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ABSTRACT

We study min-max algorithms to solve zero-sum differential games on Riemannian
manifold. Based on the notions of differential Stackelberg equilibrium and differen-
tial Nash equilibrium on Riemannian manifold, we analyze the local convergence
of two representative deterministic simultaneous algorithms τ -GDA and τ -SGA to
such equilibria. Sufficient conditions are obtained to establish the linear conver-
gence rate of τ -GDA based on the Ostrowski theorem on manifold and spectral
analysis. To avoid strong rotational dynamics in τ -GDA, τ -SGA is extended from
the symplectic gradient-adjustment method in Euclidean space. We analyze an
asymptotic approximation of τ -SGA when the learning rate ratio τ is big. In
some cases, it can achieve a faster convergence rate to differential Stackelberg
equilibrium compared to τ -GDA. We show numerically how the insights obtained
from the convergence analysis may improve the training of orthogonal Wasserstein
GANs using stochastic τ -GDA and τ -SGA on simple benchmarks.

1 INTRODUCTION

Riemannian min-max problem has attracted a lot of research attention in recent years, with various
machine learning applications including robust PCA (Jordan et al., 2022), robust neural network
training (Huang & Gao, 2023) and generative adversarial network (GAN) (Han et al., 2023). This
problem is formalized as a two-player zero-sum game, where the variables of each player are
constrained on the Riemannian manifold M1 and M2,

min
x∈M1

max
y∈M2

f(x, y).

When M1 and M2 are Euclidean, gradient-based methods such as gradient-descent-ascent (GDA)
(Daskalakis & Panageas, 2018; Lin et al., 2020), extra-gradient (Gidel et al., 2019; Mahdavinia et al.,
2022), optimistic mirror descent (Mertikopoulos et al., 2019), Hamiltonian-gradient descent (Loizou
et al., 2020) and symplectic gradient-adjustment (SGA) (Balduzzi et al., 2018) are often considered
to solve this problem. When M1 and M2 are Riemannian, how to extend existing algorithms from
Euclidean space to Riemannian manifold and how to analyze their convergence become an interesting
topic in recent years. In Table 1, we summarize some related works on the Riemannian min-max
problem. In particular, we observe that under suitable assumptions of the game, one can obtain
the global convergence of a suitable algorithm towards Nash equilibrium. One major issue is that
these assumptions typically do not hold in applications such as GAN (Razaviyayn et al., 2020).
However, when a min-max problem is non-convex and non-concave, even in the Euclidean case, the
global convergence of existing algorithms can be complicated (Hsieh et al., 2021). To achieve this, a
suitable notion of solution set and novel algorithmic development and analysis are needed (Jin et al.,
2020; Benaim & Miclo, 2024). In this article, we focus on the following solutions sets: differential
Stackelberg equilibrium (DSE) and differential Nash equilibrium (DNE), which are known to be
generic among local Stackelberg equilibrium (resp. local Nash equilibrium) in Euclidean smooth
non-convex non-concave min-max problems (Fiez et al., 2020). We then develop local convergence
analysis of min-max algorithms and show its relevance to the training of GAN.
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Table 1: Related works of Riemannian min-max problem. These works study the global convergence
of min-max algorithms to different solution sets. However, they make assumptions on the game
(M1,M2, f) which typically do not hold in the practice of GANs.

Reference Class of problem Solution set / Algorithm

Zhang et al. (2023) Geodesically convex (compact) M1,M2 Nash equilibrium / Extra-gradient
f is geodesically convex/concave (quasi), semi-continuous (lower/upper)

Jordan et al. (2022) +Bounded M1,M2 Nash equilibrium / Extra-gradient
f is geodesically convex/concave, smooth

Huang & Gao (2023) Euclidean M2 Stationary point of maxy f / GDA
f is strongly concave in y

Han et al. (2023) Complete M1,M2 Stationary point of f / Hamiltonian
(x, y) 7→ ∥gradxf∥2x + ∥gradyf∥2y is Polyak-Łojasiewicz

This work f is twice continuously differentiable differential equilibrium / GDA,SGA

Section 2 reviews the definition of DSE on Riemannian manifold, which includes DNE as a special
case. We then analyze the local convergence of simultaneous min-max algorithms to DSE and
DNE, in which the variables (x, y) are updated simultaneously at each iteration. In Section 3.1, we
adopt the classical Ostrowski theorem on manifold to analyze the local convergence of deterministic
simultaneous algorithms to a fixed point. The problem is reduced to analyze the eigenvalues of a
Jacobian matrix in a Euclidean local coordinate, which is at the heart of analyzing various Euclidean
min-max algorithms (Daskalakis & Panageas, 2018; Azizian et al., 2020; Fiez & Ratliff, 2021; Zhang
et al., 2022; Li et al., 2022; de Montbrun & Renault, 2022). In Section 3.2, sufficient conditions on τ
are given to ensure the local convergence of τ -GDA to DSE or DNE, where the learning rate ratio τ
is used to adjust x and y at two different learning rates.

One issue of τ -GDA is its slow convergence rate when there are strong rotational dynamics (Li et al.,
2022). This is a well-known phenomenon near a Nash equilibrium in bilinear games due to the
competitive nature between two players. To improve the convergence, first-order methods such as
extra-gradient and optimistic mirror descent are often used to correct the gradient direction of τ -GDA.
Recently, these methods have been extended to Riemannian manifold (Zhang et al., 2023; Hu et al.,
2023; Wang et al., 2023). However, their computations rely on exponential map and parallel transport
which can be costly (Absil et al., 2008). In Section 3.3, we develop an algorithm τ -SGA to address
the same rotational problem based on auto-differentiation. It naturally extends the SGA algorithm
(Gemp & Mahadevan, 2018; Balduzzi et al., 2018; Letcher et al., 2019) to Riemannian manifold by
using a learning rate ratio τ as in τ -GDA. We then analyze the convergence of an asymptotic variant
of the deterministic τ -SGA which is an approximation of τ -SGA when τ is large.

In Section 4, we apply τ -GDA and τ -SGA to train orthogonal Wasserstein GANs (Müller et al.,
2019). The underlying min-max problem is Riemannian since we shall impose Stiefel manifold
constraints on y to construct Lipschitz-continuous discriminators. This allows one to compute a lower
bound of Wasserstein distance which can generalize in high dimension with a polynomial number of
training samples (Arora et al., 2017; Biau et al., 2021). Section 5 concludes with some discussions.
In summary, our main contributions are:

• Based on the notions of DSE and DNE on Riemannian manifold, we derive sufficient conditions in
terms of the range of τ and the learning rate of x to obtain a linear convergence rate of deterministic
τ -GDA to DSE and DNE. They rely on intrinsic quantities of Riemannian manifold.

• We develop an algorithm τ -SGA to improve the convergence of τ -GDA. In some cases, the
asymptotic variant of deterministic τ -SGA allows for a broader range of τ to be chosen to ensure
its convergence to DSE with a faster rate. This indicates that τ -SGA can achieve a faster local
convergence compared to τ -GDA.

• We apply the insights from the local convergence analysis to improve the training of orthogonal
Wasserstein GANs. We find numerically that an improved convergence of stochastic τ -GDA and τ -
SGA may also improve the generator quality on simple benchmarks. Results can be reproduced from
a pytorch software https://gitlab.com/sixin-zh/riemannian_minmax_algo.

2

https://gitlab.com/sixin-zh/riemannian_minmax_algo


Published as a conference paper at ICLR 2025

2 DIFFERENTIAL EQUILIBRIUM ON RIEMANNIAN MANIFOLD

The notion of DNE on manifold was given in Ratliff et al. (2013). This section reviews the notions of
DSE and DNE through their intrinsic and local coordinate definitions on Riemannian manifold. We
then provide some simple examples to illustrate their difference. Additional mathematical notations
used in this article are summarized in Appendix A.

2.1 DIFFERENTIAL STACKELBERG EQUILIBRIUM (DSE)

We write f ∈ C2 if it is twice continuously differentiable on the product manifold M1 × M2.
When M1 and M2 are Euclidean, the notion of DSE is defined based on the first and second order
derivatives of f at this equilibrium (Fiez et al., 2020). The next definition of DSE is a natural
extension of this concept to Riemannian manifold.

Definition 2.1. We say that (x∗, y∗) is a DSE of f ∈ C2 if

gradxf(x
∗, y∗) = 0, gradyf(x

∗, y∗) = 0, (1)

− Hessyf(x∗, y∗) p.d (abbrev. of positive definite), (2)

[Hessxf − grad2
yxf · (Hessyf)−1 · grad2

xyf ](x
∗, y∗) p.d. (3)

In this definition, we rely on the following intrinsic quantities in the literature of Riemannian
optimization (see Absil et al. (2008, Section 3.6,Definition 5.5.1) and Han et al. (2023, Section 2.1)):

• Riemannian gradient: gradxf(x, y) ∈ TxM1, gradxf(x, y) ∈ TyM2,
• Riemannian Hessian: Hessxf(x, y) : TxM1 → TxM1,Hessyf(x, y) : TyM2 → TyM2,
• Riemannian cross-gradient: grad2xyf(x, y) : TxM1 → TyM2, grad2

yxf(x, y) : TyM2 → TxM1.

Here we denote the tangent space of M1 at x ∈ M1 by TxM1 (resp. M2 at y ∈ M2 by TyM2). The
condition (1) means that (x∗, y∗) is a critical point of f . Note that the eigenvalues of Hessxf(x∗, y∗)
and Hessyf(x∗, y∗) depend on the Riemannian metric on M1 ×M2. However, the notion of DSE
does not depend on the choice of Riemannian metric, due to the following known fact.

Fact: The notion of DSE in Definition 2.1 can be equivalently defined in a local coordinate chart
which does not depend on the choice of Riemannian metric.

To make this point clear, we take a local coordinate chart (O1 × O2, φ1 × φ2) around (x∗, y∗) ∈
M1 ×M2 (see Absil et al. (2008, Section 3.1,3.2)). We the rewrite the function f(x, y) on O1 ×O2

using this chart by

f̄(u1, u2) = f(φ−1
1 (u1), φ

−1
2 (u2)).

In Appendix B, we verify the equivalence between (1)-(3) and the following conditions (4)-(6):

∂u1
f̄(u∗

1, u
∗
2) = 0, ∂u2

f̄(u∗
1, u

∗
2) = 0, (4)

− ∂2
u2u2

f̄(u∗
1, u

∗
2) p.d, (5)[

∂2
u1u1

f̄ − ∂2
u2u1

f̄ · (∂2
u2u2

f̄)−1 · ∂2
u1u2

f̄
]
(u∗

1, u
∗
2) p.d. (6)

We see that the conditions (4)-(6) do not depend on the choice of Riemannian metric, therefore
Definition 2.1 still holds if the Riemannian metric is changed on M1 ×M2.

It is known that a DSE is a local minimax point (Jin et al., 2020). The conditions (4)-(6) imply that
(u∗

1, u
∗
2) = (φ1(x

∗), φ2(y
∗)) is a local minimax point of f̄ . Furthermore, from the implicit function

theorem on Riemannian manifold given in Appendix C, (x∗, y∗) is a local minimax point of f in the
following sense: there exists an open subset U1 × U2 of M1 ×M2, which includes (x∗, y∗) and on
which there is a unique function h : U1 → U2, such that the following holds

f(x∗, y) ≤ f(x∗, y∗) ≤ max
y′∈U2

f(x, y′) = f(x, h(x)), ∀(x, y) ∈ U1 × U2.

The set {(x, h(x))|x ∈ U1} is sometimes called the ridge near a DSE (Wang et al., 2020).
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2.2 DIFFERENTIAL NASH EQUILIBRIUM (DNE) AND EXAMPLES

In game theory, one is often interested in finding a Nash equilibrium since it maintains a symmetry
between the role of the players. When M1 and M2 are Euclidean, it is also called “strongly local
min-max point” (Daskalakis & Panageas, 2018, Definition 1.6).

The notion of DNE was introduced in Ratliff et al. (2013)[Definition 3] through a local coordinate
chart. This is equivalent to the following intrinsic definition:
Definition 2.2. We say that (x∗, y∗) is a DNE of f ∈ C2 if

gradxf(x
∗, y∗) = 0, gradyf(x

∗, y∗) = 0, (7)

− Hessyf(x∗, y∗) p.d, Hessxf(x∗, y∗) p.d. (8)

From the definition, it is clear that a DNE is a DSE. We remark that this concept is defined locally,
and therefore it is different to the global Nash-type equilibria on manifold in Kristály (2014).

2.2.1 EXAMPLE 1: DSE

Consider f(x, y) = ⟨y,Ax− b⟩, with x ∈ M1 = Rd1 and y ∈ M2 = Sd2 . The manifold Sd2 is the
unit sphere embedded in Rd2+1, endowed with the Euclidean metric ⟨·, ·⟩ on Rd2+1. Let A+ denote
the pseudo-inverse of A ∈ R(d2+1)×d1 . We next construct a scenario where DSE exists.
Proposition 2.1. Assume b ̸∈ Range(A), Ker(A) = {0}. Let x∗ = A+b, y∗ = Ax∗−b

∥Ax∗−b∥ , then
(x∗, y∗) is a DSE of the f in Example 1.

The proof is given in Appendix D. Since M1 is Euclidean, it is clear that ∂2
xxf(x

∗, y∗) = 0. This
implies that the (x∗, y∗) is not DNE. But each eigenvalue of A = −Hessyf(x∗, y∗) equals to
∥Ax∗ − b∥ > 0, since from the proof ⟨A[η∗], η∗⟩ = ∥Ax∗ − b∥∥η∗∥2 for any η∗ ∈ Ty∗M2.

2.2.2 EXAMPLE 2: DSE

Consider f(x, y) = ⟨y,Ax− b⟩ − κ
2 ∥Ax∥2, with x ∈ M1 = Rd1 and y ∈ M2 = Sd2 . Compared

to the f in Example 1, we add a quadratic function of Ax with a curvature parameter κ > 0. We next
show that if κ is close to zero, we can still find a DSE near the DSE in Proposition 2.1.
Proposition 2.2. Assume b ̸∈ Range(A), Ker(A) = {0}. There exists κ0 > 0 such that for any
0 < κ < κ0, there is a number c close to 1, x∗ = cA+b and y∗ = Ax∗−b

∥Ax∗−b∥ , so that (x∗, y∗) is a
DSE of the f in Example 2.

The proof is given in Appendix E. From the proof, we have C = ∂2
xxf(x, y) = −κA⊺A. The spectral

radius of C equals to its operator norm ∥C∥ = κ∥A⊺A∥ > 0. As in Example 1, all the eigenvalues
of A = −Hessyf(x∗, y∗) equal to ∥Ax∗ − b∥ = ∥cAA+b − b∥. These quantities will be used in
Section 3 to analyze the local convergence of min-max algorithms.

2.2.3 EXAMPLE 3: DNE

Consider f(x, y) = 1
2∥Ax + y − b∥2 with x ∈ M1 = Rd1 and y ∈ M2 = Sd2 . M2 is the same

embedded sub-manifold of Rd2+1 as above. We next provide a sufficient condition on the existence
of DNE. The proof is given in Appendix F.
Proposition 2.3. Assume b ̸∈ Range(A), Ker(A) = {0}. Let x∗ = A+b, y∗ = Ax∗−b

∥Ax∗−b∥ , then
(x∗, y∗) is a DNE of the f in Example 3.

3 SIMULTANEOUS MIN-MAX ALGORITHMS FOR DIFFERENTIAL EQUILIBRIUM

Simultaneous gradient-based min-max algorithms such as GDA and SGA are often used to find local
Nash equilibrium when M1 and M2 are Euclidean (Daskalakis & Panageas, 2018; Letcher et al.,
2019). Similar to GDA, we extend the SGA algorithm to Riemannian manifold with two-time scale
update (Heusel et al., 2017) using either deterministic or stochastic gradients. Section 3.1 reviews
a classical result of fixed point theorem. Based on this theorem, we then focus on a deterministic
analysis of the local convergence of these algorithms to DSE and DNE.
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3.1 LOCAL CONVERGENCE OF DETERMINISTIC SIMULTANEOUS ALGORITHMS

We use the classical Ostrowski theorem to analyze the local convergence of simultaneous deterministic
algorithms on manifold. Each algorithm is defined by an update rule which does not change over
iteration. This theorem provides a sufficient condition for the linear convergence rate of an algorithm
to a fixed point, based on the spectral radius of the update rule’s Jacobian matrix at the fixed point.

A deterministic simultaneous algorithm is defined by two vector fields (x, y) 7→ ξ1(x, y) ∈ TxM1,
(x, y) 7→ ξ2(x, y) ∈ TyM2 on M1 and M2, and a suitable choice of manifold retractions (see Absil
et al. (2008, Section 4.1)). Initialized at a point (x(0), y(0)) on M1 ×M2, the algorithm generates a
sequence (x(t+1), y(t+1)) = T(x(t), y(t)), through an update rule T : M1×M2 → M1×M2

of the following form,
T(x, y) = (R1,x(ξ1(x, y)),R2,y(ξ2(x, y))),

where R1,x : TxM1 → M1 (resp. R2,y : TyM2 → M2) denotes the restriction of a retraction R1

at x ∈ M1 (resp. retraction of R2 at y ∈ M2) For example, on the M1 = Rd1 and M2 = Sd2

in Section 2.2, we will take R1,x(δ) = x+ δ for δ ∈ Rd1 , and R2,y(η) to be the projection of the
vector y + η in Rd2+1 to the sphere M2.

We say that (x∗, y∗) ∈ M1 ×M2 is a fixed point of T if it is a critical point of the vector fields ξ1
and ξ2. We next define what it means for an update rule T to be locally convergent to (x∗, y∗). It
implies that it is also a point of attraction of T (Ortega & Rheinboldt, 1970, Definition 10.1.1).
Definition 3.1 (Locally convergent with (linear) rate ρ ∈ (0, 1)). Let (x∗, y∗) be a fixed point
of T. For any ϵ ∈ (0, 1 − ρ), there exists a local stable region Sδ ⊂ M1 × M2, which con-
tains a geodesically convex open set (and homeomorphic to a ball) containing (x∗, y∗), such
that started from (x(0), y(0)) ∈ Sδ, we have (x(t), y(t)) ∈ Sδ,∀t ≥ 1. Furthermore, let d(t)
be the Riemannian distance between (x(t), y(t)) and (x∗, y∗), then there exists a constant C s.t.
d(t) ≤ C(ρ+ ϵ)t+1d(0),∀t ≥ 0.

We next give a sufficient condition of T to achieve the local linear convergence. It is based on the
spectral radius of the following linear transformation on Tx∗M1 × Ty∗M2,

DT∗ = T′(x∗, y∗) =

(
I +∇xξ1(x

∗, y∗) Dyξ1(x
∗, y∗)

Dxξ2(x
∗, y∗) I +∇yξ2(x

∗, y∗)

)
. (9)

Here Dx and ∇x (resp. Dy and ∇y) denote the differential operator and the Riemannian connection
on M1 (resp. on M2). Note that DT∗ equals to the tangent map of T at (x∗, y∗), no matter how
one chooses the retraction R1 and R2 (c.f. Appendix G.1). When M1 and M2 are Euclidean, it is
the Jacobian matrix of T at (x∗, y∗).
Theorem 3.1 (Ostrowski Theorem on manifold). Let (x∗, y∗) be a fixed point of T. Assume that ξ1
and ξ2 are continuous on M1 ×M2, and they are differentiable at (x∗, y∗) such that ρ(DT∗) < 1,
then T is locally convergent to (x∗, y∗) with rate ρ(DT∗).

This result is proved in Ortega & Rheinboldt (1970, Section 10.1.3) when M1 and M2 are Euclidean.
The proof idea can be readily extended to the manifold case. In the statement of Theorem 3.1, we
add an assumption on the continuity to ξ1 and ξ2 to ensure a non-empty local stable region Sδ. To
make the article self-contained, we provide a proof of this theorem in Appendix G. This proof does
not give an explicit way to construct the local stable region Sδ. Therefore it is unclear what a good
initialization entails. To obtain a precise size of Sδ , extra assumptions on f would be needed.

Theorem 3.1 has a local nature as the convergence rate ρ(DT∗) does not depend on any global
manifold property. One can also use the stronger operator norm assumption ∥DT∗∥ < 1 in Boumal
(2023, Theorem 4.19) to obtain a similar local convergence result.

3.2 SIMULTANEOUS GRADIENT-DESCENT-ASCENT ALGORITHM (τ -GDA)

The τ -GDA algorithm uses the Riemannian gradients gradxf(x, y) and gradyf(x, y) to update x and
y simultaneously. The local convergence of deterministic τ -GDA to DSE and DNE is well-studied
in Euclidean space (Daskalakis & Panageas, 2018; Jin et al., 2020; Fiez & Ratliff, 2021; Li et al.,
2022). This section extends these results to Riemannian manifold. We obtain a sharp lower-bound of
τ for τ -GDA to be locally convergent to DSE. It is based on a refinement of the spectral analysis in
Euclidean space (Li et al., 2022).
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τ -GDA algorithm In the deterministic setting, the update rule T of τ -GDA is determined by
ξ1(x, y) = −γgradxf(x, y), ξ2(x, y) = τγgradyf(x, y). (10)

Note that γ > 0 and we use a ratio τ > 0 to adjust the learning rate (step size) of the Riemannian
gradients. The deterministic τ -GDA can be readily extended to stochastic τ -GDA by using an
unbiased estimation of the Riemannian gradients (Jordan et al., 2022; Huang & Gao, 2023).

Local convergence of deterministic τ -GDA Based on Theorem 3.1, we are ready to study the
local convergence of τ -GDA (defined by (10)) to DSE and DNE. From the definition of Riemannian
Hessian and cross-gradient, we rewrite DT∗ = I + γMg using the following linear transform

Mg =

(
−C −B
τB⊺ −τA

)
=

(
−Hessxf(x∗, y∗) −grad2

yxf(x
∗, y∗)

τgrad2
xyf(x

∗, y∗) τHessyf(x∗, y∗)

)
. (11)

For a Hurwitz-stable linear transform M whose eigenvalues all have strictly negative real part, we
write γ•(M) = −2maxk

Re(λk(M))
|λk(M)|2 . It computes an upper bound of γ such that ρ(I + γM) < 1.

Let Lg = max(∥A∥, ∥B∥, ∥C∥) and µg = min(Lg, λmin(C+BA−1B⊺)).

Theorem 3.2. Assume (x∗, y∗) is a DSE of f ∈ C2. If τ > ∥C∥
λmin(A) and γ ∈ (0, γ•(Mg)), τ -GDA

is locally convergent to (x∗, y∗) with rate ρ(I + γMg). Furthermore, if τ ≥ 2Lg

λmin(A) and γ = 1
4τLg

,
the rate is at most 1− µg

16τLg
.

The proof is given in Appendix H. This result is an extension of the Euclidean space result in Li
et al. (2022, Theorem 4.2) (without assuming Mg being diagonalizable). When M1 and M2 are
Euclidean, the range {τ ∈ R+|τ > ∥∂2

xxf(x
∗, y∗)∥/λmin(−∂2

yyf(x
∗, y∗))} in Theorem 3.2 is sharp

as one can construct a counter-example (Li et al., 2022, Theorem 4.1) to show that if τ is outside this
range, the spectral radius of the Jacobian matrix (9) is strictly larger than one for any γ > 0 (see also
a discussion in Li et al. (2022, Remark 2)).

Theorem 3.2 can be readily applied to analyze the local convergence of τ -GDA to DNE. However, we
can obtain a broader range of τ . The next result generalizes local convergence properties of τ -GDA
to DNE from Euclidean space to Riemannian manifold.
Theorem 3.3 (Jin et al. (2020); Zhang et al. (2022)). Assume (x∗, y∗) is a DNE of f ∈ C2 and
µ̄g = min(λmin(A), λmin(C)). If τ > 0 and γ ∈ (0, γ•(Mg)), τ -GDA is locally convergent to

(x∗, y∗) with rate ρ(I + γMg). Furthermore, if τ = 1 and γ =
µ̄g

2L2
g

, the rate is at most 1− µ̄2
g

4L2
g

.

The proof is given in Appendix I. The common reason that we can obtain such extensions in Theorem
3.2 and 3.3 is that the spectral analysis of the matrix Mg is reduced to a similar matrix Mg in a local
coordinate (see (42)) and the spectral properties of each intrinsic term (A,B,C) in Mg are the same
as those in Mg. We can therefore use existing Euclidean results to derive a sufficient condition to
control the spectral radius of Mg , and then identify an equivalent condition in terms of Mg .

3.3 SYMPLECTIC GRADIENT-ADJUSTMENT METHOD (τ -SGA)

In Euclidean space, SGA modifies the update rule of GDA to avoid strong rotational dynamics near a
fixed point (Gemp & Mahadevan, 2018). We apply this idea to τ -GDA and extend it to Riemannian
manifold. We then study its local convergence to DSE when τ is large.

τ -SGA algorithm SGA adjusts a vector field ξ using an orthogonal vector field which is constructed
from the anti-symmetric part of the Jacobian matrix of ξ. In τ -GDA, ξ(x, y) = (−δ(x, y), τη(x, y))
where δ(x, y) = gradxf(x, y) and η(x, y) = gradyf(x, y). Based on this idea, the adjustment
of τ -SGA depends on the Riemannian cross-gradients B̃(x, y) = grad2

yxf(x, y) and B̃⊺(x, y) =

grad2
xyf(x, y), which is summarized in the following update rule (with a hyper-parameter µ ∈ R),

ξ1(x, y) = −γ

(
δ(x, y) + µ

(τ + 1)τ

2
B̃(x, y)[η(x, y)]

)
, (12)

ξ2(x, y) = γ

(
τη(x, y)− µ

τ + 1

2
B̃⊺(x, y)[δ(x, y)]

)
. (13)
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In Appendix J, we provide the derivation of this update rule. The next proposition shows that the
adjusted direction (−τB̃[η],−B̃⊺[δ]) is orthogonal to ξ = (−δ, τη).

Proposition 3.1. For any (x, y) ∈ M1 ×M2, we have

⟨τB̃(x, y)[η(x, y)], δ(x, y)⟩x + ⟨B̃⊺(x, y)[δ(x, y)],−τη(x, y)⟩y = 0.

The proof is given in Appendix J.1. In the original SGA method, the orthogonality is essential to
make it compatible to potential and Hamiltonian game dynamics. This proposition implies that such
compatibility still makes sense for τ -SGA. In Appendix L, we discuss how to perform deterministic
and stochastic gradient adjustment using auto-differentiation when M1 and M2 are Euclidean
embedded sub-manifolds (Absil et al., 2008, Chapter 3.3).

Local convergence of deterministic τ -SGA to DSE: asymptotic analysis We study the local
convergence of τ -SGA with deterministic gradients in an asymptotic regime where τ → ∞. In this
regime, to make the term B̃[η] comparable to the term δ in (12), we re-parameterize µ = θ 2

τ(τ+1) ∼
1
τ2 . As a consequence, µ τ+1

2 ∼ 1
τ and the update rule in (13) can be approximated by the ξ2 in (10).

The next theorem analyzes the local convergence of Asymptotic τ -SGA, which is an approximation
of τ -SGA, whose ξ1 (resp. ξ2) is defined by (12) (resp. (10)). In order to apply Theorem 3.1, it is
necessary to verify that the corresponding ξ1 is differentiable at (x∗, y∗). This is indeed true since
B̃(x, y) is continuous at (x∗, y∗) and η(x∗, y∗) = 0. The following linear transform plays a key role
in the asymptotic analysis since it gives an approximation of the DT∗ in τ -SGA by I + γMs,

Ms =

(
−C −B
τB⊺ −τA

)
+ θ

(
−BB⊺ BA
0 0

)
. (14)

Let Ls = max(∥A∥, ∥B∥, ∥C+ θBB⊺∥) and µs = min(Ls, λmin(C+BA−1B⊺)).

Theorem 3.4. Assume (x∗, y∗) is a DSE of f ∈ C2. If τ > min
(

∥C∥|
λmin(A) ,

∥C+θBB⊺∥
λmin(A)

)
, µ =

θ 2
τ(τ+1) with 0 ≤ θ ≤ 1

λmax(A) , and γ ∈ (0, γ•(Ms)), Asymptotic τ -SGA is locally convergent to

(x∗, y∗) with rate ρ(I + γMs). Furthermore, if τ ≥ 2Ls

λmin(A) and γ = 1
4τLs

, the rate is at most
1− µs

16τLs
.

The proof is given in Appendix K. Contrary to Theorem 3.2, the valid range of τ depends also
on the choice of θ. Indeed, if the spectral radius of C is larger than that of C + θBB⊺ with a
suitable choice of θ, a broader range of τ could be used in τ -SGA compared to τ -GDA. For a DSE
(x∗, y∗) which is not DNE (i.e. C is not p.d.), such a choice of θ can be possible. Furthermore,
we obtain a non-trivial improvement on the convergence rate in theory as it significantly improves
the rate of the extra-gradient method in Euclidean space (Li et al., 2022, Theorem 5.4) when
Ls = µs = ∥C+θBB⊺∥ < Lg = µg = ∥C∥. In this case, we could choose a smaller τs = 2Ls

λmin(A)

and a larger γs = 1
4τsLs

= λmin(A)
8L2

s
in Asymptotic τ -SGA to achieve a faster rate 1− 1

16τs
, compared

to the rate 1− 1
16τg

using a larger τg =
2Lg

λmin(A) and a smaller γg = 1
4τgLg

in τ -GDA.

We next illustrate the convergence results using a numerical example, to show that τ -SGA can
indeed converge much faster than τ -GDA to DSE when there are strong rotational forces in its
dynamics. In Figure 1, we compare the local convergence rate of τ -GDA and τ -SGA in Example 2
of Section 2.2, where A = [1; 1; 1] ∈ R3×1, b = [1; 1; 0.99] ∈ R3 and κ = 0.1. In this case, we find
numerically that x∗ = 0.9975. The corresponding optimal y∗ = (Ax∗ − b)/∥Ax∗ − b∥. The initial
point of each algorithm is set to be x = A+b = 0.9967, y = (Ax − b)/∥Ax − b∥, which is close
to the DSE (x∗, y∗). In Figure 1(a), we study the range of τ for the convergence of τ -GDA with
γ = 0.001/τ . According to Theorem 3.2 and Proposition 2.2, a valid range of τ should be larger than
maxk |λk(C)|

λmin(A) = κ∥A⊺A∥/∥Ax∗ − b∥ ≈ 36.18. Figure 1(a) shows that when τ = 30, τ -GDA can
slowly diverge. When τ = 50, τ -GDA converges slowly to the value f(x∗, y∗) = −0.141. This is a
convergence dilemma of τ -GDA: to achieve the local convergence, τ needs to be large, but the rate
can be very slow. In Figure 1(b) and (c), we study τ -SGA with θ = 0.15, using the same learning rate
τγ for y as τ -GDA. Figure 1(b) shows that the gap between Asymptotic τ -SGA and τ -SGA is not so
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(a) (b) (c)

Figure 1: Evolution of f(x(t), y(t)) and an approximate geodesic distance between (x(t), y(t)) to
(x∗, y∗) as a function of the iteration t using deterministic τ -GDA and τ -SGA for Example 2. (a):
τ -GDA with τ = 30 vs. τ = 50. (b): τ -SGA vs. Asymptotic τ -SGA with τ = 10 and τ = 50. (c):
τ -GDA at τ = 50 vs. τ -SGA at τ ∈ {10, 30, 50}.

big even if τ = 10. Therefore in this specific example, Theorem 3.4 provides a valid picture on the
behavior of τ -SGA when τ is large enough. We find numerically that maxk |λk(C+θBB⊺)|)|

λmin(A) ≈ 16.7,
which suggests that τ -SGA can be locally convergent with a smaller τ compared to τ -GDA. Figure
1(c) confirms this analysis and it also shows that a faster linear rate can be achieved by τ -SGA.
Surprisingly, the approximate geodesic distance |x(t)− x∗|+ arccos(y(t)⊺y∗) (an approximation of
the Riemmanian distance d(t)) quickly converges towards 0 even if τ = 10.

The local convergence of τ -SGA to DNE in Euclidean space is analyzed in Letcher et al. (2019,
Theorem 10) when τ = 1. Using the same proof idea as Theorem 3.3, one can extend this result
to Riemmanian manifold. However, when τ ̸= 1, a DNE is not necessarily a stable fixed point of
the vector field ξ = (−δ, τη), c.f Letcher et al. (2019, Definition 4). It is thus unclear if there is a
non-trivial range of µ such that for any τ > 0, τ -SGA is locally convergent to DNE.

4 APPLICATION TO WASSERSTEIN GAN

The local convergence analysis in Section 3 shows that a larger τ is sometimes needed to ensure the
local convergence of τ -GDA to DSE compared to τ -SGA. However, in practice, it is numerically hard
to validate this theory in GAN. In this section, we study the training of orthogonal Wasserstein GAN
using stochastic τ -GDA and τ -SGA. We construct two non-standard examples with the following
goals: (1) Illustrate a similar local convergence dilemma near DSE faced by τ -GDA as τ varies
on both synthetic and real datasets. (2) Show that the correction term in τ -SGA plays a key role
to improve τ -GDA when τ is small, leading to a local convergence. (3) Propose simple and clean
benchmarks such that theoretical study of smooth Riemannian non-convex non-concave games from
GAN could be further developed.

4.1 SETUP OF ORTHOGONAL WASSERSTEIN GAN

In Wasserstein GAN, we are interested in the following min-max problem
f(x, y) = E(Dy(ϕdata))− E(Dy(ϕx))

such that f ∈ C2. The idea of GAN is to approximate the probability distribution of ϕdata ∈ Rd using
a generator Gx parameterized by x ∈ M1. The parameter x is optimized so that the distribution of
ϕx approximates that of ϕdata through the feedback of a discriminator Dy : Rd → R parameterized
by y ∈ M2. The expectations in f are taken with respect to the random variables ϕdata and ϕx. To
build orthogonal Wasserstein GAN (Müller et al., 2019), we assume that M1 is Euclidean and M2

is Riemannian. The manifold constraint on y restricts the discriminator family {Dy}y∈M2 to be a
subset of 1-Lipschitz continuous functions, up to a constant scaling.

We next study two examples of ϕdata built upon unconditional generator Gx. It transforms a random
noise Z ∈ Rp to ϕx ∈ Rd from a lower dimension p < d. Further details about ϕdata, Gx and Dy

are given in Appendix M.

Gaussian distribution by linear generator We want to model ϕdata ∼ N (0,Σ) on dimension
d = 5 using a PCA-like model with dimension p = 4. The covariance matrix Σ is diagonal
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with a small eigenvalue, i.e. (1, 22, 32, 42, 0.01). We choose the generator Gx(Z) = AxZ, where
Ax ∈ Rd×p and Z is isotropic normal. For the discriminator, we use the Stiefel manifold St(k, d) of k
orthogonal vectors on Rd to construct Dy(ϕ) = ⟨vy, σ(Wyϕ)⟩, where Wy ∈ St(k, d), vy ∈ St(1, k)
and σ is a smooth non-linearity. We set k = d = 5. As Ax is the only generator parameter, x :=
(Ax) ∈ M1 = Rd×p. The discriminator parameter y := (Wy, vy) ∈ M2 = St(k, d)× St(1, k).

Image modeling by DCGAN generator We aim to model images from the MNIST and Fashion-
MNIST datasets (d = 28×28) using a DCGAN generator (p = 128). The space M1 is Euclidean with
dimension d1 = 1556673. To simplify the CNN discriminators in WGAN-GP, we consider a hybrid
Scattering CNN discriminator build upon the wavelet scattering transform to capture discriminative
information in natural images (Bruna & Mallat, 2013; Oyallon et al., 2017). It has only one trainable
layer and therefore it is more amenable to theoretical study,

Dy(ϕ) = ⟨vy, σ(wy ⋆ P (ϕ) + by)⟩.

The scattering transform P : Rd → RI×n×n is 1-Lipschitz-continuous and it has no trainable
parameter. The scattering features P (ϕ) ∈ RI×n×n are computed from an image ϕ of size

√
d×

√
d.

We then apply an orthogonal convolutional layer to P (ϕ) (Cisse et al., 2017). It has the kernel
orthogonality (Achour et al., 2022), by reshaping wy (size J×I×k×k) into a matrix Wy ∈ RJ×(Ik2)

such that Wy ∈ St(J, Ik2). The bias parameter by ∈ RJ and the output of the convolutional layer is
reshaped into a vector in RJN2

. As in the Gaussian case, we further assume vy ∈ St(1, JN2). In
summary, y := (Wy, by, vy) ∈ M2 = St(J, Ik2)× RJ × St(1, JN2).

Initialization of algorithms To study the local convergence of stochastic τ -GDA and τ -SGA, we
first obtain a reasonable solution of (x, y) in terms of model quality using (alternating) τ -GDA (see
Appendix M.6). We then evaluate τ -GDA and τ -SGA initialized from this solution.

4.2 RESULTS ON GAUSSIAN DISTRIBUTION BY LINEAR GENERATOR

We study the local convergence of stochastic τ -GDA across various τ ∈ {1, 10, 100}. In Figure 2(a),
we show how the function value f(x(t), y(t)) (estimated from 1000 training samples) changes over
iteration. We observe that when τ = 1, f(x(t), y(t)) has a huge oscillation, but when τ = 10 and
100, it has a much smaller oscillation amplitude. To investigate the underlying reason, we compute in
Figure 2(b), the evolution of an “angle” quantity every one thousand iterations. The angle at (x, y) is
defined as ⟨vy,δ(x,y)⟩

∥δ(x,y)∥ , where δ(x, y) = E(σ(Wyϕdata))− E(σ(Wyϕx)) is estimated from the same
batch of samples during the training. When the angle is close to 1, it indicates that vy is solved to
be optimal. We observe that when τ = 1, the angle oscillates between positive and negative values,
suggesting that vy(t) is detached from δ(x(t), y(t)). Therefore the minimization of f over x does not
get a good feedback to improve the model. This is confirmed in Figure 2(c), where we compute the
EMD distance (Rubner et al., 2000) every one thousand iterations, between the empirical measure of
ϕdata and ϕx(t) (using 2000 validation samples). We observe that the EMD distance increases over t
when τ = 1. On the contrary, it stays close to one when τ = 10 and 100. When τ = 100, we find
that the covariance error ∥Σ−Ax(t)A

⊺
x(t)∥ stays around 0.2 over all iterations. This error is between

the smallest eigenvalue of Σ (which is 0.01, the PCA error) and the second smallest eigenvalue of Σ.
Therefore to use a large enough τ is crucial to reduce model error, as it can ensure a positive angle to
measure a meaningful distance between ϕx and ϕdata. This phenomenon is consistent with the local
convergence of τ -GDA to DSE in Figure 1(a).

Table 2: Last iteration measures of stochastic τ -GDA and τ -SGA on the Wasserstein GAN of MNIST.
We report the f , angle, and FID scores computed at (x(T ), y(T )). Only significant digits are reported
with respect to the standard deviation (shown in (±)) (see Appendix M.7).

τ -GDA

τ f angle FID (train) FID (val)

5 0.13 0.5 13.38 (±0.02) 16
10 0.013 0.47 (±0.02) 7.0 9.1(±0.1)

20 0.0136 0.70 (±0.02) 7.0 9.1 (±0.1)

τ -SGA

T (105) f angle FID (train) FID (val)

1 0.013 0.4 6.65 (±0.04) 8.7 (±0.1)

3 0.012 0.3 6.2 8.3 (±0.09)

5 0.010 0.36 (±0.02) 5.76 (±0.036) 7.6 (±0.08)
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(a) f(x(t), y(t)) (b) angle(x(t), y(t)) (c) EMD(x(t))

Figure 2: Evolution of f(x(t), y(t)), angle(x(t), y(t)), and the EMD(x(t)) distance as a function
of the iteration t using stochastic τ -GDA for the Wasserstein GAN of Gaussian distribution. Top:
τ = 100, γ = 0.0002. Middle: τ = 10, γ = 0.002, Bottom: τ = 1, γ = 0.02.

4.3 RESULTS ON MNIST AND FASHION-MNIST BY DCGAN GENERATOR

We apply the insights from theoretical analysis to improve the convergence of both τ -GDA and
τ -SGA, so as to obtain a good generative model ϕx (measured by the FID scores (Seitzer, 2020)).

In Table 2, we first report the performance of τ -GDA by varying the choice of τ . It is run for
T = 2× 104 iterations with γ = 0.1/τ . We find that at τ = 5 even though the angle is positive, the
value of f and FID scores are much larger than their initial values. By investigating the evolution of
f over the iteration t, we indeed observe unstable dynamics with much stronger oscillation starting
from t = 5000. This suggests that τ -GDA does not have local convergence. This instability is
improved when τ = 10 or τ = 20. We find that τ = 10 can still result in some instability (see Figure
4 in Appendix N) if T is made about ten times larger. When τ = 20, τ -GDA has a more stable
convergence. We next study the performance of τ -SGA by varying the total training iterations T ,
using a fixed γ = 0.02, τ = 5, θ = 0.075. In Table 2, we observe that as T is increased, the value of
f and FID scores are decreased. This suggests a converging behavior of τ -SGA, which is not the case
in τ -GDA at τ = 5. It shows that the correction term in τ -SGA plays a key role to improve the local
convergence of τ -GDA. We also perform a similar study on other datasets, which shows consistent
conclusions (see Appendix N.2,N.3 and N.4).

In terms of computational efficiency, we find that τ -GDA and τ -SGA can reach similar FID (test)
scores after a similar or smaller amount of training time (see Figure 4 and 7 in Appendix N). But
sometimes τ -SGA can be slower (see Figure 6 in Appendix N). In these cases, we find that the
computational time of τ -SGA per iteration t is roughly 3-4 times that of τ -GDA. This implies that in
terms of the number of iteration t, τ -SGA is faster than τ -GDA.

5 CONCLUSION

In this article, we analyze the local convergence of τ -GDA and τ -SGA to two differential equilibria
on Riemannian manifold, based on a classical fixed point theorem and spectral analysis. This method
allows one to reduce the problem into Euclidean space using a local coordinate chart. We obtain
a linear local convergence of τ -GDA to DSE and DNE where the linear rate is upper bounded by
the spectral radius of an intrinsic Jacobian matrix. To improve the local convergence, τ -SGA is
developed and extended to Riemannian manifold for the first time. Based on the asymptotic analysis
where τ tends to infinity, we find that sometimes an improved rate of τ -SGA to DSE can be reached.
The methodology could be served as a basis to analyze other simultaneous algorithms such as the
Riemannian Hamiltonian method (Han et al., 2023).

To show the relevance of our results to GAN, we study the behavior of stochastic τ -GDA and τ -SGA
on simple benchmarks of orthogonal Wasserstein GANs. Even though our current theory does
not apply to analyze these stochastic algorithms, we observe a consistent behavior similar to their
deterministic convergence to DSE. This suggests that DSE could be a suitable solution set towards
which our chosen initialization algorithms (alternating) τ -GDA converge. This phenomenon is also
observed in non-zero sum games such as NS-GAN and WGAN-GP using Adam-based algorithms
(Berard et al., 2020).
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A NOTATIONS

Let d1 and d2 denote the dimension of M1 and M2. Let X (M1) (resp. X (M2)) be the set of con-
tinuously differentiable vector fields on M1 (resp. M2). Since f is twice continuously differentiable,
we have for any y ∈ M2 (resp. x ∈ M1), gradxf(·, y) ∈ X (M1) (resp. gradyf(x, ·) ∈ X (M2)).
We write g1 and g2 to denote the Riemannian metric on M1 and M2.

Let ∂ and ∂2 denote the first-order and second-order partial derivatives of a function on Euclidean
space. For a real symmetric matrix A, λmax(A) denotes the maximal eigenvalue of A, λmin(A)
denotes the minimal eigenvalue of A, and λk(A) denotes its k-th smallest eigenvalue. For a linear
transform B, ρ(B) denotes its spectral radius and ∥B∥ denotes its operator norm.

B DEFINITION OF DSE

The main idea is to use the local coordinate chart (O1 ×O2, φ1 × φ2) to represent the smooth vector
fields (x, y) 7→ gradx(x, y) and (x, y) 7→ grady(x, y) around the point (x∗, y∗), so as to show the
equivalence between (4)-(6) and (1)-(3).

For each x ∈ O1 (resp. y ∈ O2), let {E1,i(x)}i≤d1
(resp. {E2,j(y)}j≤d2

) be the canonical basis
of the tangent space TxM1 (resp. TyM2), defined by the tangent map Dφ−1

1 (φ1(x))[e1,i] of the
canonical basis {e1,i}i≤d1

on Rd1 (resp. Dφ−1
2 (φ2(y))[e2,j ] of {e2,j}j≤d2

on Rd2 ).

Let the local coordinate of (x, y) ∈ O1×O2 be (u1, u2) = (φ1(x), φ2(y)) ∈ Ō1× Ō2 = φ1(O1)×
φ2(O2) ⊂ Rd1 × Rd2 . We can represent

ξ1(x, y) = gradxf(x, y) =
∑
i≤d1

ξ1,i(x, y)E1,i(x), (15)

ξ2(x, y) = gradyf(x, y) =
∑
j≤d2

ξ2,j(x, y)E2,j(y). (16)

From (15) and (16), the local coordinates of the Riemannian gradients on Ō1 × Ō2 are

ξ̄1(u1, u2) =
∑
i≤d1

ξ1,i(φ
−1
1 (u1), φ

−1
2 (u2))e1,i, (17)

ξ̄2(u1, u2) =
∑
j≤d2

ξ2,j(φ
−1
1 (u1), φ

−1
2 (u2))e2,j . (18)

Equivalence between (4) and (1) Let the local Riemannian metric matrix at x = φ−1
1 (u1) ∈ O1

and y = φ−1
2 (u2) ∈ O2 be

ḡ1(u1) = (g1(E1,i(x), E1,i′(x)))i,i′≤d1 , ḡ2(u2) = (g2(E2,j(y), E2,j′(y)))j,j′≤d2 . (19)

From (Absil et al., 2008, chap. 3.6), we have for (u1, u2) ∈ Ō1 × Ō2,

ξ̄1(u1, u2) = ḡ1(u1)
−1 · ∂u1

f̄(u1, u2), (20)

ξ̄2(u1, u2) = ḡ2(u2)
−1 · ∂u2 f̄(u1, u2). (21)

The equivalence between the DSE condition (4) and (1) follows from (20) and (21), as ξ̄1(u∗
1, u

∗
2) = 0

i.f.f. (if and only if) gradxf(x
∗, y∗) = 0 (similarly for the relationship between ξ̄2 and gradyf ).

Equivalence between (5) and (2) Let η∗ ∈ Ty∗M2, with its local coordinate η̄∗ = Dφ2(y
∗)[η∗].

To show that the positive definiteness of −Hessyf(x∗, y∗) is equivalent to the positive definiteness
of −∂2

u2u2
f̄(u∗

1, u
∗
2), it is sufficient to verify that

⟨η̄∗, ∂2
u2u2

f̄(u∗
1, u

∗
2)η̄

∗⟩ = ⟨η∗,Hessyf(x∗, y∗)[η∗]⟩y∗ , (22)

where ⟨·, ·⟩ denotes the inner product on Euclidean space, and ⟨·, ·⟩y∗ denotes the Riemannian inner
product on Ty∗M .
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Recall that the Riemannian Hessian on M2 is defined by the Riemannian connection ∇y : X (M2)×
X (M2) → X (M2) with Hessyf(x, y) = ∇yξ2(x, y). By the R-linearity and Leibniz law of the
connection, we have

∇yξ2(x
∗, y∗)[η∗] = ∇y(

∑
j

ξ2,j(x
∗, y∗)E2,j(y

∗))[η∗]

=
∑
j

∇y(ξ2,j(x
∗, y∗)E2,j(y

∗))[η∗]

=
∑
j

(Dyξ2,j(x
∗, y∗)[η∗])E2,j(y

∗) + ξ2,j(x
∗, y∗)∇y(E2,j(y

∗))[η∗] (23)

=
∑
j

(
∂ξ̄2,j
∂u2

(u∗
1, u

∗
2)η̄

∗
)
E2,j(y

∗). (24)

We have obtained (24) from (23) because any DSE (x∗, y∗) is a critical point of f , therefore
ξ2,j(x

∗, y∗) = 0 for each j ≤ d2. Moreover, the tangent map Dyξ2,j(x
∗, y∗)[η∗] =

∂ξ̄2,j
∂u2

(u∗
1, u

∗
2)η̄

∗

by definition (Absil et al., 2008, chap. 3.5.4).

Therefore the local coordinate of the tangent vector ∇yξ2(x
∗, y∗)[η∗] ∈ Ty∗M2 is ∂ξ̄2

∂u2
(u∗

1, u
∗
2)η̄

∗ ∈
Rd2 . It follows from (21),(24), and the Riemannian inner product (Absil et al., 2008, chap. 3.6) that

⟨η∗,Hessyf(x∗, y∗)[η∗]⟩y∗ =

〈
η̄∗, ḡ2(u

∗
2) ·

∂ξ̄2
∂u2

(u∗
1, u

∗
2)η̄

∗
〉

(25)

=
〈
η̄∗, ∂2

u2u2
f̄(u∗

1, u
∗
2)η̄

∗〉 .
Therefore (22) holds. This verifies the equivalence between (5) and (2).

Equivalence between (6) and (3) Assume (x∗, y∗) is a DSE of f , from the equivalence between
(4),(5) and (1),(2), we deduce that (x∗, y∗) (resp. (u∗

1, u
∗
2)) is a critical point of f (resp. f̄ ). Moreover,

Hessyf(x∗, y∗) and ∂2
u2u2

f̄(u∗
1, u

∗
2) are negative definite.

To simplify the notation, let

A = −∂2
u2u2

f̄(u∗
1, u

∗
2), B = ∂2

u2u1
f̄(u∗

1, u
∗
2), C = ∂2

u1u1
f̄(u∗

1, u
∗
2). (26)

The condition (6) is equivalent to the positive definiteness of the matrix C +BA−1B⊺.

Let δ∗ ∈ Tx∗M1, with its local coordinate δ̄∗ = Dφ1(x
∗)[δ∗]. As in (22), it suffices to verify that

⟨δ̄∗, (C +BA−1B⊺)δ̄∗⟩ = ⟨δ∗, [Hessxf − grad2yxf · (Hessyf)−1 · grad2
xyf ](x

∗, y∗)[δ∗]⟩x∗ .

Based on the proof of (22), we also have ⟨δ̄∗, Cδ̄∗⟩ = ⟨δ∗,Hessxf(x∗, y∗)[δ∗]⟩x∗ . It remains to
verify that

⟨δ̄∗, BA−1B⊺δ̄∗⟩ = ⟨δ∗, [−grad2
yxf · (Hessyf)−1 · grad2xyf ](x

∗, y∗)[δ∗]⟩x∗ . (27)

Let η∗ = [Hessyf−1 · grad2
xyf ](x

∗, y∗)[δ∗], we compute the local coordinate η̄∗ of η∗ by converting
the following equation

Hessyf(x∗, y∗)[η∗] = grad2xyf(x
∗, y∗)[δ∗], (28)

into local coordinate. From (24), we have Hessyf(x∗, y∗)[η∗] =
∑

j

(
∂ξ̄2,j
∂u2

(u∗
1, u

∗
2)η̄

∗
)
E2,j(y

∗).

By (16) and (18), we obtain

grad2
xyf(x

∗, y∗)[δ∗] = Dxgradyf(x
∗, y∗)[δ∗] =

∑
j

Dxξ2,j(x
∗, y∗)[δ∗]E2,j(y

∗)

=
∑
j

(
∂ξ̄2,j
∂u1

(u∗
1, u

∗
2)δ̄

∗
)
E2,j(y

∗). (29)
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It follows that (28) is equivalent to

∂ξ̄2
∂u2

(u∗
1, u

∗
2)η̄

∗ =
∂ξ̄2
∂u1

(u∗
1, u

∗
2)δ̄

∗. (30)

We can compute the right hand side of (27) in the local coordinate as in (29) and (25),

⟨δ∗,−grad2yxf(x
∗, y∗)[η∗]⟩x∗ = −⟨δ∗, Dygradxf(x

∗, y∗)[η∗]⟩x∗

= −

〈
δ∗,
∑
i

(
∂ξ̄1,i
∂u2

(u∗
1, u

∗
2)η̄

∗
)
E1,i(x

∗)

〉
x∗

= −
〈
δ̄∗, ḡ1(u

∗
1) ·

∂ξ̄1
∂u2

(u∗
1, u

∗
2)η̄

∗
〉
.

The left hand side of (27) can computed based on (20) and (21), which result in

A = −ḡ2(u
∗
2) ·

∂ξ̄2
∂u2

(u∗
1, u

∗
2), (31)

B = ḡ1(u
∗
1) ·

∂ξ̄1
∂u2

(u∗
1, u

∗
2), (32)

C = ḡ1(u
∗
1) ·

∂ξ̄1
∂u1

(u∗
1, u

∗
1).

Furthermore, the symmetry of the Hessian matrix of f̄ implies that

B⊺ = ∂2
u1u2

f̄(u∗
1, u

∗
2) = ḡ2(u

∗
2) ·

∂ξ̄2
∂u1

(u∗
1, u

∗
2). (33)

As a consequence, (30) implies that η̄∗ = −A−1B⊺δ̄∗, and

⟨δ̄∗, BA−1B⊺δ̄∗⟩ = −
〈
δ̄∗, ḡ1(u

∗
1) ·

∂ξ̄1
∂u2

(u∗
1, u

∗
2)η̄

∗
〉
.

Therefore (27) holds.

C IMPLICIT FUNCTION THEOREM ON RIEMANNIAN MANIFOLD

We shall state an implicit function theorem which allows one to understand why (x∗, y∗) is a local
minimax point in the manifold case. This theorem implies the existence of a solution (x, h(x))
sufficiently close to (x∗, y∗) s.t. gradyf(x, h(x)) = 0. Moreover, due to the continuity of Hessyf on
M1 ×M2 and the continuity of h near x∗, −Hessyf(x, h(x)) is positive definite, provided that x is
close enough to x∗. As a consequence, h(x) is the unique strict local maximum of y 7→ f(x, y) in
this neighbor of DSE.

Recall that the set of continuously differentiable vector fields on M2 is denoted by X (M2). The
Riemannian connection on M2 is denoted by ∇y .

Consider a parameterized vector field ξ defined at each x ∈ M1 with ξ(x, ·) ∈ X (M2). By
definition, for each (x, y) ∈ M1 × M2, ξ(x, y) ∈ TyM2, and ∇yξ(x, y) is a linear map from
TyM2 to TyM2.
Theorem C.1. Assume ξ is continuously differentiable on an open set E ⊂ M1 × M2. Let
(x∗, y∗) ∈ E be a solution of

ξ(x, y) = 0, (x, y) ∈ E.

If ∇yξ(x
∗, y∗) is invertible on Ty∗M2, there exists an open set U1 × U2 ⊂ E and an open set

W1 ⊂ U1 such that
∀x ∈ W1,∃! y ∈ U2 s.t. ξ(x, y) = 0.

Let the unique y = h(x), i.e. h : W1 → U2, such that

y∗ = h(x∗), ξ(x, h(x)) = 0, ∀x ∈ W1,
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then h is continuously differentiable on W1. Let δ ∈ Tx∗M1, and denote the tangent map of h at x∗

by Dxh(x
∗), we have

Dxh(x
∗)[δ] = −∇yξ(x

∗, y∗)−1 ·Dxξ(x
∗, y∗)[δ].

We can prove this result by using a local coordinate chart around the point (x∗, y∗) to represent a
smooth vector field, and then adopt the proof technique of the implicit function theorem in Euclidean
space (Rudin, 1976, Theorem 9.28).

D PROOF OF PROPOSITION 2.1

We verify the intrinsic definition of DSE for (x∗, y∗). For the first-order condition in (1), we compute
based on Boumal (2023, Proposition 3.61),

∂xf(x, y) = A⊺y, gradyf(x, y) = (I − yy⊺)(Ax− b). (34)

From the identity involving the pseudo-inverse A⊺AA+ = A⊺, we deduce that A⊺y∗ = 0. As
b ̸∈ Range(A), we have Ax∗ − b ̸= 0 and therefore y∗ is parallel to the (non-zero) vector Ax∗ − b.
From above, the first-order condition holds, i.e. ∂xf(x∗, y∗) = 0, gradyf(x

∗, y∗) = 0.

From (34), we first verify the second-order condition (2). From Boumal (2023, Corollary 5.16), we
compute for η ∈ TyM2,

Hessyf(x, y)[η] = (I − yy⊺)(⟨∂ygradyf(x, y), η⟩)
= (I − yy⊺)(−(yη⊺ + ηy⊺)(Ax− b))

= ⟨y,Ax− b⟩(−η).

We verify that −Hessyf(x∗, y∗) is d.p, because for non-zero η∗ ∈ Ty∗M2, we have ∥η∗∥2 > 0.
Moreover, Ax∗ − b ̸= 0, therefore

⟨−Hessyf(x∗, y∗)[η∗], η∗⟩ = ⟨y∗, Ax∗ − b⟩∥η∗∥2 = ∥Ax∗ − b∥∥η∗∥2 > 0.

We now check the second-order condition (3). It is clear that ∂2
xxf(x, y) = 0. We next show

δ∗ 7→ grad2
xyf(x

∗, y∗)[δ∗] is an injection from Tx∗M1 to Ty∗M2. We compute from (34),

grad2
xyf(x

∗, y∗)[δ∗] =
∑
i≤d1

∂xigradyf(x
∗, y∗)δ∗i = (I − y∗y∗⊺)Aδ∗.

If δ∗ ̸= 0, then Aδ∗ ̸= 0 because Ker(A) = {0}. But Aδ∗ is not parallel to y∗, since y∗ is along
the direction Ax∗ − b which is not in the range of A. This proves that grad2xyf(x

∗, y∗)[δ∗] ̸= 0 if
δ∗ ̸= 0.

The above injection property implies that for δ∗ ̸= 0, η∗ = grad2
xyf(x

∗, y∗)[δ∗] ̸= 0. As
−Hessyf(x∗, y∗) is d.p, we use the symmetry of the Riemannian cross-gradients (see Proposition
3.1) to obtain: If δ∗ ̸= 0, then

⟨δ∗, [Hessxf − grad2yxf · (Hessyf)−1 · grad2
xyf ](x

∗, y∗)[δ∗]⟩ = ⟨η∗,−Hessyf(x∗, y∗)−1[η∗]⟩ > 0.

Therefore (3) holds.

E PROOF OF PROPOSITION 2.2

As in the proof of Proposition 2.1 in Appendix D, we have

∂xf(x, y) = A⊺y − κA⊺Ax, gradyf(x, y) = (I − yy⊺)(Ax− b). (35)

To show the existence of DSE, we shall construct a solution of the form (x, y∗x), where ∂xf(x, y∗x) = 0.
We consider y∗x = (Ax − b)/∥Ax − b∥ so that gradyf(x, y

∗
x) = 0. We verify that Ker(A) = {0}

implies that A⊺A is p.d. It follows that A+ = (A⊺A)−1A⊺, and that the condition ∂xf(x, y
∗
x) = 0 is

equivalent to
A⊺(Ax− b)

∥Ax− b∥
= κA⊺Ax ⇔ (1− κ∥Ax− b∥)x = A+b.
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For (x∗, y∗) = (x∗, y∗x∗) to be a DSE, we assume x∗ = cA+b and we want to find a c ∈ R such that
F (κ, c) = c(1− κ∥cAA+b− b∥)− 1 = 0.

From Proposition 2.1, we have F (0, 1) = 0. We next apply the implicit function theorem (c.f.
Theorem C.1) to show the existence of c close to 1 if κ is close to 0. It suffices to verify that
∂F
∂c (0, 1) = 1 based on

∂F

∂c
(κ, c) =

(
1− κ∥cAA+b− b∥

)
+ c

(
−κ

⟨AA+b, cAA+b− b⟩
∥cAA+b− b∥

)
.

This suggests that there is an implicit function h defined on an open neighbor W1 of κ = 0 (0 ∈ W1)
such that F (κ, h(κ)) = 0. Moreover, h(0) = 1. We next check that if c = h(κ) for some range
0 < κ < κ0, then (x∗, y∗) defined in the statement is a DSE of f . Since (35) holds at (x∗, y∗), it
suffices to verify the second-order condition of DSE.

We verify the second-order condition (2) by using the same proof as Proposition 2.1. To check the
second-order condition (3), we first compute from (35)

η∗ = grad2
xyf(x

∗, y∗)[δ∗] =
∑
i≤d1

∂xi
gradyf(x

∗, y∗)δ∗i = (I − y∗y∗⊺)Aδ∗.

By following the proof of Proposition 2.1, we then compute
S(κ) = ⟨δ∗, [Hessxf − grad2

yxf · (Hessyf)−1 · grad2
xyf ](x

∗, y∗)[δ∗]⟩
= −κ∥Aδ∗∥2 + ⟨η∗,−Hessyf(x∗, y∗)−1[η∗]⟩

= −κ∥Aδ∗∥2 + 1

∥Ax∗ − b∥
∥η∗∥2.

It is clear that S(κ) is a continuous function of κ because x∗ = h(κ)A+b and y∗ = (Ax∗ −
b)/∥Ax∗ − b∥ are continuous with respect to κ. Moreover, S(0) > 0 from the proof of Proposition
2.1 (due to the injection property of δ∗ 7→ grad2xyf(x

∗, y∗)[δ∗]). Therefore there exists κ0 > 0 so
that S(κ) > 0 for 0 < κ < κ0 (i.e. (3) holds).

F PROOF OF PROPOSITION 2.3

We verify the intrinsic definition of DNE for (x∗, y∗). For the first-order condition (7), we compute
∂xf(x, y) = A⊺(Ax+ y − b), gradyf(x, y) = (I − yy⊺)(Ax+ y − b). (36)

From the identity involving the pseudo-inverse A⊺AA+ = A⊺, we deduce that A⊺(Ax∗+y∗−b) = 0.
As b ̸∈ Range(A), we have Ax∗ − b ̸= 0 and therefore y∗ is parallel to the vector Ax∗ − b. From
above, the first-order condition in (1) holds.

From (36), we next verify the second-order condition (8). It is clear that ∂2
xxf(x, y) = A⊺A is p.d.

From Boumal (2023, Corollary 5.16), we compute for η ∈ TyM2,
Hessyf(x, y)[η] = (I − yy⊺)(⟨∂ygradyf(x, y), η⟩)

= (I − yy⊺)(η − (yη⊺ + ηy⊺)(Ax+ y − b))

= η(1− ⟨y,Ax+ y − b⟩)
= ⟨y,Ax− b⟩(−η).

We verify that −Hessyf(x∗, y∗) is d.p, because for non-zero η∗ ∈ Ty∗M2, we have ∥η∗∥2 > 0.
Moreover, Ax∗ − b ̸= 0, therefore

⟨−Hessyf(x∗, y∗)[η∗], η∗⟩ = ⟨y∗, Ax∗ − b⟩∥η∗∥2 = ∥Ax∗ − b∥∥η∗∥2 > 0.

Therefore (8) holds.

G PROOF OF THEOREM 3.1

The proof is illustrated in Figure 3, which contains three main steps: (1) identify a set S̄ where the
local update rule T̄ is well-defined. (2) adapt the proof technique of the classical Ostrowski Theorem
to identity a local stable region S̄δ and pull it back to the manifold (i.e. Sδ). (3) relate a Euclidean
distance in the local coordinate to the Riemannian distance on Sδ to establish the linear convergence.
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(a)

S̄ Ō1 × Ō2

S O1 ×O2

T̄

φ1 × φ2

T

φ1 × φ2

(b)

.
(u∗1, u

∗
2)

S̄δ

S̄
Ō1 × Ō2

Figure 3: Local convergence of a deterministic simultaneous algorithm. (a): The update rule T on
the manifold M1 ×M2 induces a local update rule T̄ in the local coordinate system, defined by a
chart (O1 × O2, φ1 × φ2) around (x∗, y∗). (b): The induced update rule T̄ is defined in the local
coordinate on the set S̄ around (u∗

1, u
∗
2) = φ1 × φ2 ◦ (x∗, y∗). It contains a local stable region S̄δ .

Preliminary Let φ = φ1 × φ2. Let us consider the set S = T−1(O1 ×O2) ∩ (O1 ×O2) and its
local coordinate domain S̄ = (φ1 × φ2)(S) ⊂ Ō1 × Ō2. By definition, (x, y) ∈ S ⊂ O1 ×O2 and
T(x, y) ∈ O1 ×O2. Therefore the induced dynamics T̄ is well-defined on S̄, i.e. ∀(u1, u2) ∈ S̄,

T̄(u1, u2) = φ(T(φ−1
1 (u1), φ

−1
2 (u2))).

Note that S and S̄ are non-empty open sets since T is continuous (by the continuity of the vector
fields ξ1, ξ2 and the retractions R1 and R2) and (x∗, y∗) is a fixed point of T.

Local stable region We aim to identify a local stable region S̄δ ⊂ S̄ around (u∗
1, u

∗
2) (the local

coordinate of (x∗, y∗)), so that if (u1, u2) ∈ S̄δ , then T̄(u1, u2) ∈ S̄δ ⊂ Ō1×Ō2. Let Sδ = φ−1(S̄δ),
and assume (x(0), y(0)) ∈ Sδ , then by recursion T̄(φ1(x(t)), φ2(y(t))) is always well defined since
the sequence (x(t), y(t)) ∈ Sδ ⊂ S, ∀t ≥ 1.

To construct such a region, the key is to verify that the spectral radius ρ of the Jacobian matrix
T̄′(u∗

1, u
∗
2) is strictly smaller than one. In Appendix G.1, we verify that the eigenvalues of T′(x∗, y∗)

are the same as T̄′(u∗
1, u

∗
2). Therefore according to our assumption, ρ = ρ(T′(x∗, y∗) < 1. From

the proof of Ostrowski Theorem (Ortega & Rheinboldt, 1970, Section 10.1.3), for an arbitrary ϵ > 0,
there exists a norm ∥ · ∥ϵ on Rd1 × Rd2 , such that

∥T̄′(u∗
1, u

∗
2)∥ϵ ≤ ρ+ ϵ/2.

Furthermore, due to the differentiability of T̄ at the fixed point, there exists δ > 0, and S̄δ =
{(u1, u2)|∥(u1, u2)− (u∗

1, u
∗
2)∥ϵ < δ} ⊂ S̄, such that

∥T̄(u1, u2)− (u∗
1, u

∗
2)∥ϵ ≤ (∥T̄′(u∗

1, u
∗
2)∥ϵ + ϵ/2)∥(u1, u2)− (u∗

1, u
∗
2)∥ϵ

≤ (ρ+ ϵ)∥(u1, u2)− (u∗
1, u

∗
2)∥ϵ, ∀(u1, u2) ∈ S̄δ. (37)

Let’s choose ϵ so that ρ+ ϵ < 1. It follows that the open set Sδ = φ−1(S̄δ) is a local stable region.
Furthermore, we can identify an open geodesically convex subset of Sδ, on which Riemannian dis-
tance equals to geodesic distance. This set is written as S′

δ . It contains (x∗, y∗) and is homeomorphic
to a ball, i.e. without any hole.

Locally convergent with linear rate ρ From (37), if (u1(0), u2(0)) ∈ S̄δ, the sequence
(u1(t), u2(t)) stays in S̄δ and converges to (u∗

1, u
∗
2) as t → ∞. As φ = φ1 × φ2 is a con-

tinuous bijection (homeomorphism) from O1 × O2 to Ō1 × Ō2, we have equivalently that if
(x(0), y(0)) ∈ Sδ = φ−1(S̄δ), the sequence (x(t), y(t)) will stay in Sδ and converges to (x∗, y∗).

The linear convergence rate in the local coordinate system in (37) can be used to control the Rieman-
nian distance d(t) between p(t) = (x(t), y(t)) ∈ Sδ and p∗ = (x∗, y∗) ∈ S′

δ . Since p(t) converges
to p∗ as t → ∞, it suffices to analyze large enough t for the convergence rate. Without loss of
generality, we assume next that p(t) ∈ S′

δ for any t ≥ 0.

Let Γδ(t) be the set of piece-wise smooth curves restricted on Sδ with an initial point p(t) (at time
0) and a last point p∗ (at time 1). Each curve γ ∈ Γδ(t) is composed of a finite number of smooth
curves, indexed by k. The k-th smooth curve γk is defined on some time interval [sk, sk+1] ⊂ [0, 1].
Then we have

d(t) = inf
γ=(γk)k∈Γδ(t)

∑
k

∫ sk+1

sk

∥γ′
k(s)∥γk(s)ds,
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where ∥ · ∥p is the Riemmanian metric at p ∈ M. As S′
δ is geodesically convex, the Riemannian

distance d(t) can be attained at certain geodesic curve γ ∈ Γδ(t).

As the closure of the set Sδ is compact and S̄δ is convex, there are two positive constants 0 < Aϵ,δ ≤
Bϵ,δ such that

Aϵ,δ∥φ(p(t))− φ(p∗)∥ϵ ≤ d(t) ≤ Bϵ,δ∥φ(p(t))− φ(p∗)∥ϵ. (38)

A relevant proof on how to obtain Aϵ,δ and Bϵ,δ is given in Hu (1969)[Chapter 3, Lemma 3.3].

From (37), we have

∥φ(p(t))− φ(p∗)∥ϵ ≤ (ρ+ ϵ)t+1∥φ(p(0))− φ(p∗)∥ϵ. (39)

Combining (38) and (39), we obtain the constant C = Bϵ,δ/Aϵ,δ such that

d(t) ≤ C(ρ+ ϵ)t+1d(0).

We remark that in general, this constant C can also depend on the initial point p(0).

G.1 SPECTRAL RADIUS OF JACOBIAN MATRIX IN THE LOCAL COORIDATE

We next compute the matrix T̄′(u∗
1, u

∗
2), and then relate it to T′(x∗, y∗). This computation also tells

us that the tangent map of T at (x∗, y∗) equals to T′(x∗, y∗).

First of all, we specify the induced dynamics T̄ of T by using the local coordinate representation of
the retractions R1 and R2 near the fixed point (x∗, y∗). Let (O1 ×O2, φ1 × φ2) be the local chart.
Since a retraction (Absil et al., 2008, Section 4.1) is a smooth function from the tangent bundle of
a manifold to the manifold itself, we can identify an open subset B1 of the tangent bundle of M1

(similarly on B2 for M2) such that x ∈ O1 and R1,x(ξ1) ∈ O1 if (x, ξ1) ∈ B1 This set B1 can then
be mapped to an open set B̄1 ⊂ Rd1 × Rd1 , using the local chart of the tangent bundle (Absil et al.,
2008, Section 3.5.3). On this subset B̄1, we can define the local representation of R1 as follows

R̄1 : B̄1 → Ō1, R̄1(u1, ξ̄1) = φ1 ◦ R1,φ−1
1 (u1)

(Dφ−1
1 (u1)[ξ̄1]),

Similarly for R2, we can define R̄2 : B̄2 → Ō2 on an open set B̄2 ⊂ Rd2 × Rd2 . From the above
definition of R̄1 and R̄2, as well as the local coordinate of ξ1(x, y) and ξ2(x, y) (as in (17),(18)), we
obtain the induced dynamics

T̄(u1, u2) =

(
R̄1(u1, ξ̄1(u1, u2))
R̄2(u2, ξ̄2(u1, u2))

)
, (40)

which is well defined on the non-empty open set {(u1, u2) ∈ Ō1 × Ō2|(u1, ξ̄1(u1, u2)) ∈
B̄1, (u2, ξ̄2(u1, u2)) ∈ B̄2}.

From (40), we can compute the Jacobian matrix T̄′(u∗
1, u

∗
2) using the chain rule. As ξ̄1(u∗

1, u
∗
2) = 0

and ξ̄2(u
∗
1, u

∗
2) = 0, we have

T̄′(u∗
1, u

∗
2) =

(
Id1

+ ∂ξ̄1
∂u1

(u∗
1, u

∗
2)

∂ξ̄1
∂u2

(u∗
1, u

∗
2)

∂ξ̄2
∂u1

(u∗
1, u

∗
2) Id2 +

∂ξ̄2
∂u2

(u∗
1, u

∗
2)

)
, (41)

since the retraction by definition satisfies ∂R̄1

∂u1
(u∗

1, 0) = Id1
, ∂R̄1

∂ξ̄1
(u∗

1, 0) = Id1
(similarly for R̄2).

We next verify that eigenvalues of the matrix in (41) are the same as T′(x∗, y∗). Let δ∗ =∑
i δ̄

∗
i E1,i(x

∗) ∈ Tx∗M1, η∗ =
∑

j η̄
∗
jE2,j(y

∗) ∈ Ty∗M2, then following the same argument
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as in (24) and (29), we have

∇xξ1(x
∗, y∗)[δ∗] =

d1∑
i=1

(
∂ξ̄1,i
∂u1

(u∗
1, u

∗
2)δ̄

∗
)
E1,i(x

∗),

Dyξ1(x
∗, y∗)[η∗] =

d1∑
i=1

(
∂ξ̄1,i
∂u2

(u∗
1, u

∗
2)η̄

∗
)
E1,i(x

∗),

Dxξ2(x
∗, y∗)[δ∗] =

d2∑
j=1

(
∂ξ̄2,j
∂u1

(u∗
1, u

∗
2)δ̄

∗
)
E2,j(y

∗),

∇yξ2(x
∗, y∗)[η∗] =

d2∑
j=1

(
∂ξ̄2,j
∂u2

(u∗
1, u

∗
2)η̄

∗
)
E2,j(y

∗).

From the definition of eigenvalue and eigenvector pairs, these four equations indicate that their
eigenvalues are indeed the same. They also indicate that the tangent map of T at (x∗, y∗) equals
to (9), which means that the tangent map of T at the fixed point does not depend on the choice of
retraction.

H PROOF OF THEOREM 3.2

We first rewrite T′(x∗, y∗) = I + γMg in a local coordinate chart with T̄′(u∗
1, u

∗
2) = Id1+d2

+ γM ′
g .

From the definition of Mg in (11) and the connection between T′ and T̄′ in (41),(31)-(33), we have

M ′
g =

(
−ḡ1(u

∗
1)

−1 · C −ḡ1(u
∗
1)

−1 ·B
τḡ2(u

∗
2)

−1 ·B⊺ −τ ḡ2(u
∗
2)

−1 ·A

)
,

where the matrices A,B,C are defined in (26). Furthermore, Mg and M ′
g have the same eigenvalues.

We next show that the real part of each eigenvalue of M ′
g is strictly smaller than zero. From this,

γ•(Mg) = γ•(M ′
g) > 0. We first check that if 0 < γ < γ•(M ′

g), the spectral radius of T̄′(u∗
1, u

∗
2)

is strictly smaller than one. In general, if λ = λ0 + iλ1 is a complex eigenvalue of a matrix M
with λ0 < 0, then 1 + γλ is an eigenvalue of the matrix I + γM . To ensure |1 + γλ| < 1, it is
sufficient that 0 < γ < γ•(M). This is because |1 + γλ|2 = 1 + 2γλ0 + γ2λ2

0 + γ2λ2
1 < 1 holds if

0 < γ < −2λ0/(λ
2
0 + λ2

1).

To analyze M ′
g , we could not apply Li et al. (2022, Lemma 5.2) directly since the local metric ḡ1(u∗

1)
and ḡ2(u

∗
2) are not identity matrices. We consider a matrix which is similar to M ′

g so that they have
the same eigenvalues,

Mg =

(
−C̄ −B̄
τB̄⊺ −τĀ

)
, (42)

where

• C̄ = ḡ1(u
∗
1)

−1/2 · C · ḡ1(u∗
1)

−1/2

• B̄ = ḡ1(u
∗
1)

−1/2 ·B · ḡ2(u∗
2)

−1/2

• Ā = ḡ2(u
∗
2)

−1/2 ·A · ḡ2(u∗
2)

−1/2

Under the assumptions of Theorem 3.2, we check that the following conditions hold:

• Ā is p.d because A is p.d.

• C̄+ B̄Ā−1B̄⊺ is p.d because C+BA−1B⊺ is p.d.

• τ > ∥C̄∥/λmin(Ā).

Indeed, we can relate these conditions to the following intrinsic quantities on the manifold M1×M2,
by following the proof in Appendix B:
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• Let A = −Hessyf(x∗, y∗), then A and Ā have the same eigenvalues.

• Let B = grad2yxf(x
∗, y∗), B⊺ = grad2xyf(x

∗, y∗), then C+BA−1B⊺ and C̄+ B̄Ā−1B̄⊺

have the same eigenvalues.
• Let C = Hessxf(x∗, y∗), then C and C̄ have the same eigenvalues. As C and C̄ are

symmetric, ∥C∥ = maxk |λk(C)| = ∥C̄∥. Therefore, the condition τ > ∥C∥/λmin(A) is
equivalent to τ > ∥C̄∥/λmin(Ā).

H.1 SPECTRAL ANALYSIS OF Mg

To analyze the eigenvalues of Mg , we use the next proposition which is adapted from Li et al. (2022,
Lemma 5.2) with a refined range of τ . For two real symmetric matrices A and B, we write A ≥ B if
A−B is semi-p.d. We write A > B if A−B is p.d.

Let us first introduce a working assumption which will be needed several times.
Assumption H.1. Let A ∈ Rm×m, B ∈ Rn×m, C ∈ Rn×n such that A and C + BA−1B⊺ are
positive definite.
Proposition H.1. Under Assumption H.1 and τ > ∥C∥/λmin(A), any eigenvalue λ = λ0 + iλ1

(with λ0 ∈ R, λ1 ∈ R) of the following matrix,

M =

(
−C −B
τB⊺ −τA

)
satisfies λ0 < 0.

Proof. We show that λ0 ≥ 0 will lead to a contradiction, by following the proof of Li et al. (2022,
Lemma 5.2). Assume that λ is an eigenvalue of M , i.e. det(λI −M) = 0. To compute det(λI −M),
note that λI+τA is invertible since λ0I+τA is positive definite (τA is positive definite and λ0 ≥ 0).
By the Schur complement, we have

det(λI −M) = det
(

C + λI B
−τB⊺ τA+ λI

)
= det(λI + τA)det(H(λ))

where H(λ) = λI +C +B(λ/τI +A)−1B⊺. As λI + τA is invertible, det(λI −M) = 0 implies
that det(H(λ)) = 0.

Let the spectral decomposition of A be UΛAU
⊺, with orthogonal U ∈ Rm×m and diagonal ΛA =

diag(λ1(A), · · · , λm(A)) ∈ Rm×m. Then

H(λ) = λI + C + B̃DB̃⊺,

with B̃ = BU and D = diag(d1, · · · , dm) where

dk =
1

λ/τ + λk(A)
=

λ0/τ + λk(A)− iλ1/τ

(λ0/τ + λk(A))2 + (λ1/τ)2
, 1 ≤ k ≤ m.

It follows that if λ0 > ∥C∥, the real-part of H(λ) is

Re(H(λ)) = λ0I + C + B̃Re(D)B̃⊺ p.d. (43)

This is contradictory to the fact that det(H(λ)) = 0 (Li et al., 2022, Corollary 10.2).

On the other hand, if 0 ≤ λ0 ≤ ∥C∥ and λ1 ̸= 0, we consider for β ∈ R,

Re(H(λ)) +
τβ

λ1
Im(H(λ)) = λ0I + C + B̃Re(D)B̃⊺ +

τβ

λ1
(λ1I + B̃Im(D)B̃⊺)

= (λ0 + τβ)I + C + B̃F B̃⊺, (44)

where F = diag(f1, · · · , fm) with

fk =
λ0/τ + λk(A)− β

(λ0/τ + λk(A))2 + (λ1/τ)2
, 1 ≤ k ≤ m. (45)
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Take β = λmin(A), then fk ≥ 0 for each k ≤ m. The condition τλmin(A) > ∥C∥ implies that
(λ0 + τβ)I + C is p.d. and together with (45), we have (44) is p.d., so it is contradictory to the fact
that det(H(λ)) = 0 (Li et al., 2022, Lemma 10.1).

Lastly, if 0 ≤ λ0 ≤ ∥C∥ and λ1 = 0, we have from (43),

H(λ) = λ0I + C + B̃DB̃⊺ (46)

with dk = 1
λ0/τ+λk(A) =

1
λk(A) −

λ0/τ
(λ0/τ+λk(A))λk(A) ≥

1
λk(A) −

λ0/τ
λmin(A)λk(A) . It follows that

H(λ) ≥ λ0I + C +

(
1− λ0/τ

λmin(A)

)
BA−1B⊺

=

(
1− λ0/τ

λmin(A)

)
(C +BA−1B⊺) +

λ0/τ

λmin(A)
C + λ0I.

As τ > ∥C∥/λmin(A), 0 ≤ λ0 ≤ ∥C∥ we have that 0 ≤ λ0/τ
λmin(A) < 1 and that I + 1

τλmin(A)C is
p.d, i.e. we find that again H(λ) is p.d which is contradictory. In conclusion, λ0 < 0.

H.2 LOCAL CONVERGENCE RATE OF τ -GDA

We use the next result obtained in Li et al. (2022, Lemma 5.3) to control the local convergence rate of
τ -GDA. It controls the spectral radius of the matrix I + γMg on a specific range of τ and γ.

Recall that Lg = max(∥A∥, ∥B∥, ∥C∥) and µg = min(Lg, λmin(C+BA−1B⊺)).

Proposition H.2. Assume (x∗, y∗) is a DSE of f ∈ C2. If τ ≥ 2Lg

λmin(A) and γ = 1
4τLg

, we have
ρ(I + γMg) ≤ 1− µg

16τLg
.

Proof. Let L = max(∥Ā∥, ∥B̄∥, ∥C̄∥) and µx = min(L, λmin(C̄ + B̄Ā−1B̄⊺)). We verify that
λmin(A) = λmin(Ā), L = Lg and µg = µx. From the proof of Li et al. (2022, Lemma 5.3), we
obtain directly the upper bound of the spectral radius of I + γMg , related to L and µx.

I PROOF OF THEOREM 3.3

The proof is based on Jin et al. (2020, Proposition 26) and Zhang et al. (2022, Theorem 4).

To show the valid range of τ , we consider a matrix M̃g which is similar to Mg (defined in (42)),

M̃g =

(
0
√

1
τ I

I 0

)(
−C̄ −B̄
τB̄⊺ −τĀ

)(
0
√

1
τ I

I 0

)−1

=

( √
τB̄⊺ −

√
τĀ

−C̄ −B̄

)(
0 I√
τI 0

)
=

(
−τĀ

√
τB̄⊺

−
√
τB̄ −C̄

)
.

We verify that for any τ > 0, the eigenvalues of M̃g are strictly negative, therefore one can compute
γ•(Mg) = γ•(Mg) = γ•(M̃g) to set the convergence range for γ.

As in Daskalakis & Panageas (2018, Lemma 2.7), the Ky Fan inequality implies that the real part of
each eigenvalue λ of M̃g is upper bounded by the maximal eigenvalue of (M̃g + M̃⊺

g )/2. We verify
that indeed λmax((M̃g + M̃⊺

g )/2) < 0 because Ā and C̄ are p.d., and τ > 0. Therefore, the real part
of λ is strictly smaller than 0.

To analyze the convergence rate of τ -GDA at τ = 1. It suffies to analyze the spectral radius of
Mg. We next apply the proof of Zhang et al. (2022, Theorem 4) to the matrix Mg. It implies
that if γ = µ/(2L2) with µ = min(λmin(Ā), λmin(C̄)) and L = max(∥Ā∥, ∥B̄∥, ∥C̄∥), then
ρ(I + γMg) < 1− µ2/(4L2). The eigenvalues of Ā, B̄B̄⊺ and C̄ are the same as A,BB⊺ and C,
thus µ = µ̄g and L = Lg . Therefore we obtain the spectral radius upper bound 1− µ̄2

g/(4L
2
g).
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J DERIVATION OF DETERMINISTIC τ -SGA ALGORITHM

The τ -SGA algorithm modifies the vector field ξ(x, y) = (−δ(x, y), τη(x, y)) of τ -GDA using the
anti-symmetric part of the Jacobian matrix of ξ(x, y). As δ(x, y) = gradxf(x, y) and η(x, y) =
gradyf(x, y), the Jacobian matrix is the following linear transform on TxM1 × TyM2 (which is a
natural extension from the Euclidean case),

J(x, y) =

(
−C̃(x, y) −B̃(x, y)

τB̃⊺(x, y) −τÃ(x, y)

)
=

(
−Hessx(x, y) −grad2yxf(x, y)
τgrad2

xyf(x, y) τHessy(x, y)

)
. (47)

Here we introduce the notation Ã, B̃, C̃ in (47) to simplify the equation. The τ -SGA update rule is
obtained from 1

ξ(x, y) + µ

(
J(x, y)− J⊺(x, y)

2

)
ξ(x, y)

= ξ(x, y) + µ
τ + 1

2

(
0 −B̃(x, y)

B̃⊺(x, y) 0

)
ξ(x, y)

=

[(
−δ
τη

)
+ µ

τ + 1

2

(
−τB̃[η]

−B̃⊺[δ]

)]
(x, y).

J.1 PROOF OF PROPOSITION 3.1

We aim to show that the correction term, which is proportional to (τB̃[η], B̃⊺[δ]), is orthogonal to
the τ -GDA direction (−δ, τη) at each (x, y), under the Riemannian metric on the tangent space
TxM1 × TyM2.

We follow the proof in Appendix B, by using a local coordinate chart (O1 ×O2, φ1 ×φ2) around the
point (x, y) rather than (x∗, y∗). As in (17) and (18), this coordinate chart maps δ(x, y) and η(x, y)
to their local coordinates δ̄(u1, u2) and η̄(u1, u2). It also induces a canonical basis {E1,i(x)}i≤d1 on
TxM1 and {E2,j(y)}j≤d2 on TyM2 . By the definition of cross-gradients,

B̃(x, y)[η(x, y)] = Dygradxf(x, y)[η(x, y)]

= Dyδ(x, y)[η(x, y)]

=
∑
i

(
∂δ̄i
∂u2

(u1, u2)η̄(u1, u2)

)
E1,i(x).

Using the Riemannian metric ḡ1 represented in the local coordinate as in (19), it turns out that

⟨B̃(x, y)[η(x, y)], δ(x, y)⟩x = δ̄(u1, u2)
⊺ḡ1(u1)

(
∂δ̄

∂u2
(u1, u2)η̄(u1, u2)

)
. (48)

Similarly we have

⟨B̃⊺(x, y)[δ(x, y)], η(x, y)⟩y = η̄(u1, u2)
⊺ḡ2(u2)

(
∂η̄

∂u1
(u1, u2)δ̄(u1, u2)

)
. (49)

We conclude that (48) equals to (49) because as in (32),(33)

ḡ1(u1)
∂δ̄

∂u2
(u1, u2) =

(
ḡ2(u2)

∂η̄

∂u1
(u1, u2)

)⊺

.

K PROOF OF THEOREM 3.4

Since f is twice continuously differentiable, we apply Theorem 3.1 to analyze the induced dynamics
T̄ (where T is the update rule of Asymptotic τ -SGA). Following (40), we obtain

T̄(u1, u2) =

(
R̄1

(
u1,−γ

[
δ̄ + µ (τ+1)τ

2
∂δ̄
∂u2

η̄
]
(u1, u2)

)
R̄2 (u2, γτ η̄(u1, u2))

)
. (50)

1Note that in the original SGA rule (Letcher et al., 2019, Proposition 5) the transpose of J(x,y)−J⊺(x,y)
2

is
considered since their definition of J has a sign difference compared to the J in (47).
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From (50), we compute the Jacobian matrix T̄′(u∗
1, u

∗
2) = I + γM ′

s, where

M ′
s =

(
− ∂δ̄

∂u1
(u∗

1, u
∗
2) − ∂δ̄

∂u2
(u∗

1, u
∗
2)

τ ∂η̄
∂u1

(u∗
1, u

∗
2) τ ∂η̄

∂u2
(u∗

1, u
∗
2)

)
−µ

(τ + 1)τ

2

(
[ ∂δ̄
∂u2

∂η̄
∂u1

](u∗
1, u

∗
2) [ ∂δ̄

∂u2

∂η̄
∂u2

](u∗
1, u

∗
2)

0 0

)
.

This can be reduced to the analysis of the eigenvalues of a similar matrix Ms as in (42),

Ms =

(
−C̄ −B̄
τB̄⊺ −τĀ

)
+ µ

(τ + 1)τ

2

(
−B̄B̄⊺ B̄Ā
0 0

)
.

As in the proof of Theorem 3.2, we verify that Ms and the Ms in (14) have the same eigenvalues.
From the assumption of Theorem 3.4, we verify that τ > min(∥C̄∥, ∥C̄+ θB̄B̄⊺∥)/λmin(Ā), and
0 ≤ θ ≤ 1/λmax(Ā). We can therefore apply Proposition K.1 (see next) to conclude that the
real-part of each eigenvalue of Ms is strictly negative. Therefore for 0 < γ < γ•(Ms), Asymptotic
τ -SGA is locally convergent to DSE with rate ρ(I + γMs).

Before we proceed to analyze Ms, we remark that the non-asymptotic analysis of τ -SGA remains an
interesting open question. Indeed, if we want to analyze τ -SGA beyond the asymptotic regime (e.g.
τ is small), one needs to consider this induced dynamics R̄2

(
u2, γ

[
τ η̄ − µ τ+1

2
∂η̄
∂u1

δ̄
]
(u1, u2)

)
for

the variable u2. The analysis of the spectral radius of the Jacobian matrix T̄′(u∗
1, u

∗
2) is harder as one

could not easily adapt the proof of Proposition K.1 to this case.

K.1 SPECTRAL ANALYSIS OF Ms

The following proposition is adapted from Proposition H.1 to analyze the eigenvalues of Ms.

Proposition K.1. Under Assumption H.1, τ > min(∥C∥,∥C+θBB⊺∥)
λmin(A) , and µ = θ 2

τ(τ+1) with 0 ≤ θ ≤
1/λmax(A), any eigenvalue λ = λ0 + iλ1 (where λ0 ∈ R, λ1 ∈ R) of the following matrix

M =

(
−C −B
τB⊺ −τA

)
+ µ

(τ + 1)τ

2

(
−BB⊺ BA⊺

0 0

)
satisfies λ0 < 0.

Proof. We show that λ0 ≥ 0 will lead to a contradiction. Assume that λ is an eigenvalue of M , i.e.
det(λI −M) = 0. By following the proof of Proposition H.1, we have

det(λI −M) = det
(

C + θBB⊺ + λI B − θBA
−τB⊺ τA+ λI

)
= det(λI + τA)det(H(λ)) (51)

where H(λ) = λI + C + θBB⊺ + (B − θBA)(λ/τI + A)−1B⊺. As λI + τA is invertible,
det(λI −M) = 0 implies that det(H(λ)) = 0.

Let the spectral decomposition of A be UΛAU
⊺, with orthogonal U ∈ Rm×m and diagonal ΛA =

diag(λ1(A), · · · , λm(A)) ∈ Rm×m. Then

H(λ) = λI + C + θBB⊺ + B̃DB̃⊺, (52)

with B̃ = BU and D = diag(d1, · · · , dm) where

dk =
1− θλk(A)

λ/τ + λk(A)
= (1− θλk(A))

λ0/τ + λk(A)− iλ1/τ

(λ0/τ + λk(A))2 + (λ1/τ)2
, 1 ≤ k ≤ m.

It follows that if λ0 > min(∥C∥, ∥C + θBB⊺∥), the real-part of H(λ) is

Re(H(λ)) = λ0I + C + θBB⊺ + B̃Re(D)B̃⊺ ≥ λ0I + C + θBB⊺ p.d (53)

This is contradictory to the fact that det(H(λ)) = 0 (Li et al., 2022, Corollary 10.2).
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On the other hand, if 0 ≤ λ0 ≤ min(∥C∥, ∥C + θBB⊺∥) and λ1 ̸= 0, we consider for β ∈ R,

Re(H(λ)) +
τβ

λ1
Im(H(λ)) = λ0I + C + θBB⊺ + B̃Re(D)B̃⊺ +

τβ

λ1
(λ1I + B̃Im(D)B̃⊺)

= (λ0 + τβ)I + C + θBB⊺ + B̃F B̃⊺, (54)

where F = diag(f1, · · · , fm) with

fk = (1− θλk(A))
λ0/τ + λk(A)− β

(λ0/τ + λk(A))2 + (λ1/τ)2
, 1 ≤ k ≤ m. (55)

Take β = λmin(A), then fk ≥ 0 for each k ≤ m. The condition τλmin(A) > min(∥C∥, ∥C +
θBB⊺∥) implies that (λ0 + τβ)I + C + θBB⊺ is p.d. and together with (55), we get that (54) is
p.d., so it is contradictory to the fact that det(H(λ)) = 0 (Li et al., 2022, Lemma 10.1).

Lastly, if 0 ≤ λ0 ≤ min(∥C∥, ∥C + θBB⊺∥) and λ1 = 0, we have from (53)

H(λ) = λ0I + C + θBB⊺ + B̃DB̃⊺

with dk = 1−θλk(A)
λ0/τ+λk(A) =

1−θλk(A)
λk(A) − (1−θλk(A))λ0/τ

(λ0/τ+λk(A))λk(A) ≥ (1− θλk(A))( 1
λk(A) −

λ0/τ
λmin(A)λk(A) ).

As τ > min(∥C∥, ∥C + θBB⊺∥)/λmin(A) and 0 ≤ λ0 ≤ min(∥C∥, ∥C + θBB⊺∥) we have
0 ≤ λ0/τ

λmin(A) < 1 and it follows

H(λ) ≥ λ0I + C + θBB⊺ +

(
1− λ0/τ

λmin(A)

)
BA−1B⊺ − θ(1− λ0/τ

λmin(A)
)B̃B̃⊺

= (1− λ0c0) (C +BA−1B⊺) + λ0(c0C + c0θBB⊺ + I)

≥ (1− λ0c0) (C +BA−1B⊺) (56)

where c0 = 1
τλmin(A) . The last inequity (56) is due to λ0 ≥ 0 and the condition 1 >

c0 min(∥C∥, ∥C + θBB⊺∥). They imply that λ0(c0C + c0θBB⊺ + I) ≥ 0. As 1− λ0c0 ∈ (0, 1],
(56) implies that H(λ) is p.d which is contradictory. In conclusion, λ0 < 0.

K.2 LOCAL CONVERGENCE RATE OF ASYMPTOTIC τ -SGA

The local convergence analysis in Proposition H.2 provides an upper bound of the rate ρ(I + γMg)
of τ -GDA. This section extends this result to Asymptotic τ -SGA. We aim to obtain an upper bound
of the rate ρ(I + γMs) which is smaller than that of ρ(I + γMg).

The following lemma analyzes the eigenvalues of Ms for Asymptotic τ -SGA when µ = θ 2
τ(τ+1) . It

refines the eigenvalue bounds of Li et al. (2022, Lemma 5.2) on Mg of τ -GDA (when µ = 0).
Lemma K.1. Under Assumption H.1, τ > 0, and 0 ≤ θ ≤ 1/λmax(A), any eigenvalue λ = λ0+iλ1

(where λ0 ∈ R, λ1 ∈ R) of the following matrix

M =

(
−C −B
τB⊺ −τA

)
+ θ

(
−BB⊺ BA⊺

0 0

)
satisfies

a. |λ1| ≤
√
τ
√
1− θλmin(A)∥B∥.

b. If λ1 ̸= 0, we have λ0 ≤ −λ+ with λ+ = 1
2 (λmin(A)τ −min(∥C∥, ∥C + θBB⊺∥)).

c. Let τ = min(∥C∥,∥C+θBB⊺∥)+α
λmin(A) with α > 0. If λ1 = 0, we have λ0 ≤ −λ′

+ with λ′
+ =

min(λmin(C +BA−1B⊺),min(∥C∥, ∥C + θBB⊺∥) + α).

d. Let L = max(∥A∥, ∥B∥, ∥C + θBB⊺∥). If τ ≥ 1, we have λ2
0 + λ2

1 ≤ ∥M∥2 ≤ 4τ2L2.

Proof. Assume that λ is an eigenvalue of M , i.e. det(λI −M) = 0. If λI + τA is invertible, we can
compute det(λI −M) using the Schur complement (51) to obtain

det(λI −M) = det(λI + τA)det(H(λ)).
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Let the spectral decomposition of A be UΛAU
⊺, with orthogonal U ∈ Rm×m and diagonal ΛA.

Then H(λ) can be rewritten into (52).

Part a: If |λ1| >
√
τ
√
1− θλmin(A)∥B∥, then λI + τA is invertible since λ1I is. Therefore

det(H(λ)) = 0. Consider

1

λ1
Im(H(λ)) = I +

1

λ1
B̃Im(D)B̃⊺

= I − 1

τ
B̃diag

(
1− θλk(A)

(λ0/τ + λk(A))2 + (λ1/τ)2

)
k≤m

B̃⊺

≥ I − 1

τ

τ2

λ2
1

(1− θλmin(A))B̃B̃⊺ = I − τ

λ2
1

(1− θλmin(A))BB⊺

As |λ1| >
√
τ
√
1− θλmin(A)∥B∥, we have that I − τ

λ2
1
(1− θλmin(A))BB⊺ is p.d. and therefore

1
λ1

Im(H(λ)) is p.d., which leads to a contradiction.

Part b: Assume λ0 > −λ+. As λ1 ̸= 0, λI + τA is invertible and det(H(λ)) = 0. Following (54),
we consider

Re(H(λ)) +
τβ

λ1
Im(H(λ)) = (λ0 + τβ)I + C + θBB⊺ + B̃F B̃⊺.

Take β = 1
2τ (λmin(A)τ + min(∥C∥, ∥C + θBB⊺∥)) > 0, then B̃F B̃⊺ is semi-p.d (positive

semidefinite) because each fk in (55) is larger than zero (fk ≥ 0). Indeed, ∀1 ≤ k ≤ m,

λ0/τ + λk(A)− β > −λ+/τ + λk(A)− β

= −λmin(A)τ −min(∥C∥, ∥C + θBB⊺∥)
2τ

− β + λk(A)

= λk(A)− λmin(A) ≥ 0.

Furthermore, either (λ0 + τβ)I + C or (λ0 + τβ)I + C + θBB⊺ is p.d. due to the following:

• If ∥C∥ < ∥C + θBB⊺∥, we have λ0 + τβ > ∥C∥ because −λ+ + τβ = ∥C∥.

• If ∥C∥ ≥ ∥C + θBB⊺∥, we have λ0 + τβ > ∥C + θBB⊺∥ because −λ+ + τβ =
∥C + θBB⊺∥.

As a consequence, Re(H(λ)) + τβ
λ1

Im(H(λ)) is p.d. which is a contradiction. Therefore λ0 ≤ −λ+.

Part c: From Proposition K.1, we know that λ0 < 0. If λ1 = 0 and 0 > λ0 > −λ′
+, λ0I + τA

remains p.d. since

λ0I + τA ≥ (τλmin(A) + λ0)I > (min(∥C∥, ∥C + θBB⊺∥) + α− λ′
+)I semi-p.d.

Therefore λI + τA is invertible and det(H(λ)) = 0. Following (52), we have

H(λ) = λ0I + C + θBB⊺ + B̃diag
(

1− θλk(A)

λ0/τ + λk(A)

)
k≤m

B̃⊺

= λ0I + C + θBB⊺ +BA−1B⊺ − B̃diag
(

λ0/τ + θλ2
k(A)

(λ0/τ + λk(A))λk(A)

)
k≤m

B̃⊺ (57)

= λ0I + C +BA−1B⊺ − B̃diag
(

(1− θλk(A))λ0/τ

(λ0/τ + λk(A))λk(A)

)
k≤m

B̃⊺ (58)

> C +BA−1B⊺ − λ′
+I

≥ C +BA−1B⊺ − λmin(C +BA−1B⊺)I semi-p.d.

As a consequence, H(λ) is p.d. which is a contradiction. Therefore λ0 ≤ −λ′
+.
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Part d: Note that ∥I − θA∥ ≤ 1. For any (x, y) ∈ Rn × Rm, we compute∥∥∥∥M (
x
y

)∥∥∥∥ =

∥∥∥∥ −Cx−By − θBB⊺x+ θBA⊺y
τB⊺x− τAy

∥∥∥∥
=
√
∥ − Cx−By − θBB⊺x+ θBA⊺y∥2 + ∥τB⊺x− τAy∥2

≤
√
2(∥(C + θBB⊺)x∥2 + ∥(B − θBA⊺)y∥2) + 2τ2(∥B⊺x∥2 + ∥Ay∥2)

≤
√
2∥C + θBB⊺∥2∥x∥2 + 2∥B∥2∥I − θA∥2∥y∥2 + 2τ2∥B⊺∥2∥x∥2 + 2τ2∥A∥2∥y∥2

≤
√
2(1 + τ2)L2(∥x∥2 + ∥y∥2) ≤ 2τL

∥∥∥∥( x
y

)∥∥∥∥ .
Therefore ∥M∥ ≤ 2τL and λ2

0 + λ2
1 ≤ ∥M∥2 ≤ 4τ2L2.

From Lemma K.1, we are ready to obtain an upper bound of the local convergence rate of Asymptotic
τ -SGA. Recall that Ls = max(∥A∥, ∥B∥, ∥C+θBB⊺∥) and µs = min(Ls, λmin(C+BA−1B⊺)).

Proposition K.2. Assume (x∗, y∗) is a DSE of f ∈ C2. If τ ≥ 2Ls

λmin(A) and γ = 1
4τLs

, we have
ρ(I + γMs) ≤ 1− µs

16τLs
.

Proof. Let L = max(∥Ā∥, ∥B̄∥, ∥C̄ + θB̄B̄⊺∥) and µx = min(L, λmin(C̄ + B̄Ā−1B̄⊺)). We
verify that λmin(A) = λmin(Ā), L = Ls and µx = µs. Let λ = λ0 + iλ1 be an eigenvalue of Ms.
It follows that we only need to show that |1 + γλ| ≤ 1− µx

16τL .

To apply Lemma K.1, we denote A = Ā, B = B̄ and C = C̄. We rewrite that τλmin(A) =
min(∥C∥, ∥C + θBB⊺∥) + α with α ≥ 2L−min(∥C∥, ∥C + θBB⊺∥) > 0. There are two cases
to verify:

• Case λ1 = 0: we have λ0 ≤ −λ′
+. Since τλmin(A) > L, we have λ′

+ =
min(τλmin(A), λmin(C + BA−1B⊺)) ≥ min(L, λmin(C + BA−1B⊺)) = µx. Thus
λ0 ≤ −µx and 1 + γλ0 ≤ 1 − 1

4τLµx. On the other hand, τ ≥ 2 and λ0 ≥ −2τL, thus
1 + γλ0 ≥ 1− 1

4τL2τL = 1/2. Therefore |1 + γλ0| ≤ 1− 1
4τLµx ≤ 1− µx

16τL .

• Case λ1 ̸= 0: we know that −2τL ≤ λ0 ≤ −λ+ = −α
2 and |λ1| ≤

√
τL. Note

that α = τλmin(A) − min(∥C∥, ∥C + θBB⊺∥) ≥ τλmin(A) − L and by assumption
L ≤ τλmin(A)

2 . Thus α ≥ τλmin(A)
2 . It follows that

|1 + γλ|2 = (1 + γλ0)
2 + γ2λ2

1

≤
(
1− γ

α

2

)2
+ γ2τL2

=
(
1− α

8τL

)2
+

1

16τ

≤
(
1− λmin(A)

16L

)2

+
λmin(A)

32L
≤ 1− λmin(A)

16L
.

Therefore |1 + γλ| ≤
√
1− λmin(A)

16L ≤ 1− λmin(A)
32L ≤ 1− L

16τL ≤ 1− µx

16τL .

L COMPUTATIONAL EFFICIENCY OF τ -SGA

We first discuss the computation of B̃[η] and B̃⊺[δ] when M1 (resp. M2) is an embedded sub-
manifold of Rd′

1 (resp. Rd′
2). We then propose a linear-time computational procedure using auto-

differentiation when M1 is Euclidean, which is applicable to orthogonal Wasserstein GANs. When
M2 is also Euclidean, this procedure is equivalent to the one proposed in Balduzzi et al. (2018).
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To compute B̃[η] at (x, y), we first fix η = η(x, y) ∈ TyM2. From the property of embedded
sub-manifolds, we use ↔ to identify a tangent vector δ ∈ TxM1 with a vector δ′ = (δ′i)i≤d′

1
∈ Rd′

1

(resp. η ∈ TyM2 with η′ = (η′i)i≤d′
2
∈ Rd′

2 ).

This allows one to compute the cross-gradients in the embedded space, by

B̃[η](x, y) = Dygradxf(x, y)[η] ↔ Dyδ
′(x, y)[η′] = (⟨(gradyδ

′
i(x, y))

′, η′⟩y)i≤d′
1
∈ Rd′

1 .

Note that ⟨(gradyδ
′
i(x, y))

′, η′⟩y is computed on Rd′
2 with a metric induced from TyM2. Assume

that its computational time is O(d′2) for each i. Then it takes O(d′2d
′
1) to compute B̃[η](x, y) in the

embedded space. We can obtain a similar cost for B̃⊺[δ](x, y).

Euclidean M1 case When M1 = Rd1 , the computational complexity of B̃[η](x, y) can be
significantly reduced: ∀i ≤ d1,

Dy∂xi
f(x, y)[η] = ∂xi

⟨gradyf(x, y), η⟩y ↔ ∂xi
⟨η′(x, y), η′⟩y. (59)

Importantly, one does not need to recompute ⟨η′(x, y), η′⟩y for each i. Therefore, the whole cost of
B̃[η](x, y) is O(d1 + d′2). Note that in (59), the term η′ is “detached”.

For B̃⊺[δ](x, y), we “detach” δ = δ(x, y) ∈ TxM1 and compute

B̃⊺[δ](x, y) =
∑
i≤d1

∂xiη(x, y)δi ↔ ∂η′′

∑
i≤d1

∂xi⟨η′(x, y), η′′⟩δi


|η′′=0

.

This implies that we can first compute ∂xi⟨η′(x, y), η′′⟩ for each i as in (59). We then compute its
sum with δi which takes O(d1). Finally an extra auto-differentiation is taken with respect to η′′

which costs O(d′2). The whole cost of B̃⊺[δ](x, y) is therefore O(d1 + d′2). In this case, we use the
Euclidean metric on Rd′

2 to evaluate ⟨η′(x, y), η′′⟩ rather than the induced Riemannian metric (59).

L.1 EXTENSION TO STOCHASTIC τ -SGA

We construct stochastic τ -SGA through an unbiased estimation of the terms in the update rule of
deterministic τ -SGA. To achieve this, we compute ∂xi⟨η′(x, y), η′⟩y in (59) using two mini-batches
independently sampled from a training set, one to estimate η′(x, y), the other to estimate η′. Similarly,
we use these mini-batches to estimate η′(x, y) and δ in B̃⊺[δ](x, y).

M DETAILS OF NUMERICAL EXPERIMENTS

In the stochastic-gradient setting, the expectation of Dy(ϕdata) (resp. Dy(ϕx)) is estimated at each
iteration of an algorithm, using a batch of samples of data in the training set (resp. a batch of samples
of Z). In this setting, there are an infinite number of training samples from the GAN generator ϕx.

M.1 CHOICE OF IMAGE DATASETS

MNIST dataset We consider all the 10 classes. There are 50000 training samples, 10000 validation
samples and 10000 test samples.

MNIST (digit 0) dataset Among all the digit 0 images in the training (and validation) set of
MNIST, we take 4932 as training samples, 991 as validation samples. There are 980 test samples.

Fashion-MNIST dataset We consider all the 10 classes. There are 50000 training samples, 10000
validation samples and 10000 test samples.

Fashion-MNIST (T-shirt) dataset Among all the T-shirt images in the training set of Fashion-
MNIST, we take 4977 as training samples, 1023 as validation samples. There are 1000 test samples.
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M.2 CHOICE OF SMOOTH NON-LINEARITY

We aim to build GAN models whose value function f is twice continuously differentiable, based on
smooth non-linearities studied in Biswas et al. (2022). For the discriminator of Gaussian distribution,
ρ is a smooth approximation of the absolute value non-linearity of the form

σ(a) =
√
a2 + ϵ2, ϵ = 10−6.

This function is twice continuously differentiable since σ′′(a) = ϵ2

2(a2+ϵ2)3/2
. Similarly, for the

discriminator in the image modeling, we use a smooth ReLu non-linearity

σ(a) = (a+
√
a2 + ϵ2)/2.

M.3 DCGAN GENERATOR

We use a smooth DCGAN generator to model the images from the MNIST and Fashion-MNIST
datasets, adapted from WGAN-GP (Gulrajani et al., 2017).2 We consider this generator because there
is no batch normalization module needed (this module is typically used for other datasets such as
CIFAR-10). We make a slight modification of the default DCGAN so that the function x 7→ Gx(Z)
is twice continuously differentiable at any x ∈ M1 for a fixed Z. For this, each ReLu non-linearity
in Z 7→ Gx(Z) is replaced by the smooth ReLu non-linearity in Appendix M.2.

M.4 SCATTERING CNN DISCRIMINATOR FOR IMAGE MODELING

We construct a smooth Lipschitz-continuous discriminator with one trainable layer

Dy(ϕ) = ⟨vy, σ(wy ⋆ P (ϕ) + by)⟩,

where σ is the smooth ReLu defined in Appendix M.2. For a fixed ϕ, this makes the function
y 7→ Dy(ϕ) twice continuously differentiable at any y ∈ M2. However, the function ϕ 7→
Dy(ϕ) is not everywhere twice continuously differentiable due to the modulus non-linearity in the
scattering transform. We therefore replace this modulus non-linearity z 7→ |z| = |zre + izim| by
z 7→

√
z2re + z2im + ϵ2 for each complex number input z = zre + izim. This makes the function

ϕ 7→ Dy(ϕ) twice continuously differentiable. As a consequence, the function (x, y) 7→ f(x, y) is
also twice continuously differentiable, which is induced from the smoothness of (x, y) 7→ Dy(Gx(Z))
and y 7→ Dy(ϕdata).

Scattering transform The input ϕ with dimension d = 784 is represented as an image of size
28 × 28. It is pre-processed by the wavelet scattering transform P (ϕ) to extract stable edge-like
information using Morlet wavelet at different orientations and scales. We use the second-order
scattering transform with four wavelet orientations (between [0, π)) and two wavelet scales. It first
computes the convolution of ϕ with each wavelet filter, then a smooth modulus non-linearity is
applied to each feature map. This computation is repeated one more time on each obtained feature
map and then a low-pass filter is applied to each of the channels. The obtained scattering features
P (ϕ) is an image of size 9× 9 with 25 channels (I = 25,n = 9).

Orthogonal CNN layer The orthogonal CNN layer is parameterized by the kernel wy and bias
by. The kernel wy has 5× 5 spatial size (k = 5). With a suitable padding and stride (two by two),
we obtain an output image of size 5× 5 (N = 5) with J = 256 channels. Therefore the embedding
space dimension of vy is JN2 = 6400.

M.5 STIEFEL MANIFOLD GEOMETRY

For the discriminators of the Gaussian distribution and the image modeling, part of the parameters
in y belong to Stiefel manifolds. To choose a Riemannian metric on a Stiefel manifold (which is
non-Euclidean), we use the one in Manton (2002, equation 20). We also use the SVD projection in
Manton (2002, Proposition 12) as the retraction R2 on each Stiefel manifold.

2https://github.com/caogang/wgan-gp
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M.6 INITIALIZATION FOR LOCAL CONVERGENCE

M.6.1 SIMULTANEOUS τ -GDA INITIALIZATION FOR GAUSSIAN DISTRIBUTION

Starting from a random initialization of (x, y), we apply the stochastic τ -GDA method to build a
pre-trained model. It is pre-trained with batch size 1000, learning rate γ = 0.0002 and τ = 100 for
T = 50000 iterations.

M.6.2 ALTERNATING τ -GDA INITIALIZATION FOR MNIST AND FASHION-MNIST

The stochastic alternating τ -GDA (Zhang et al., 2022) is often used in the training of WGAN-GP
(Gulrajani et al., 2017), and it can be extended to Riemannian manifold as the simultaneous τ -GDA.
Starting from a random initialization of (x, y), we apply alternating τ -GDA to build a pre-trained
model since we observe that the simultaneous τ -GDA method is unstable when τ is small; while its
convergence can be slow when τ is big.

During the alternating τ -GDA pre-training, each iteration amounts to perform τ = 5 gradient updates
of y (with learning rate 0.1) and one gradient update of x (with learning rate 0.1).

MNIST It is pre-trained with batch size 128 for a total number of 2× 105 iterations. We obtain a
pre-trained model with FID (train) = 7.3 and FID (val) = 9.4.

MNIST (digit 0) It is pre-trained with batch size 128 for a total number of 104 iterations. We
obtain a pre-trained model with FID (train) = 12 and FID (val) = 18.

Fashion-MNIST It is pre-trained with batch size 128 for a total number of 2× 105 iterations. We
obtain a pre-trained model with FID (train) = 17.7 and FID (val) = 20.

Fashion-MNIST (T-shirt) It is pre-trained with batch size 128 for 5× 104 iterations. We obtain a
pre-trained model with FID (train) = 26 and FID (val) = 40.

M.7 STATISTICAL ESTIMATION OF THE EVALUATION QUANTITIES

Estimate f and angle After training, we estimate the f and angle values by re-sampling ϕx ten
times (similar to the estimation of FID). To compute the angle for the scattering CNN discriminator,
we use instead δ(x, y) = E(σ(wy ⋆ P (ϕdata) + by))− E(σ(wy ⋆ P (ϕx) + by)).

Estimate FID scores To compute FID (train) (resp. FID (val)), we generate the same number of
fake samples as the training samples (resp. the validation samples), and report an average value by
re-sampling the fake samples 10 times (with its standard deviation if needed). Similarly, we compute
FID (test) using the same amount of fake samples as test samples, but without re-sampling.

N EXTRA NUMERICAL EXPERIMENTS

We perform extra numerical simulations on the MNIST and Fashion-MNIST datasets by using the
same Wasserstein GAN architecture detailed in Section M.3 and M.4. The training on MNIST and
Fashion-MNIST datasets are performed with a relatively large batch size 512 (as we consider the full
dataset, this results in a smaller stochastic gradient variance), while the training on MNIST (digit 0)
and Fashion-MNIST (T-shirt) datasets are performed with batch size 128.

N.1 EXTRA RESULTS ON MNIST

We compare the computational time between τ -SGA and τ -SGA in Figure 4. We see that at τ = 10,
τ -GDA converges faster than τ -SGA at the initial stage, but then in a sunden the dynamics becomes
unstable, resulting in a much larger FID score. At τ = 20, τ -GDA is convergent and its computational
speed is similar to τ -SGA (at τ = 5).
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(a) (b)

Figure 4: Evolution of the FID (test) score of stochastic τ -GDA and τ -SGA as a function of a
wall-clock time on the Wasserstein GAN of MNIST. a): τ -GDA at τ = 10 vs τ -SGA at τ = 5. b):
τ -GDA at τ = 20 vs τ -SGA at τ = 5.

Table 3: Last iteration measures of stochastic τ -GDA and τ -SGA on the Wasserstein GAN of MNIST
(digit 0). We report the f , angle, and FID scores computed at (x(T ), y(T )). τ -GDA is trained for
T = 2× 104 iterations with γ = 0.05/τ . τ -SGA is trained longer with γ = 0.01, τ = 5, θ = 0.075.

τ -GDA

τ f angle FID (train) FID (val)

5 -0.09 -0.26 21 29 (±0.9)

10 0.09 0.11 34 36 (±0.6)

30 0.036 0.4 13 20 (±0.95)

τ -SGA

T (105) f angle FID (train) FID (val)

1 0.02 0.16 12 21 (±0.9)

2 0.018 0.2 9.3 (±0.2) 15 (±0.5)

3 0.016 0.2 8.2 (±0.2) 14 (±0.3)

N.2 EXTRA RESULTS ON MNIST (DIGIT 0)

The results of τ -GDA and τ -SGA are reported in Table 3. For τ -GDA, we vary τ ∈ {5, 10, 30}. We
observe that when τ = 30, τ -GDA has more stable dynamics than τ = 5 and τ = 10 because the
angle stays around a positive constant. At τ = 5, we observe a negative angle at t = T in τ -GDA
because it oscillates around zero over t. On the other hand, a larger τ tends to slowdown the reduction
of f as in Figure 1(a). Furthermore, the FID scores at T = 3 × 105 are only slightly improved
compared to those at T = 2× 104. Facing such a dilemma, we evaluate the performance of τ -SGA
using τ = 5 such that τγ remains the same. This is the case where τ -GDA is not convergent due to
oscillating angles. We find that both the angle and the FID scores are significantly improved with a
suitable choice of θ and T in τ -SGA.

Regarding the choice of θ in τ -SGA, we have used this dataset to tune this parameter and then chosen
a reasonable value to be used for the other datasets. Intuitively, when θ is too small, τ -SGA can be as
unstable as τ -GDA. When θ is too big, it may amplify the stochastic gradient noise in the correction
term of τ -SGA. Therefore to choose a suitable θ is a delicate question. In Figure 5, we observe
nevertheless that in a wide range of θ, the performance of τ -SGA in terms of the FID (test) score is
similar. It also suggests that τ -SGA could have a global convergence property when θ is small.

Figure 5: Evolution of the FID (test) score of stochastic τ -SGA as a function of a wall-clock time on
the Wasserstein GAN of MNIST (digit 0). We vary θ ∈ [0.01, 0.5] with a fixed τ = 5.

N.3 EXTRA RESULTS ON FASHION-MNIST

We perform extra numerical simulations on the Fashion-MNIST dataset. In Table 4, we study the
performance of τ -GDA by varing the choice of τ . It is run for T = 2×104 iterations with γ = 0.1/τ .
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At τ = 1 and τ = 5, we observe a similar instability in τ -GDA as the MNIST case at τ = 5 and
τ = 10 (in Table 2). At τ = 10, τ -GDA has a stable dynamics and a good performance in terms of
FID scores.

We next study the performance of τ -SGA by varing the training iterations T , using the same γ = 0.02,
τ = 5, θ = 0.075. Table 4 reaches a similar conclusion as Table 2, confirming the importance of the
correction term in τ -SGA to improve the local convergence of τ -GDA.

Lastly, we compare the computational time between τ -GDA and τ -SGA in Figure 6. Different to the
MNIST case in Figure 4, we find that τ -GDA has a faster computational speed at τ = 10, compared
to τ -SGA. This suggests that the speedup of the τ -SGA in terms of the number of iterations is less
significant in this case since τ -GDA works well with a relatively small τ . On the other hand, a larger
τ = 20 in τ -GDA makes it slower.

Table 4: Last iteration measures of stochastic τ -GDA and τ -SGA on the Wasserstein GAN of
Fashion-MNIST. We report the f , angle, and FID scores computed at (x(T ), y(T )). τ -GDA is
trained for T = 2× 104 iterations with γ = 0.1/τ . τ -SGA is trained longer with γ = 0.02, τ = 5,
θ = 0.075.

τ -GDA

τ f angle FID (train) FID (val)

1 1.60 (±0.006) 0.92 107 109 (±0.3)

5 0.02 0.48 (±0.01) 17.6 (±0.08) 19.8 (±0.2)

10 0.02 0.4 17 19

τ -SGA

T (105) f angle FID (train) FID (val)

1 0.019 0.33 (±0.01) 16.98 (±0.05) 19.2 (±0.17)

3 0.019 0.26 (±0.008) 16 18.3 (±0.1)

5 0.016 0.39 (±0.03) 14.37 (±0.05) 16.6 (±0.1)

(a) (b)

Figure 6: Computational speed of τ -GDA and τ -SGA as a function of a wall-clock time on the
Wasserstein GAN of Fashion-MNIST. a): τ -GDA at τ = 10 vs τ -SGA at τ = 5. b): τ -GDA at
τ = 20 vs τ -SGA at τ = 5.

N.4 EXTRA RESULTS ON FASHION-MNIST (T-SHIRT)

From the results in Table 5, we see that the behavior of the τ -GDA and τ -SGA algorithms (in terms
of the f and angle measures) are similar to the MNIST (digit 0) case. As in Table 3, we observe that
one can improve the local convergence of τ -GDA in the range of small τ by using τ -SGA. We also
find that an improved convergence (in terms of the angle) lead to improved GAN models in terms of
the FID scores.

Table 5: Last iteration measures of stochastic τ -GDA and τ -SGA on the Wasserstein GAN of
Fashion-MNIST (T-shirt). We report the f , angle, and FID scores computed at (x(T ), y(T )). τ -GDA
is trained for T = 2× 104 iterations with γ = 0.1/τ . τ -SGA is trained longer with γ = 0.02, τ = 5,
θ = 0.075.

τ -GDA

τ f angle FID (train) FID (val)

5 -0.52 -0.31 80 (±0.4) 92 (±1)

10 0.03 (±0.03) 0.05 (±0.04) 73 86
30 0.01 0.15 (±0.03) 24.7 (±0.2) 38.7 (±0.5)

τ -SGA

T (105) f angle FID (train) FID (val)

1 0.02 0.30 (±0.02) 22.7 (±0.3) 36.1 (±0.5)

2 0.018 0.35 (±0.03) 20.6 (±0.2) 34.1 (±0.6)

3 0.018 0.32 (±0.03) 19.8 (±0.2) 33.3 (±0.3)
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N.5 EXTRA RESULTS ON COMPUTATIONAL TIME

In Figure 7, we compare the computation time of τ -GDA and τ -SGA. The best performed methods
are selected to compare at the last iteration, according to the value of f in Example 2 or the FID (val)
score on MNIST (digit 0) and Fashion-MNIST (T-shirt).

In Example 2, we set γ = 0.001/τ for τ -GDA and τ -SGA (both with deterministic gradients).
We find that τ -SGA has a significant speedup compared to τ -GDA. This is due to a much faster
convergence of τ -SGA at τ = 10, θ = 0.15 compared to the τ -GDA at τ = 50.

On the two image datasets, the speedup is less significant using τ -SGA compared to τ -GDA (both
with stochastic gradients). On MNIST (digit 0), we compare τ -GDA at τ = 30 with τ -SGA at
τ = 5, θ = 0.075 using the same discriminator leraning rate γτ = 0.05. We find that τ -SGA is
slightly faster and it can reach a lower FID (test) score. On Fashion-MNIST (T-shirt), we compare
τ -GDA at τ = 30 with τ -SGA at τ = 5, θ = 0.075 using γτ = 0.1. We find that the speed of
τ -GDA and τ -SGA is similar.

(a) (b) (c)

Figure 7: Computational speed of τ -GDA and τ -SGA as a function of a wall-clock time in Example
2 and on MNIST (digit 0) and Fashion-MNIST (T-shirt). The FID (test) score is computed from the
fake (GAN model) samples and the test samples of each dataset. a): Example 2. b): MNIST (digit 0).
c): Fashion-MNIST (T-shirt).
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