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ABSTRACT

Early diagnosis of treatable diseases is essential for improving healthcare, and
many diseases’ onsets are predictable from annual lab tests and their temporal
trends. We introduce a multi-resolution convolutional neural network for early
detection of multiple diseases from irregularly measured sparse lab values. Our
novel architecture takes as input both an imputed version of the data and a binary
observation matrix. For imputing the temporal sparse observations, we develop
a flexible, fast to train method for differentiable multivariate kernel regression.
Our experiments on data from 298K individuals over 8 years, 18 common lab
measurements, and 171 diseases show that the temporal signatures learned via
convolution are significantly more predictive than baselines commonly used for
early disease diagnosis.

1 INTRODUCTION

Representation learning and unsupervised feature discovery via deep learning has led to ground
breaking advances in domains such as image processing (Krizhevsky et al., 2012), speech recogni-
tion (Graves & Schmidhuber, 2005), natural language processing (Mikolov et al., 2013), surpassing
methods based on hand-engineered features in all benchmarks tested. Following recent availability
of large electronic medical record datasets and other biological signals (Hsiao et al., 2014), discov-
ery of early temporal disease signatures within lab values has become a possibility. In this paper, we
are interested in discovering these signatures to perform early diagnosis of multiple preventable and
treatable diseases.

There are many challenges associated with performing machine learning on observational medical
data. Data is almost never missing at random and often sparse. Labels such as disease onsets, if they
exist, are noisy. Many unobserved variables also affect the outcome. Each individual has a different
baseline healthy state, and variations compared to their own baseline indicates whether they have
deviated from their optimal health state. This last characteristic has inspired us to train a temporal
convolution model (Le Cun et al., 1990; LeCun et al., 1998; Tompson et al., 2014; Krizhevsky et al.,
2012) to learn variation patterns of labs as biological representations of healthy and diseased states.
In the clinical domain, each biomarker varies with a different natural speed of change in the body.
Therefore, in this paper we focus on multi-resolution deep convolutional architectures, inspired by
Mnih et al. (2014).

Strong biases exist in the frequency and timing of lab measurements. For instance, a person sus-
pected to have diabetes is likely to have more Glucose lab tests ordered by the physician. As we will
see later in the experiments, the utilization signals (i.e. how often and when each lab is ordered) are
predictive of disease onset as well. But recent health care developments, such as Theranos lab testing
startup or affordable wearables capable of measuring different chemicals at home, will likely result
in the process of obtaining lab tests becoming both significantly cheaper and easier. As a result, we
expect that this utilization signal will look very different in a few years from how it is today. Addi-
tionally, medical community has actively studied the causal effect of variations on different signals,
such as glucose (Kilpatrick et al., 2007), cholesterol (Bangalore et al., 2015), blood pressure(Hata
et al., 2013), and prostate-specific antigen (Roehrborn et al., 1996) on different disease onsets. A
model trained on the imputed biological measurements rather than the healthcare utilization signals
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can better aid with hypothesis generation for such causal studies, which can lead to meaningful in-
terventions. For these reasons, and to provide models that reveal the disease signatures (i.e. changes
in the actual chemicals in the body prior to a disease onset), we consider models that work on an
imputed version of the lab data.

A generative model that captures all sources of bias could potentially remove the utilization effects
using marginalization and inference. Examples of such models include Gaussian processes and
generative models based on recurrent neural networks (Sutskever et al., 2011; 2009; Tang et al.,
2014; Chung et al., 2015). However, for high dimensional structured continuous input time series,
when the variables are not observed at the same time, marginalization can be prohibitively slow or
not possible.

Instead, we propose a convolution based formulation of multivariate nonparametric (kernel) regres-
sion, which is capable of inferring the structure of the input as part of the imputation task. This
approach can obtain competitive results as Gaussian processes for univariate data, and is extremely
fast to train for asynchronous multivariate data. Moreover, although we do not explore it in this
paper, this approach to imputation is amenable to end-to-end training together with the supervised
prediction task.

Our paper is structured as follows: We first present our prediction model architecture, which is
a multi-resolution convolution network with shared components for multi-task learning. We then
present our imputation model architecture, which is based on a differentiable formulation of non-
parametric (kernel) density estimation, for single time-series as well as multiple dependent time-
series. The final architecture is the combination of the imputation network with the prediction
network. Our evaluation is performed on an original dataset of 298,000 individuals tracked for 8
years. We use temporal observations of 18 most commonly measured lab measurements and per-
form early (at least 3 months in advance) detection of 171 diseases and conditions. We compare our
imputation and prediction results to an extensive set of baselines and various input signals, and show
that the temporal signatures learned via convolution are significantly more predictive than baselines
commonly used for early disease diagnosis.

Although we present the new multi-resolution deep convolutional architecture and the multivariate
nonparametric regression algorithms in the context of early diagnosis from lab tests, we emphasize
that both of these algorithms are much more broadly applicable to prediction problems in machine
learning with temporal, sparse and irregularly measured, multivariate data. User behavior modeling,
financial data analysis, and providing useful service from wearables are among domains where the
data exhibits similar characteristics and challenges.

2 TEMPORAL CONVOLUTIONAL NETWORK

We formulate the task of diagnosis as a supervised multi-task classification task. Each individual
has a variable-length history of lab observations (X) and diagnosis records (Y ). X is continuous
valued, and Y is binary. We use a sliding window framework to deal with variable length input.
At each time point t for each person X , the model looks at a backward window of 36 months of
all D biomarkers of the input, X1:D

t−36:t, to predict the output. Output is a binary vector Y of size
M , corresponding to M disease onsets each happening within the following months from t + 3 to
t+ 3 + 24. In this paper we consider 18 commonly measured biomarkers, and predict 171 common
diseases (i.e. D = 18, M = 171). To retain clinical validity for our early detection task, we have
carefully designed our experimental setting, outcome definition and exclusion criteria, which we
discuss in details in section 4.2.

Our temporal convolution model is shown in figure 1. The input to the model can be raw(un-
imputed) observations; imputed observations; or the concatenation of the imputed data and the
binary observation pattern. The choice of the input will allow us to analyze the nature of signals
that better predicts each disease. Binary observation pattern only encodes the health-care interac-
tion signal, which is subject to fast change as the health-care policies and the economy change.
While currently useful, these health-care interaction signals will have different distributions in the
era where preventive medicine is in full practice. Therefore, a model which relies on the chemical
state of the body (i.e. imputed observations) would be required. We present the imputation network
in section 3.3 and the full model of imputation and prediction is shown in figure 4.
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Figure 1: Network architecture for input to output prediction.

The prediction part of network is shown in figure 1. Specifically, we defined X1:D
t−36:t to be the input

of the network at time t. Let there be J number of filters (or patterns) in each of the levels of the
multi-resolution convolution network. Each filter Kj

i (j = 1 : J) is of size 1 × L, corresponding
to temporal filters of size L at different resolution levels i. The third level of resolution includes
two layers of convolution corresponding to filters Kj

3 and Kj
5 . The output of the multi-resolution

convolution network is a vector C = [C1, C2, C5] which is defined as follows:

Cd,j1 =f(bj1 + (Kj
1 ∗MaxPool(Xd

t−36:t, p
2))) (1)

Cd,j2 =f(bj2 + (Kj
2 ∗MaxPool(Xd

t−36:t, p))) (2)

Cd,j3 =f(bj3 + (Kj
3 ∗X1:D

t−36:t)) (3)

Cd,j4 =MaxPool(Cd,j3 , p) (4)

Cd,j5 =f(bj5 +
J∑
k=1

Kj
5 ∗ C

d,k
4 ) (5)

In the above definition, ∗ is a standard convolution operation. f is a ReLU nonlinearity function
(Nair & Hinton, 2010). The vector Ci is the concatenation of Cd,ji for all biomarkers d = 1 : D
and filters j = 1 : J , and MaxPool(X, p) corresponds to non-overlapping max pooling operation
defined asMaxPool(Z, p)[i] = max(Z[p ·i : p ·(i+1)−1]) for each i = 1 : floor(length(Z)/p).
The value of p is set to 3 in our case. bji is a bias term and is learned during training. After every
convolution operation we use batch normalization (Ioffe & Szegedy, 2015).

After the multi-resolution convolution is applied, the vector C represents the application of filters to
all biomarkers, and we note that the filters are shared across all biomarkers. We then use 2 layers of
hidden nodes to allow non-linear combination of filter activations on different biomarkers.

h1 =f(WT
1 C + bh1) (6)

h2 =f(WT
2 h1 + bh2) (7)

Wi is the weight of the hidden nodes and bhi is the bias associated with each layer. Each of the
hidden layers are subject to Dropout(Srivastava et al., 2014) regularization (with probability 0.5)
during training, and are followed by batch normalization.

Finally, for each disease m = 1 : M , the model predicts the likelihood of the disease via logistic
regression over h2.
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P (Ym = 1|X1:D
t−36:t) = σ(WT

mh2 + bm) (8)

The loss function for each disease is the negative log likelihood of the true label, weighted by the
inverse label ratio to handle class imbalance during multi-task batch training. Diseases are trained
independently, but the gradient is propagated through the shared part of the network.

Figure 1 is shown for imputed or un-imputed input. Prediction model for the case where input is the
concatenation of imputed and binary observation mask is identical, except that the input is then of
size 18× 2 (i.e. vertical concatenation) times length of the backward window (36 months). Specific
architectural choices and values of hyper-parameters are described in section 4.3

2.1 RELATED WORK

Medical field has been dominated by traditional feature engineering methods. Only recently, at-
tempts to learn the patterns has started to gain some attention. (Lasko et al., 2013) studied a method
based on sparse auto-encoders to learn temporal variation features from 30-day uric acid observa-
tions, to distinguish between gout and leukemia. (Che et al., 2015) developed a training which
allows prior domain knowledge to regularize the deeper layers of feed-forward network, for the task
of multiple disease classification when datasets are small. To our knowledge, a full scale study of
convolutional neural networks for the task of disease pattern discovery has not yet been performed.

Within the domain of temporal convolutional networks, (Abdel-Hamid et al., 2012; Sainath et al.,
2013) were among the first to show significant gains in speech recognition tasks in large scale. Un-
like speech domain where the input is fully observed, in our case we have sparse and asynchronously
measured observations. Alternative models would be recurrent neural network(RNN) models such
as variants of LSTM, however given the state of the body in the past few years, there is no clear
evidence that longer term dependencies are necessary. In addition, the trends on the biomarkers
which are directly learned via temporal convolution might provide more clinically interpretable re-
sults currently. For these reasons we focus on temporal multi-resolution convolution model in this
paper.

3 IMPUTATION VIA DIFFERENTIABLE KERNEL REGRESSION

In order to learn biological disease signatures, we now present our imputation model which we
apply to the input prior to learning the variation patterns. Our model is based on nonparametric
regression, which we formulate as differentiable functions of (univariate and multivariate) kernels
and input. Using back-propagation (Rumelhart et al., 1988), we then show how one can learn the
entire form of the kernel function instead of cross validating within a limited set of parametric
family (such as Gaussian or Laplace). We compare our method to Gaussian processes and traditional
nonparametric(kernel) regression which use standard kernel functions.

3.1 RELATED WORK ON UNIVARIATE KERNEL LEARNING

Within the field of nonparametric methods, most existing work only cross validate over a few well-
known kernel functions such as Radial basis(Gaussian), Laplace, or other simple kernels, and fail
to consider the entire space of legal kernels. In best case, attempts such as (Duvenaud et al., 2013),
(Gönen & Alpaydın, 2011) learn a composition or combination of kernel families. The algorithms
are slow, and in practice, the search algorithm is not comprehensive enough to guarantee recovery
of the correct kernel. Additionally learning multivariate kernels are also not possible using these
methods. Our proposed solution overcomes all these issues.

3.2 UNIVARIATE KERNEL REGRESSION: LEARNING THE KERNEL

Imagine the input to be samples from D time series, each sampled irregularly. We denote the samples
as x1

t11
, x1

t12
, ..., x1

t1n1
, ...,xD

tD1
, xD

tD2
, ..., xDtDnD

, where xd refers to time series d and td1,... tdnd
refer to the

time points over which time series d is sampled. Kernel regression provides a general formalism for
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estimating any function with additive noise, provided that the signal is locally stationary. Let’s start
from a single time series, x(t). Kernel regression assumes the following:

x = f(t) + ε

ε ∼ N(0, σ2)
Given observed samples xt1 ,...xtn from the series, general function regression with additive noise
lets us estimate the value of x at a new time point tnew as follows.

x(tnew) = Ex∼P (x|t=tnew)[x]

Ex∼P (x|t=tnew)[x] =
∫
x

xP (x|t = tnew)dx =
∫
x

x
P (x, t = tnew)

P (tnew)
dx

At this point, one can use kernel density estimation to estimate the probabilities P (x, t = tnew) and
P (tnew) from the training data. (Nadaraya, 1964) and (Watson, 1964) showed that using a positive
semidefinite kernel function K(t, t′), the nonparametric regression formulation is reduced to:

Ex∼P (x|t=tnew)[x] =
∑n
i=1 xtiK(tnew, ti)∑n
i=1K(tnew, ti)

(9)

We can now rewrite the nonparametric regression using convolution operator. To be able to use func-
tional notation, we first write the sequence of observed samples xt1 ,...,xtn as a function: X̄train(t)
=

∑n
i=1 xtiδ(t, ti), where δ(t, τ0) = 1 when t = τ0, and 0 otherwise.

Denoting convolution operator as ∗, i.e. (K ∗ f)(t) =
∫
τ
K(t − τ)f(τ)dτ , the numerator of the

kernel regression is equal to:
∑n
i=1 xtiK(ti − tnew) = (K ∗ X̄train)(tnew). The denominator

P (tnew) can similarly be written as a convolution of the kernel function with a sequence of 1s at
each point at which we have a sample, denoted as I(X̄train : observed)(t) =

∑n
i=1 δ(t, ti).

n∑
i=1

K(tnew, ti) = (K ∗ I(X̄train : observed))(tnew)

So the kernel regression formulation of Nadaraya and Watson reduces to the following formulation.

Ex∼P (x|t=tnew)[x] =
(K ∗ X̄train)(tnew)

(K ∗ I(X̄train : observed))(tnew)

This formulation has previously been used in image processing literature under the name normal-
ized convolution (Knutsson & Westin, 1993), however only parametric kernels have been considered
before. By writing the kernel regression as a fully differentiable function, we can now learn K(τ) at
each position τ within the kernel domain via back-propagation. We can also compose this differen-
tiable kernel regression module within any subsequent differentiable operators and perform multiple
tasks.

In this paper we use leave-one-out imputation mean squared error as the loss function. In practice,
we assume the domain of K is bounded between [−M,M ], therefore the learning task will have
2M + 1 parameters. Figure 2 shows the architecture of this model.

3.3 MULTIVARIATE KERNEL REGRESSION: LEARNING THE TEMPORAL KERNEL AND
DEPENDENCY STRUCTURE

Let’s now assume that we have D time series, corresponding to each of the labs. We could attempt
to model the full joint distribution of the time series, so that observations of related labs at nearby
times could be used to infer the values of missing labs. Various multi-output extensions of Gaussian
processes have been proposed previously. The dominant approaches rely on Bayesian formalization
and process convolution (Boyle & Frean, 2004; Alvarez et al., 2010; Alvarez & Lawrence, 2009),
and require known dependency structure on the multiple outputs. The main problem with the mod-
els is that they are only scalable under the sparse structure assumptions (Alvarez et al., 2011; Byron
et al., 2009). In biological domains, observed variables are highly correlated due to many unob-
served latent variables. In the general high-dimensional tightly correlated setting, considering that
the parameters of the kernels need to be tuned via cross-validation, these models are not scalable.
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Figure 2: Architecture for differentiable univariate kernel regression.

One solution for unconstrained structure was proposed in (Wilson et al., 2012), however inference
required Monte Carlo sampling or variational inference, which were inefficient. Alternatively, one
could model the full joint distribution for a window of interest using a nonparametric graphical
model (Fukumizu et al., 2007; Smola et al., 2007; Song et al., 2011). However, since the labs are
measured asynchronously with significant missing data, inference and learning of these models can
be extremely slow. Our proposed framework allows us to easily extend the univariate kernel regres-
sion to the multivariate setting, giving a very fast and – as we show in the experiments – accurate
multivariate approach.

3.4 MULTIVARIATE KERNEL REGRESSION

We extend the kernel K to be a matrix of size D × (2M + 1), and learn the kernel magnitude at
(r,j,s) corresponding to kernel value between the imputed series at time r and series j at time s.
Multivariate kernel regression becomes a 2D convolution of this kernel matrix with all time series’
observed points in the numerator, normalized by the 2D convolution of the kernel matrix with a
binary matrix encoding which series at which time point does have a nonzero observation.

Exd∼P (xd|t=tnew)[x
d] =

(K ∗ X̄1..d
train)(tnew)

(K ∗ I(X̄1..d
train : observed))(tnew)

Figure 3 shows the model for one output variable. Similar to the univariate training, for each time
series, for each observation, we mask that observation and optimize the mean squared error of the
true value compared to the predicted value using multivariate kernel. In our current formulation, we
learn a separate D × (2M + 1) sized kernel for each lab.

Finally figure 4 shows the full imputation and prediction architecture together. For each lab, the
multivariate kernel is learned via pre-training and optimization of MSE for that lab. We then fix
the imputation parameters, and train the consequent prediction network. We note that end-to-end
training of the entire network (imputation and prediction) using the only prediction network’s loss
function will result in a different loss function than MSE for the imputation network. Joint training of
the two networks, perhaps by optimizing both loss functions (negative log likelihood of predictions
and mean squared error of imputations) is part of our future work.

Finally, we note that at each time point, the input is truncated outside the backward window before
imputation, therefore no information from the future is affecting the prediction.

4 EXPERIMENTS AND RESULTS

4.1 DATA

Our original dataset consisted of lab measurement and diagnosis information for 298,000 individu-
als. The lab measurements had the resolution of 1 month, and we used a backward window of 36
months for each prediction. We limited this paper’s input to comprehensive lab panel plus choles-
terol and bilirubin (together 18 lab types), which are currently recommended annually and covered
by insurance companies. The name and code of labs used in our analysis is included in Table 1. Each
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lab value was normalized by subtracting the mean and dividing by standard deviation across the en-
tire dataset. We randomly divided individuals to a 100K training set, a 100K validation set, and a
98K test set. Validation set was used to select the best epoch/parameters for models and prediction
results are presented on the test set, unseen during the training and validation.

Output corresponded to diagnosis information of these individuals. In our dataset, each disease
diagnosis is recorded as an ICD9-CM (International Classification of Diseases, Ninth Revision,
Clinical Modification) code. These codes are somewhat noisy, therefore we defined our prediction
task carefully to improve the analysis quality as we describe next.

4.2 PREDICTION TASK SETUP

Our goal is early diagnosis of diseases, for people who do not already have the disease. We required
a 3 month gap between the end of the backward window (i.e. t), and the start of early diagnosis
window. The purpose of the 3 month gap was to ensure that the clinical tests taken right before
diagnosis of a disease would not allow our system to cheat in the prediction of that disease. Each
output label was defined as positive if the diagnosis code for the disease was observed in at least
2 distinct months between 3 to 3 + 24 months after t. Using 24 months helps alleviate the noisy
label problem. Requiring at least 2 observations of the noise also reduced the noise coming from
”up-coding” physicians (physicians who report their wrong suspected diagnosis as a diagnosis). For
each disease, we excluded individuals who already have the disease by time t + 3. Our exclusion
required only 1 diagnosis record instead of 2. This results in a more difficult, but also more clinically
meaningful and interesting prediction task.

4.3 PREDICTION MODEL ARCHITECTURE DETAILS

The specific architectural choices for the shared part of the prediction network is as follows: We
set the number of filters to be 8 for all convolution modules, with the kernel length 3(months) and
step size of 1. Each Max-pooling module has the horizontal length of 3 and vertical length of 1,
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with step size of 3 in horizontal direction(i.e. no overlap). Each convolution module is followed
by a batch normalization module (Ioffe & Szegedy, 2015) and then a ReLU nonlinearity (Nair &
Hinton, 2010). We have 2 fully connected layers (with 100 nodes each) after the concatenation of
outputs of all convolution layers. Each of the fully connected layers are followed by a batch nor-
malization layer and a ReLu nonlinearity layer. We also add one Dropout module (Srivastava et al.,
2014) (0.5 dropout probability) before each fully connected layer. After the last ReLu nonlinear-
ity, corresponding to the output of the shared part of the network, for each 171 diseases we have
the followings in order: A Dropout layer(0.5 dropout probability), a fully connected layer (of size
2 nodes corresponding to binary outcome), batch normalization layer and a Log Softmax Layer.
Learning rate was selected from among the values [0.001, 0.01, 0.05, 0.1, 1] using validation set av-
erage (over all diseases) Area Under ROC curve after 10 epochs. Value of 0.01 was selected for the
learning rate. Similarly learning rate decay of 0.95 was selected for learning rate decay from the list
[0.8, 0.9, 0.95, 0.99]. Training was done using stochastic gradient descent, over mini-batches of size
256. We implemented the architecture using Torch (Collobert et al., 2011).

4.4 DATA AUGMENTATION

During the training of the kernel regression imputation, we randomly perturbed each time series by
adding Gaussian noise with standard deviation of 0.01 to each lab observation, and also randomly
perturbed the time of each observation by a random jump drawn from a Gaussian distribution in
either direction with standard deviation of 2 (we take the floor of the continuous value to determine
the integer number of months to shift). We found this step to be especially important for learning
robust imputation kernels.

4.5 IMPUTATION RESULTS

First, we pre-trained the imputation layer by optimizing the mean squared error. For each observa-
tion, we masked the value, and asked the network (or our classic baselines of Gaussian Processes
(Rasmussen (2006)) and classic Kernel regression) to predict the masked value given the rest of the
observations. In case of the multivariate network we masked the data observed on the entire month
during the training. We note that without data augmentation this method would not learn the value
of the kernel at the origin (i.e. t − t′ = 0), and that’s why randomly perturbing the time of the ob-
servations by a small amount is essential. Our baselines included univariate Gaussian Processes and
univariate kernel regression. We used cross validation to select kernel family (Gaussian, Laplace and
Triangular), kernel bandwidth, and in case of Gaussian Processes also the diagonal noise magnitude
in the kernel matrix.

Networks for each lab were trained independently. For this part of the analysis we used a random
subset of 10,000 patients. 8,000 individuals were selected for training (or cross validation, in case
of the baselines), and the other 2000 participated in evaluation.

Table 1 shows the quality of the imputation on the lab values. Univariate models perform simi-
larly, and since this is the result on the cohort which is already normalized, the univariate models
are not reliable for many labs at all. But learning and using multivariate kernel model leads to a
distinct improvement in the imputation quality. In Figure 5, you can see the learned univariate
kernel for Creatinine lab. Trying to compose known families of kernel (i.e. Laplace or a mixture
of Laplace kernels seems to fit well for the shape) to recover this form is not guaranteed to lead
to the optimal data driven kernel. In Figure 6 you can see the multivariate kernels learned with
our multivariate kernel regression framework. Our results indicate that the kernels capture the re-
lationship between different variables well. Interesting to note is the lab value we purposefully did
not discard, which is a ratio of two other lab values(Urea nitrogen/Creatinine). Our formulation of
multivariate kernel regression only allows linear construction at this level of depth, and we see that
the ratio is approximated with positive weight for numerator(Urea nitrogen) and negative weight for
denominator(Creatinine).

Kernel based imputation method has a property where the kernel is symmetric, looking into past and
future for the imputation. Our training method optimizes the prediction of observations within and at
the border of each lab time series, therefore allowing the kernels to adjust to the border cases where
only past(or future) data is available. However, in the consequent disease prediction model we only
use a 3-year backward window which is shorter than the typical time-span on which imputation was
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Table 1: RMSE for different lab values and different models. Models are: GP(Univariate Gaus-
sian Processes), KR(Kernel Regression), ConvKR(Univariate convolution formulation of KR), and
ConvKR multivariate.

Lab GP KR univar Conv KR univar Conv KR multivar

Creatinine 0.397 0.406 0.433 0.096
Urea nitrogen 0.449 0.457 0.465 0.131
Potassium 0.995 1.011 1.010 0.170
Glucose 0.716 0.709 0.690 0.118
Alanine aminotransferase 0.653 0.677 0.679 0.127
Aspartate aminotransferase 0.708 0.720 0.710 0.130
Protein 1.142 1.194 1.220 0.206
Albumin 1.092 1.128 1.120 0.263
Cholesterol 0.621 0.631 0.651 0.118
Triglyceride 0.640 0.633 0.696 0.104
Cholesterol.in LDL 0.640 0.649 0.648 0.108
Calcium 1.614 1.652 1.703 0.260
Sodium 0.722 0.717 0.742 0.139
Chloride 0.672 0.674 0.688 0.113
Carbon dioxide 0.782 0.783 0.782 0.131
Urea nitrogen/Creatinine 0.601 0.606 0.600 0.075
Bilirubin 0.667 0.687 0.678 0.105
Albumin/Globulin 0.586 0.601 0.636 0.112
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1 

Figure 5: The kernel learned for univariate kernel regression for Creatinine biomarker. The x axis
indicates time with t =0 at the center, and the y axis is the magnitude of the kernel value around the
origin.

trained. While we do not explore in this paper, the interplay between the spans of the kernels, the
quality of imputation at border cases, and their effect on sub-sequent disease prediction task is an
interesting direction for further analysis.

4.6 PREDICTION RESULTS

Figure 7, and table S1 in the Supplementary section show the area under ROC curve results of
predicting each disease on the test set. As baselines we compare the results to multilayer perceptron
(MLP) over the entire observations within the 36 month backward window, and logistic regression
on maximum value of all 18 lab values over 36 months backward window. For each model, we
compared three imputation setting: Raw input, without imputing unobserved values; Imputed input
only; and a 2-channel input, composed of imputed input, next to binary observation mask. Results
shown in Figure 7 are the best AUCs achieved on any of the imputation settings, per model.

Our multilayer perceptron baseline had 2 hidden layers shared across all 171 diseases (100 hidden
nodes each). Each disease is predicted using a logistic function of the last hidden layer, with its
own parameters (implemented as Log Softmax in Torch environment). Batch normalization (Ioffe
& Szegedy, 2015) was used after every hidden layer, and Dropout (with probability 0.5) was used
before each hidden layer. We used cross-validation to optimize learning rate and learning rate decay
for the baseline models. We also selected optimum learning rate and learning rate decay parame-
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Figure 6: The kernels learned for multivariate kernel regression network

ters for the convolution network via cross-validation, but fixed the architecture parameters to those
described in section 2. As in the case with convolution network, we used weighted negative log-
likelihood loss function to train the baselines.

In figure S1 and table S2 in Supplementary section, we show the disease classification AUC results
on the full set of experiments, comparing different imputation and prediction methods. By impu-
tation, we discard health-care utilization, which is a predictive signal. So it is expected that just
using imputation would lower the early detection accuracy, and we observe this in our results as
well. However, when we use two separate channels (imputed signal and binary observation mask),
the results are comparable to the prediction on the unimputed input, which indicates that the our
imputation layer is correctly separating biological signals from the utilization. The trends learned
on the imputed channel are more interesting to medical research field, which studies core biologi-
cal processes, while clinical intervention field is interested in any model that gives better predictive
result, using all the signals including the utilization patterns.

Clinically interesting to note is how well can different diseases be diagnosed at least 3 month in
advance, and how many diseases can be detected with much better accuracy compared to current
practices, by using the convolution method. In particular, heart failure, severe kidney diseases and
liver problems, diabetes and hormone related conditions and prostate cancer are among the diseases
which are well detectable early, from only 18 common lab measurements tracked in the past 3
years. Additionally, for patients with multiple existing diseases, side-effects of different medications
in addition to their conditions can trigger other unexpected diseases. Monitoring the risks of all
diseases is often neglected in the clinics today and our model is a reasonable solution for this task.

5 CONCLUSION

In this work, we presented the first large scale application of convolutional neural networks for
discovery of early temporal disease signatures for the task of disease prediction. We presented a
novel approach to nonparametric imputation, which is essential to learning disease signatures that
are biologically valid. Our results show significant improvement in the quality of early diagnosis,
compared to methods currently used in most of the medical and clinical world, only using 18 lab
measurement over the past 3 years.
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Figure 7: Area Under ROC curve for each disease, comparing the held out test score on our Convo-
lution vs. Multi-layered Perceptron, vs. Logistic Regression over the maximum observed lab in the
past 3 years. The actual AUC values are included in table S1

Our results indicate that onset of many diseases, including major heart, kidney, and liver diseases,
prostate cancer, and diabetes are predictable with high quality in advance. For many of these dis-
eases, early detection even by a few months can lead to significant gains in effectiveness of treatment,
quality of life of the patients and their families, and reduction of financial burden on the healthcare
systems. Our method also enables large-scale intervention programs to target the most high-risk pop-
ulation better than available baselines, therefore increasing the cost-effectiveness and applicability
of the programs. Finally, for every disease presented, detailed analysis of the discovered predictive
temporal patterns can lead to new medical insights, and is part of our future work.
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Figure S1: Area Under ROC curve for each disease, comparing the held out test score on our Convo-
lution vs. Multi-layered Perceptron, vs. Logistic Regression over the maximum observed lab in the
past 3 years, and Comparing different imputation methods (Sep = input is two channel, composed
of imputed input + observation mask), (Raw = input not imputed, and processed as raw leaving un-
observed months as zero), and (KR = imputed input only). The actual AUC values are included in
table S2

6 SUPPLEMENTARY FIGURE

Table S1: Area Under ROC curve for each disease, comparing the held
out test score on our Convolution(Convnet) vs. Multi-layered Percep-
tron(MLP), vs. Logistic Regression(Logit) over the maximum observed
lab in the past 3 years, corresponding to Figure 7

Disease ICD9 Code and Label Convnet AUC MLP AUC Logit AUC

V22.1 Supervis oth normal preg 0.933 0.911 0.849
626.4 Irregular menstruation 0.899 0.886 0.839
285.21 Anemia in chr kidney dis 0.888 0.870 0.850
585.9 Chronic kidney dis NOS 0.876 0.868 0.849
626.2 Excessive menstruation 0.875 0.848 0.797
585.3 Chr kidney dis stage III 0.867 0.856 0.836
584.9 Acute kidney failure NOS 0.829 0.815 0.795
218.9 Uterine leiomyoma NOS 0.828 0.828 0.753
V01.6 Venereal dis contact 0.826 0.795 0.801
250.01 DMI wo cmp nt st uncntrl 0.822 0.811 0.816
627.2 Sympt fem climact state 0.821 0.809 0.751
626.8 Menstrual disorder NEC 0.821 0.801 0.767
250.02 DMII wo cmp uncntrld 0.814 0.808 0.807
593.9 Renal and ureteral dis NOS 0.803 0.796 0.756
314.01 Attn deficit w hyperact 0.792 0.793 0.671
428.0 CHF NOS 0.785 0.778 0.744
V05.3 Need prphyl vc vrl hepat 0.782 0.744 0.735
185. Malign neopl prostate 0.778 0.743 0.629
790.93 Elvtd prstate spcf antgn 0.775 0.749 0.648
274.9 Gout NOS 0.767 0.763 0.736
362.52 Exudative macular degen 0.763 0.728 0.686

Continued on next page
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706.1 Acne NEC 0.760 0.747 0.721
600.00 BPH w/o urinary obs/LUTS 0.754 0.737 0.657
511.9 Pleural effusion NOS 0.751 0.734 0.703
616.10 Vaginitis NOS 0.749 0.726 0.665
607.84 Impotence, organic orign 0.746 0.740 0.657
600.01 BPH w urinary obs/LUTS 0.740 0.724 0.623
285.29 Anemia-other chronic dis 0.738 0.714 0.682
314.00 Attn defic nonhyperact 0.738 0.722 0.664
309.81 Posttraumatic stress dis 0.733 0.717 0.688
346.90 Migrne unsp wo ntrc mgrn 0.718 0.732 0.639
620.2 Ovarian cyst NEC/NOS 0.728 0.707 0.663
427.31 Atrial fibrillation 0.728 0.720 0.682
839.20 Dislocat lumbar vert-cl 0.725 0.688 0.621
728.87 Muscle weakness-general 0.721 0.712 0.675
250.00 DMII wo cmp nt st uncntr 0.710 0.716 0.712
425.4 Prim cardiomyopathy NEC 0.713 0.715 0.668
362.51 Nonexudat macular degen 0.713 0.697 0.649
443.9 Periph vascular dis NOS 0.713 0.712 0.672
424.1 Aortic valve disorder 0.709 0.700 0.643
280.9 Iron defic anemia NOS 0.708 0.694 0.671
303.90 Alcoh dep NEC/NOS-unspec 0.690 0.661 0.707
733.00 Osteoporosis NOS 0.706 0.691 0.641
793.80 Ab mammogram NOS 0.704 0.679 0.639
174.9 Malign neopl breast NOS 0.704 0.692 0.573
414.00 Cor ath unsp vsl ntv/gft 0.703 0.691 0.659
739.7 Somat dysfunc upper extr 0.703 0.672 0.627
414.9 Chr ischemic hrt dis NOS 0.703 0.683 0.655
781.2 Abnormality of gait 0.702 0.692 0.661
414.01 Crnry athrscl natve vssl 0.697 0.685 0.640
286.9 Coagulat defect NEC/NOS 0.697 0.669 0.672
782.3 Edema 0.695 0.689 0.666
278.01 Morbid obesity 0.694 0.689 0.649
492.8 Emphysema NEC 0.687 0.667 0.646
462. Acute pharyngitis 0.682 0.664 0.639
296.89 Bipolar disorder NEC 0.675 0.660 0.680
496. Chr airway obstruct NEC 0.679 0.665 0.643
173.3 malignant neo skin(Face) 0.678 0.670 0.608
285.9 Anemia NOS 0.675 0.665 0.642
780.2 Syncope and collapse 0.675 0.674 0.640
787.01 Nausea with vomiting 0.673 0.651 0.563
427.89 Cardiac dysrhythmias NEC 0.673 0.667 0.645
424.2 Nonrheum tricusp val dis 0.672 0.666 0.617
433.10 Ocl crtd art wo infrct 0.668 0.670 0.605
682.9 Cellulitis NOS 0.665 0.669 0.659
611.72 Lump or mass in breast 0.668 0.649 0.568
733.90 Bone and cartilage dis NOS 0.666 0.662 0.615
424.0 Mitral valve disorder 0.666 0.661 0.634
401.9 Hypertension NOS 0.663 0.656 0.632
110.1 Dermatophytosis of nail 0.659 0.652 0.636
216.9 Benign neoplasm skin NOS 0.659 0.649 0.623
786.05 Shortness of breath 0.658 0.655 0.630
836.0 Tear med menisc knee-cur 0.656 0.651 0.599
599.0 Urin tract infection NOS 0.650 0.641 0.608
715.90 Osteoarthros NOS-unspec 0.648 0.641 0.619
300.01 Panic dis w/o agorphobia 0.647 0.605 0.575
790.21 Impaired fasting glucose 0.647 0.610 0.596
716.90 Arthropathy NOS-unspec 0.627 0.643 0.626
216.5 Benign neo skin trunk 0.631 0.643 0.604

Continued on next page
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702.0 Actinic keratosis 0.642 0.637 0.582
309.28 Adjust dis w anxiety/dep 0.642 0.619 0.602
722.0 Cervical disc displacmnt 0.638 0.633 0.620
780.53 Hypersom w slp apnea NOS 0.634 0.614 0.569
461.9 Acute sinusitis NOS 0.626 0.623 0.597
703.0 Ingrowing nail 0.625 0.626 0.588
379.21 Vitreous degeneration 0.625 0.605 0.555
401.1 Benign hypertension 0.624 0.611 0.597
402.90 Hyp hrt dis NOS w/o hf 0.619 0.624 0.585
726.5 Enthesopathy of hip 0.623 0.622 0.579
783.1 Abnormal weight gain 0.619 0.620 0.572
366.16 Senile nuclear cataract 0.619 0.619 0.582
702.19 Other sborheic keratosis 0.618 0.602 0.583
739.1 Somat dysfunc cervic reg 0.617 0.606 0.584
794.31 Abnorm electrocardiogram 0.616 0.608 0.592
238.2 Unc behav neo skin 0.615 0.606 0.575
272.4 Hyperlipidemia NEC/NOS 0.614 0.595 0.597
702.11 Inflamed sbrheic keratos 0.612 0.595 0.565
780.57 Sleep apnea NOS 0.611 0.603 0.578
723.4 Brachial neuritis NOS 0.610 0.603 0.584
300.4 Dysthymic disorder 0.606 0.609 0.557
715.09 General osteoarthrosis 0.608 0.608 0.584
846.0 Sprain lumbosacral 0.596 0.606 0.561
728.71 Plantar fibromatosis 0.605 0.599 0.569
272.0 Pure hypercholesterolem 0.605 0.585 0.590
995.3 Allergy, unspecified 0.596 0.600 0.577
739.4 Somat dysfunc sacral reg 0.597 0.591 0.572
372.14 Chr allrg conjunctiv NEC 0.596 0.584 0.574
739.3 Somat dysfunc lumbar reg 0.595 0.585 0.565
380.4 Impacted cerumen 0.594 0.582 0.560
493.00 Extrinsic asthma NOS 0.594 0.586 0.570
241.0 Nontox uninodular goiter 0.593 0.579 0.552
281.0 Pernicious anemia 0.592 0.560 0.552
268.9 Vitamin D deficiency NOS 0.591 0.578 0.555
724.02 Spin sten,lumbr wo claud 0.585 0.578 0.552
782.1 Nonspecif skin erupt NEC 0.582 0.580 0.559
272.2 Mixed hyperlipidemia 0.582 0.562 0.571
695.3 Rosacea 0.566 0.581 0.558
564.1 Irritable bowel syndrome 0.574 0.569 0.551
722.10 Lumbar disc displacement 0.569 0.572 0.559
785.1 Palpitations 0.570 0.565 0.555

Table S2: Area Under ROC curve for each disease, comparing the held
out test score on our Convolution (C) vs. Multi-layered Perceptron(M),
vs. Logistic Regression over the maximum observed lab in the past 3
years(L), and Comparing different imputation methods (SP = input is
two channel, composed of imputed input + observation mask), (RW =
input not imputed, and processed as raw leaving unobserved months as
zero), and (KR = imputed input only) This table exactly corresponds to
Figure S1

Disease ICD9 Code and Label C-SP C-RW C-KR M-SP M-RW L-SP L-RW

V22.1 Supervis oth normal preg 0.933 0.928 0.924 0.902 0.911 0.849 0.828
626.4 Irregular menstruation 0.876 0.899 0.896 0.882 0.886 0.839 0.838

Continued on next page
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285.21 Anemia in chr kidney dis 0.877 0.888 0.873 0.870 0.866 0.841 0.850
585.9 Chronic kidney dis NOS 0.868 0.876 0.872 0.868 0.868 0.848 0.849
626.2 Excessive menstruation 0.863 0.875 0.862 0.844 0.848 0.784 0.797
585.3 Chr kidney dis stage III 0.859 0.867 0.860 0.856 0.854 0.828 0.836
584.9 Acute kidney failure NOS 0.825 0.829 0.823 0.815 0.812 0.785 0.795
218.9 Uterine leiomyoma NOS 0.815 0.825 0.828 0.828 0.826 0.753 0.751
V01.6 Venereal dis contact 0.826 0.802 0.806 0.782 0.795 0.788 0.801
250.01 DMI wo cmp nt st uncntrl 0.801 0.822 0.808 0.795 0.811 0.816 0.812
627.2 Sympt fem climact state 0.808 0.820 0.821 0.809 0.808 0.751 0.740
626.8 Menstrual disorder NEC 0.801 0.815 0.821 0.794 0.801 0.767 0.749
250.02 DMII wo cmp uncntrld 0.801 0.814 0.810 0.786 0.808 0.807 0.805
593.9 Renal and ureteral dis NOS 0.796 0.803 0.801 0.788 0.796 0.755 0.756
314.01 Attn deficit w hyperact 0.726 0.778 0.792 0.731 0.793 0.654 0.671
428.0 CHF NOS 0.783 0.785 0.783 0.778 0.777 0.744 0.739
V05.3 Need prphyl vc vrl hepat 0.763 0.782 0.741 0.744 0.731 0.719 0.735
185. Malign neopl prostate 0.755 0.778 0.766 0.737 0.743 0.629 0.613
274.9 Gout NOS 0.761 0.764 0.767 0.758 0.763 0.735 0.736
362.52 Exudative macular degen 0.754 0.763 0.748 0.723 0.728 0.686 0.682
706.1 Acne NEC 0.760 0.755 0.746 0.745 0.747 0.721 0.718
600.00 BPH w/o urinary obs/LUTS 0.740 0.754 0.748 0.731 0.737 0.646 0.657
511.9 Pleural effusion NOS 0.739 0.751 0.726 0.734 0.716 0.687 0.703
616.10 Vaginitis NOS 0.725 0.736 0.749 0.725 0.726 0.656 0.665
607.84 Impotence, organic orign 0.735 0.745 0.746 0.730 0.740 0.629 0.657
600.01 BPH w urinary obs/LUTS 0.732 0.739 0.740 0.723 0.724 0.618 0.623
285.29 Anemia-other chronic dis 0.738 0.732 0.715 0.714 0.708 0.664 0.682
314.00 Attn defic nonhyperact 0.709 0.718 0.738 0.704 0.722 0.664 0.660
309.81 Posttraumatic stress dis 0.672 0.733 0.722 0.717 0.714 0.667 0.688
346.90 Migrne unsp wo ntrc mgrn 0.712 0.718 0.715 0.710 0.732 0.632 0.639
620.2 Ovarian cyst NEC/NOS 0.705 0.728 0.719 0.707 0.702 0.606 0.663
427.31 Atrial fibrillation 0.725 0.728 0.724 0.720 0.716 0.678 0.682
728.87 Muscle weakness-general 0.716 0.721 0.716 0.712 0.709 0.674 0.675
250.00 DMII wo cmp nt st uncntr 0.685 0.710 0.709 0.687 0.716 0.712 0.706
425.4 Prim cardiomyopathy NEC 0.712 0.713 0.712 0.715 0.705 0.648 0.668
362.51 Nonexudat macular degen 0.713 0.703 0.694 0.685 0.697 0.649 0.635
443.9 Periph vascular dis NOS 0.713 0.712 0.712 0.712 0.711 0.670 0.672
424.1 Aortic valve disorder 0.694 0.696 0.709 0.692 0.700 0.590 0.643
280.9 Iron defic anemia NOS 0.707 0.708 0.698 0.694 0.688 0.671 0.668
303.90 Alcoh dep NEC/NOS-unspec 0.646 0.690 0.641 0.661 0.651 0.707 0.669
733.00 Osteoporosis NOS 0.702 0.706 0.698 0.690 0.691 0.634 0.641
174.9 Malign neopl breast NOS 0.704 0.683 0.695 0.658 0.692 0.563 0.573
414.00 Cor ath unsp vsl ntv/gft 0.701 0.703 0.697 0.689 0.691 0.659 0.656
739.7 Somat dysfunc upper extr 0.631 0.703 0.688 0.672 0.666 0.613 0.627
414.9 Chr ischemic hrt dis NOS 0.687 0.703 0.689 0.679 0.683 0.655 0.645
781.2 Abnormality of gait 0.696 0.702 0.693 0.692 0.690 0.638 0.661
414.01 Crnry athrscl natve vssl 0.691 0.697 0.688 0.685 0.685 0.636 0.640
286.9 Coagulat defect NEC/NOS 0.691 0.697 0.684 0.669 0.658 0.672 0.662
782.3 Edema 0.690 0.695 0.689 0.689 0.682 0.654 0.666
278.01 Morbid obesity 0.674 0.694 0.688 0.665 0.689 0.646 0.649
492.8 Emphysema NEC 0.661 0.687 0.664 0.663 0.667 0.646 0.637
462. Acute pharyngitis 0.671 0.679 0.682 0.658 0.664 0.628 0.639
496. Chr airway obstruct NEC 0.670 0.679 0.671 0.665 0.655 0.643 0.637
173.3 malignant neo skin(Face) 0.663 0.678 0.674 0.668 0.670 0.608 0.592
285.9 Anemia NOS 0.675 0.674 0.666 0.665 0.655 0.641 0.642
780.2 Syncope and collapse 0.669 0.675 0.671 0.667 0.674 0.634 0.640
787.01 Nausea with vomiting 0.673 0.661 0.639 0.651 0.633 0.563 0.560
433.10 Ocl crtd art wo infrct 0.667 0.668 0.668 0.654 0.670 0.605 0.603
682.9 Cellulitis NOS 0.656 0.665 0.660 0.669 0.669 0.658 0.659
611.72 Lump or mass in breast 0.651 0.651 0.668 0.637 0.649 0.566 0.568

Continued on next page

17



Workshop track - ICLR 2016

733.90 Bone and cartilage dis NOS 0.656 0.666 0.661 0.658 0.662 0.615 0.604
401.9 Hypertension NOS 0.659 0.663 0.661 0.652 0.656 0.632 0.631
110.1 Dermatophytosis of nail 0.656 0.659 0.658 0.650 0.652 0.628 0.636
786.05 Shortness of breath 0.657 0.656 0.658 0.655 0.650 0.630 0.627
836.0 Tear med menisc knee-cur 0.645 0.656 0.651 0.651 0.636 0.596 0.599
599.0 Urin tract infection NOS 0.638 0.650 0.639 0.641 0.634 0.597 0.608
715.90 Osteoarthros NOS-unspec 0.645 0.648 0.646 0.641 0.636 0.619 0.614
790.21 Impaired fasting glucose 0.621 0.647 0.599 0.610 0.608 0.592 0.596
716.90 Arthropathy NOS-unspec 0.590 0.614 0.627 0.643 0.638 0.626 0.621
216.5 Benign neo skin trunk 0.626 0.620 0.631 0.643 0.621 0.589 0.604
702.0 Actinic keratosis 0.639 0.642 0.632 0.635 0.637 0.580 0.582
309.28 Adjust dis w anxiety/dep 0.633 0.642 0.628 0.617 0.619 0.592 0.602
722.0 Cervical disc displacmnt 0.633 0.623 0.638 0.624 0.633 0.620 0.609
780.53 Hypersom w slp apnea NOS 0.610 0.634 0.621 0.602 0.614 0.568 0.569
703.0 Ingrowing nail 0.596 0.625 0.615 0.615 0.626 0.581 0.588
401.1 Benign hypertension 0.608 0.624 0.614 0.610 0.611 0.597 0.594
402.90 Hyp hrt dis NOS w/o hf 0.619 0.618 0.614 0.624 0.605 0.555 0.585
726.5 Enthesopathy of hip 0.593 0.611 0.623 0.596 0.622 0.579 0.574
366.16 Senile nuclear cataract 0.618 0.616 0.619 0.613 0.619 0.557 0.582
702.19 Other sborheic keratosis 0.601 0.618 0.599 0.595 0.602 0.573 0.583
739.1 Somat dysfunc cervic reg 0.607 0.613 0.617 0.605 0.606 0.572 0.584
794.31 Abnorm electrocardiogram 0.600 0.615 0.616 0.608 0.607 0.588 0.592
238.2 Unc behav neo skin 0.608 0.615 0.610 0.606 0.606 0.575 0.573
272.4 Hyperlipidemia NEC/NOS 0.599 0.614 0.594 0.595 0.589 0.597 0.586
723.4 Brachial neuritis NOS 0.605 0.604 0.610 0.600 0.603 0.571 0.584
300.4 Dysthymic disorder 0.587 0.597 0.606 0.607 0.609 0.557 0.553
715.09 General osteoarthrosis 0.607 0.608 0.608 0.608 0.605 0.583 0.584
272.0 Pure hypercholesterolem 0.594 0.605 0.591 0.584 0.585 0.590 0.579
995.3 Allergy, unspecified 0.572 0.571 0.596 0.596 0.600 0.574 0.577
739.4 Somat dysfunc sacral reg 0.597 0.597 0.589 0.589 0.591 0.572 0.559
372.14 Chr allrg conjunctiv NEC 0.575 0.596 0.592 0.584 0.577 0.552 0.574
739.3 Somat dysfunc lumbar reg 0.585 0.595 0.575 0.585 0.582 0.565 0.564
272.2 Mixed hyperlipidemia 0.573 0.582 0.557 0.562 0.557 0.571 0.566
564.1 Irritable bowel syndrome 0.570 0.574 0.564 0.560 0.569 0.551 0.550
785.1 Palpitations 0.565 0.570 0.570 0.565 0.565 0.555 0.551
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