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Abstract

Restoring multiple degradations efficiently via just one model has become increasingly
significant and impactful, especially with the proliferation of mobile devices. Traditional
solutions typically involve training dedicated models per degradation, resulting in inefficiency
and redundancy. More recent approaches either introduce additional modules to learn visual
prompts, significantly increasing the size of the model, or incorporate cross-modal transfer
from large language models trained on vast datasets, adding complexity to the system
architecture. In contrast, our approach, termed AnyIR, takes a unified path that leverages
inherent similarity across various degradations to enable both efficient and comprehensive
restoration through a joint embedding mechanism, without scaling up the model or relying
on large language models. Specifically, we examine the sub-latent space of each input,
identifying key components and reweighting them first in a gated manner. To unify intrinsic
degradation awareness with contextualized attention, we propose a spatial-frequency parallel
fusion strategy that strengthens spatially informed local-global interactions and enriches
restoration fidelity from the frequency domain. Comprehensive evaluations across four all-in-
one restoration benchmarks demonstrate that AnyIR attains state-of-the-art performance
while reducing model parameters by 84% and FLOPs by 80% relative to the baseline. These
results highlight the potential of AnyIR as an effective and lightweight solution for further
all-in-one image restoration. Our code will be available upon acceptance.

1 Introduction

Image restoration (i.e., IR) aims to recover a clean image from its degraded observation, and a central
challenge is how to handle multiple and diverse degradations within a unified framework. This problem
is inherently ill-posed since multiple solutions may explain the same output, and thus effective priors or
learned representations are crucial for successful restoration. In real-world scenarios, degradations arise from
heterogeneous sources (noise, blur, compression, weather artifacts, etc.), and practical systems must cope
with them within a single pipeline rather than as isolated tasks. Meanwhile, multi-step or per-degradation
pipelines introduce storage, routing, and computation overhead during both training and deployment, whereas
a single-checkpoint model better matches mobile and edge constraints and simplifies system integration. This
motivates the pursuit of a single efficient model capable of addressing multiple degradation types.

Despite significant advances, existing IR methods still struggle to efficiently handle diverse degradations while
preserving essential details Li et al. (2023a); Ren et al. (2024b;a); Wu et al. (2024c); Yin et al. (2024); Ding
et al. (2024); Wu et al. (2024b); Li et al. (2025). Many current solutions rely on per-degradation models or
multi-stage pipelines, which introduce storage, routing, and computation overhead during both training and
deployment, and are difficult to scale or deploy on mobile and edge platforms. In contrast, a single-checkpoint
model better matches deployment constraints and simplifies system integration. This work addresses this gap
by pursuing an efficient All-in-one IR model that can handle multiple degradation types within a unified
representation-learning framework.

The complexity of restoration models Liang et al. (2021); Zamir et al. (2022; 2021); Wang et al. (2022); Chen
et al. (2022) arises primarily from the diversity of degradations. Consequently, most methods are tailored to
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specific tasks with limited generalization. A versatile system often requires integrating multiple specialized
models, leading to heavy frameworks. Some studies have shown that a single architecture can handle multiple
degradations, but they lack parameter unification, producing multiple checkpoints for different tasks Chen
et al. (2022); Ren et al. (2024a). This reduces efficiency despite simplifying the system. Recent research
has sought architectural and parameter unification Li et al. (2022); Potlapalli et al. (2024); Zhang et al.
(2023); Liu et al. (2022). Diffusion-based methods demonstrate strong generative capacity Ren et al. (2023b);
Jiang et al. (2023); Zhao et al. (2024), while prompt-based designs guide networks with modality-specific
embeddings Wang et al. (2023a); Potlapalli et al. (2024); Li et al. (2023c). Other works leverage text as an
intermediate representation Luo et al. (2024); Conde et al. (2024). Despite promising results, these approaches
significantly increase model size, inference time, or rely on degradation-specific supervision.

In this paper, we take a unified perspective: although each degradation has its characteristics, all restoration
tasks share underlying principles of separating nuisance degradations from structural image information.
From a learning viewpoint, this setting can be regarded as a multi-environment learning problem, where
degradations correspond to environments and the objective is to learn a representation that is invariant to
degradation-specific nuisances yet sufficient for restoration. Unlike large-scale priors in LLMs, our method
builds invariance directly from single-image cues, yielding both efficiency and strong generalization. To this
end, we propose AnylR, a lightweight framework that integrates global context and local degradation-aware
cues. Specifically, we introduce a gated local block that disentangles fine-grained degradation-aware details
(ego, shifted, and scaled parts), adaptively reweighted via gating, and a parallel attention pathway to capture
global dependencies. A spatial-frequency fusion mechanism further intertwines the two representations,
balancing structural integrity with fine detail recovery. Importantly, features are processed in sub-latent
partitions before aggregation, reducing computational cost while retaining rich information. This design
enables AnyIR to act as an implicit degradation-invariant learner, effective and efficient across diverse
restoration settings (see Fig. 4).

Our main contributions are summarized as follows:

e We propose AnylIR , a unified and efficient all-in-one IR model that achieves superior performance
while reducing computational cost by 85.6% compared to state-of-the-art counterparts.

o We design a novel local-global gated intertwining mechanism combined with a spatial-frequency
fusion strategy, enabling cohesive and adaptive embeddings without degradation-specific supervision.

e Through extensive experiments on diverse restoration tasks, we demonstrate the effectiveness and
efficiency of AnyIR , providing a strong and practical baseline for future research in all-in-one IR.

2 Related Work

Image Restoration (IR) Image restoration aims to solve a highly ill-posed problem by reconstructing
high-quality images from their degraded counterparts. Due to its importance, IR has been applied to various
applications Richardson (1972); Banham & Katsaggelos (1997); Li et al. (2023b); Zamfir et al. (2024); Miao
et al. (2024); Zheng et al. (2024). Initially, IR was addressed through model-based solutions involving the
search for solutions to specific formulations. However, learning-based approaches have gained much attention
with the significant advancements in deep neural networks. Numerous approaches have been developed,
including regression-based Lim et al. (2017); Lai et al. (2017); Liang et al. (2021); Chen et al. (2021b); Li et al.
(2023a); Zhang et al. (2024) and generative model-based pipelines Gao et al. (2023); Wang et al. (2023b); Luo
et al. (2023); Yue et al. (2023); Zhao et al. (2024); Liu et al. (2023) that are based on convolutional Dong
et al. (2015); Zhang et al. (2017b;a); Wang et al. (2018), MLP Tu et al. (2022), state-space mode Guo
et al. (2024a); Zhu et al. (2024); Gu & Dao (2024); Dao & Gu (2024), or vision transformers-based (ViTs)
architectures Liang et al. (2021); Li et al. (2023a); Zamir et al. (2022); Ren et al. (2023a); Dosovitskiy et al.
(2020). Although state-of-the-art methods have achieved promising performance, mainstream IR solutions
still focus on addressing single degradation tasks such as denoising Zhang et al. (2017b; 2019), dehazing Ren
et al. (2020); Wu et al. (2021), deraining Jiang et al. (2020); Ren et al. (2019), and deblurring Kong et al.
(2023); Ren et al. (2023b).
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(a) m * (1-1) Mapping (b) m-1 Mapping (c) 1-1 Mapping with Prompt  (d) 1-1 Mapping for All in One IR (Ours)

Figure 1: Mathematical formulations of mainstream paradigms for All-in-One image restoration. (a) m x (1-1)
mapping: each degradation type z; requires an independent encoder—decoder pair (E;, D;). (b) m—1 mapping
with shared decoder: multiple task-specific encoders E; share a single decoder D. (¢) 1—1 mapping with
prompts: a unified encoder—decoder (E, D) is conditioned on external prompts p(z). (d) Our proposed 1—1
mapping: a pure unified framework where (E, D) directly learns degradation-invariant yet discriminative
representations, without prompts or multiple encoders.

One for Any Image Restoration Training a task-specific model to address a single degradation is effective,
but impractical for real-world deployment due to the need for separate models for each corruption. In practice,
images often suffer from multiple, overlapping degradations, making it inefficient to address them individually.
Such task-specific solutions require significant computing and storage resources, and their environmental
cost grows with the number of degradations. To overcome these limitations, the emerging All-in-One image
restoration setting develops a single blind model that handles multiple degradations simultaneously, without
requiring task-specific specialization Tang et al. (2025); Jiang et al. (2025). Moreover, training a unified model
across multiple degradations enables the learning of transferable structures, which facilitates adaptation
to new or mixed degradations through lightweight fine-tuning rather than training separate models from
scratch. From a learning perspective, this setting can also be interpreted as a form of multi-environment
learning, where different degradations act as environments and the challenge is to learn representations that
are robust across them while still sufficient for reconstruction. Several representative approaches have been
proposed. AirNet Li et al. (2022) employs contrastive learning to derive degradation-aware embeddings from
corrupted inputs, which are then used to guide restoration. IDR Zhang et al. (2023) follows a meta-learning
perspective, decomposing degradations into fundamental physical principles and adapting via a two-stage
learning process. More recently, the prompt-based paradigm Potlapalli et al. (2024); Wang et al. (2023a); Li
et al. (2023c) has been introduced, where learned visual prompts condition a single model across degradations.
Such prompts act as task embeddings that steer the network, with extensions including frequency-aware
prompts Cui et al. (2025) or more complex designs requiring additional datasets Dudhane et al. (2024). While
effective, these approaches often increase training cost and reduce efficiency. To further enhance generalization,
MoCE-IR Zamfir et al. (2025) explore a mixture-of-experts design, activating specialized subnetworks for
different conditions. Although this improves performance, it also increases overall architectural complexity.
In contrast, our work strengthens the model’s ability to capture representative degradation information
without the overhead of heavy prompts or expert routing, providing a simpler and more efficient pathway for
All-in-One IR.

3 AnylR

3.1 Preliminaries
Formally, for the image restoration problem, given an observation:
y="D:(z) +e (1)

where x denotes the latent clean image, D, is a degradation operator parameterized by z (e.g., noise, blur,
haze, rain), and e is an additive perturbation, the goal of IR is to recover = from its degraded counterpart y.
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To situate our design within the broader landscape of All-in-One IR, we first revisit several representative
architectural paradigms that differ in their degree of parameter sharing, conditioning strategy, and task
dependence. This comparison provides the conceptual motivation for our formulation and clarifies the design
choices made in our framework. As summarized in Fig. 1, these approaches can be interpreted as mappings
from a degraded observation y to a restored image &, with different assumptions about how degradation type
is modeled or encoded in the network Jiang et al. (2025).

(a) m x (1-1) Mapping. Each degradation type z; € {1,...,m} is handled by an individual en-
coder—decoder pair (E;, D;) Li et al. (2023a); Liang et al. (2021):
b= DAE(y), i=1,...,m. 2)

This strategy yields strong task specialization but scales linearly with the number of degradations
and prevents knowledge sharing across tasks.

(b) m—1 Mapping with Shared Decoder. Multiple task-specific encoders are retained, while a shared
decoder D reconstructs the output Li et al. (2020):

2, =D(Ei(y)), i=1,...,m. (3)

This partially amortizes parameters through a common reconstruction head, yet the storage and
computation of m encoders still limit efficiency and scalability.

(¢) 1—1 Mapping with Prompts. A single encoder-decoder pair (E, D) is conditioned on an external
prompt p(z) describing the degradation Li et al. (2023c); Zhang et al. (2025); Li et al. (2023c):

&= D(E(y),p(2)), (4)

where p(z) may correspond to learned tokens or textual embeddings. This formulation improves
flexibility and controllability across degradations, but introduces auxiliary conditioning modules and
requires careful prompt modeling and tuning.

(d) 1-1 Mapping for All-in-One IR (adopted by our solution). We advocate a pure one-to-one
mapping, where a single encoder—decoder directly captures both degradation-sensitive cues and
degradation-invariant structures Cui et al. (2025); Tang et al. (2025):

& = D(E(y))- (5)

Unlike prompt-based formulations, no explicit task tokens or routing mechanisms are introduced;
instead, the network architecture is designed to enable implicit disentanglement within the shared
representation space, favoring parameter efficiency and generalization across degradations.

This formulation-centric perspective highlights the trade-offs between specialization, conditioning overhead,
and parameter sharing in prior All-in-One IR systems, and motivates our design choice of a unified 1—1
mapping that seeks to balance representational robustness with computational efficiency.
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Figure 2: (a) Framework of the proposed AnyIR: i.e., a convolutional patch embedding, a U-shape encoder-
decoder main body, and an extra refined block. (b) Structure of degradation adaptation block (DAB).

3.2 Overall Framework

Building on the design space reviewed in Sec. 3.1, we now present our efficient All-in-One IR method, termed
AnyIR . As motivated by Fig. 1(d), our goal is to realize a pure 1—1 mapping that avoids multiple encoders
or external prompts, while still capturing degradation-specific cues and invariant structures within a single
unified framework.

The overall architecture of AnyIR is illustrated in Fig. 2. At a macro level, it adopts a U-shaped network Ron-
neberger et al. (2015) with four hierarchical levels. Each level incorporates N;,i € [1,2,3,4] instances of our
proposed degradation adaptation block (DAB, Sec. 3.3), where each DAB is composed of the gated degradation
adaptation module (GatedDA, Sec. 3.4) and the spatial-frequency fusion algorithm (Sec. 3.5). Initially, a
convolutional layer extracts shallow features from the degraded input, creating a patch embedding of size
H x W x C. As in standard U-Nets, each encoder stage doubles the embedding dimension and halves the
spatial resolution, with skip connections transferring information to the corresponding decoder stage. In the
decoder, features are merged with the previous decoding stage via linear projection. Finally, a global skip
connection links input to output, preserving high-frequency details and producing the restored image.

3.3 Degradation Adaptation Block

The proposed degradation adaptation block (DAB) serves as the fundamental unit of AnyIR, , and its structure
is shown in Fig. 2(b). The design principle is to decouple global and local processing in a parameter-efficient
manner, while still retaining rich feature diversity. Given an input feature Fj, € RT*WXC we employ a
selective channel-wise partitioning strategy:

P = {3 (ke zt k< G}, ©)
FE' = {2V ke 2k < §),

. [}
where F2% and F&° ¢ R"*W>7 denote two interleaved channel groups. This skip-split partitioning is not
intended to create two isolated feature branches; instead, it enforces controlled interaction across partial
channel groups, so that degradation-variant cues can be emphasized while degradation-invariant structural
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Figure 3: Structure of our GatedDA. &, ©, ®, and ® denote the element-wise addition, channel-wise
concatenation, GELU Hendrycks & Gimpel (2016) activation, and element-wise multiplication, respectively.

information remains accessible within the same shared representation space. This yields two complementary
pathways: the attention branch F2'" focuses on long-range dependency modeling, while the gated branch
F2** specializes in degradation-sensitive local adaptation. Compared with conventional half-split operations,
the skip-split design (i) reduces the effective dimensionality per branch, lowering the complexity of attention
layers Dosovitskiy et al. (2020), and (ii) preserves feature diversity by uniformly sampling channels, thereby
avoiding information loss. A detailed analysis is provided in Sec. 5, and the visual illustration is shown in the

appendix.

To capture the complex dependencies inherent to global degradation, we employ a multi-depth convolution
head attention mechanism Zamir et al. (2022); Potlapalli et al. (2024) on the feature subset F2* resulting
in F2 This attention approach is particularly effective for image restoration, where degradation is often
non-uniform and shaped by various intricate factors. Specifically, F2!* is transformed into Query (Q), Key
(K), and Value (V) matrices, defined as: Q = F'*W,y, K = F2'"Wy,, V = F2W,, where Wy,

Wiey, and Wy, are learnable weights. The output F24 is then calculated as:
KT
Fatt = Z Softmax (Q\/g> . Vi (7)

where V/d is a scaling factor to normalize attention scores, stabilize gradients, and facilitate convergence.
This attention mechanism excels at modeling long-range dependencies throughout the feature space, a
vital capability for image restoration where degradation, such as noise, blur, and artifacts, exhibits spatial
correlations but varies across the image Liang et al. (2021); Zamir et al. (2022); Li et al. (2023a).

In parallel, the gated branch F£**° is processed by the GatedDA module (Sec. 3.4), yielding F5*°. This path
complements attention by enhancing localized, degradation-aware features Liang et al. (2021). Thus, the

DAB combines the strengths of global modeling (attention) and local selectivity (gated convolution).

To unify both pathways, we adopt a spatial-frequency fusion strategy (Alg. 2), producing the fused repre-
sentation Fgﬁie Finally, layer normalization, a feed-forward network (FFN), and a residual connection are
applied:

Fout = FEN(Norm(Fruse)) + Fruse- (8)

This sequence stabilizes feature statistics and enhances expressivity, yielding a balanced representation that
integrates global context with fine-grained degradation cues for high-fidelity restoration.

3.4 Gated Degradation Adaption

To capture local degradation-aware details, we leverage the selective properties of gated convolution, forming
the GatedDA (Fig. 3). Given an input feature , a layer normalization is first applied
to stabilize the feature distributions, followed by a 1x1 convolution that expands the channel dimension
to hidden = rexpan - C, Where rexpan is the expansion ratio, as shown in Alg. 1. To adaptively respond to
varying intensities, we introduce a temperature adjustment mechanism. Based on the input’s mean and
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Algorithm 1 Gated Degradation Adaption

Require: Input , initial temperature 7

Ensure: Output
1: '+ Norm(F&*°) // Normalize
2: // per-channel mean
3: // per-channel std, §: small constant
4: A+ (n+o0) // Temp adjust
5: Tadj & T+ A
6: ' < chxp // Channel expand
7. v, 8, < split(F”) // Split v, 3, a
8: '+ (&Wyepth) - (1 + Tagj) // Depthwise conv
9: Fyated < 0(7) - concat(5, o')W gate // Gate combine
10: Fogfse — (Fgated + Fiiate)wproj // Residual, proj

. gate
11: return FJ

standard deviation, the initial temperature 7 is modulated as 7,q; = 7 - A, where A serves as a dynamic
scaling factor (steps 2-5 of Alg. 1). This design is motivated by the fact that many degradations exhibit
spatially non-uniform characteristics; therefore, rather than applying a single global transformation, the gated
module performs content- and region-aware modulation on features, enabling localized adaptation to different
degradation strengths. This adjustment improves the model’s sensitivity to subtle degradation patterns,
promoting detailed feature capture.

The expanded feature F’' (Wey, denotes the 1x1 convolution weights used for channel expansion) is then
split into three parts along channels: «, 8, and ~ (as shown in step 7, which correspond to the scaled, ego,
and shifted features). Specifically, we take (hidden/4 hidden/4 hidden/2) for (o, 3, 7y) in this paper. Here, «
undergoes depthwise convolution with 7.q; to capture spatial details, 8 retains the original information, and
~ is activated with GELU Hendrycks & Gimpel (2016) to enable a non-linear gated selection mechanism.
Specifically, these components are recombined and modulated, selectively emphasizing critical features (Step 9
in Alg. 1). Finally, F” is projected back to the original channel dimension and combined with F' ' through
a skip connection to prevent loss of information. A final 1x1 convolution fuses the degradation-adapted
features with the input, resulting in the output Ffftte (Steps 10-11 in Alg. 1). Please note that Wgepth,
Wate, and W,; denote the learnable convolution weights for depth-wise convolution, gated convolution,
and projection convolution operations.

Owing to its design, GatedDA dynamically adjusts its internal temperature and gating behavior, enabling
the network to capture degradation-aware features adaptively. This makes it a natural complement to the
global attention branch, providing localized detail enhancement and stronger robustness to spatially varying
degradations. More analysis is provided in the appendix.

From an efficiency perspective, the proposed design improves computational economy at the architectural
level rather than relying on model scaling. First, each Degradation Adaptation Block partitions the feature
channels into two subsets, where only half of the channels are processed by global attention. Since our
attention operator follows the Restormer-style channel-wise formulation whose complexity grows quadratically
with spatial resolution, reducing the attention channels by half directly lowers the computational cost of
the attention pathway while preserving its ability to model long-range dependencies. Second, the remaining
channels are processed by the proposed GatedDA module, which enhances the representational capacity
of the block through lightweight, convolution-based local adaptation; this branch has substantially lower
complexity than applying attention on the same number of channels, further contributing to overall efficiency.
Finally, because each block combines a stronger per-block representation with a more balanced global-local
decomposition, the backbone can be instantiated with a smaller U-shaped hierarchy (e.g., [3, 5, 5, 7] instead
of the deeper [4, 6, 6, 8] configurations used in prior All-in-One IR methods such as PromptIR Potlapalli
et al. (2024) and MoCE-IR Zamfir et al. (2025)), while still achieving superior restoration accuracy.
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Algorithm 2 Spatial-Frequency Fusion

Require: Fji, Fyate, fusion weight A
Ensure: Fused output Fpyse
Main Procedure:

1: Fy < SPATIALFUSION(Fltt, Faate) // spatial cross-enhance
2: Fy <~ FREQUENCYFUSION(Fytt, Faate) // detail-enhance
30 Fruse < A-Fs+ (1= X) - Fy // weighted fusion
4: return Fiee

Function: SpatialFusion
5: function SPATIALFUSION(Fl, Fyate)
6: F?8 «— F,4 + Sigmoid(Fgate) // gate-enhanced attention
7: F& « Faate + Sigmoid(Fyuet) // attention-enhanced gate
8: return Concat(F?8, F'&?) // channel-wise merge
9: end function

Function: FrequencyFusion
10: function FREQUENCYFUSION(Fyt, Faate)

11: Fot rﬁth(Fatt), Fgate <« rfftQD(Fgate) // real FFT
12: F e o + ﬁ'gate // freq combine
13: Frreq + irfftgp(ﬁ') // inverse FET
14: return Repeat(Fireq) // match channels

15: end function

3.5 Spatial-Frequency Fusion Algorithm

To enable effective interaction between contextualized global attention and degradation-sensitive local
GatedDA features, we introduce a spatial-frequency fusion algorithm (that is, Alg. 2). The fusion is carried
out in two complementary domains: spatial and frequency.

In the spatial branch, we apply a cross-enhancement mechanism (i.e., SpationFusion in Alg. 2) to refine the
attention feature F,;; and gated feature Fiq. mutually. Each branch is modulated by the sigmoid-activated
signal from the other, enabling a dynamic message passing across representations. The enhanced features are
then concatenated along the channel dimension to form the spatial representation.

In parallel, we perform a lightweight frequency-domain fusion to capture structural alignment. F,; and
Fyate are first transformed using real-valued 2D Fast Fourier Transform (4.e., rfftop(*)) in Step-11 of Alg. 2,
additively combined in the frequency domain (Step-12), and then projected back via inverse FFT (i.e.,
irfltap (%)) (Step-13). The output is duplicated (i.e., Repeat(x)) along the channel to match the spatial
counterpart (Step-14). This design leverages the complementary roles of the two domains: the spatial branch
emphasizes local structural fidelity, whereas the frequency branch stabilizes global statistics and degradation
patterns, which is particularly beneficial under mixed or compound degradations.

The final fused representation is obtained by a weighted summation of the two branches (Step-3 of Alg. 2),
controlled by a scalar A\. A convolutional projection with learnable weights Wi, is then applied, followed by
a residual connection to the original input:

Fluse o Convw,,.. (Fruse) + Fin- (9)

out

This fusion strategy leverages the complementary strengths of attention-based global context and gated local
priors from both spatial and frequency domains, producing a rich and adaptive representation for downstream
restoration. Notably, the design aligns with signal-domain interpretability while enhancing generalization
across diverse degradation types.
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Figure 4: Overall quantitative performance (3-Degradation & 5-Degradation settings), efficiency comparison,
and the qualitative comparison ( Zoom in for a better view).

4 Experimental Results

We conduct experiments adhering to the protocols of previous general IR works Potlapalli et al. (2024);
Zhang et al. (2023) in three main settings: (1) All-in-One (3Degrations), (2) All-in-One (5Degrations), (3)
Mix-Degradation Setting, and (4) Zero-Shot Unseen Setting More experimental details and the introduction
of the data set are provided in our Supp. Mat.

Before presenting the detailed results for each setting, we first provide an overview comparison to summarize
the overall performance, efficiency, and visual restoration quality of AnyIR against representative All-in-one
IR methods, as shown in Fig. 4.

4.1 State of the Art Comparisons

Three Degradations. We evaluate our All-in-One restorer, AnyIR , against other specialized methods
listed in Tab. 1, all trained on three degradations: dehazing, deraining, and denoising. AnyIR consistently
outperforms all the comparison methods, even for those with the assistance of language, multi-task, or
prompts. In particular, AnyIR outperforms the baseline method PromptIR by 1.12dB, 2.14dB on dehazing
and draining, and 0.74dB on average, while maintaining 80% fewer parameters.

Five Degradations. Extending the three degradation tasks to include deblurring and low-light enhance-
ment Li et al. (2022); Zhang et al. (2023), we validate the comprehensive performance of our method in an
All-in-One setting. As shown in Tab. 2, AnyIR effectively leverages degradation-specific features, surpassing
AirNet Li et al. (2022) and IDR Zhang et al. (2023) by an average of 5.16 dB and 2.31 dB, respectively,
with 33% and 60% fewer parameters. Compared to the most recent method, MoCE-IR Zamfir et al. (2025),
besides 0.05 dB lower on deblurring, we outperform it on all the rest tasks with a 0.57dB PSNR improvement
on average.

Mixed Degradation. We conduct experiments on the CDD-11 Guo et al. (2024b) dataset, a challenging
benchmark for mixed degradation restoration tasks, combining real-world degradations such as low-light
conditions, haze, rain, and snow. As shown in Tab. 3, our method consistently surpasses other state-of-the-art
approaches like AirNet Li et al. (2022), PromptIR Potlapalli et al. (2024), WGWSNet Zhu et al. (2023),
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Table 1: Comparison to state-of-the-art on three degradations. PSNR (dB, 1) and SSIM (1) metrics are
reported on the full RGB images. Best and Second Best performances is highlighted. Our method sets a
new state-of-the-art on average across all benchmarks while being significantly more efficient than prior work.
‘-’ represents unreported results.

Method Venue. Params. Dehazing  Deraining Denoising Average
SOTS Rain100L BSD68,—15 BSD68,—-25 BSD68,—50
BRDNet Tian et al. (2020) NN’20 - 23.23 .895 27.42 .895 32.26 .898 29.76 .836 26.34 .693 27.80 .843
LPNet Gao et al. (2019) CVPR’19 - 20.84 .828 24.88 .784 26.47 .778 24.77 .748 21.26 .552 23.64 .738
FDGAN Dong et al. (2020) AAAT20 - 24.71 .929 29.89 .933 30.25 .910 28.81 .868 26.43 .776 28.02 .883
DL Fan et al. (2019) TPAMI'19 2M  26.92 .931 32.62 .931 33.05 .914 30.41 .861 26.90 .740 29.98 .876
MPRNet Zamir et al. (2021) CVPR’21 16M  25.28 .955 33.57 .954 33.54 .927 30.89 .880 27.56 .779 30.17 .899
AirNet Li et al. (2022) CVPR’22 9M  27.94 .962 34.90 .967 33.92 .933 31.26 .888 28.00 .797 31.20 .910
NDR Yao et al. (2024) TIP’24 28.4M 25.01 .860 28.62 .848 28.72 .826 27.88 .798 26.18 .720 25.01 .810
PromptIR Potlapalli et al. (2024) NeurIPS’23  36M  30.58 .974 36.37 .972 33.98 .933 31.31 .888 28.06 .799 32.06 .913
MoCE-IR-S Zamfir et al. (2025) CVPR’25 11M  30.98 .979 38.22 .983 34.08 .933 31.42 .888 28.16 .798 32.57 .916
AnyIR -T(Ours) 2025 6M 31.70 .982 38.51 .983 34.12 .936 31.46 .893 28.20 .804 32.80 .919
AnyIR -S(Ours) 2025 9M  31.85.982 38.56 .983 34.15 .936 31.49 .893 28.24 .806 32.86 .920
Methods with the assistance of vision language, multi-task learning, natural language prompts, or multi-modal control
DA-CLIP Luo et al. (2024) ICLR’24 125M  29.46 .963 36.28 .968 30.02 .821 24.86 .585 22.29 .476 - -
Artpromptrr Wu et al. (2024a) ACM MM’24 36M 30.83 .979 37.94 .982 34.06 .934 31.42 .891 28.14 .801 32.49 .917
InstructIR-3D Conde et al. (2024) ECCV’24 16M 30.22 .959 37.98 .978 34.15 .933 31.52 .890 28.30 .804 32.43 .913
UniProcessor Duan et al. (2025) ECCV’24 1002M 31.66 .979 38.17 .982 34.08 .935 31.42 .891 28.17 .803 32.70 .918

Table 2: Comparison to state-of-the-art on five degradations. PSNR (dB, 1) and SSIM (1) metrics are
reported on the full RGB images with (*) denoting general image restorers, others are specialized all-in-one
approaches. Best and Second Best performances is highlighted.

Dehazing Deraining Denoising Deblurring Low-Light

Method Venue Params. Average
SOTS Rainl00L BSD68,—25 GoPro LOLv1
NAFNet* Chen et al. (2022) ECCV’22 17M  25.23 .939 35.56 .967 31.02 .883 26.53 .808 20.49 .809 27.76 .881
DGUNet™ Mou et al. (2022) CVPR’22 17M  24.78 .940 36.62 .971 31.10 .883 27.25 .837 21.87 .823 28.32 .891
SwinIR* Liang et al. (2021) ICCVW’21 1M 21.50 .891 30.78 .923 30.59 .868 24.52 .773 17.81 .723 25.04 .835
Restormer™ Zamir et al. (2022) CVPR’22 26M  24.09 .927 34.81 .962 31.49 .884 27.22 .829 20.41 .806 27.60 .881
MambalR™ Guo et al. (2024a) ECCV’24 27M  25.81 .944 36.55 .971 31.41 .884 28.61 .875 22.49 .832 28.97 .901
DL Fan et al. (2019) TPAMI'19 2M  20.54 .826 21.96 .762 23.09 .745 19.86 .672 19.83 .712 21.05 .743
TransWeather Valanarasu et al. (2022) CVPR’22 38M  21.32 .885 29.43 .905 29.00 .841 25.12 .757 21.21 .792 25.22 .836
TAPE Liu et al. (2022) ECCV’22 1M 22.16 .861 29.67 .904 30.18 .855 24.47 .763 18.97 .621 25.09 .801
AirNet Li et al. (2022) CVPR’22 9M  21.04 .884 32.98 .951 30.91 .882 24.35 .781 18.18 .735 25.49 .847
IDR Zhang et al. (2023) CVPR’23 15M  25.24 .943 35.63 .965 31.60 .887 27.87 .846 21.34 .826 28.34 .893
PromptIR Potlapalli et al. (2024) NeurIPS’23  36M  30.41 .972 36.17 .970 31.20 .885 27.93 .851 22.89 .829 29.72 .901
MoCE-IR-S Zamfir et al. (2025) CVPR’25 11M  31.33 .978 37.21 .978 31.25 .884 28.90 .877 21.68 .851 30.08 .913
AnyIR -T (ours) 2025 6M 31.50.981 38.81 .984 31.40 .892 28.35 .863 22.68 .854 30.71 .915
AnylIR -S (ours) 2025 9M  31.77.982 39.00 .983 31.44 .892 28.52 .867 23.03 .857 30.75 .916
Methods with the assistance of natural language prompts or multi-task learning

InstructIR-5D Conde et al. (2024) ECCV’24 16M  36.84 .973 27.10 .956 31.40 .887 29.40 .886 23.00 .836 29.55 .908
Artpromptrr Wu et al. (2024a) ACM MM’24 36M 29.93 .908 22.09 .891 29.43 .843 25.61 .776 21.99 .811 25.81 .846

WeatherDiff Ozdenizci & Legenstein (2023), OneRestore Guo et al. (2024b), and MoCE-IR Zamfir et al.
(2025). These results demonstrate its robustness in addressing complex interactions among degradations.
The superior performance of AnyIR validates its advanced degradation modeling and fusion mechanisms,
enabling effective restoration in various scenarios.

Zero-Shot Unseen Degradation. To assess generalization beyond training degradations, we first evaluate
the model trained on the 3-degradation setting directly on the unseen desnowing task (i.e., zero-shot transfer)
using the CSD dataset Chen et al. (2021a). As shown in Tab. 4, AnyIR extends effectively to this novel
degradation without domain-specific tuning. We further conduct a real-world zero-shot evaluation on
underwater images. AnyIR -S achieves 16.78 dB PSNR and 0.770 SSIM, outperforming the best prior method
MoCE-IR by +0.87 dB while being more compact (Tab. 5). Notably, our model has never seen underwater
data during training, underscoring its robustness to unseen degradation scenarios.
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Table 3: Comparison to state-of-the-art on composited degradations. PSNR (dB, 1) and SSIM (1) are

reported on the full RGB images. Our method consistently outperforms even larger models, with favorable
results in composited degradation scenarios.

Mothod Params. CDD11-Single CDD11-Double CDD11-Triple Ave.
Low (L) Haze (H) Rain (R) Snow (S) L+H L+R L+S H+R H+S L+H+R L+H4+S

AirNet OM  24.83 .778 24.21 .951 26.55 .891 26.79 .919 23.23 .779 22.82 .710 23.29 .723 22.21 .868 23.29 .901 21.80 .708 22.24 .725 23.75 .814
PromptIR 36M  26.32 .805 26.10 .969 31.56 .946 31.53 .960 24.49 .789 25.05 .771 24.51 .761 24.54 .924 23.70 .925 23.74 .752 23.33 .747 25.90 .850
WGWSNet 26M  24.39 .774 27.90 .982 33.15 .964 34.43 .973 24.27 .800 25.06 .772 24.60 .765 27.23 .955 27.65 .960 23.90 .772 23.97 .771 26.96 .863
WeatherDiff 83M  23.58 .763 21.99 .904 24.85 .885 24.80 .888 21.83 .756 22.69 .730 22.12 .707 21.25 .868 21.99 .868 21.23 .716 21.04 .698 22.49 .799
OneRestore 6M  26.48 .826 32.52 .990 33.40 .964 34.31 .973 25.79 .822 25.58 .799 25.19 .789 29.99 .957 30.21 .964 24.78 .788 24.90 .791 28.47 .878
MoCE-IR 11M  27.26 .824 32.66 .990 34.31 .970 35.91 .980 26.24 .817 26.25 .800 26.04 .793 29.93 .964 30.19 .970 25.41 .789 25.39 .790 29.05 .881

AnyIR-T (ours) 6M 27.40 .833 33.41 .991 34.53 .970 36.07 .979 26.53 .827 26.55 .810 26.36 .802 30.40 .965 30.65 .970 25.66 .800 25.86 .801 29.40 .886
AnyIR-S(ours) 10M 27.47 .83534.38.99234.64.97136.21.98126.54.83026.49.81226.45.80530.98.96731.55.97225.82.80426.01.80529.69 .889

Table 4: Unseen Desnowing on CSD Chen et al. (2021a) dataset.

Method PSNR  SSIM
AirNet Li et al. (2022) 19.32 .733
PromptIR Potlapalli et al. (2024) 20.47 764
MocelR-S Zamfir et al. (2025) 21.09 171
AnyIR (Ours) 21.64  .787

Table 5: Zero-Shot Cross-Domain Underwater Image Enhancement Results.

Method | PSNR (dB, 1)  SSIM (1)
SwinlR Liang et al. (2021) 15.31 .740
NAFNet Chu et al. (2022) 15.42 744
Restormer Zamir et al. (2022) 15.46 745
AirNet Li et al. (2022) 15.46 745
IDR Zhang et al. (2023) 15.58 762
PromptIR Potlapalli et al. (2024) 15.48 748
MoCE-IR Zamfir et al. (2025) 15.91 765

AnylIR -S (Ours) 16.78 770

Table 6: Complexity Analysis. FLOPs are computed on image size 224 x 224 via a NVIDIA A100 (40G) GPU.

Method PSNR (dB, 1) Memory () Params. (|) FLOPs ({)
AirNet Li et al. (2022) 31.20 4829M 8.93M 238G
PromptIR Potlapalli et al. (2024) 32.06 9830M 35.59M 132G
IDR Zhang et al. (2023) - 4905M 15.34M 98G
MoCE-IR Zamfir et al. (2025) 32.73 5887M 25.35M 80.59 £ 5.21G
MoCE-IR-S Zamfir et al. (2025) 32.57 4228M 11.47M 36.93 £ 2.32G
AnyIR -T(ours) 32.80 4969M 5.74M 26 + 1.98G
AnyIR -S(ours) 32.86 6661M 8.51M 39 + 1.87G

Model efficiency. Tab. 6 compares memory usage, FLOPs, and parameters across recent All-in-One IR
methods. With our hybrid block design and the proposed degradation adaptation module, AnyIR achieves
a 0.74 dB PSNR gain over the baseline PromptIR Potlapalli et al. (2024), while reducing parameters by
83.9%, and FLOPs to only 26G, making it 80% more computationally efficient. Compared with MoCE-IR-S,
AnyIR lowers FLOPs by 29.73% (26G vs. 37G) and parameters by 49.96% (5.74M vs. 11.47M), while
maintaining comparable or superior accuracy. Such reductions not only improve efficiency in terms of model
size and computation, but also translate into a smaller energy and compute footprint during inference, which
is particularly relevant for resource-constrained or edge deployment. This positions AnyIR as a strong and
sustainable baseline for future All-in-One IR research.

Visual results. To complement the quantitative results, we visualize the results of our method in Fig. 5.
The visualizations demonstrate the efficacy of AnyIR in dehazing, denoising, and draining, and we marked out
the detailed region using the red boxes. In the dehazing task, AirNet Li et al. (2022), PromptIR Potlapalli
et al. (2024), and MoCE-IR Zamfir et al. (2025) exhibit limitations in fully eliminating haziness, leading

11



Under review as submission to TMLR

Degraded Input AirNet MoCE-IR-S AnyIR (Ours) GroundTruth

Ll C i
?w e ?- :

Deraing (015) Denoising (21077)

Dehazing (0409)

Figure 5: Visual comparison on three degradations. Zoom in for a better view.
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Figure 6: Zero-Shot Underwater Image Enhancement Visual Results. Zoom in for a better view.

to noticeable color reconstruction discrepancies. In contrast, our AnylIR effectively enhances visibility and
ensures a precise color reconstruction. The denoising results also show that our AnyIR can restore more
detailed characters, demonstrating the rich texture edge recovery ability of our method. Meanwhile, in rainy
scenes, previous methods continue to exhibit remnants of rain streaks. Please, zoom in for more details.
In contrast, our approach excels at eliminating these artifacts and recovering underlying details, showing
our superiority under adverse weather conditions. Note that the PromptIR is approximately 6x larger than
ours. Despite this, our method consistently produces visually superior results, demonstrating its effectiveness.
Fig. 6 also shows that under the zero-shot setting, our method can also restore clear results. More detailed
visual examples are given in the appendix.

4.2 Ablation Studies

Impact of different components. We conduct detailed studies on the proposed components within the
framework of AnyIR . All experiments are conducted in the All-in-One setting with three degradations. We
compare our simple feature-modeling block DAB against other variants. As detailed in Tab. 7, we assess the
effectiveness of our key architectural contributions by removing or replacing our designed module with its
counterparts. The detailed architecture overview of these considered counterparts can be found in Fig. 7.

We first examine the impact of our skip-split operation (a-b), which yields a significant improvement of
1.02 dB over the common half-split method. This validates and supports our motivation to deeply enable
intertwining within the subparts of an input feature. Introducing our proposed GatedDA in parallel to
the attention layer (c) results in a substantial increase of 1.27 dB. Combining GatedDA with the skip-split
operation (d) further enhances the reconstruction fidelity of our framework. This validates the effectiveness of
our intention of using local gated details to reconstruct the degradation-aware output. Lastly, the introduction
of cross-feature filtering (e), please refer to Fig. 2 for our plain design, improves the interconnectivity between
global-local features, further benefiting overall performance.
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Figure 7: Structure of other different DAB variants during exploration.

Table 7: Ablation comparison (Average PSNR) of the effect of each component under the 3-degradation.

Method  Skip-Split  Fusion (Alg. 2) GatedDA  PSNR (dB, 1)

(a) X X X 30.85
(b) v X X 31.83
(c) X X v 32.13
(d) v X v 32.35
(e) v v v 32.80

Table 8: Impact of different (v, 3, «y) settings on three-degradation.

(ay B, ) PSNR 1 SSIM 1t
(0, 1/2, 1/2) 32.14 0.910
(1/2, 0, 1/2) 32.21 0.912
(1/2, 1/2, 0) 31.37 0.907
(1/4, 1/4, 1/2) 32.80 0.919

Figure 8: Visual feature maps of a, 8, and v within GatedDA.

Impact of different «, 5, and ~ in gatedDA. Tab.8 shows the different impact of different values of (a,
B, ) in the gatedDA proposed (without Alg. 2). We noticed that when setting one of these parameters to 0,
the performance decreases. When we set (a, 3, v) to (hidden/y hidden/y hidden/3) the average performance
increases. This means that each part of the proposed gatedDA is necessary. The visual features shown in
Fig. 8 indicate that «, (3, and 7 consistently focus on various aspects of the degraded regions, each specializing
in different levels or types of degradation. See more analyses in our Supp. Mat.

Impact of the network capacity. The results in Tab. 9, derived from experiments on the draining task,
provide valuable insight into the broader context of all-in-one IR. Although draining serves as a testbed, the
findings reflect a key question in general-purpose restoration: Does increasing model capacity universally
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Figure 9: Visualization of the channel activation distribution.

Table 9: Network Capacity and Complexity Analysis on Deraining. Comparison of PSNR, model parameters,
and FLOPs, highlighting the balance between network capacity and computational efficiency. FLOPs are
computed for 224 x 224 input images using an NVIDIA Tesla A100 (40G) GPU.

Method Blocks PSNR (dB, 1) Params. () FLOPs ()
PromptIR Potlapalli et al. (2024)(Base) [4,6,6,8] 37.04 35.6M 132G
Base (No Prompt) [4,6,6,8] 36.74 32.2M 117G
Base (Fix-Prompt) [4,6,6,8] 36.85 . -
Base (No Prompt) [3,5,5,7] 36.84 29.1M 101G
Base (No Prompt) [2,4,4,6] 36.76 26.0M 85G
Base (No Prompt) [1,3,3,5] 36.63 22.9M 68G
AnyIR (ours) (3,5,5,7) 37.99 5.74M 26G

lead to better performance? Our analysis suggests otherwise, emphasizing the importance of efficiency and
task-aware design over brute-force scaling.

For example, the base PromptIR Potlapalli et al. (2024) model with blocks [4,6,6,8] achieves a PSNR of 37.04
dB through 35.6M parameters and 132G FLOP, and progressively reducing capacity through configurations
such as [3,5,5,7], [2,4,4,6] and [1,3,3,5] results in smaller models with lower computational costs but marginal
decreases in PSNR. This highlights the diminishing returns of simply reducing complexity without optimization,
as smaller models lose their capacity to capture the nuances of degradation factors. In contrast, our AnyIR
validates that a careful balance between network capacity and architectural innovation can achieve SOTA
results. With a similar block configuration ([3,5,5,7]) but a significantly optimized architecture, AnyIR
achieves a PSNR of 37.99 dB on the deraining task, outperforming larger models while using only 5.74M
parameters and 26G FLOPs. This demonstrates the effectiveness of our task-specific improvements and
highlights the potential to achieve better results with smaller, more efficient models. These findings underscore
a critical insight for all-in-one IR: While larger models may generalize better across diverse tasks, efficiency
and tailored design can lead to both higher performance and practical utility. The deraining results provide a
compelling argument for rethinking model capacity in restoration frameworks, emphasizing that “more” is
not always better, especially when thoughtful design can yield both performance gains and computational
efficiency.

Exploration of )\ value in Spatial-Frequency Fusion. We explore different A settings in the fusion
module: spatial-only, frequency-only, fixed, and learnable. As shown in Tab. 10, the learnable strategy yields
the best results, highlighting the benefit of adaptive spatial-frequency balancing. Moreover, both fixed and
learnable schemes surpass single-branch counterparts, confirming the complementarity of the two domains.
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Table 10: Ablation comparison of different fusion strategies.

Fusion A PSNR (dB, 1) SSIM (1)
Spatial-only 1.0 32.37 915
Frequency-only 0.0 32.09 919
Fixed (0.5) 0.5 32.63 917
Learnable — 32.80 919

5 Discussion

What does the proposed Skip-Split bring? Adjacent channels often contain redundant information
due to spatial correlations in the data. Directly splitting the channels into two contiguous halves can lead
to uneven feature distribution, with one half potentially capturing redundant features, while the other
lacks important information. By using a simple skip-split method that interleaves channels between the
two processing paths, we ensure a more balanced and diverse set of features in each path, enhancing the
effectiveness of both the self-attention and convolutional components. These phenomena are also validated in
the channel activation distribution visualization shown in Fig. 9.

Why does the proposed GatedDA & the fusion Alg. 2 work? As shown in Fig. 10, the error map
visualizations reveal that degradation in an input image is often unevenly distributed, manifesting itself
as global patterns and localized clusters. This highlights the need for degradation modeling to capture
both widespread and fine-grained distortions. The proposed GatedDA module addresses this by selectively
activating in degraded regions, closely aligning with the actual degradation distribution, and effectively
enhancing localized features. When combined with global attention, which captures broader contextual
dependencies, the fusion algorithm (Alg. 2) enables a more comprehensive understanding of the degradation
structure of the image.

Further evidence is provided by the SVD and cumulative variance curves in Fig. 11, which demonstrate the
complementary nature of the two modules. While the attention branch captures dominant global variations
reflected in a steep variance accumulation and concentrated singular values, GatedDA captures more diverse
and spatially distributed local signals. The fused representation achieves a better balance, integrating both
local and global characteristics with faster variance accumulation than GatedDA alone. These results validate
that the synergy between GatedDA and attention not only improves restoration quality but also enhances
robustness across diverse types of degradation. Although some aspects of this analysis can be interpreted
at a more abstract representation-learning level, our formulation and conclusions are confined to the image
restoration setting, where the model is developed and evaluated specifically for multi-degradation IR.

Why is AnyIR efficient? AnyIR reduces computational costs by splitting input channels: one half is
processed by self-attention, the other by a Gated CNN block. This division reduces the complexity of
self-attention from O(B - head - (H - W)?), while Gated CNN processes the remaining channels with a lower
complexity of O(B - C - H - W), especially beneficial for high-resolution inputs where (H - W)? dominates.
Furthermore, AnyIR employs dimensionality reduction and parameter-efficient designs, collectively reducing
the GFLOPs and model parameters. This balance of global context modeling and efficient local feature
extraction enables AnyIR to minimize computational costs without sacrificing performance.

Is scaling down the new advantage? Although recent methods in image restoration often scale up
model size and complexity, our AnyIR takes a different path: scaling down. Instead of relying on large
architectures, we embrace a simple but non-trivial design, using targeted components like the GatedDA
module to capture degradation without excessive parameters effectively. This simplicity is not a compromise; it
is an asset - yielding high-quality restoration with minimal computational demand, faster training, and greater
adaptability. The All-in-One IR framework, though new compared to degradation-specific methods, faces a
key limitation: an imbalance in data distribution, with certain degradations (e.g. dehazing) dominating. Our
experiments suggest that a more balanced dataset could significantly improve performance across degradation
types, offering a constructive direction for future work. We note that these discussions and observations
are made strictly within the scope of multi-degradation image restoration, and are not intended to imply a
general-purpose image processing or prediction framework beyond the IR domain.
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Figure 10: Error map and the output of GatedDA.
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Figure 11: SVD and cumulative variance curves for attention, GatedDA, and the fused feature (Zoom in for
a better view).
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6 Conclusion

We introduced AnyIR, an efficient multi-degradation image restoration model that unifies the degradations
considered in current All-in-One IR settings within a single framework. By combining gated guidance with
a spatial-frequency fusion strategy, the model learns embeddings that capture both degradation-specific
cues and invariant structures, enabling robust restoration across tasks. Extensive experiments, including
evaluations on unseen and real-world degradations, show that AnyIR achieves state-of-the-art accuracy with
substantially reduced parameters and FLOPs, while maintaining strong generalization ability. We believe that
AnyIR provides a strong and efficient baseline for future research, advancing both the practical deployment
and the broader understanding of learning-based all-in-one image restoration.
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A Experimental Protocols

A.1 Datasets

3 Degradation Datasets. For both the All-in-One and single-task settings, we follow the evaluation
protocols established in prior works Li et al. (2022); Potlapalli et al. (2024); Zamfir et al. (2025), utilizing
the following datasets: For image denoising in the single-task setting, we combine the BSD400 Arbelaez
et al. (2010) and WED Ma et al. (2016) datasets, and corrupt the images with Gaussian noise at levels
o € {15,25,50}. BSD400 contains 400 training images, while WED includes 4,744 images. We evaluate the
denoising performance on BSD68 Martin et al. (2001) and Urban100 Huang et al. (2015). For single-task
deraining, we use Rain100L Yang et al. (2020), which provides 200 clean/rainy image pairs for training and
100 pairs for testing. For single-task dehazing, we adopt the SOTS dataset Li et al. (2018), consisting of
72,135 training images and 500 testing images. Under the All-in-One setting, we train a unified model on
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Table 11: The details of the tiny and small versions of the proposed AnyIR. .

‘ AnyIR -Tiny ‘ AnyIR -Small
The Number of the DAB crosses 4 scales [3,5,5,7 4, 6, 6, 8]
The Input Embedding Dimension 28 32
The FFN Expansion Factor 2 2
The Number of the Refinement Blocks 4 4
Params. ({) 5.74M 8.51M
FLOPs (1) 26G 39 G

the combined set of the aforementioned training datasets for 120 epochs and directly test it across all three
restoration tasks.

5 Degradation Datasets. The 5-degradation setting is built upon the 3-degradation setting, with two
additional tasks included: deblurring and low-light enhancement. For deblurring, we adopt the GoPro
dataset Nah et al. (2017), which contains 2,103 training images and 1,111 testing images. For low-light
enhancement, we use the LOL-v1 dataset Wei et al. (2018), consisting of 485 training images and 15 testing
images. Note that for the denoising task under the 5-degradation setting, we report results using Gaussian
noise with ¢ = 25. The training takes 130 epochs.

Composited Degradation Datasets. Regarding the composite degradation setting, we use the CDD11
dataset Guo et al. (2024b). CDD11 consists of 1,183 training images for: (i) 4 kinds of single-degradation
types: haze (H), low-light (L), rain (R), and snow (S); (%) 5 kinds of double-degradation types: low-light +
haze (14+h), low-light+rain (L+R), low-light + snow (L+S), haze + rain (H+R), and haze + snow (H+S). (%)
2 kinds of Triple-degradation type: low-light + haze 4 rain (L+H+R), and low-light + haze + snow (L+H+S).
We train our method for 150 epochs (significantly fewer than the 200 epochs used in MoCE-IR Zamfir et al.
(2025)), and we keep all other settings unchanged.

Zero-Shot Underwater Image Enhancement Dataset. For the zero-shot underwater image enhancement
setting, we follow the evaluation protocol of DCPT JiaKui et al. (2025) by directly applying our model,
trained under the 5-degradation setting, on the UIEB dataset Li et al. (2019) without any finetuning. UIEB
consists of two subsets: 890 raw underwater images with corresponding high-quality reference images, and
60 challenging underwater images. We evaluate our zero-shot performance on the 890-image subset with
available reference images.

A.2 Implementation Details

Our AnyIR framework is designed to be end-to-end trainable, eliminating the need for multi-stage optimization
of individual components. The architecture features a robust 4-level encoder-decoder structure, characterized
by varying numbers of Degradation Adaptation Blocks (DAB) at each level, specifically [3, 5, 5, 7] from highest
to lowest level. Following established practices Potlapalli et al. (2024); Zamfir et al. (2025), we conducted
training over 130 epochs via a batch size of 32 for the All-in-One and mixed settings. Optimization employed
the L; loss and Fourier with the Adam optimizer Kingma & Ba (2015) (initial learning rate of 2 x 1074,
B1 = 0.9, B = 0.999) and cosine decay schedule. During training, we employed random crops of size 1282
and applied horizontal and vertical flips as augmentations. All experiments were performed using 2 NVIDIA
Tesla A100 (40G) GPUs.

We also propose two scaled variants of our AnyIR , namely Tiny (AnyIR -T) and Small (AnyIR -S). As
detailed in Tab. 11, these variants differ in terms of the number of Degradation Adaption Blocks (DAB) across
scales, the input embedding dimension, the FFN expansion factor, and the number of refinement blocks.

B Discussion And Analysis

The visual illustration of Skip-Split and what it brings. Fig. 12 presents a 3D PCA visualization
comparing Half-Split and our proposed Skip-Split. The results show that Skip-Split yields a more uniform
and well-spread feature distribution, suggesting stronger and more discriminative representations. For a more
intuitive understanding, a side-by-side visual comparison is also provided in the right part of Fig. 12.
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Figure 12: 3D PCA Visualization between the Half-Split and our proposed Skip-Split, and the visual
illustration of Skip-Split.

Noise Input tSNE of Attention tSNE of GatedDA Restored

Figure 13: tSNE comparison between attention and GatedDA of the proposed method.

What does GatedDA bring that differs from attention? As the visualization result shown in Fig. 13,
the t-SNE visualizations of the feature maps reveal a key distinction between GatedDA and attention
mechanisms. While attention effectively captures global relationships and context, its feature representations
tend to exhibit less structural separation in the embedding space. In contrast, GatedDA introduces a localized
focus on degradation-specific regions, resulting in a more distinct clustering of features in the t-SNE space.
This separation highlights GatedDA’s ability to emphasize degradation-specific information, complementing
the broader scope of attention. Together, this synergy allows GatedDA to enhance image restoration by
targeting specific degradation patterns while leveraging the global context provided by attention. As evidenced
in the restored outputs, this combination leads to a more accurate recovery of both global and local details.

Attention and GatedDA Feature Maps. To investigate the effectiveness of the proposed Degradation
Adaptation Block (DAB), we provide a detailed visualization of key components in Fig. 15. These include
the attention mechanism, the GatedDA module, and its components—«, 3, and y—along with the fused
feature map (combining attention and GatedDA), and the final restored image.

From the visualizations of the attention feature map in the second row of Fig. 15 and the GatedDA feature
map in the third row, it is evident that GatedDA effectively models degradation factors such as rain, noise,
and haze. This demonstrates the capability of GatedDA to capture and emphasize degradation-related
information automatically.

Role of «, §, and v in Degradation Modeling. To further analyze how «, 3, and v within GatedDA
contribute to degradation modeling, we refer to the visualizations in the 4th to 6th rows of Fig. 15. These
maps show that «, £, and ~y consistently focus on various aspects of the degraded regions, each specializing
in different levels or types of degradation. This specialization allows the model to adapt to varying degrees
and types of degradation, making it more versatile and effective in the context of Image Restoration (IR)
under a "One-for-Any" setting.

Fused Attention and GatedDA Features. The fused feature map, combining attention and GatedDA,
offers further insights (visualized in Fig. 15). Compared to the original attention map, the fused map exhibits
a richer representation of degradation, which equips the model with more comprehensive information for
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Figure 14: Training samples statistics.

Table 12: Average results for denoising and overall (i.e. dehazing, deraining, and denoising) under the
3-degradation IR setting.

Method Denoising Overall

PromptIR Potlapalli et al. (2024) 31.11  .873  32.06  .913
AnyIR (Original, ours) 31.26 .878 32.80 .920
AnyIR (New, ours) 31.31 .879 32.89 .921

Table 13: Full inference time comparison under the 3-degradation IR setting. The lower the better.

Task Num. Samples PromptIR Potlapalli et al. (2024)  AnyIR (Ours)
Denoising (o = 15) 68 41s 30s
Denoising (o = 25) 68 41s 30s
Denoising (o = 50) 68 42s 30s
Deraining 100 60s 43s
Dehazing 500 416s 274s
Frames Per Second - 1.34 1.97

accurate restoration. In conclusion, the proposed DAB enhances the attention mechanism by embedding
richer degradation information, thus improving restoration quality. The GatedDA module within DAB
introduces flexibility and diversity in handling various types and levels of degradation, contributing to the
overall robustness and effectiveness of our method.

Affect of data distribution. As illustrated in Fig. 14, the original training samples exhibit significant
variation across different IR tasks. Based on this observation, we propose a new set of training samples that
over-represent the denoising samples and reduce the dehazing samples by half. This adjustment aims to
achieve a more balanced data distribution. The results, presented in Tab. 12, demonstrate that training
AnyIR with this revised set of samples, even when using only 90% of the original total training samples,
yields significant performance improvements.
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Figure 15: Visualization of the feature maps of each part within the proposed Degradation Adaptation Block
(DAB).
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C Additional Results

Full Inference Time Comparison. Table 13 provides a detailed comparison of the full inference time
between our method, AnyIR , and PromptIR Potlapalli et al. (2024) under the 3-degradation all-in-one IR
setting. Across all tasks, our method demonstrates significantly faster inference, highlighting its computational
efficiency. For denoising tasks with varying noise levels (o = 15, 25, 50), AnyIR reduces the inference time
from 41-42 seconds to just 30 seconds, achieving over a 25% improvement. Similarly, for deraining, AnyIR
processes 100 samples in 43 seconds, compared to 60 seconds for PromptIR, and for dehazing, it processes
500 samples in 274 seconds, substantially faster than PromptIR’s 416 seconds. In terms of frames per
second (FPS), AnyIR achieves 1.97 FPS, outperforming PromptIR’s 1.34 FPS by nearly 50%. These results
emphasize the efficiency of AnyIR in handling various degradation tasks, making it highly suitable for practical
applications where computational speed is critical without compromising performance.

These results indicate that our AnyIR model not only maintains high performance but also offers substantial
efficiency improvements, making it more suitable for real-time applications on resource-constrained devices.
The reduced inference time ensures faster processing, enabling seamless deployment in scenarios requiring
rapid decision-making, such as real-time video restoration or on-device image enhancement. Additionally, the
improvement in frames per second (FPS) demonstrates its practicality for large-scale datasets and streaming
applications. By achieving an effective balance between accuracy and speed, AnyIR provides a compelling
solution for efficient, high-performance image restoration.

D Additional visual results.

The low-light enhanced visual comparison is provided in Fig. 16. The visual comparison results under the
3-degradation IR setting are shown in Fig. 17. It shows that the proposed AnyIR can effectively restore the
clean image from its degraded counterparts compared to other comparison methods.

E Limitations and Future Work

Although the proposed AnylIR achieves strong performance and efficiency under the current all-in-one image
restoration (IR) setting, it also presents several limitations that define the scope of its applicability.

A first limitation lies in the imbalance of degradation distribution in the benchmark training data. Certain
degradations (e.g., haze or rain) appear more frequently or with wider variation than others, which may
bias the model toward better performance on dominant categories while providing smaller gains on under-
represented ones. In future work, we plan to investigate more balanced or curriculum-style degradation
scheduling, as well as data reweighting strategies, in order to improve robustness across heterogeneous
degradation regimes.

In addition, while GatedDA and the spatial-frequency fusion mechanism provide consistent improvements
across mixed and spatially non-uniform degradations, they are not universally optimal under all conditions.
Since GatedDA selectively amplifies locally degraded regions, its benefit is weaker when degradations
are globally uniform and largely dominated by global corruption. Likewise, our fusion design assumes
complementary cues across spatial and frequency domains; when the degradation is strongly biased toward a
single domain (e.g., purely frequency-structured noise), the contribution of the other branch may be limited.
Furthermore, the efficiency of our design arises from reducing attention channel capacity and compensating it
with lightweight local modeling, which trades some global modeling flexibility for improved computational
economy. FExploring adaptive routing between attention and GatedDA, as well as task-dependent fusion
weighting, is a promising direction to mitigate these trade-offs.

Finally, we clarify that in this work, “All-in-One” refers to a single model jointly trained across the degra-
dation types covered in our benchmark setting, rather than an unrestricted universal solution for arbitrary
degradations beyond this scope.
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Figure 16: Additional visual comparison for low-light enhancement under the 5-degradation setting.

F Broader Impact

The development of our unified image restoration model has significant potential, extending its impact beyond
technical advancements. By reducing model complexity and computational requirements, our approach
makes high-quality image restoration accessible on resource-constrained platforms like mobile devices. This
enables efficient restoration in fields such as telemedicine, remote sensing, and digital archiving. Additionally,
minimizing the computational footprint reduces the environmental impact of large-scale data processing,
aligning with sustainable computing practices. The public availability of our code will further foster innovation
and collaboration within the scientific community, setting new standards for efficiency and expanding practical
applications in image restoration.
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Figure 17: Additional visual comparison under the 3-degradation setting.
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