
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CORDS—CONTINUOUS REPRESENTATIONS
OF DISCRETE STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Many learning problems require predicting sets of objects without knowing their
number in advance. Examples include object detection, molecular modeling, and
a variety of inference problems for scientific data, such as astrophysical source de-
tection. Existing methods often rely on padded representations, or must explicitly
infer the cardinality directly from data, which often poses challenges. We present
a novel strategy for addressing this challenge by casting prediction of variable
cardinality as a continuous inference problem, where the number of objects is re-
covered directly from field mass. Our approach, CORDS (Continuous Represen-
tations of Discrete Structures), provides a bijective representation that maps sets
of spatial objects with features to continuous density and feature fields. Because
the mapping is invertible, models can operate entirely in field space and still be
decoded back to discrete sets. We evaluate CORDS across molecular generation
and regression, object detection, simulation-based inference in astronomy, and a
mathematical task that recovers local maxima, demonstrating robust handling of
variable cardinality with competitive accuracy.

1 INTRODUCTION

In problems where we wish to reason about discrete structure, we often need to reason about a set
of objects without knowing the cardinality of this set in advance. Examples include object detec-
tion(Tian et al., 2019; Wang et al., 2024a), scientific inference tasks, such as reconstructing catalogs
of astrophysical sources (Vafaei Sadr et al., 2019; Cornu et al., 2024), or conditional molecular gen-
eration, where the conditioned property does not uniquely determine the number of atoms (Faltings
et al., 2025; Pham et al., 2022). Inferring the cardinality directly from data is often difficult, which
means sampling in conditional generation or inference tasks can be inefficient.

Reasoning about unknown cardinality is a challenge that has been around for a long time. Classic
approaches include model selection with variational inference (Beal, 2003), reversible jump MCMC
(Richardson & Green, 1997), and Bayesian nonparametrics (Hjort et al., 2010). In modern ap-
proaches based on deep learning, a common strategy is to pre-allocate capacity beyond what is
typically needed, and then suppress or ignore unneeded capacity (Xu et al., 2024). In the sciences,
similar ideas appear when combining variational inference and empirical Bayes estimation, where
learning the prior can serve to prune unneeded degrees of freedom van de Meent et al. (2014). These
examples reflect a pervasive pattern: rather than modeling the distribution over cardinalities p(N)
explicitly, many methods sidestep the issue by way of user-specified truncations or paddings.

In parallel, continuous representations have become increasingly common across domains, offering
flexible ways to encode signals and structures and partly addressing the challenges of variable car-
dinality. Neural fields and coordinate-based models (Mildenhall et al., 2020; Sitzmann et al., 2020;
Xie et al., 2022) showed how images and scenes can be embedded in continuous domains, and this
perspective has since been extended to molecules and proteins Pinheiro et al. (2024); Kirchmeyer
et al. (2025); Faltings et al. (2025). These approaches remove the need to specify the number of
objects in advance, since atoms or components are represented as smooth densities that can, in prin-
ciple, be sampled or inpainted flexibly Faltings et al. (2025). Yet cardinality is still only inferred
indirectly, and object attributes are often added afterwards through auxiliary classifiers or peak-
detection heuristics, rather than being built into the representation itself. As a result, continuous
fields provide flexibility but not a unified treatment of both counts and features.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An image with K MNIST digits (top) is encoded with CORDS into a density field ρ(r)
(middle) and per-class feature fields hk(r) (bottom). The number of objects is encoded directly in
the density mass, K =

∫
ρ(r) dr.

To address this gap, we introduce CORDS (Continuous Representations of Discrete Structures).
Here, discrete objects are mapped into continuous fields, smooth functions defined over an ambient
domain (e.g. space, time, or grids), where a density field encodes object counts and positions, and a
feature field carries their attributes. The total density mass then acts as a continuous, differentiable
quantity that implicitly encodes the number of objects. The construction is bijective, so models can
operate directly in field space and still recover discrete sets without auxiliary mechanisms such as
fixed slots or padding. This provides a systematic alternative to existing workarounds, offering a
single representation that applies across domains.

2 RELATED WORK

Generative modeling on graphs. Graph generative modeling is typically framed in either dis-
crete or continuous terms. Discrete methods treat molecules as graphs of nodes and edges encoded
through adjacency matrices, as in DiGress (Vignac et al., 2023), which applies discrete denoising
diffusion, variational flow matching (Eijkelboom et al., 2024), which casts flow matching as varia-
tional inference over categorical states, and MoFlow (Zang & Wang, 2020), which uses invertible
flows to generate atoms and bonds with exact likelihoods. Continuous methods instead generate
atomic coordinates and features directly in 3D space. Examples include G-SchNet (Gebauer et al.,
2020), which models molecular conformations with equivariant GNNs, ENF (Satorras et al., 2022),
which extends normalizing flows with equivariant dynamics, and diffusion-based approaches such
as EDM (Hoogeboom et al., 2022), EDM-Bridge (Wu et al., 2022), and GeoLDM (Xu et al., 2023).
More recent architectures such as Ponita (Bekkers et al., 2024) and Rapidash (Vadgama et al., 2025)
further improve scalability with multi-scale equivariant representations.

Alongside these approaches, several works have explored representing molecular graphs in con-
tinuous fields rather than explicit graphs. VoxMol (Pinheiro et al., 2024) represents molecules as
voxelized density grids processed by convolutional networks, while Ragoza et al. (Ragoza et al.,
2020) introduced one of the earliest 3D molecular generative models based on atomic density fields,
reconstructing molecules through peak detection and bond heuristics. FuncMol (Kirchmeyer et al.,
2025) proposed a neural field parameterization of molecular occupancy, and ProxelGen (Faltings
et al., 2025) extended this idea to conditional generation and inpainting. While these methods re-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

move the need to fix graph size in advance, they ultimately recover atoms and features through
thresholding or auxiliary classifiers, leaving cardinality and features only indirectly modeled.

Object detection. Modern object detection builds on a long line of work, beginning with proposal-
based methods and moving toward real-time end-to-end frameworks. Two-stage approaches such
as Faster R-CNN (Ren et al., 2016) first generate region proposals and then refine them through
classification and bounding box regression. In contrast, one-stage models like YOLO (Wang et al.,
2024a) and RetinaNet (Lin et al., 2018) predict classes and bounding boxes directly on dense grids,
balancing speed and accuracy. EfficientDet (Tan et al., 2020) further improved the trade-off between
accuracy and efficiency via compound scaling, while Deformable DETR (Zhu et al., 2021) enhanced
transformer-based detection with better handling of small objects and faster convergence. More
recently, RT-DETRv3 (Wang et al., 2024b) enhances supervision in RT-DETR, achieving higher
accuracy while retaining real-time performance. Related to our setting are methods that rely on
heatmaps or density maps, including CenterNet (Duan et al., 2019), as well as approaches for crowd
counting (Xu et al., 2019) and microscopy analysis (Li et al., 2022). These approaches, like ours, aim
to localize objects from continuous representations; however, unlike our method, they are limited to
localization and cannot capture or model features of the localized objects.

Simulation-based inference. Simulation-based inference (SBI) is used in domains such as cos-
mology, astrophysics, and particle physics where the likelihood is intractable but simulators are
available. Early approaches such as Approximate Bayesian Computation (ABC) (Beaumont et al.,
2002) relied on handcrafted summary statistics, while modern neural methods—neural posterior es-
timation (NPE) and neural ratio estimation (NRE) (Papamakarios et al., 2019; Lueckmann et al.,
2021)—provide flexible and scalable inference. Recent advances include flow matching posterior
estimation (FMPE) (Dax et al., 2023), which leverages flow matching to improve scalability and
accuracy, achieving state-of-the-art results in gravitational-wave inference. Yet, as in detection,
variable event cardinalities are still typically handled by padding, rather than modeled directly.

We provide a more exhaustive survey of related work in Appendix E.

3 CORDS: CONTINUOUS FIELDS FOR VARIABLE-SIZE SETS

Our goal is to establish a bijective correspondence between discrete sets and continuous fields. This
allows models to operate directly in the field domain, where learning and generation are often more
convenient, while still ensuring that discrete predictions can be recovered exactly whenever needed.
The construction applies uniformly across modalities: the only difference lies in the choice of the
ambient domain Ω ⊆ Rd (e.g. a pixel grid for images, three-dimensional space for molecules, or the
time axis for light curves).

We consider a set S = {(ri,xi)}Ni=1 of objects with positions ri ∈ Ω and feature vectors xi ∈ Rdx .
Let K : Ω × Ω → R≥0 be a continuous, positive kernel with finite, location-independent mass
α =

∫
Ω
K(r; s) dr.

Encoding. In the CORDS approach, a discrete set is transformed into continuous fields by su-
perimposing kernels centered at the object positions. The resulting density field represents where
objects are located, while the feature field aligns with it by distributing the object attributes over the
same spatial support:

ρ(r) =
1

α

N∑
i=1

K(r; ri), h(r) =
1

α

N∑
i=1

xi K(r; ri). (1)

Our next objective is to establish conditions for exact invertibility so that (ρ,h) determine the set

uniquely.

Decoding. The inversion is made possible by three structural properties of the encoding. The
total mass of the density determines the number of objects, since each kernel contributes the same
constant integral α. The shape of the density identifies object locations, as it must be explained by a
superposition of kernel translates. Finally, the feature field is aligned with the density, so projecting
it onto the recovered kernels yields the original features. We now formalize each of these steps.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1. Cardinality. Each object is represented via a kernel whose integral is α, so that

N =

∫
Ω

ρ(r) dr. (2)

This makes variable cardinality straightforward: the number of objects is inferred directly from
the density field.

2. Positions. Once the number of objects is known, their locations are encoded in the shape of the
density field. Because ρ is by definition a superposition of kernel translates, positions can be
recovered by solving the kernel-matching problem

min
r1,...,rN

∫
Ω

(
ρ(r)− 1

α

N∑
i=1

K(r; ri)
)2

dr. (3)

If the field truly originates from the forward transformation, the original centers achieve the
global minimum. In practice, approximate solutions found with gradient-based optimization
already suffice, and can be further refined if higher accuracy is required.

3. Features. Once the positions are fixed, the final step is to recover the object features. Because
the feature field was constructed from the same kernels as the density field, its support aligns
with the recovered positions. For each position ri we define κi(r) = K(r; ri); these kernels
span the subspace of the feature field, so reconstructing the features amounts to projecting h
onto this basis. To make this concrete, we form the Gram matrix G ∈ RN×N with entries

Gij =

∫
Ω

κi(r)κj(r) dr,

and the projection matrix B ∈ RN×dx with rows

Bi: =

∫
Ω

h(r)κi(r) dr.

The system B = 1
αGX then recovers the feature matrix X ∈ RN×dx , whose rows are the feature

vectors xi. Under mild assumptions on the kernel, G is symmetric positive-definite, ensuring
that this system has a unique solution

X = αG−1B. (4)

This solution exactly matches the features that generated the field during encoding.

With this construction, we obtain a bijection between finite sets and their corresponding fields. The
conditions that guarantee exact recovery, together with the formal results and proofs, are detailed in
Appendix A. In contrast, Appendix C.1 focuses on how we approximate decoding in practice.

3.1 PRACTICAL CONSIDERATIONS.

Sampling strategies. Fields are defined on a continuous domain Ω, but training requires a finite
representation. We therefore sample a set of locations {ri}Mi=1, evaluate the fields (ρ(ri),h(ri)) at
those points, and feed the resulting tuples directly into neural networks. This differs from neural
fields in the usual sense, where signals are encoded implicitly inside a network; here, we work
explicitly with sampled field values.

Two sampling approaches are possible: uniform sampling or importance sampling (Figure 2). For
molecules in 3D, uniform grids are inefficient: the signal occupies only a small region of space,
resolution grows cubically with grid size, and fixed boxes impose artificial boundaries. Instead,
we adopt importance sampling, drawing locations ri with probability proportional to the density
field and then evaluating the fields at those points. This concentrates samples where information is
present, avoids the need for bounding boxes, and allows the model to learn coordinates and fields
jointly for arbitrarily sized molecules.

For regular domains such as images or time series, however, uniform sampling remains natural:
pixels form a 2D grid in images, and evenly spaced points define the 1D domain of a signal. In all
cases, the model ultimately receives the sampled tuples {(ri, ρi,hi)}Mi=1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Importance sampling

Ω ∈ ℝ2 hk(r)

(ri, ρ(ri), h(ri))

Uniform sampling

Ω ∈ ℝ2 hk(r)

Figure 2: Sampling strategies for evaluating fields. Left: Importance sampling draws coordinates
in proportion to the density ρ, concentrating samples where signal is present. Right: Uniform
sampling evaluates fields on a fixed grid, covering the domain evenly. In both panels, the curves are
isocontours of ρ(r), and the colors show the values of the feature fields hk(r).

Neural architectures for field processing. We align the choice of neural architecture with the
sampling scheme. For molecules, we discretize fields using importance sampling, which produces
large unordered point sets. In this setting, we use the Erwin architecture Zhdanov et al. (2025), a
hierarchical, permutation-invariant transformer that scales to thousands of points while preserving
global context. For images and time series, inputs lie on regular grids; we use standard 2D and
1D CNNs that exploit locality and run efficiently on uniform samples. This division lets CORDS
tackle irregular 3D geometry with a point-based transformer, and lean on compact CNNs where grid
structure is natural.

4 EXPERIMENTS

We apply CORDS in four settings where variable cardinality naturally arises: molecular gener-
ation (QM9 and GeomDrugs), object detection in images (MultiMNIST with out-of-distribution
counts), simulation-based inference in astronomy (burst decomposition of light curves), and a syn-
thetic benchmark for local maxima. These tasks span pixel grids for images, three-dimensional
space for molecules, time series for light curves, and abstract continuous domains for mathematical
functions, all within the same field-based representation. Results for QM9 property regression and
for the local-maxima benchmark are deferred to Appendices D.2 and D.1, respectively; additional il-
lustrations and domain-specific details appear in Appendix C. In all experiments, we encode objects
with a Gaussian kernel

K(r; ri) = exp

(
−∥r− ri∥2

2σ2

)
.

4.1 MOLECULAR TASKS

Datasets. Two benchmarks are considered. QM9 (Ramakrishnan et al., 2014) contains small or-
ganic molecules (up to N=29 heavy atoms) with DFT-computed molecular properties; it is used for
both regression and generation tasks. GeomDrugs comprises larger, drug-like molecules covering
a broader chemical space and larger atom counts; we use it for unconditional generation to assess
scalability and robustness of the proposed framework at higher cardinalities and a setting where
modeling additional features, such as charges, is crucial.

Converting molecules to fields, sampling, and backbone. Atoms, described by their coordinates
and type/charge features, are mapped to density and feature fields ρ(r) and h(r) using Eq. equa-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Model QM9 GeomDrugs
Atom (%) Mol (%) Valid (%) Unique (%) Atom (%) Valid (%)

ENF 85.0 4.9 40.2 98.0 – –
G-Schnet 95.7 68.1 85.5 93.9 – –
GDM 97.0 63.2 – – 75.0 90.8
GDM-AUG 97.6 71.6 90.4 99.0 77.7 91.8
EDM 98.7 82.0 91.9 98.7 81.3 92.6
EDM-Bridge 98.8 84.6 92.0 98.6 82.4 92.8
GLDM 97.2 70.5 83.6 98.9 76.2 97.2
GLDM-AUG 97.9 78.7 90.5 98.9 79.6 98.0
GeoLDM 98.9 89.4 93.8 98.8 84.4 99.3
PONITA 98.9 87.8 – – – –
Rapidash 99.4 92.9 98.1 97.2 – –

CORDS 97.9 82.3 91.0 97.1 78.4 94.6

Table 1: QM9 and GeomDrugs unconditional generation results, evaluated by the standard RDKit
evaluation. Higher is better.

13 14 15 16 17 18 19 20 21 22
N

0.00

0.05

0.10

0.15

0.20

0.25

p(
N)

Conditional distribution p(N|c)
generated
data

Model Atom Mol Valid Unique

data 99.8 98.7 98.9 99.9

VoxMol 99.2 89.3 98.7 92.1
FuncMoldec 99.2 88.6 100.0 81.1
FuncMol 99.0 89.2 100.0 92.8

CORDS 99.2 93.8 98.7 97.1

Figure 3: Left: Conditional generation on QM9. Histogram of the predicted atom count distribution
p(N |c) when conditioning on property ranges unseen during training. Right: Unconditional gener-
ation results on QM9, evaluated using OpenBabel postprocessing, following VoxMol.

tion 1. At each training iteration, we discretize these fields by sampling M spatial locations, yielding
an unordered set of sampled points{ (

ri, ρn(ri), hn(ri)
) }M

i=1
,

which forms the input to the model (Erwin for all tasks). All learning and sampling steps are per-
formed purely in the field domain, with discrete graphs recovered via decoding only for evaluation
metrics that explicitly require molecular graphs. Further details on sampling policies, normalization
strategies, hyperparameters, and training schedules are provided in Appendix C.2.

Unconditional generation. In the generative setting, both fields and the sampling locations must
be modeled explicitly. To achieve this, CORDS learns a joint distribution over coordinates and field
values, denoising the entire set {(ri, ρi,hi)}Mi=1. After generation, fields are decoded to molecular
graphs using the decoding procedure from the CORDS section: the number of nodes N is esti-
mated from the density mass, node positions are recovered by kernel center fitting, and features are
reconstructed via linear projection.

We compare against two distinct groups of baselines, presented separately due to differences in
evaluation procedures. Table in Figure 3 compares CORDS to approaches that operate directly
on continuous or voxelized representations, such as VoxMol (Pinheiro et al., 2024) and Func-
Mol (Kirchmeyer et al., 2025), following their standard sanitization and post-processing evaluation
steps. Table 1 provides results according to the standard evaluation criteria common in recent dis-
crete and continuous generative modeling literature (e.g., EDM; Hoogeboom et al. (2022), Rapidash;
Vadgama et al. (2025)), where validity, uniqueness, atom-level stability, and molecule-level stability
metrics are reported.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model AP AP50 AP75
In-dist OOD Drop (%) In-dist OOD Drop (%) In-dist OOD Drop (%)

DETR 81.2 65.4 19.5 84.0 71.7 14.6 74.2 55.1 25.8
YOLO 71.9 54.3 24.5 78.8 64.2 18.5 59.9 43.1 28.0

CORDS 76.8 64.2 16.4 81.5 71.8 11.9 68.0 53.7 21.0

Table 2: MULTIMNIST object detection results in-distribution vs. OOD. Drop (%) is relative per-
formance decrease.

Finally, we evaluate generalization to larger molecules on GeomDrugs. Here, modeling non-
categorical atom features, specifically charges, is essential: omitting them harms standard metrics
such as validity and atom stability. A strength of CORDS is that continuous features are repre-
sented directly in field space and decoded back to graphs, which enables evaluation without post-
processing. In contrast, prior continuous approaches (e.g., VoxMol, FuncMol) typically operate with
one-hot atom types and resort to heuristics for charges, which limits comparability on this bench-
mark; we therefore follow the usual GeomDrugs evaluation protocol. The generative setup mirrors
QM9: training and sampling are done entirely in field space, with decoding only for evaluation.

Results in Table 1 show competitive performance on both QM9 and GeomDrugs, while outperform-
ing over prior continuous-representation methods on QM9.

Conditional generation (QM9). Most conditional generators are trained by conditioning on target
property values and are then evaluated by predicting the properties of generated samples with inde-
pendent predictors, reporting MAE against the targets Hoogeboom et al. (2022). When conditioning
on a property c, one must also model the conditional size distribution p(N |c). Prior work typically
discretizes c into bins and treats (N, c) as a joint categorical variable over the number of nodes and
the bin of the conditioning variable. This creates a support gap: if a bin is unseen during training,
sampling N at that c becomes impossible.

Our approach conditions directly on continuous properties (here, polarizability α) without discretiz-
ing either c or N . Cardinality emerges from field mass, so p(N |c) is learned as part of the conditional
field distribution. To test generalization, we remove a range of c during training and condition on
that range at inference. Despite the holdout, we recover coherent conditional distribution over the
number of atoms, as reflected in the induced atom-count histograms in Fig. 3a.

4.2 OBJECT DETECTION (MULTIMNIST)

Setup. We demonstrate CORDS on images where the discrete objects of interest are bounding
boxes. Each bounding box instance is specified by its centre (x, y) ∈ R2 and carries two types of
features: a class label (0–9) and a box shape (w, h). We encode such sets into aligned fields on the
image plane: a density field ρ(r), per-class channels that carry one-hot information, and two size
channels that store (w, h) where mass is present (Fig. 1). Discrete predictions are recovered with
the decoding equations from Section 3. Data is generated on the fly using an online MULTIMNIST
generator to avoid any additional augmentations, and effectively having an infinite-data regime.
Each image contains up to Nmax digits (here Nmax=15); digits are uniformly sampled per image,
randomly rotated and rescaled, and placed on a black canvas. Ground-truth bounding boxes and
classes are the targets for all experiments.

OOD evaluation. Beyond standard in-distribution evaluation (images with at most Nmax objects),
we also construct an out-of-distribution split where the number of digits exceeds the training range.
This tests whether a detector can handle variable cardinality without relying on pre-set capacity or a
dedicated counting head. Query-based models implicitly cap predictions via their slot budget; once
the scene contains more objects than slots, additional instances are necessarily missed. In CORDS,
the cardinality is encoded by density mass, so increasing scene density is naturally reflected in the
representation, and the decoding remains valid for larger scenes without changing the network.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

50

100

150

200

250

Co
un

ts

Observed
Predictive Median
Predictive 50%
True Burst Location

(a) Posterior reconstructions of light curve

4 5 6 7 8
Decoded number of components N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p(
N)

Posterior p(N)
True N

(b) Posterior over component count

Figure 4: Simulation-based inference on light curves. (a) Observed light curve ℓ (blue) with re-
constructions from posterior samples θ ∼ p(θ | ℓ). Each reconstruction is obtained by decoding
sampled fields into component parameters θ and simulating the resulting light curve. (b) Posterior
over the number of components p(N | ℓ).

Training objective. We train by minimizing a pixel-wise mean squared error (MSE) on both the
density and feature fields, combined with a penalty on mismatched counts. The overall loss is

L = LMSE + λ (N̂ −N)2,

where the predicted count N̂ is given by the total mass of the density field,

N̂ =

∫
ρ(x, y) dx dy.

This way, the number of objects is treated as a continuous, differentiable quantity and optimized
jointly with the other objectives.

Baselines and metrics. We compare to a DETR detector with a fixed query budget and to a com-
pact anchor-free YOLO variant. All methods are competitive in-distribution. Under OOD counts,
the fixed-query baseline underestimates due to capacity limits, We report the typical detection met-
rics in Table 2. For fair comparison, we allocated all networks with a total of 8 million parameters.
The exact implementation details of the baselines are discussed in Appendix C.3.

4.3 SIMULATION-BASED INFERENCE FOR FRBS

Simulation-based inference (SBI) deals with settings where the likelihood is unavailable but simula-
tion from the generative process is possible: we draw parameters from a prior, generate observations
ℓ, and train a conditional model to approximate the posterior p(θ|ℓ). We adopt flow matching for
posterior estimation Dax et al. (2023), which learns a time-dependent vector field that transports a
simple base distribution to the target posterior, giving us amortized inference with a tractable density.

We demonstrate this approach on the problem of modeling Fast Radio Bursts (FRBs). FRBs are
short, millisecond-scale flashes of radio emission of extragalactic origin, whose astrophysical mech-
anisms are still not fully understood Petroff et al. (2022); Zhang (2023). They are typically modeled
as a superposition of a variable number of transient components, each characterized by parame-
ters such as onset time, amplitude, rise time, and skewness. Recovering the posterior over these
parameters given noisy photon-count light curves is a natural setting for SBI.

In our experiment we work with 1D photon-count light curves with Poisson noise. We first sample
the number of burst components N from a uniform prior. Given N , each component has parameters
θ = (t0, A, τrise, skew) drawn from astrophysical priors. If N were fixed, this problem would be
straightforward: for example, we could represent each component as a token of dimension R4 and
train a transformer with flow matching conditioned on ℓ. The challenge is that N varies, so we also
need to recover p(N | ℓ), which is not trivial. This is the motivation for our approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Training and inference. We map bursts into continuous fields on the time axis. We choose the
onset time to be the location for each burst component, forming a density field ρ(t). As usual,
we create a feature field h(t) that carries the parameters (A, τrise, skew) over the same support.
For each light curve we take a uniform grid of K points (here K=1000), evaluate both ρ(t) and
h(t), and concatenate the observed light curve value ℓ(t) at each point. We then train a flow-
matching model that learns p(ρ(t),h(t)|ℓ) directly in field space. At inference we sample fields
from the model and decode them back into a set of components. An example of this encoding
is illustrated in Appendix C.4. In Figure 4 we show the predictive mean light curve, obtained by
drawing posterior samples, simulating a light curve for each draw, and averaging them according
to the prior probability. Figure 4b illustrates that the approach naturally recovers the distribution
p(N |ℓ). Additional results are reported in Appendix D.

5 DISCUSSION

Implications and takeaways. Our experiments show that field-based learning handles variable
cardinality reliably across domains. In molecular generation, CORDS attains competitive results
against well-established GNN baselines on QM9 and GeomDrugs, while outperforming prior contin-
uous approaches such as VoxMol on QM9. A key advantage is that non-categorical atomic features,
such as partial charges, can be modeled directly in the feature fields and decoded back. In object
detection, CORDS exhibits a smaller performance drop under out-of-distribution object counts,
plausibly because cardinality is encoded as density mass and can be regularized with a simple count
penalty, making the representation more stable as scenes become denser. For simulation-based
inference on light curves, the approach sidesteps explicit modeling of p(N |ℓ): the posterior over
cardinalities arises naturally from the learned field distribution, simplifying training and inference.

Limitations. CORDS incurs practical costs. High-fidelity reconstruction in molecules benefits
from dense sampling (∼ 103 points per molecule), which makes direct scaling to larger graphs com-
putationally expensive. Accuracy also depends on precise kernel-center localization; refinements
(e.g., L-BFGS) help but add latency, creating a speed–accuracy trade-off. In detection, overlapping
kernels can hinder separation of nearby objects, requiring fine-tuning kernel widths.

Future work. Several directions follow naturally. On the detection side, evaluating CORDS on
larger-scale benchmarks (e.g., COCO) would test robustness under heavy occlusion, class diversity,
and crowding, and could explore learned, spatially adaptive kernels to separate nearby instances. For
molecular modeling, extending conditional generation to richer tasks, such as pocket-conditioned
ligand design, regional inpainting, or multi-property control would further probe the benefits of
working in field space with continuous attributes (charges, spins, partial occupancies).

6 CONCLUSION

We introduced CORDS, a framework for modeling variable-size sets through continuous fields.
Positions and features are mapped onto density and feature fields, while cardinality is recovered
directly from total density mass. This allows learning to take place fully in field space while still
enabling exact recovery of discrete predictions. Across molecules, images, and simulated astronomy
data, the approach proved versatile, supporting generation, regression, and inference without fixed
query slots, auxiliary counting heads, or brittle thresholding.

The appeal lies in its simplicity: counts, locations, and attributes are captured within a single rep-
resentation that is straightforward to train, interpret, and apply across different domains. Compared
to earlier continuous-representation methods in computer vision and molecular modeling, CORDS
achieves competitive performance while offering the flexibility to represent arbitrary features be-
yond predefined types.

Overall, the results point to a single field-based representation as an elegant and broadly applicable
alternative: the same encoding (density and feature fields), decoding (mass for counts, kernel cen-
ters for positions, projections for attributes), and training objectives carry across tasks, providing a
unified solution to modeling variable cardinality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Matthew James Beal. Variational algorithms for approximate Bayesian inference. University of
London, University College London (United Kingdom), 2003.

Mark A Beaumont, Wenyang Zhang, and David J Balding. Approximate bayesian computation in
population genetics. Genetics, 162(4):2025–2035, 2002.

Erik J Bekkers, Sharvaree Vadgama, Rob D Hesselink, Putri A van der Linden, and David W
Romero. Fast, expressive se(n) equivariant networks through weight-sharing in position-
orientation space, 2024. URL https://arxiv.org/abs/2310.02970.

D. Cornu, P. Salomé, B. Semelin, A. Marchal, J. Freundlich, S. Aicardi, X. Lu, G. Sainton,
F. Mertens, F. Combes, and C. Tasse. Yolo-cianna: Galaxy detection with deep learning in radio
data: I. a new yolo-inspired source detection method applied to the skao sdc1. Astronomy amp;
Astrophysics, 690:A211, October 2024. ISSN 1432-0746. doi: 10.1051/0004-6361/202449548.
URL http://dx.doi.org/10.1051/0004-6361/202449548.

Maximilian Dax, Jonas Wildberger, Simon Buchholz, Stephen R. Green, Jakob H. Macke, and
Bernhard Schölkopf. Flow matching for scalable simulation-based inference, 2023. URL
https://arxiv.org/abs/2305.17161.

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. Centernet: Key-
point triplets for object detection, 2019. URL https://arxiv.org/abs/1904.08189.

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Rezende, and Dan Rosenbaum. From data
to functa: Your data point is a function and you can treat it like one. In Proceedings of the 39th
International Conference on Machine Learning (ICML), 2022.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Golinski, Yee Whye Teh, and Arnaud
Doucet. COIN++: Neural compression across modalities. Transactions on Machine Learning
Research (TMLR), 2023. Early Access.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation, 2024. URL https://arxiv.
org/abs/2406.04843.

Felix Faltings, Hannes Stark, Regina Barzilay, and Tommi Jaakkola. Proxelgen: Generating proteins
as 3d densities, 2025. URL https://arxiv.org/abs/2506.19820.

Niklas W. A. Gebauer, Michael Gastegger, and Kristof T. Schütt. Symmetry-adapted generation
of 3d point sets for the targeted discovery of molecules, 2020. URL https://arxiv.org/
abs/1906.00957.

Nils Lid Hjort, Chris Holmes, Peter Müller, and Stephen G Walker. Bayesian nonparametrics,
volume 28. Cambridge University Press, 2010.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d, 2022. URL https://arxiv.org/abs/2203.17003.

Matthieu Kirchmeyer, Pedro O. Pinheiro, and Saeed Saremi. Score-based 3d molecule generation
with neural fields, 2025. URL https://arxiv.org/abs/2501.08508.

Shijie Li, Thomas Ach, and Guido Gerig. Improved counting and localization from density maps for
object detection in 2d and 3d microscopy imaging, 2022. URL https://arxiv.org/abs/
2203.15691.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection, 2018. URL https://arxiv.org/abs/1708.02002.

Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gonçalves, and Jakob H. Macke.
Benchmarking simulation-based inference, 2021. URL https://arxiv.org/abs/2101.
04653.

10

https://arxiv.org/abs/2310.02970
http://dx.doi.org/10.1051/0004-6361/202449548
https://arxiv.org/abs/2305.17161
https://arxiv.org/abs/1904.08189
https://arxiv.org/abs/2406.04843
https://arxiv.org/abs/2406.04843
https://arxiv.org/abs/2506.19820
https://arxiv.org/abs/1906.00957
https://arxiv.org/abs/1906.00957
https://arxiv.org/abs/2203.17003
https://arxiv.org/abs/2501.08508
https://arxiv.org/abs/2203.15691
https://arxiv.org/abs/2203.15691
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/2101.04653
https://arxiv.org/abs/2101.04653

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision (ECCV), 2020.

George Papamakarios, David C. Sterratt, and Iain Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows, 2019. URL https://arxiv.org/abs/
1805.07226.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation, 2019. URL
https://arxiv.org/abs/1901.05103.

E. Petroff, J. W. T. Hessels, and D. R. Lorimer. Fast radio bursts at the dawn of the 2020s. The
Astronomy and Astrophysics Review, 30(1), March 2022. ISSN 1432-0754. doi: 10.1007/
s00159-022-00139-w. URL http://dx.doi.org/10.1007/s00159-022-00139-w.

Thai-Hoang Pham, Lei Xie, and Ping Zhang. Fame: Fragment-based conditional molecu-
lar generation for phenotypic drug discovery. bioRxiv, 2022. doi: 10.1101/2022.01.21.
477292. URL https://www.biorxiv.org/content/early/2022/01/23/2022.
01.21.477292.

Pedro O. Pinheiro, Joshua Rackers, Joseph Kleinhenz, Michael Maser, Omar Mahmood, An-
drew Martin Watkins, Stephen Ra, Vishnu Sresht, and Saeed Saremi. 3d molecule generation
by denoising voxel grids, 2024. URL https://arxiv.org/abs/2306.07473.

Daniel Price. Smoothed particle hydrodynamics, 2005. URL https://arxiv.org/abs/
astro-ph/0507472.

Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Learning a continuous representation
of 3d molecular structures with deep generative models, 2020. URL https://arxiv.org/
abs/2010.08687.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks, 2016. URL https://arxiv.org/abs/1506.
01497.

Sylvia Richardson and Peter J Green. On bayesian analysis of mixtures with an unknown number
of components (with discussion). Journal of the Royal Statistical Society Series B: Statistical
Methodology, 59(4):731–792, 1997.

Stephan Rosswog. Astrophysical smooth particle hydrodynamics. New Astronomy Reviews, 53
(4–6):78–104, April 2009. ISSN 1387-6473. doi: 10.1016/j.newar.2009.08.007. URL http:
//dx.doi.org/10.1016/j.newar.2009.08.007.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian B. Fuchs, Ingmar Posner, and Max Welling. E(n)
equivariant normalizing flows, 2022. URL https://arxiv.org/abs/2105.09016.

Vincent Sitzmann, Julien N. P. Martel, Alexander Bergman, David B. Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object detection,
2020. URL https://arxiv.org/abs/1911.09070.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object
detection, 2019. URL https://arxiv.org/abs/1904.01355.

Sharvaree Vadgama, Mohammad Mohaiminul Islam, Domas Buracus, Christian Shewmake, and
Erik Bekkers. On the utility of equivariance and symmetry breaking in deep learning architectures
on point clouds, 2025. URL https://arxiv.org/abs/2501.01999.

11

https://arxiv.org/abs/1805.07226
https://arxiv.org/abs/1805.07226
https://arxiv.org/abs/1901.05103
http://dx.doi.org/10.1007/s00159-022-00139-w
https://www.biorxiv.org/content/early/2022/01/23/2022.01.21.477292
https://www.biorxiv.org/content/early/2022/01/23/2022.01.21.477292
https://arxiv.org/abs/2306.07473
https://arxiv.org/abs/astro-ph/0507472
https://arxiv.org/abs/astro-ph/0507472
https://arxiv.org/abs/2010.08687
https://arxiv.org/abs/2010.08687
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
http://dx.doi.org/10.1016/j.newar.2009.08.007
http://dx.doi.org/10.1016/j.newar.2009.08.007
https://arxiv.org/abs/2105.09016
https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/1904.01355
https://arxiv.org/abs/2501.01999

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A Vafaei Sadr, Etienne E Vos, Bruce A Bassett, Zafiirah Hosenie, N Oozeer, and Michelle Lochner.
¡scp¿deepsource¡/scp¿: point source detection using deep learning. Monthly Notices of the Royal
Astronomical Society, 484(2):2793–2806, February 2019. ISSN 1365-2966. doi: 10.1093/mnras/
stz131. URL http://dx.doi.org/10.1093/mnras/stz131.

Jan-Willem van de Meent, Jonathan E Bronson, Chris H Wiggins, and Ruben L Gonzalez. Empirical
bayes methods enable advanced population-level analyses of single-molecule fret experiments.
Biophysical journal, 106(6):1327–1337, 2014.

Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. DiGress: Discrete denoising diffusion for graph generation. In International Con-
ference on Learning Representations (ICLR), 2023.

Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Yolov10:
Real-time end-to-end object detection, 2024a. URL https://arxiv.org/abs/2405.
14458.

Shuo Wang, Chunlong Xia, Feng Lv, and Yifeng Shi. Rt-detrv3: Real-time end-to-end object detec-
tion with hierarchical dense positive supervision, 2024b. URL https://arxiv.org/abs/
2409.08475.

David R Wessels, David M Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstra-
tios Gavves, and Erik J Bekkers. Grounding continuous representations in geometry: Equivariant
neural fields, 2025. URL https://arxiv.org/abs/2406.05753.

Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges, 2022. URL https://arxiv.org/abs/2209.
00865.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual comput-
ing and beyond, 2022. URL https://arxiv.org/abs/2111.11426.

Chenfeng Xu, Kai Qiu, Jianlong Fu, Song Bai, Yongchao Xu, and Xiang Bai. Learn to scale:
Generating multipolar normalized density maps for crowd counting, 2019. URL https://
arxiv.org/abs/1907.12428.

Lizhen Xu, Shanmin Pang, Wenzhao Qiu, Zehao Wu, Xiuxiu Bai, Kuizhi Mei, and Jianru Xue.
Redundant queries in detr-based 3d detection methods: Unnecessary and prunable, 2024. URL
https://arxiv.org/abs/2412.02054.

Minkai Xu, Alexander Powers, Ron Dror, Stefano Ermon, and Jure Leskovec. Geometric latent dif-
fusion models for 3d molecule generation, 2023. URL https://arxiv.org/abs/2305.
01140.

Tackgeun You, Mijeong Kim, Jungtaek Kim, and Bohyung Han. Generative neural fields by
mixtures of neural implicit functions. In Advances in Neural Information Processing Systems
(NeurIPS), volume 36, pp. 20352–20370, 2023.

Chengxi Zang and Fei Wang. Moflow: An invertible flow model for generating molecular graphs. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery amp;
Data Mining, KDD ’20. ACM, August 2020. doi: 10.1145/3394486.3403104. URL http:
//dx.doi.org/10.1145/3394486.3403104.

Bing Zhang. The physics of fast radio bursts. Rev. Mod. Phys., 95:035005, Sep 2023.
doi: 10.1103/RevModPhys.95.035005. URL https://link.aps.org/doi/10.1103/
RevModPhys.95.035005.

Maksim Zhdanov, Max Welling, and Jan-Willem van de Meent. Erwin: A tree-based hierarchical
transformer for large-scale physical systems, 2025. URL https://arxiv.org/abs/2502.
17019.

12

http://dx.doi.org/10.1093/mnras/stz131
https://arxiv.org/abs/2405.14458
https://arxiv.org/abs/2405.14458
https://arxiv.org/abs/2409.08475
https://arxiv.org/abs/2409.08475
https://arxiv.org/abs/2406.05753
https://arxiv.org/abs/2209.00865
https://arxiv.org/abs/2209.00865
https://arxiv.org/abs/2111.11426
https://arxiv.org/abs/1907.12428
https://arxiv.org/abs/1907.12428
https://arxiv.org/abs/2412.02054
https://arxiv.org/abs/2305.01140
https://arxiv.org/abs/2305.01140
http://dx.doi.org/10.1145/3394486.3403104
http://dx.doi.org/10.1145/3394486.3403104
https://link.aps.org/doi/10.1103/RevModPhys.95.035005
https://link.aps.org/doi/10.1103/RevModPhys.95.035005
https://arxiv.org/abs/2502.17019
https://arxiv.org/abs/2502.17019

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection, 2021. URL https://arxiv.org/
abs/2010.04159.

Peiye Zhuang, Samira Abnar, Jiatao Gu, Alex Schwing, Joshua M. Susskind, and Miguel Ángel
Bautista. Diffusion probabilistic fields, 2023. URL https://arxiv.org/abs/2303.
00165.

13

https://arxiv.org/abs/2010.04159
https://arxiv.org/abs/2010.04159
https://arxiv.org/abs/2303.00165
https://arxiv.org/abs/2303.00165

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A CORDS THEORETICAL FRAMEWORK

We collect precise assumptions, definitions, and proofs validating the decoding steps and the duality
between finite sets and continuous fields. To aid readability, each formal statement is followed by a
brief intuition.

Roadmap (informal). A finite set of elements with positions and features is encoded as a pair of
continuous fields by superimposing a fixed kernel at each position: a scalar density ρ and a feature
field h that uses the same kernels. Decoding proceeds in three deterministic steps: (i) read off the
cardinality from the total mass of ρ, (ii) recover the positions by matching ρ with a sum of kernel
translates, and (iii) recover the features by projecting h onto the recovered kernel translates, which
yields a small linear system with Gram matrix G. Uniqueness comes from standard identifiability
of equal-weight kernel mixtures and positive-definiteness of G.

A.1 SPACES, ASSUMPTIONS, AND NOTATION

Ambient domain. Fix a bounded or σ-finite domain Ω ⊆ Rd equipped with Lebesgue measure.

Kernel. Let K : Ω× Ω→ R≥0 be continuous with finite, center-independent mass

α =

∫
Ω

K(r; s) dr ∈ (0,∞) for all s ∈ Ω.

We assume:

(A1) Integrable Lipschitzness in the center. There exists LK <∞ such that∥∥K(·; s)−K(·; t)
∥∥
L1(Ω)

≤ LK ∥s− t∥2 ∀ s, t ∈ Ω.

This holds, e.g., for translation-invariant K(r; s) = k(r− s) with k ∈W 1,1.
(A2) Linear independence of translates. For any distinct centers r1, . . . , rN , the functions κi(·) :=

K(·; ri) are linearly independent in L2(Ω). A sufficient condition is translation invariance with
a nonvanishing Fourier transform of k.

(A3) Identifiability of equal-weight mixtures. If for some N and two center sets {ri}Ni=1 and {si}Ni=1
we have

∑
i K(·; ri) =

∑
i K(·; si), then the two sets coincide up to permutation. This holds for

many common kernels (e.g., Gaussians) and guarantees uniqueness of positions in the density
decomposition.

Intuition. (A1) says shifting a kernel a little changes it only a little in L1, which we use for
continuity/stability arguments. (A2) ensures the kernel translates do not accidentally cancel each
other. (A3) is the standard uniqueness of equal-weight kernel superpositions.

Set space. Let SΩ denote the collection of finite sets of distinct positions with features,

SΩ =
⋃
N≥0

{
{(ri,xi)}Ni=1 : ri ∈ Ω pairwise distinct, xi ∈ Rdx

}
.

Field space. We take F = L1(Ω;R) × L1(Ω;Rdx), and write (ρ,h) ∈ F . The representable
subspace is

Frep =

{(1
α

∑
i

K(·; ri),
1

α

∑
i

xi K(·; ri)
)
: {(ri,xi)} ∈ SΩ

}
.

A.2 ENCODING AND DECODING

Encoding Φ. For S = {(ri,xi)}Ni=1 ∈ SΩ, define

Φ(S) = (ρ,h) as in Eq. equation 1,

i.e., ρ(r) = 1
α

∑
i K(r; ri), h(r) =

1
α

∑
i xiK(r; ri).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Decoding Ψ. For fields f = (ρ,h) ∈ F , define Ψ(f) in three steps:

1. Nf :=
∫
Ω
ρ(r) dr. (When f ∈ Frep, Nf ∈ N.)

2. Recover centers by

{r⋆i }
Nf

i=1 ∈ arg min
r1,...,rNf

∫
Ω

(
ρ(r)− 1

α

Nf∑
i=1

K(r; ri)
)2

dr.

Under (A3) the minimizer is unique up to permutation when f ∈ Frep.

3. With κ⋆
i (r) = K(r; r⋆i), set

G⋆
ij =

∫
Ω

κ⋆
i (r)κ

⋆
j (r) dr, B⋆

i: =

∫
Ω

h(r)κ⋆
i (r) dr,

and define features X⋆ = α (G⋆)−1B⋆. Finally, Ψ(f) := {(r⋆i ,x⋆
i)}

Nf

i=1 with rows x⋆
i of X⋆.

Intuition. Step 1 reads off the count because each kernel contributes mass α. Step 2 seeks the
unique set of centers whose kernel sum reproduces ρ. Step 3 says: once the centers are known, h is
a linear combination of the same kernels with vector coefficients—the original features—so a small,
well-conditioned linear system retrieves them.

A.3 DECODING GUARANTEES

Throughout we assume (A1)–(A3) and distinct positions.

A.3.1 RECOVERING THE NUMBER OF ELEMENTS

Proposition A.1 (Cardinality). Let S ∈ SΩ and Φ(S) = (ρ,h). Then
∫
Ω

ρ(r) dr = |S|.

Proof. By linearity of the integral and the definition of α,∫
Ω

ρ(r) dr =
1

α

N∑
i=1

∫
Ω

K(r; ri) dr =
1

α

N∑
i=1

α = N.

Intuition. Every element deposits one kernel “bump” whose total mass is α. Adding them and
dividing by α yields the count.

A.3.2 POSITIVE–DEFINITENESS OF THE GRAM MATRIX

Lemma A.2 (Gram matrix is SPD). For distinct centers {ri}Ni=1 and κi(·) = K(·; ri), the matrix
Gij =

∫
Ω
κi(r)κj(r) dr is symmetric positive–definite.

Proof. Symmetry is immediate. For any c ∈ RN \ {0}, let ϕc(r) =
∑

i ci κi(r). Then

c⊤Gc =

∫
Ω

ϕc(r)
2 dr ≥ 0.

If c⊤Gc = 0, then ϕc = 0 in L2, hence a.e.; by (A2) the translates are linearly independent, so
c = 0, a contradiction. Thus G is SPD.

Intuition. Think of {κi} as a set of directions in a Hilbert space. Their Gram matrix computes
inner products. If no nontrivial combination of the κi cancels out, the quadratic form c⊤Gc is
strictly positive for all nonzero c.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3.3 EXACT RECOVERY OF FEATURES

Proposition A.3 (Feature inversion with correct α). Let S ∈ SΩ with Φ(S) = (ρ,h) and distinct
centers {ri}. Define G,B from the recovered centers as above. Then

B =
1

α
GX and X = αG−1B,

so the recovered features equal the original features.

Proof. From h(r) = 1
α

∑
j xj κj(r),

Bi: =

∫
Ω

h(r)κi(r) dr =
1

α

∑
j

xj

∫
Ω

κj(r)κi(r) dr =
1

α

∑
j

Gij xj .

Stacking rows gives B = 1
αGX. Invertibility follows from Lemma A.2, yielding X = αG−1B.

Intuition. Because h is a linear combination of the same kernels that make up ρ, projecting h onto
each kernel recovers the corresponding coefficient vector. The Gram matrix accounts for overlap
between kernels; its inverse untangles that overlap.

A.3.4 RECOVERING POSITIONS FROM THE DENSITY

Proposition A.4 (Position recovery). Let S ∈ SΩ with Φ(S) = (ρ,h) and N = |S|. If (A3) holds,
then the minimizers of equation 3 are exactly the ground-truth centers up to permutation, and the
optimal value is 0.

Proof. For the ground-truth centers {ri}, the integrand in equation 3 vanishes pointwise by con-
struction, so the objective equals 0. Conversely, any minimizer with value 0 satisfies ρ(·) =
1
α

∑N
i=1 K(·; r⋆i), hence

∑
i K(·; ri) =

∑
i K(·; r⋆i). By (A3) the sets of centers coincide up to

permutation.

Intuition. The density ρ must be explainable as a sum of identical shapes (kernels) placed some-
where in Ω. If equal-weight mixtures are unique, there is only one way to place N such shapes to
obtain exactly ρ: at the original centers (order irrelevant).

A.4 SET–FIELD DUALITY (PERMUTATION INVARIANCE AND INVERSE CONSISTENCY)

We now formalize the duality between sets and fields without invoking additional geometric sym-
metries.

Definition 1 (Set–field dual pair). A pair of mappings

Φ : SΩ −→ F , Ψ : F −→ SΩ
is a set–field dual pair on Ω if:

1. Inverse consistency on representable fields: Ψ ◦ Φ = idSΩ
and Φ ◦ Ψ = idFrep

, where
Frep = Φ(SΩ) ⊂ F .

2. Permutation invariance: For any permutation π of indices, Φ
(
{(rπ(i),xπ(i))}i

)
=

Φ
(
{(ri,xi)}i

)
.

3. Metric compatibility (abstract). There exist admissible metrics dSΩ
on SΩ and dF on F , and

a constant C > 0, such that

dF
(
Φ(S1),Φ(S2)

)
≤ C dSΩ(S1, S2) ∀S1, S2 ∈ SΩ.

Inverse consistency. By Propositions A.1, A.3, and A.4, Ψ ◦ Φ = idSΩ . Moreover, for any
f ∈ Frep there exists S with f = Φ(S); then Φ ◦Ψ(f) = Φ(S) = f , proving Φ ◦Ψ = idFrep .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Permutation invariance (and why it matters). Permutation invariance is immediate because
equation 1 uses sums: relabeling does not change ρ or h. This captures the fact that sets are inher-
ently unordered and ensures that optimization and learning in field space cannot depend on arbitrary
labelings.

Metric compatibility (discussion only). We do not instantiate concrete metrics here. Informally,
(A1) implies that small changes in positions and features translate into small changes of ρ and h in
L1, so Φ is Lipschitz for natural matching-type distances on sets. This is useful for stability analyses
but is not required for the exact decoding results above.

Conclusion. With (A1)–(A3), the kernel-based (Φ,Ψ) defined in §A.2 forms a set–field dual pair
in the sense of Definition 1, and admits exact decoding with the correct α factors. Lemma A.2
ensures well-posed feature inversion via an SPD Gram matrix.

Remarks. (i) Assumption (A3) holds for a broad class of kernels; for example, for
translation-invariant K with strictly positive real-analytic k, the decomposition into equal-weight
translates is unique up to permutation. (ii) In practice, the position recovery objective is smooth
for standard K, so gradient-based optimization with multi-start typically suffices; once centers are
close, a few Newton or Gauss–Newton iterations refine them to machine precision before solving
the small linear system for features.

B CORDS FRAMEWORK FOR GRAPHS

In order to extend our work to graphs, or data with discrete relational objects (such as edges), we
will define Field of Graph is a quadruple

f =
(
ρn, ρe,hn,he

)
where

• ρn : Ω→ R≥0 is the node density;
• ρe : Ω× Ω→ R≥0 is the edge density;

• hn : Ω→ Rdx is a vector-valued node feature field.
• he : Ω× Ω→ Rdy is a vector-valued edge feature field.

We now specify a concrete construction of the encoding map Φ : GΩ → F in the Graph–Field dual
pair. This construction associates to each graph a distributional representation over the domain Ω,
using fixed spatial kernels to define the node density, edge density, and feature fields.

Let us fix two continuous, positive kernels:
kn : Ω× Ω → R≥0, ke : (Ω× Ω)2 → R≥0.

The kernel kn determines how node mass is distributed across space, while ke governs the represen-
tation of edges.

Given a geometric graph G = (V,E,X,Y ,R) ∈ GΩ, we define its field representation

Φ(G) =
(
ρn, ρe,hn,he

)
as

ρn(r) =
∑
v∈V

kn(r; rv), ρe(r1, r2) =
∑

(u,v)∈E

ke
(
(r1, r2); (ru, rv)

)
,

hn(r) =
∑
v∈V

xvkn(r; rv), he(r1, r2) =
∑

(u,v)∈E

yuvke
(
(r1, r2); (ru, rv)

)
.

(5)

Special case: Dirac kernels. Choosing
kn(r; rv) = δ(r − rv), ke((r1, r2); (ru, rv)) = δ(r1 − ru) δ(r2 − rv),

recovers the standard discrete graph structure in distributional form. This limiting case shows that
our construction generalizes the original discrete graph while embedding it in a continuous domain.
With a suitable choice of interactions, we obtain the traditional message passing.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.1 CONTINUOUS GRAPH CONVOLUTION AND THE DISCRETE MESSAGE–PASSING LIMIT

Throughout this appendix we work on an ambient domain Ω ⊆ Rd equipped with the Lebesgue
measure dr. A geometric graph G = (V,E,R,X) with node positions rv ∈ Ω and node features
h
(k)
v ∈ Rdh is encoded into continuous objects

ρn, ρe, h
(k) : Ω −→ Rdh

In particular, for a node kernel kn and an edge kernel ke we have

ρn(r) =
∑
u∈V

kn(r; ru),

ρe(r1, r2) =
∑

(u,v)∈E

ke
(
(r1, r2); (ru, rv)

)
,

h(k)(r) =
∑
u∈V

h(k)
u kn(r; ru).

(6)

B.1.1 CONTINUOUS CONVOLUTION

Given a field feature h(k) : Ω→ Rdh at layer k, the continuous graph convolution introduced in

h(k+1)(ri) = σ
(
W

∫
Ω

h(k)(rj) ρe(ri, rj) drj︸ ︷︷ ︸
=: m(k)(ri)

)
, (7)

where W ∈ Rdh×dh is a trainable linear map, σ is any point-wise non-linearity (ReLU, SiLU, . . .),
and m(k) denotes the message field aggregated from all spatial locations.

B.1.2 DIRAC KERNELS AND THE DISCRETE LIMIT

We now take
kn(r; ru) = δ(r− ru), ke

(
(r1, r2); (ru, rv)

)
= δ(r1 − ru) δ(r2 − rv),

i.e. each node (edge) is represented by a Dirac delta of unit mass centred at its position.
Proposition B.1 (Continuous convolution −→ message passing). Let kn, ke be the Dirac kernels
above. Then, evaluating equation 7 at the node positions ri = ru yields

h(k+1)
u = σ

(
W

∑
v∈V

euv h
(k)
v︸ ︷︷ ︸

=: m
(k)
u

)
, (8)

where euv = 1 if (u, v) ∈ E and 0 otherwise. That is, the continuous convolution reduces exactly
to the standard message-passing update with sum aggregation.

Proof. Using the encoding equation 6 with Dirac kernels,

ρe(ri, rj) =
∑

(p,q)∈E

δ(ri − rp) δ(rj − rq).

Fix a node u and set ri = ru. Substituting into the message integral in equation 7 gives

m(k)(ru) =

∫
Ω

h(k)(rj)
∑

(p,q)∈E

δ(ru − rp) δ(rj − rq) drj

=
∑

(p,q)∈E

δ(ru − rp) h
(k)(rq)

=
∑

(p,q)∈E

δup h
(k)
q =

∑
v∈V

euv h
(k)
v ,

where δup is the Kronecker delta (the Dirac delta evaluates to 1 iff ru = rp, or equivalently u = p).
Finally, plugging m(k)(ru) = m

(k)
u back into equation 7 gives equation 8.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Remark 1 (Vanishing-width Gaussian kernels). If kn and ke are isotropic Gaussians of width σ

(as used in Eq. (9) of the main text), then kn, ke
σ→0−−−−→ Dirac distributions in the sense of tem-

pered distributions. Therefore the continuous convolution converges to the message-passing update
equation 8 as σ → 0.

B.2 EXTENDING CORDS TO NON-GEOMETRIC GRAPHS

The core construction of Fields of Graphs (FOG) relies on the existence of an explicit geomet-
ric embedding p : V → Ω, which maps each node to a position in a continuous domain. However,
many real-world graphs do not come equipped with natural spatial coordinates. To extend our frame-
work to such non-geometric graphs, we propose using spectral embeddings derived from the graph’s
topology.

B.2.1 SPECTRAL EMBEDDINGS VIA GRAPH LAPLACIAN

Given a graph G = (V,E,X) without predefined node positions, we compute a spectral embedding
based on the graph Laplacian. Specifically, let A ∈ R|V |×|V | be the adjacency matrix and D the
diagonal degree matrix with Dii = deg(i). The (unnormalized) graph Laplacian is defined as:

L = D −A.

Let {λi}|V |
i=1 be the eigenvalues of L, with corresponding eigenvectors {vi}|V |

i=1. We define a spectral
embedding

pspec(v) =
(
v2(v),v3(v), . . . ,vd+1(v)

)
,

where vi(v) denotes the v-th entry of the i-th eigenvector. The first non-trivial eigenvectors capture
global structural information, positioning nodes with similar topological roles close to each other in
Rd.

This spectral embedding provides a continuous proxy for node positions, enabling us to apply the
same FOG construction as in the geometric case. Effectively, it allows us to treat arbitrary graphs as
if they were embedded in a geometric space, lifting them into a continuous field representation.

B.2.2 LIMITATIONS AND PRACTICAL CONSIDERATIONS

While spectral embeddings offer a principled way to introduce geometry into non-geometric graphs,
they come with trade-offs. Specifically:

• The embedding dimensionality d is a design choice. Using fewer dimensions provides a com-
pressed view of the graph’s topology, which can be sufficient for downstream tasks like regres-
sion or classification.

• However, reducing d also means that the bijective property of the Graph–Field dual pair is lost,
as the original graph cannot be perfectly reconstructed from the continuous representation.

• For applications where reversible mapping is not critical (e.g., predictive tasks on node-level
or graph-level properties), this trade-off is acceptable. On the other hand, generative tasks that
require recovering discrete graph structure from fields would necessitate higher-dimensional
embeddings or alternative encoding strategies.

In summary, spectral embeddings allow us to extend the FOG framework to general graphs without
predefined coordinates, enabling continuous representations even in the absence of natural geometry.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 APPROXIMATING THE INVERSE DECODING IN PRACTICE

The exact inversion formulas in Appendix A involve domain integrals and solving linear systems
built from kernel inner products. When fields are only available at finitely many sample locations
(either on a grid or from a sampler) these integrals are approximated by Monte Carlo (MC). Below
we describe the practical decoding we use in all experiments. It proceeds in three steps: (i) estimate
the number of elements N , (ii) recover their positions, and (iii) reconstruct their feature vectors. We
emphasise the intuition at each step and show how importance sampling enters the feature inversion.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Notation and sampling setup. Let { rs }Ss=1 ⊂ Ω be the evaluation points (field samples). They
are drawn either uniformly from a bounding box of Ω, or by importance sampling from a proposal
q(r) proportional to a kernel mixture centred near the (unknown) element locations. We write ρ(rs)
and h(rs) for the sampled density and feature fields at those points. In all cases, MC weights are
taken as

ws =
1

S q(rs)
(importance sampling), ws =

1

S
(uniform over a box).

Remark: for uniform sampling the mathematically unbiased weight is Vol(Ωbox)
S ; in our implementa-

tion we use 1
S and rely on the fact that the unknown constant volume multiplies both sides of the

linear system in Step (iii) and cancels out in the solve.

(i) Estimating the number of elements N̂ and normalising ρ.

Why this must come first. The subsequent position fit needs to know how many kernels to place.
Hence we estimate N directly from the sampled density before any other step.

How we estimate it. In theory, N =
∫
Ω
ρ(r) dr. With sampling rs∼ q the MC estimator is

N̂MC =

S∑
s=1

ρ(rs)ws =
1

S

S∑
s=1

ρ(rs)

q(rs)
.

For importance sampling, q is only known up to a global constant (q ∝
∑

u κprop(·; ru)); for uniform
sampling, the box volume enters q. In practice we avoid carrying these constants by working with
a calibrated density: during training the encoder Φ optionally rescales ρ so that its sample mean
equals the true cardinality. At test time we therefore set

N̂ = round

(
1

S

S∑
s=1

ρ(rs)

)
.

Because of MC noise 1
S

∑
s ρ(rs) will rarely be an exact integer; empirically it concentrates within

±0.5 of the truth, so rounding is appropriate.1 This N̂ fixes the number of kernels to fit in Step (ii).

(ii) Recovering positions.

Initialisation by a mixture fit. Given the samples {(rs, ρ(rs))}Ss=1 and the estimate N̂ , we fit an
N̂ -component isotropic Gaussian mixture model (GMM) to the rs, initialised with k-means++ on
coordinates. The resulting means {r̃u}N̂u=1 are coarse location estimates. (Optionally we search
over N̂ ± δ components by BIC and pick the best, but we keep N̂ unless BIC strongly prefers a
neighbour.)

Refinement by kernel matching. We then refine the centres by minimising the squared discrepancy
between the observed density and a superposition of kernel translates. Writing κ(r; ru)=K(r; ru)
and allowing a global amplitude a > 0 to absorb small normalisation mismatches (e.g., boundary
truncation, unknown α), we minimise

Lpos({ru}, a) =
1

S

S∑
s=1

(
ρ(rs)− a

1

α

N̂∑
u=1

κ(rs; ru)
)2

. (9)

We run LBFGS for at most 50 iterations starting from the GMM means. When the dynamic range
is large, we minimise the same objective in log space (i.e., replace both terms by their log, with a
small floor), which stabilises the fit of a and the centres near sharp peaks.

Intuition. Step (ii) exactly mirrors the theoretical position recovery (Appendix A): we seek the
unique set of centres whose kernel sum reproduces the observed ρ. The GMM gives a good basin of
attraction; LBFGS then snaps the centres onto the mode locations determined by ρ.

1If a calibration pass is not available, one can use the generic N̂MC above with explicit ws = 1
Sq(rs)

; for
importance sampling, the unknown proportionality constant cancels after the normalisation step below.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(iii) Reconstructing feature vectors from h.

Theory recap. For the recovered centres {ru}N̂u=1 define κu(r) = K(r; ru). The ideal (L2) projec-
tion used in Appendix A reads

Guv =

∫
Ω

κu(r)κv(r) dr, Bu: =

∫
Ω

h(r)κu(r) dr, X = αG−1B.

In code we approximate both integrals by MC with the same weights ws.

Monte Carlo feature inversion (corrected). With samples rs ∼ q and weights ws =
1

Sq(rs)
, define

Ĝuv =

S∑
s=1

κu(rs)κv(rs)ws, (10)

B̂u: =

S∑
s=1

h(rs)κu(rs)ws. (11)

Then solve the N̂ × N̂ system

Ĝ X̂ =

{
B̂, if unit-mass kernels are used (α = 1),
1
α B̂, otherwise,

and set X̂←

{
X̂, (α = 1),

α X̂, (α ̸= 1).

(12)
In our implementation the Gaussian/Laplacian/Epanechnikov kernels are normalised to unit mass,
so α = 1 and we simply solve Ĝ X̂ = B̂. For numerical robustness we add a tiny diagonal εI to
Ĝ (ε is 10−4 times the average diagonal) and fall back to least squares if a direct solve fails. When
element types are categorical (e.g., one-hot), we take argmax over the feature channels of each row
of X̂.

Why the proposal normalisation does not matter. If q is known only up to a constant (importance
sampling) or includes an unknown box volume (uniform), ws is known up to the same constant
factor c. Both Ĝ and B̂ in equation 10–equation 11 are multiplied by c, which cancels in the linear
system Ĝ X̂ = B̂. This is why using ws = 1

S under uniform sampling is sufficient in practice, and
why we can implement importance weights with an unnormalised mixture q ∝

∑
u κprop(·; ru).

Summary.

1. Cardinality: estimate N̂ from the sample mean of ρ, round to the nearest integer (non-integral
values within ±0.5 are expected).

2. Positions: fit an N̂ -component isotropic GMM to the sample coordinates and refine the means
by minimising equation 9 with LBFGS (optionally in log-space, with a global amplitude a).

3. Features: form Ĝ, B̂ by the MC formulas equation 10–equation 11 using the same weights ws

as for the integral, solve Ĝ X̂ = B̂ (or α Ĝ−1B̂ if non-unit kernels are used), and post-process
categorical channels by argmax.

Practical notes (hyperparameters). We initialise the GMM by k-means++, search over N̂ ± δ

components with δ ≈ 0.15 N̂ unless N̂ is very small, and run LBFGS for at most 50 iterations
with a Wolfe line search. Importance sampling uses the same kernel family as the density with a
proposal bandwidth (sample sigma) close to the encoding bandwidth; temperature-sharpening
of the proposal probabilities helps focus samples near density peaks. The feature solve typically
dominates cost only for very small N̂ ; overall complexity per instance is O(S N̂ + N̂3).

C.2 MOLECULAR GENERATION IN FIELD SPACE WITH EDM

Fields and importance sampling. Following CORDS, a molecule with atoms at {ru}Nu=1 and
per-atom features {ϕu} (atom type logits and, when used, charge) is mapped to continuous fields on

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 5: A molecular graph (top) is encoded with CORDS into a density field ρ(r) (middle) and
feature fields hk(r) (bottom), which correspond to atom types here. The number of atoms is encoded
directly in the density mass, K =

∫
ρ(r) dr.

(a) (b)

Figure 6: Visualization of node feature fields in the continuous domain. We depict the node fea-
ture field hn(r) as 3D iso-contours over the spatial domain, with each color representing a different
feature channel. (a) An intermediate state of hn during denoising diffusion, where node features
fields are still dispersed and overlap spatially. (b) The final denoised field after model inference,
where node contributions are well-separated. Superimposed are the reconstructed discrete graph
nodes obtained by applying the inverse mapping decoding, illustrating how the continuous field en-
codes node positions and features, enabling recovery of discrete graph structure.

R3: a density ρ(r) and feature channels h(r) built by placing normalized isotropic kernels of width
σ at each atom:

ρ(r) =

N∑
u=1

κσ(r−ru), h(r) =

N∑
u=1

ϕu κσ(r−ru).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

At training time we do not operate on graphs. Instead, we discretize fields by importance sampling
M query locations from a proposal q(r) proportional to ρ(r), and read out the field values at those
points: {

(ri, ρn(ri), hn(ri))
}M
i=1

,

where “n” denotes channel-wise normalization (coords, density, features). Densities are represented
either in log-space (log ρn) or in raw space (ρn), controlled by a flag; all learning is carried out
directly on these fields.

EDM preconditioning and losses. We train a score network in the Elucidated Diffusion Models
(EDM) framework to jointly denoise coordinates and field channels. Let x = [ρn,hn] be the stacked
field features at the sampled locations and p the corresponding coordinates. A per-molecule log-
normal noise level is drawn as σ = exp(ϵ Pstd + Pmean), ϵ ∼ N (0, 1). We add isotropic Gaussian
noise to all three channel families

pσ = center(p) + σ ηp, ρ⋆ = ρn + σ ηρ, h⋆ = hn + σ ηh,

and define x⋆ = [ρ⋆,h⋆]. The network takes preconditioned inputs (pin, xin) = (cinpσ, cinx
⋆) and

predicts residuals (∆p, ∆x); EDM scalings use the geometric mean σdata = (σc σr σf)
1/3 across

the three families, with

cskip =
σ2
data

σ2 + σ2
data

, cout =
σ σdata√
σ2 + σ2

data

, cin =
1√

σ2
data + σ2

.

The denoised estimates are p̂ = cskippσ + cout(pin−∆p) and x̂ = cskipx
⋆ + cout(xin−∆x). We

minimize weighted MSEs with per-family σdata:

L = λcoords ·
∥∥w1/2

c (p̂− center(p))
∥∥2
2︸ ︷︷ ︸

coordinates

+ λρ ·
∥∥w1/2

r (ρ̂− ρn)
∥∥2
2︸ ︷︷ ︸

(log-)density

+ λfeats ·
∥∥w1/2

f (ĥ− hn)
∥∥2
2︸ ︷︷ ︸

features

,

with EDM weights wc =
σ2+σ2

c

(σ σc)2
, wr =

σ2+σ2
r

(σ σr)2
, wf =

σ2+σ2
f

(σ σf)2
. An optional mass regularizer pe-

nalizes the squared error between the predicted and true total density mass ⟨N̂⟩−⟨N⟩ (computed by
averaging ρ over the point set), and is compatible with both log- and raw-density parameterizations.

Sampler (Euler–Maruyama with Karras schedule). At test time we draw initial Gaussian noise
(p0, x0) and integrate the EDM Euler–Maruyama sampler along a Karras σ-ladder t0 = σmax >
· · · > tK=0 with optional “churn”:

(pk+1, xk+1)← (pk, xk) + (tk+1 − t̂k)
(pk−p̂t̂k

, xk−x̂t̂k
)

t̂k
with t̂k = tk + γtk,

and a Heun correction on every step. If we enable message passing (> 0 steps), we rebuild a radius
graph on the current coordinates after each update; translation is removed by centering coordinates
at the end. The sampler produces a set of points and denoised fields {(ri, ρ̂n(ri), ĥn(ri))}Mi=1.

Decoding back to molecules (evaluation only). All training and sampling happen in field space.
For metrics that require graphs, we apply the same decoder as in CORDS: (i) estimate N̂ from the
density mass, (ii) fit atom centers by kernel matching to ρ̂n, and (iii) reconstruct per-atom features
by a weighted linear solve from ĥn. When charges are modeled, they are carried as continuous
channels in h and decoded directly.

Evaluation Metrics. To assess the quality of generated molecules, we report the following standard
metrics:

• Validity: the percentage of generated samples that correspond to chemically valid
molecules, i.e., those that can be parsed and satisfy valence rules.

• Uniqueness: the proportion of valid molecules that are unique (non-duplicates) within the
generated set.

• Atom Stability: the percentage of atoms in each molecule whose valence configuration is
chemically stable.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• Molecule Stability: the percentage of molecules in which all atoms are stable, i.e., no atom
violates valence constraints.

These metrics are computed using a standardized chemistry toolkit and follow established bench-
marks for QM9 generation. Together, they reflect both structural correctness and chemical diversity
of the generated samples.

Backbone and normalization. The network acting on unordered field samples is an Erwin-based
encoder–decoder (Fieldformer head), receiving both coordinates and field channels. We apply con-
sistent channel normalization: coordinates are scaled by a fixed factor, features by another, and the
density channel is either log ρ or ρ with its own scale. All σdata values are estimated from the RMS
of these normalized channels on training data; the EDM ladder (σmin, σmax) is set to yield a wide
SNR range on coordinates. diffusion machinery.

PSEUDOCODE (EDM TRAINING, SAMPLING, DECODING)

--- Encode : atoms -> fields, sample M points ---
def rasterize_and_sample(atoms):

rho, h = make_fields(atoms, kernel=gaussian(sigma))
r_i ˜ q(r) rho(r) # importance sampling
dens = log(rho(r_i)) if use_log_rho else rho(r_i)
coords = r_i / norm_coords
feats = h(r_i) / norm_feats
dens = dens / norm_rho
return coords, stack([dens, feats], -1) # [B,M,3], [B,M,1+C]

--- EDM training ---
for batch in loader:

coords, feats = rasterize_and_sample(batch)
sigma = exp(P_mean + P_std * randn([B,1])) # per-molecule noise
pos_noisy = center(coords) + sigma * randn_like(coords)
dens_noisy = feats[..., :1] + sigma * randn_like(feats[..., :1])
h_noisy = feats[..., 1:] + sigma * randn_like(feats[..., 1:])
x_noisy = concat([dens_noisy, h_noisy], -1)

preconditioning
c_skip, c_in, c_out = edm_scalings(sigma, sigma_data=(_c,_r,_f))
pos_in, x_in = c_in * pos_noisy, c_in * x_noisy
dpos, dx = FieldModel(pos_in, x_in, graph=radius_graph(pos_in) if
mp>0 else None)
pos_hat = c_skip * pos_noisy + c_out * (pos_in - dpos)
x_hat = c_skip * x_noisy + c_out * (x_in - dx)

weighted losses
L = _coords * mse_w(pos_hat, center(coords), w_c(,_c)) \
+ _rho * mse_w(x_hat[:,:1], feats[:,:1], w_r(,_r)) \
+ _feats * mse_w(x_hat[:,1:], feats[:,1:], w_f(,_f))

if _mass>0: L += _mass * (mass(x_hat[:,:1]) - mass(feats[:,:1]))**2
L.backward(); opt.step(); opt.zero_grad()

--- Sampling (EulerMaruyama + Karras ladder) ---
x, pos = randn([B,M,1+C]), randn([B,M,3]); pos = center(pos)
for t_cur, t_next in karras_schedule(_max, _min, K):

x_hat, pos_hat = churn(x, pos, t_cur, S_churn, S_noise)
x_d, p_d = FieldModel(c_in(t_hat)*pos_hat, c_in(t_hat)*x_hat)
dx = (x_hat - x_d) / t_hat; dp = (pos_hat - p_d) / t_hat
x, pos = heun_update(x, pos, dx, dp, t_cur, t_next)
if mp>0: graph = radius_graph(pos)

pos = center(pos)

--- Decode (for metrics only) ---
N_hat = integral_of_density(x[:,:1]) # count from mass
t0 = fit_kernel_centers(r=pos, rho=x[:,:1], K=N_hat)
features = gram_projection(h=x[:,1:], centers=t0)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

And the FieldModel in the previous code is based on Erwin, and can be summarized as follows.

--- FieldModel / Erwin block ---
Inputs: pos [B,M,3], feats [B,M,1+C], sigma [B,1], batch [B*M], cond

[B,K] or [B*M,K]
Outputs: dpos [B,M,3], dfeat [B,M,1+C]

def fieldformer_step(pos, feats, sigma, *, batch, cond=None):
1) embedding (log scaled)
log_sigma = log(sigma) / 4.0
log_sigma_nodes = broadcast_to_nodes(log_sigma, batch) # [B*M,1]

2) Encode sampled points
z_pos = RFF(pos.view(-1, 3)) # coords
z_feat = FeatMLP(feats.view(-1, 1+C)) # fields
z_sigma = SigmaEmbed(log_sigma_nodes) #
if cond is not None:

z_cond = ConditionEmbed(broadcast_cond(cond, batch))
z_in = concat([z_pos, z_feat, z_sigma, z_cond], -1)

else:
z_in = concat([z_pos, z_feat, z_sigma], -1)

3) Fuse encodings
h0 = Linear(z_in, out_dim=H)

4) FiLM modulation by
h0 = SigmaFiLM(H)(h0, log_sigma_nodes)

5) Erwin/Transformer trunk over field points
h = main_model(h0, node_positions=pos.view(-1,3), batch_idx=batch)

6) Prediction head per-point residuals
y = PredHead(h)
dpos, dfeat = split(y, sizes=(3, 1+C), dim=-1)

7) Reshape back
return dpos.view(B,M,3), dfeat.view(B,M,1+C)

C.3 OBJECT DETECTION (MULTIMNIST)

Goal and idea. We compare three detectors that differ only in representation principle while keep-
ing capacity and engineering comparable: (i) a field-based (CORDS) detector that predicts aligned
continuous fields (§3), (ii) a YOLO-like anchor-free detector (stride 8), and (iii) a DETR-like
query-based detector. The YOLO/DETR baselines are deliberately minimal (no large-scale tricks
or post-hoc stabilizers) so that the comparison focuses on the core ideas: density mass for counting
(CORDS), cell-wise anchors (YOLO), and slot/query capacity (DETR).

Dataset and splits. We use an on-the-fly MULTIMNIST generator (black background, no extra
augmentations). Each image is 128 × 128, with a uniformly sampled number of digits per image.
Digits are randomly rotated (±25◦) and rescaled to a side length in [18, 42] pixels and pasted on the
canvas with a small border margin. The training range is N ∈ [1, Nmax] with Nmax=15. We report
(i) in-distribution (ID) metrics on held-out images with at most Nmax objects, and (ii) an OOD split
with exactly Nmax+1 objects to probe robustness to variable cardinality.

Targets and what the models predict. A scene is a set of discrete objects (bounding boxes of
digits). Each instance is (x, y, w, h, c) with center (x, y) ∈ R2, size (w, h), and class c ∈ {0, . . . , 9}.
CORDS encodes this set into fields on the image plane: ρ(r) (density), ρ(r)πk(r) (per-class mass
channels), and ρ(r)µ(r) ∈ R2 (size mass). The YOLO/DETR baselines predict class probabilities,
boxes, and objectness/no-object in their usual forms.

Training objective (shared outline). All models are trained from RGB images (standard mean/std
normalization) to their respective targets. For CORDS we minimize a pixel-/sample-wise MSE on

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

the field channels plus a mass-based count penalty (as in the main paper):

L = LMSE(ρ, ρπ, ρµ) + λ
(
N̂ −N

)2
, N̂ =

∫
ρ(x, y) dx dy.

(The model learns to make N̂ an accurate, differentiable count.) For YOLO we use objectness BCE,
class CE (positives), and box L1+GIoU. For DETR we use the standard Hungarian matching with
class CE (with a no-object weight), L1 on boxes, and GIoU.

Backbones and heads (capacity parity). We keep capacities comparable (≈8M parameters total)
by adjusting base widths:

• CORDS fields: a light ConvNeXt-like FPN (stride 8 feature map; full-resolution output), head
predicts 1+K+2 channels: ρ, ρπ1:K , ρµ (with µ ∈ [0, 1]2). We also implement a tiny UNet
head; both behave similarly.

• YOLO-like: a stride-8 CNN/ConvNeXt-lite backbone feeding a minimal anchor-free head that
regresses cell-relative (cx, cy, w, h) and predicts objectness and K-way class logits.

• DETR-like: a small CNN/ConvNeXt-lite backbone (H/8 or H/16 stride) followed by a 3-layer
Transformer encoder and 3-layer decoder with T =Nmax learned queries; heads predict K+1
class logits (incl. no-object) and a normalized box via a 3-layer MLP.

How counting differs. DETR is slot-limited (at most T outputs). YOLO is grid-limited but flexi-
ble in count after NMS. CORDS learns N̂ from the mass of ρ, so increasing scene density produces
larger

∫
ρ without architectural changes; decoding scales seamlessly to OOD counts.

CORDS (FIELDS) MODEL: FORWARD, TRAINING, AND DECODING

Forward prediction. The fields head outputs unnormalized logits which are mapped as ρ =
softplus(·), π = softmax(·), µ = σ(·), and then

[
ρ, ρπ, ρµ

]
.

Training with Monte Carlo supervision. We train against sparsely sampled field targets built
on-the-fly to avoid full-image integrals. For each image we draw S=4096 points {rs} as a mix-
ture of uniform and importance sampling (fraction pimp=0.6); we evaluate the analytic ρ, ρπ, ρµ at
those points and regress with an MSE weighted by MC weights ws (optionally unbiased). This is
a practical implementation of the integrals used for feature inversion in §3: uniform sampling cor-
responds to constant ws, while importance sampling uses ws ∝ 1/q(rs) with q proportional to a
kernel mixture around object centers (see code).

Decoding at test time. We decode with a simple seed-and-refine routine operating on the predicted
fields (no heavy post-processing). In brief: (1) compute per-class mass maps ρπk; (2) infer how
many seeds to extract either per-class or globally from

∑
ρ; (3) take local maxima (optionally

subpixel refinement); (4) read µ (size) and π (class) at seed locations; (5) score seeds by conf =
πk · (1 − exp(−ρpeak)) and apply NMS. A fixed per image topk cap (= Nmax) is used for
fairness.

def fields_forward(x):
feat = backbone_convnext_fpn(x) # [B,C,H/8,W/8] -> FPN
-> [B,C,H,W]
logits = head_1x1(feat) # [B, 1+K+2, H, W]
rho = softplus(logits[:, :1]) # density >= 0
pi = softmax(logits[:, 1:1+K], dim=1) # per-class probs
mu = sigmoid(logits[:, 1+K:1+K+2]) # size in [0,1]ˆ2
return torch.cat([rho, rho*pi, rho*mu], dim=1)

def fields_decode(maps, K, H, W, alpha=1.0, nms_iou=0.5, topk=15):
rho, cls_mass, size_mass = split(maps) # [1], [K], [2]
pi = normalize(cls_mass, by=rho) # pi = cls_mass / rho
mu = clamp(size_mass / rho, 0, 1)
how many per class? use density mass:
Nk = round(alpha * (rho[None,:,:] * pi).sum((-2,-1))) # [K]

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

dets = []
for k in range(K):

seeds = topk_local_maxima((rho*pi[k]).squeeze(0), Nk[k])
optional subpixel refine (soft-argmax in a small window)
wh = bilinear_sample(mu, seeds)
conf = bilinear_sample(pi[k], seeds) * (1 -

exp(-bilinear_sample(rho[0], seeds)))
boxes = seeds_to_xyxy(seeds, wh, H, W)
dets += nms_select(boxes, conf, class_id=k, iou=nms_iou)

return prune_topk(dets, topk)

YOLO-LIKE BASELINE (ANCHOR-FREE, STRIDE 8)

Backbone/head and parameterization. A tiny CNN or ConvNeXt-lite backbone produces a
stride-8 feature map. The head predicts for each cell: objectness, class logits over K digits, and
a cell-relative box (cx, cy, w, h) with

cx = gx+σ(tx)
Ws

, cy =
gy+σ(ty)

Hs
, w = σ(tw)

2, h = σ(th)
2,

where (gx, gy) is the integer cell coordinate and Hs,Ws are stride-8 sizes. This prevents “teleport-
ing” boxes from distant cells.

Assignment and loss. We assign each GT to its nearest cell (or the k nearest; k= 1 by default).
Losses: Lobj = BCEWithLogits on all cells with negative down-weight, Lcls = CE on positives
(optional label smoothing), Lbox = L1 on (cx, cy, w, h) + GIoU in pixels.

Eval. Scores are obj · maxk pk. We apply NMS (class-agnostic or per-class) and cap to
per image topk.

def yolo_forward(x):
f = backbone_stride8(x) # [B,C,Hs,Ws]
logits_cls, logits_obj, t_box = head(f) # [B,K,Hs,Ws],
[B,1,Hs,Ws], [B,4,Hs,Ws]
cx, cy, w, h = decode_cell_relative(t_box) # normalized to [0,1]
return dict(cls_logits=flatten(logits_cls),
obj_logits=flatten(logits_obj),

pred_boxes=flatten(stack([cx,cy,w,h])))

def yolo_decode(out, H, W, conf_thr=0.25, nms_iou=0.4, topk=15):
prob = softmax(out["cls_logits"], dim=-1) # [B,N,K]
obj = sigmoid(out["obj_logits"]) # [B,N]
scores, labels = prob.max(-1) # [B,N], [B,N]
score = obj * scores
boxes_xyxy = cxcywh_to_xyxy_norm(out["pred_boxes"]) *
[W-1,H-1,W-1,H-1]
keep = score >= conf_thr
dets = nms_per_class_or_agnostic(boxes_xyxy, score, labels,
iou=nms_iou)
return prune_topk(dets, topk)

DETR-LIKE BASELINE (MINIMAL)

Backbone/transformer. A compact backbone produces a d-dimensional feature map, augmented
with coordinate channels and sine positional encodings. A 3-layer encoder and 3-layer decoder
operate on T learned queries. We set T = Nmax to reflect a “budget” comparable to the other
models.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Matching, loss, and eval. Hungarian assignment (SciPy) is used to match predictions to GT; if
SciPy is unavailable a greedy fallback is used. Losses: class CE with a reduced weight for the no-
object class, L1 on boxes (in (cx, cy, w, h)), and GIoU in pixels. At inference we compute scores as
score = (1− pnoobj) ·maxk p(c=k), optionally apply NMS, and cap to per image topk.

def detr_forward(x):
f = backbone(x) # [B,C,Hs,Ws]
pos = sine_posenc(f); coord = coord_channels(f)
src = project(cat([f, coord])) + pos # [B,C,Hs,Ws]
S,B,C = (Hs*Ws), x.size(0), src.size(1)
mem = encoder(flatten(src) + flatten(pos)) # [S,B,C]
tgt = zeros(T,B,C); qpos = query_embed(T,B,C)
hs = decoder(tgt + qpos, mem + flatten(pos))# [T,B,C]
return dict(pred_logits=class_head(hs),
pred_boxes=sigmoid(box_mlp(hs)))

def detr_decode(out, H, W, conf_thr=0.4, nms_iou=0.6, topk=15):
prob = softmax(out["pred_logits"], dim=-1) # [..., K+1]
p_no = prob[..., K]; p_cls, labels = prob[...,:K].max(-1)
score = (1.0 - p_no) * p_cls
boxes_xyxy = cxcywh_to_xyxy_norm(out["pred_boxes"]) *
[W-1,H-1,W-1,H-1]
keep = score >= conf_thr
dets = optional_nms(boxes_xyxy, score, labels, iou=nms_iou)
return prune_topk(dets, topk)

HYPERPARAMETERS AND FAIRNESS GUARD

Common. Image size 128×128; classes K=10; Nmax=15. Optimizer AdamW (lr 1×10−4,
weight decay 5×10−4), batch size 128, 200 epochs. We cap detections to per image topk= 15
in all methods and allow optional class-agnostic NMS for fairness.

CORDS (fields). Backbone: Light ConvNeXt-FPN (stride 8). Head width “base” = 64 (chosen so
the total params ≈ YOLO/DETR). Density activation: softplus (or softplus0) to ensure ρ ≥
0. Sampling: S=4096 points/image with importance fraction pimp=0.6; Gaussian kernel bandwidth
σnorm=0.02 (fraction of min{H,W}). Training loss weights: wρ=4, wcls=1, wsize=2. Optional
weak count supervision on a random fraction of the batch (weight wcount=0.5; off by default). At
decode: seed radius= 0.03, decode alpha= 1.0, NMS IoU = 1.0 (disabled unless stated),
and per image topk= 15. We rescale training fields by a constant R for numerical stability
(rho rescale=10.0) and undo it before decoding and metrics.

YOLO-like. Backbone: tiny CNN or ConvNeXt-lite to stride 8 feature map with dmodel=256. Loss
weights: wobj=1, wcls=1, wbox-L1=2, wGIoU=2. No-object down-weight = 0.5. Label smoothing
= 0.0 (unless specified). Assignment: center cell (or k-nearest cells with k=1 by default). Inference:
confidence threshold 0.25; NMS IoU 0.40; optional class-agnostic NMS; per image topk= 15.

DETR-like. Backbone: tiny CNN or ConvNeXt-FPN; Transformer d=256, nheads=8,
#enc/dec layers = 3/3, FFN 1024. Queries T = Nmax unless noted. Loss weights: class 1.0
(no-object coefficient 0.5), L1 on boxes 5.0, GIoU 2.0. Eval: score = (1 − pnoobj) · maxk pk;
threshold 0.40; optional NMS with IoU 0.60; per image topk= 15.

Metrics. We report AP at IoU 0.50, 0.75, 0.90, the mean over [0.50:0.95] in steps of 0.05
(mAP50:95), and a headline mAP50:75. Count MAE is |#preds − #GT | averaged over images,
where #preds is (i)

∫
ρ for CORDS and (ii) the number of post-NMS detections for YOLO/DETR

(both capped to per image topk for fairness).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

OOD protocol. For the OOD split we set the test cardinality to N=Nmax+1. Query-based models
necessarily under-count when T<N . In contrast, the field-based model increases

∫
ρ naturally with

scene density and decodes with the same routine, without changing the network or its capacity.

C.4 SIMULATION-BASED INFERENCE FOR FRBS (IMPLEMENTATION)

Problem setting. We consider 1D photon-count light curves with Poisson noise generated
by a variable number of transient components (FRB bursts). Each component is parameter-
ized by onset time t0, amplitude A, rise time τrise, and skewness skew. The latent cardi-
nality N is unknown and changes per observation. Our goal is amortized posterior inference
p
(
{(t0,u, Au, τu, skewu)}Nu=1 | ℓ

)
.

Representation. As in CORDS, we map sets of components to continuous fields on the time axis
t ∈ [0, 1]: a density ρ(t) that places unit mass around each t0, and a feature field h(t) that carries
the remaining parameters over the same support. We show this in Figure 7 Practically, ρ(t) and h-
channels are built by convolving Dirac impulses with normalized Gaussians of bandwidths σρ and
σfeat, respectively, so that

∫
ρ dt = N when evaluated continuously. We discretize on a uniform grid

of T points (here T=1000) and optionally downsample by average pooling to Teff=T/downsample.

0.00
0.25

0.50
0.75

1.00
Time

ρ
hamp

hskew

hrise
ℓ

−100

−50

0

50

100

Va
lu

e

FRB Timeseries and Fields

Figure 7: An example of a lightcurve ℓ, and corresponding burst components encoded into density
and feature fields in the time domain.

Conditioning and model. Given a light curve ℓ ∈ RT , we standardize it (per-sample or us-
ing a precomputed global normalizer) and append it as a conditioning channel. The network is a
1D conditional residual stack (CondTemporalNet) with grouped norms, safe dilations, optional
lightweight self-attention, and a learned sinusoidal time embedding used by all residual blocks. The
model maps fields + ℓ to fields (same channel count).

Flow matching objective (FMPE). We use flow matching for SBI Dax et al. (2023). For each
training pair we sample t∈ (0, 1) (power-law schedule), form a noisy interpolation ft = µt + σtε
with µt = t x1 and σt = 1− (1− σmin)t (here x1 are target fields and ε∼N (0, I)), and supervise
the time-dependent velocity field ut that transports ft to x1:

ut =
x1 − (1− σmin) ft
1− (1− σmin) t

, LFMPE =
∥∥ vθ(ft, ℓ, t)− ut

∥∥2
2
.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

This yields an amortized posterior over fields p(ρ,h | ℓ). We also maintain an optional EMA of
parameters for stable sampling.

Decoding back to components (Ψ). Given predicted fields on the grid:

1. Cardinality N̂ . Estimate N̂ = round
(
∆t
∑

i ρ(ti)
)
, where ∆t is the grid spacing. Because

ρ comes from a smooth network and finite grids, the sum is rarely an integer; we round to the
nearest integer (±0.5 rule). This gives the number of kernels to fit next.

2. Onset times t0. Extract N̂ seeds by greedy NMS on ρ with a minimum separation of roughly
2σρ (in pixels/time-steps), refine each seed by a quadratic sub-pixel step, and finally run a short
LBFGS that minimizes ∥

∑
u κ(·− t0,u)−ρ∥22 w.r.t. {t0,u}, with κ the normalized Gaussian used

in Φ.
3. Features (A, τrise, skew). Solve the weighted normal equations (Gram projection) GX = B

with Guv =
∑

i wi κ(ti− t0,u)κ(ti− t0,v), Bu: =
∑

i wi κ(ti− t0,u)H(ti)
⊤, where H stacks

the feature channels of h and wi are quadrature/MC weights. On a uniform grid, wi = ∆t
(constant); with importance sampling, wi =

1
S q(ti)

are standard unbiased MC weights. We add
a small Tikhonov term to G and solve for X .

Posterior use at test time. To estimate p(N | ℓ) we sample many fields from the learned
flow, decode each to N̂ , and histogram the outcomes. For predictive curves (Fig. 4) we decode
each sample to parameters, render a Poisson rate curve via the FRB generator, and aggregate
(median and quantiles). For corner plots we restrict to samples where N̂ equals the ground-
truth count, align components by nearest-onset in 1D, and visualize the empirical posterior over
aligned parameters.

PSEUDOCODE (TRAINING, SAMPLING, DECODING)

--- Encode : set -> 1D fields ---
def encode_fields(params, time, sigma_rho, sigma_feat):

rho(t)= N(t;t0,); h_k(t)= _k N(t;t0,f)
rho, H = 0, []
for u in range(N_max):

m = params.active_mask[u] # 0/1
k_r = gauss(time - params.t0[u], sigma_rho)
k_f = gauss(time - params.t0[u], sigma_feat)
rho += m * k_r
feats_u = stack([params.ampF[u], params.riseF[u],

params.skew[u]])
H.append(m * feats_u * k_f)

H = sum(H) # [3, T]
return stack([rho, H[0], H[1], H[2]], axis=0) # [C, T]

--- FMPE training step ---
def fmpe_step(model, fields_tgt, lightcurve, sigma_min, alpha_t):

B, C, T = fields_tgt.shape
t = sample_power(alpha=alpha_t, shape=[B]) # (0,1)
t_ = t[:,None,None]
mu_t = t_ * fields_tgt
sigma_t = 1.0 - (1.0 - sigma_min) * t_
eps = randn_like(fields_tgt)
f_t = mu_t + sigma_t * eps
u_t = (fields_tgt - (1.0 - sigma_min) * f_t) / (1.0 - (1.0 -
sigma_min) * t_)
v_hat = model(f_t, cond=standardize(lightcurve), time=t *
(T_time_embed-1))
return mse(v_hat, u_t)

--- Sampling + decode ---
def sample_and_decode(model, lightcurve, S, ode_steps, cfg):

cond = standardize(lightcurve)[None,None,:] # [1,1,T_eff]
F = integrate_ode(model, f0=randn([S,C,T_eff]),
cond=cond.repeat(S,1,1),

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

steps=ode_steps)
Ns, t0s, Xs = [], [], []
for s in range(S):

rho = clamp_min(F[s,0], 0)
N_hat = round(delta_t * rho.sum()) # mass -> count
seeds = nms_on_1d(rho, K=N_hat, min_sep=2*sigma_rho/delta_t)
t0_ref = lbfgs_refine(seeds, rho, sigma_rho)
X = solve_weighted_gram(time, H=F[s,1:4], t0=t0_ref,

sigma_feat=sigma_feat, w=delta_t)
Ns.append(N_hat); t0s.append(t0_ref); Xs.append(X)

return Ns, t0s, Xs

ARCHITECTURAL DETAILS

Temporal backbone (CondTemporalNet). A 1D conv stack with grouped norms and resid-
ual connections; dilations grow geometrically but are capped by the effective signal length to
keep reflect padding valid. Optional squeeze–excite improves channel calibration. Self-attention
blocks can be inserted at chosen depths. Inputs are

[
fields, ℓ

]
(concatenated along channels),

outputs are residual updates in field space (same channel count).

Channels. We use C=4 channels by default: ρ, hamp, hrise, hskew. The amplitude and rise
channels are logarithmic by default (base-10); an optional ht0 channel can be added.

Normalization. Either per-sample standardization (zero mean, unit variance per sequence) or
a global normalizer estimated over a large pool of simulated field tensors (per-channel mean/-
variance). The light-curve condition is always standardized.

HYPERPARAMETERS (USED IN ALL REPORTED FRB RESULTS)
• Simulator. T=1000 points, background ybkg=5. Nmax=6 (during training, N ∼
Unif{1, . . . , Nmax}). Priors: t0 ∼ Unif(0.2, 0.8), log10 A ∼ Unif(1, 2.477), log10 τrise ∼
Unif(−3, −0.222), skew∼Unif(1, 6).

• Fields. σρ=0.01, σfeat=0.015 (on [0, 1]); optional downsample factor ∈ {1, 2, . . . }.
• Model. Base channels 192–384 (we use 192 for the main runs), 8–12 residual blocks, dilation

base 2, group norm with 8 groups, optional SE (reduction 8), optional attention heads = 8 at
a few blocks.

• FMPE. σmin=0.01, t∼power(αt=0) (uniform), ODE steps = 250 for sampling, init Gaus-
sian scale = 1.0.

• Optimization. AdamW, lr 2×10−4 with cosine decay to 2×10−6, batch size 128, grad-clip
at 1.0, EMA decay 0.999 (activated after 1000 steps).

• Posterior evaluation. S ∈ [200, 1024] samples per observation, mini-batches of size 32–64
for the sampler.

PRACTICAL NOTES AND DIAGNOSTICS

Counting and rounding. On a uniform grid,
∫
ρ dt is approximated by ∆t

∑
i ρ(ti). Because

the encoder/decoder operate on smoothed fields and finite T , the sum is rarely exactly an inte-
ger. We round to the nearest integer (±0.5 rule). This determines how many kernels we fit in
the subsequent location/feature steps; without it we would not know how many components to
decode.

Feature reconstruction and weights. The Gram solve above is a discrete version of the inte-
gral equations in Appendix A. With a uniform grid the weights wi equal ∆t (constant). Under
importance sampling (not used in our FRB runs but supported by the decoder), the same equa-
tions hold with unbiased weights wi = 1/(S q(ti)). This is the practical Monte-Carlo imple-
mentation of the feature inversion integrals.

Peak finding and refinement. We use greedy 1D NMS with a minimum separation propor-
tional to 2σρ (conservative for overlapping kernels), then a one-step quadratic sub-pixel adjust-
ment on ρ, and finally a short LBFGS that directly minimizes the ρ reconstruction error w.r.t.
{t0}.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Evaluation protocol. For each observation we (i) sample posterior fields and decode to get
p(N | ℓ); (ii) produce predictive light-curve quantiles by rendering the generator at decoded
parameters; and (iii) make corner plots only for samples with N̂ matching the ground-truth N
(alignment by nearest t0 on the line). We save panels, p(N) histograms, median fields, and
CSV/NPZ dumps for offline analysis (see code paths under FRB results/).

Ablations. We implemented a DDPM objective for sanity but report only flow-matching
(FMPE) results in this work; switching to DDPM leaves the rest of the pipeline unchanged.

MINIMAL END-TO-END SKETCH

--- Training (FMPE) ---
for step in range(steps_per_epoch * epochs):

y_counts, params, _ = simulator.sample_batch(B)
fields = encode_fields(params, time, , feat) #
fields_n = normalize(fields, mode=field_norm)
y_n = normalize(avg_pool(y_counts, downsample))
loss = fmpe_step(model, fields_n, y_n, sigma_min=0.01, alpha_t=0.0)
loss.backward(); clip_grad(1.0); opt.step(); opt.zero_grad()
if use_ema: ema.update(model)

--- Posterior sampling for one observation ---
with torch.no_grad():

cond_y = normalize(avg_pool(y_obs, downsample))
F_samples = fmpe_sample(ema_or_model, cond_y, steps=250) # integrate ODE
Ns, t0s, Xs = [], [], []
for F in F_samples:

N_hat, t0_ref, X = decode_1d(F, time_eff, , feat) #
Ns.append(N_hat); t0s.append(t0_ref); Xs.append(X)

p(N|), parameters

D ADDITIONAL EXPERIMENTS

D.1 PREDICTING VARIABLE NUMBER OF LOCAL MAXIMA

To showcase a more general and abstract mathematical task, we consider detecting local maxima
of a scalar function f : R2 → R from irregularly sampled observations. The number of peaks is
unknown and varies per sample, which poses challenges for models with fixed-size outputs. A
visualization of this problem can be seen in Figure 8.
We can easily cast this problem into our framework, by treating local extremas of the function as
discrete objects, with positions corresponding to peak locations. Applying the CORDS encoding,
the set of local maxima is transformed into a continuous node density field. The model’s task is to
predict this field from irregular samples of f , after which the decoding recovers both the number
and coordinates of peaks. A prediction is labeled as correct if it recovers the exact number of
peaks, with each predicted peak lying within an ε-neighbourhood of its true position. Since
no straightforward baselines address this specific setup, our goal is not to outperform existing
methods, but to showcase how our framework naturally handles variable cardinality and infers
structured information from sparse observations.
We generate fully–annotated training examples by drawing a single realisation

f(r) = α

√
2

D

D∑
d=1

cos(w⊤
d r+ bd), r ∈ [−3, 3]2,

from a Gaussian process with squared–exponential kernel

k(r, r′) = α2 exp
(
−∥r− r′∥22/2ℓ2

)
approximated by D = 150 Random Fourier Features (RFF). Unless stated otherwise we use
amplitude α = 1.5 and length-scale ℓ = 0.9.
Cosine envelope. To avoid pathological peaks on the domain boundary we multiply the raw
field by a separable taper E(r) = ex(x) ey(y) ∈ [0, 1] with margin m = 0.8, where ex(x) =

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 8: (a) Visualization of a two-dimensional input function as a surface plot. (b) The cor-
responding density field ρ(x, y), obtained by interpreting the function’s local extrema as discrete
objects and applying the CORDS encoding.

1
2 [1− cos (π clip(|x| − (3−m), 0,m)/m)] (and analogously for ey). The envelope smoothly
decays to 0 in a 0.8-wide frame, guaranteeing that all local maxima lie strictly inside the open
square (−3 +m, 3−m)2.
Ground-truth peaks. We sample a 181 × 181 grid, apply the envelope, and locate peaks with
peak local max(threshold rel = 0.05, min distance = 3). For each example we keep at most
M = 50 peaks, padding with zeros if K < M .
Training samples. From the same GP realisation we draw P = 4096 i.i.d. points {ri}Pi=1
uniformly from the domain. Their coordinates, the scalar value f(ri), and the list of peaks
constitute one training instance. During optimisation we randomly subsample K = 2048 of the
P points to form a mini-batch.
Validation splits. For robustness we evaluate on GP length-scales ℓ ∈ {0.9, 1.1}, keeping the
same envelope and amplitude.
Accuracy criterion. Given the set of predicted maxima P̂ and ground-truth maxima P , we
greedily assign each p̂ ∈ P̂ to its closest p ∈ P . A sample is correct iff |P̂| = |P| and all
assigned pairs satisfy

∥p̂− p∥2 ≤ ε, ε =
∆x

T
, ∆x = max

t
xt −min

t
xt, T = 25.

with the default domain (∆x = 6) this yields ε = 0.24.
Additional training details. All models were trained on a single NVIDIA A100 GPU using
a batch size of 96. Each model took approximately 5 days to train across all experiments. We
employed the AdamW optimizer with a learning rate of 5×10−5, coupled with a cosine annealing
schedule that reduced the learning rate to a minimum of 1× 10−6 over the course of training.
We observe slightly higher accuracy on the longer length scale ℓ = 1.1, which we attribute to
the smoother underlying function having fewer local maxima. This setup intentionally evaluates
generalisation: the model is trained on high-frequency fields (ℓ = 0.9) and tested on both the
same and smoother fields (ℓ = 1.1) to assess robustness across varying levels of peak density.

ℓ Accuracy (2048 points)

0.9 92.7%
1.1 94.2%

Table 3: Local Maxima Prediction Accuracy. Accuracy of local maxima detection on different
GP length scales. The model was trained on ℓ = 0.9 using 2048 sampled points per example.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 4: QM9 regression results across different models.

Model α ∆ε εH εL µ Cv

NMP 0.092 69 43 38 0.030 0.040
Schnet 0.235 63 41 34 0.033 0.033
Cormorant 0.085 61 34 38 0.038 0.026
L1Net 0.088 68 46 45 0.038 0.030
LieConv 0.084 49 30 25 0.032 0.038
DimeNet++* 0.044 33 25 20 0.030 0.030
TFN 0.223 58 40 38 0.064 0.104
SE(3)-Tr. 0.142 53 35 33 0.051 0.054
EGNN 0.071 48 29 25 0.029 0.031
PaiNN 0.045 45 27 20 0.012 0.024
SEGNN 0.060 42 24 21 0.023 0.031

CORDS 0.085 50 32 30 0.086 0.039

D.2 QM9 PROPERTY REGRESSION

With CORDS, we predict molecular properties directly from the continuous field representation,
without decoding back to discrete molecular graphs. Since per-node features are not needed,
predictions are obtained by pooling the final representation produced by the Erwin model. We
compare CORDS against representative GNN baselines (e.g., DimeNet++, SEGNN) on standard
QM9 regression tasks. The aim here is not to surpass highly specialized architectures, but to show
that continuous field-based representations already achieve competitive performance in this well-
established domain. Results are reported in Table 4.

Resampling as a strong regularizer. Molecules are encoded to fields, and we have two
options: either resample fields using importance sampling at each training step, or for each
molecule, evaluate sampled fields once and save them. To evaluate the role of sampling as a
form of regularization, we compared two variants of CORDS on QM9 regression: one in which
spatial evaluation points are resampled at each epoch (our default), and another in which the
field encoding is computed once per graph and fixed throughout training. As shown in Table 5,
disabling resampling leads to a dramatic increase in MAE across all targets, more than dou-
bling the error in most cases. This confirms that stochastic sampling during training acts as a
strong regularizer, promoting generalization by exposing the model to diverse field realizations.
Conceptually, this is consistent with the interpretation of the model as learning an underlying
continuous function that is only ever observed through a finite sampling process. Without re-
sampling, the model risks overfitting to a specific discretization. With resampling, however, we
gain robustness to spatial variation—enabling the use of large models (100M+ parameters) even
on small datasets like QM9. In Table 4 we show the results on all targets compared to other
baselines, with resampling at each training step.

QM9 Regression results (CORDS only)
Model Resample α ∆ε εH εL µ Cv

CORDS ✓ 0.085 50 32 30 0.086 0.039
CORDS ✗ 0.350 99 72 70 0.240 0.142

∆ (%) – +311.8% +98.0% +125.0% +133.3% +179.1% +264.1%

Table 5: Comparison of CORDS performance on QM9 regression with and without resampling of
evaluation points. The third row shows the relative increase in error when disabling resampling.

E EXTENSIVE RELATED WORK

Neural fields and continuous representations. Neural fields, or implicit neural representa-
tions, model data as continuous functions of coordinates. Early works like DeepSDF (Park et al.,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

2019), NeRF (Mildenhall et al., 2020), and SIREN (Sitzmann et al., 2020) established neu-
ral fields as flexible signal representations across 3D shapes and visual data. Building on this,
Functa and COIN++ (Dupont et al., 2022; 2023) explored generative modeling and cross-modal
compression via neural fields. More recently, Generative Neural Fields (You et al., 2023) and
Probabilistic Diffusion Fields (Zhuang et al., 2023) extended these ideas to scalable generative
modeling of continuous signals. Equivariant Neural Fields (ENFs) (Wessels et al., 2025) fur-
ther enhance neural fields with geometry-aware latent variables, enabling steerable, equivariant
representations that support fine-grained geometric reasoning and efficient weight-sharing.

Smoothed Fields in Computational Physics. The formalism for continuous graph represen-
tations that we develop here bears similarities to classical methods in computational physics,
such as smoothed-particle hydrodynamics (SPH) and particle-in-cell (PIC) methods (Price, 2005;
Rosswog, 2009). These approaches compute scalar, vector, or tensor fields by convolving parti-
cles with smoothing kernels, typically for force computation and simulation tasks.

LLM USAGE

Large language models (LLMs) were used to revise sentences and correct grammar, to generate
visualization code for some figures, and to assist with the implementation of the MULTIMNIST
dataset and corresponding baseline methods. All conceptual contributions, experiment design,
analysis, and the writing of original content were carried out by the authors.

35

	Introduction
	Related Work
	CORDS: Continuous fields for variable-size sets
	Practical considerations.

	Experiments
	Molecular tasks
	Object detection (MultiMNIST)
	Simulation-based inference for FRBs

	Discussion
	Conclusion
	CORDS Theoretical Framework
	Spaces, assumptions, and notation
	Encoding and decoding
	Decoding guarantees
	Recovering the number of elements
	Positive–definiteness of the Gram matrix
	Exact recovery of features
	Recovering positions from the density

	Set–field duality (permutation invariance and inverse consistency)

	CORDS framework for Graphs
	Continuous Graph Convolution and the Discrete Message–Passing Limit
	Continuous convolution
	Dirac kernels and the discrete limit

	Extending CORDS to Non-Geometric Graphs
	Spectral Embeddings via Graph Laplacian
	Limitations and Practical Considerations

	Additional Experimental Details
	Approximating the Inverse Decoding in Practice
	Molecular generation in field space with EDM
	Object detection (MultiMNIST)
	Simulation-based inference for FRBs (implementation)

	Additional experiments
	Predicting Variable Number of Local Maxima
	QM9 Property Regression

	Extensive Related Work

