = σ(ht−1W
[1:k]xt + bh),

where W [1:k] ∈ Rk×k×n is a tensor and the bilinear tensor product ht−1W
[1:k]xt is computed as in

Section 2.1. Once we have computed ht, we can compute an output vector as we did for the models
above, using the update equation yt =Wyhht + by.

Gradient-based methods can be used to train a recurrent tensor network. Suppose that L is a loss
function defined over the model parameters, and suppose that q, h ∈ Rk, x ∈ Rn,W [1:k] ∈ Rk×k×n

and q = hTW [1:k]x. Then we find the following derivatives for the ith component of the vector q:

∂qi
∂x

= (W [i])Th,
∂qi
∂W [i]

= hxT ,
∂qi
∂h

=W [i]x.

Assuming that we know ∂L
∂q , these derivatives make it straightforward to implement backpropagation

through time.

3.1 GATED RECURRENT TENSOR NETWORKS

The strategy of replacing matrix-vector multiplications with bilinear tensor products is easily ex-
tended to recurrent networks that use gates to control gradient flow. For instance, we can produce a
tensor-based variant of LSTM using the following update equations:

2



Workshop track - ICLR 2016

Figure 1: Test set BPC on the Wikipedia data set
for both a standard LSTM network and a GRTN.

Model Test Set BPC

LSTM (3.3 epochs) 1.9852
RTN (3.3 epochs) 1.8720
GRTN (0.6 epochs) 1.7073

Table 1: Test set BPC for LSTM, recur-
rent tensor networks, and gated recur-
rent tensor networks. LSTM and RTN
ran to convergence. All networks are
small, having only 64 hidden units.

it = σ(hTt−1W
[1:k]
i xt + bi)

ft = σ(hTt−1W
[1:k]
f xt + bf )

ot = σ(hTt−1W
[1:k]
o xt + bo)

c̃t = tanh(hTt−1W
[1:k]
c̃ xt + bc̃)

ct = ft ◦ ht−1 + it ◦ c̃
ht = ot ◦ tanh(ct),

where W [1:k]
i , W [1:k]

f , W [1:k]
o , and W [1:k]

c̃ are distinct tensors. We refer to this as a gated recurrent
tensor network (GRTN).

4 EVALUATION

To evaluate the performance of recurrent tensor networks, we compare their performance against
LSTM on the Hutter prize dataset consisting of the first 100M bytes of the English Wikipedia Hutter
(2012). We follow the approaches described in Chung et al. (2015) and Graves (2013): we split the
100M byte file into a training set consisting of the first 96M bytes and a test set consisting of the
remainder of the file. Each network processes 100 bytes at a time during training. We compare each
network using the average number of bits-per-character (BPC) on the test set: E[− log2 P (xt+1|ht)].
We train LSTM, RTN, and GRTN networks, each with a single layer and 64 hidden units. Training
was performed with adagrad using an initial learning rate of 0.1 for all models. The LSTM and RTN
networks were run to convergence; the GRTN network is significantly slower, and was run on the
first 60M bytes of the data.

From Figure 1 we see that, in spite of its runtime performance, the GRTN outperforms an LSTM
network. Although this may be attributable to the larger number of parameters in the GRTN, Table 1
shows that the GRTN significantly outperforms the comparably-sized RTN without gates, obtaining
a test set BPC of 1.7073 versus the RTN’s 1.8720.

5 CONCLUSION

We have shown that using a bilinear tensor product to combine input and hidden state variables
in recurrent networks can lead to a significant improvement in performance for language modeling
tasks. Future work will focus on optimizing the runtime performance of this approach, and exploring
its viability in other application domains.

3



Workshop track - ICLR 2016

REFERENCES

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated Feedback Recur-
rent Neural Networks. arXiv:1502.02367 [cs, stat], February 2015. URL http://arxiv.
org/abs/1502.02367. arXiv: 1502.02367.

Jeffrey L. Elman. Finding Structure in Time. Cognitive Science, 14(2):179–211, March 1990. ISSN
1551-6709. doi: 10.1207/s15516709cog1402 1. URL http://onlinelibrary.wiley.
com/doi/10.1207/s15516709cog1402_1/abstract.

Alex Graves. Generating Sequences With Recurrent Neural Networks. arXiv:1308.0850 [cs], Au-
gust 2013. URL http://arxiv.org/abs/1308.0850. arXiv: 1308.0850.

Sepp Hochreiter and Jrgen Schmidhuber. Long Short-term Memory. 1997.

Marcus Hutter. e50000 Prize for Compressing Human Knowledge, 2012. URL http://prize.
hutter1.net/.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by Error
Propagation. pp. 318–362. MIT Press, Cambridge, MA, USA, 1986. ISBN 0-262-68053-X. URL
http://dl.acm.org/citation.cfm?id=104279.104293.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning With Neural
Tensor Networks for Knowledge Base Completion. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems
26, pp. 926–934. Curran Associates, Inc., 2013a. URL http://papers.nips.cc/paper/
5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.
pdf.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y.
Ng, and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a Senti-
ment Treebank. 2013b.

Paul J. Werbos. Generalization of backpropagation with application to a recurrent gas mar-
ket model. Neural Networks, 1(4):339–356, January 1988. ISSN 0893-6080. doi:
10.1016/0893-6080(88)90007-X. URL http://www.sciencedirect.com/science/
article/pii/089360808890007X.

4

http://arxiv.org/abs/1502.02367
http://arxiv.org/abs/1502.02367
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1402_1/abstract
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1402_1/abstract
http://arxiv.org/abs/1308.0850
http://prize.hutter1.net/
http://prize.hutter1.net/
http://dl.acm.org/citation.cfm?id=104279.104293
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://www.sciencedirect.com/science/article/pii/089360808890007X
http://www.sciencedirect.com/science/article/pii/089360808890007X

	Introduction
	Recurrent and Recursive Neural Networks
	Recursive Neural Tensor Networks

	Recurrent Tensor Networks
	Gated Recurrent Tensor Networks

	Evaluation
	Conclusion

