

000 001 002 003 004 005 CORDS: CONTINUOUS REPRESENTATIONS 006 OF DISCRETE STRUCTURES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Many learning problems require predicting sets of objects when **the number of**
026 **objects is not known beforehand**. Examples include object detection, molecular
027 modeling, and scientific inference tasks such as astrophysical source detection.
028 Existing methods often rely on padded representations or must explicitly infer **the**
029 **set size**, which often poses challenges. We present a novel strategy for addressing
030 this challenge by casting prediction of variable-sized sets as a continuous inference
031 problem. Our approach, CORDS (*Continuous Representations of Discrete*
032 *Structures*), provides an **invertible mapping** that transforms a set of spatial objects
033 into continuous fields: **a density field that encodes object locations and count, and**
034 **a feature field that carries their attributes over the same support**. Because the mapping
035 is invertible, models operate entirely in field space while remaining exactly
036 decodable to discrete sets. We evaluate CORDS across molecular generation and
037 regression, object detection, simulation-based inference, and a mathematical task
038 involving recovery of local maxima, demonstrating robust handling of **unknown**
039 **set sizes** with competitive accuracy.

040 1 INTRODUCTION

041 In problems where we wish to reason about discrete structure, we often need to reason about a set
042 of objects without knowing the cardinality of this set in advance. Examples include object detection
043 (Tian et al., 2019; Wang et al., 2024a), scientific inference tasks, such as reconstructing catalogs
044 of astrophysical sources (Vafaei Sadr et al., 2019; Cornu et al., 2024), or conditional molecular generation,
045 where the conditioned property does not uniquely determine the number of atoms (Faltungs et al., 2025; Pham et al., 2022). Inferring cardinality directly from data is often difficult, making
046 sampling in conditional generation or inference tasks inefficient.

047 Reasoning about unknown cardinality is a challenge that has been around for a long time. Classic
048 approaches include model selection with variational inference (Beal, 2003), reversible jump MCMC
049 (Richardson & Green, 1997), and Bayesian nonparametrics (Hjort et al., 2010). In modern
050 approaches based on deep learning, a common strategy is to *pre-allocate capacity* beyond what is
051 typically needed, and then suppress or ignore unneeded capacity (Xu et al., 2024). In the sciences,
052 similar ideas appear when combining variational inference and empirical Bayes estimation, where
053 learning the prior can serve to prune unneeded degrees of freedom van de Meent et al. (2014). These
examples reflect a pervasive pattern: rather than modeling the distribution over cardinalities $p(N)$
explicitly, many methods sidestep the issue by way of user-specified truncations or paddings.

054 In parallel, *continuous representations* have become increasingly common across domains, offering
055 flexible ways to encode signals and structures and partly addressing the challenges of variable
056 cardinality. Neural fields and coordinate-based models (Mildenhall et al., 2020; Sitzmann et al., 2020;
057 Xie et al., 2022) showed how images and scenes can be embedded in continuous domains, and this
058 perspective has since been extended to molecules and proteins Pinheiro et al. (2024); Kirchmeyer
059 et al. (2025); Faltungs et al. (2025). These approaches remove the need to specify the number of
060 objects in advance, since atoms or components are represented as smooth densities that can, in
061 principle, be sampled or inpainted flexibly Faltungs et al. (2025). Yet cardinality is still only inferred
062 indirectly, and object attributes are often added afterwards through auxiliary classifiers or peak-
063 detection heuristics, rather than being built into the representation itself. As a result, continuous
064 fields provide flexibility but not a unified treatment of both counts and features.

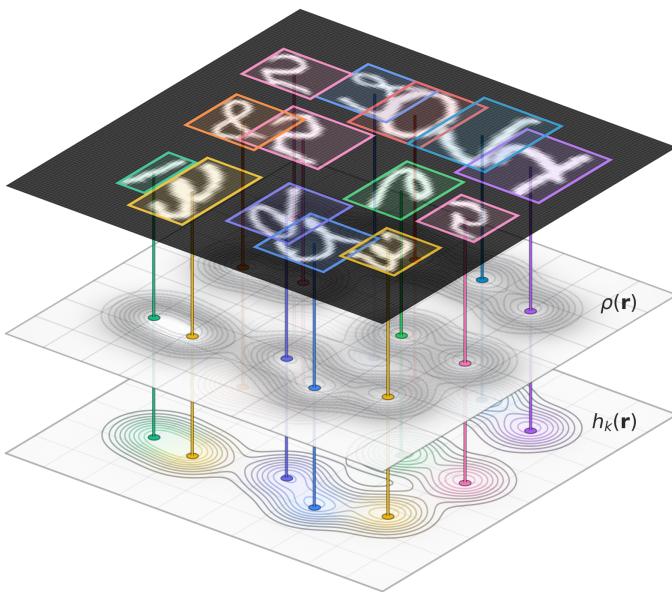


Figure 1: An image with N MNIST digits (top) is encoded with CORDS into a density field $\rho(\mathbf{r})$ (middle) and per-class feature fields $h_k(\mathbf{r})$ (bottom). The number of objects is encoded directly in the density mass, $N = \int \rho(\mathbf{r}) d\mathbf{r}$.

To address this gap, we introduce CORDS (*Continuous Representations of Discrete Structures*). Here, discrete objects are mapped into *continuous fields*, smooth functions defined over an ambient domain (e.g. space, time, or grids), where a density field encodes object counts and positions, and a feature field carries their attributes. The total density mass then acts as a continuous, differentiable quantity that implicitly encodes the number of objects. The construction is bijective, so models can operate directly in field space and still recover discrete sets without auxiliary mechanisms such as fixed slots or padding. This provides a systematic alternative to existing workarounds, offering a single representation that applies across domains.

2 RELATED WORK

Generative modeling on graphs. Graph generative modeling is typically framed in either discrete or continuous terms. Discrete methods treat molecules as graphs of nodes and edges encoded through adjacency matrices, as in DiGress (Vignac et al., 2023), which applies discrete denoising diffusion, variational flow matching (Eijkelboom et al., 2024), which casts flow matching as variational inference over categorical states, and MoFlow (Zang & Wang, 2020), which uses invertible flows to generate atoms and bonds with exact likelihoods. Continuous methods instead generate atomic coordinates and features directly in 3D space. Examples include G-SchNet (Gebauer et al., 2020), which models molecular conformations with equivariant GNNs, ENF (Satorras et al., 2022), which extends normalizing flows with equivariant dynamics, and diffusion-based approaches such as EDM (Hoogeboom et al., 2022), EDM-Bridge (Wu et al., 2022), and GeoLDM (Xu et al., 2023). More recent architectures such as Ponita (Bekkers et al., 2024) and Rapidash (Vadgama et al., 2025) further improve scalability with multi-scale equivariant representations.

Alongside these approaches, several works have explored representing molecular graphs in continuous fields rather than explicit graphs. VoxMol (Pinheiro et al., 2024) represents molecules as voxelized density grids processed by convolutional networks, while Ragoza et al. (Ragoza et al., 2020) introduced one of the earliest 3D molecular generative models based on atomic density fields, reconstructing molecules through peak detection and bond heuristics. FuncMol (Kirchmeyer et al., 2025) proposed a neural field parameterization of molecular occupancy, and ProxelGen (Faltungs et al., 2025) extended this idea to conditional generation and inpainting. While these methods re-

108 move the need to fix graph size in advance, they ultimately recover atoms and features through
 109 thresholding or auxiliary classifiers, leaving cardinality and features only indirectly modeled.
 110

111 **Object detection.** Two-stage detectors such as Faster R-CNN (Ren et al., 2016) generate region
 112 proposals followed by refinement, while one-stage models like YOLO (Wang et al., 2024a) and
 113 RetinaNet (Lin et al., 2018) predict boxes and classes densely, balancing speed and accuracy. Effi-
 114 cientDet (Tan et al., 2020) further improves this trade-off via compound scaling. Transformer-based
 115 approaches, exemplified by Deformable DETR (Zhu et al., 2021) and the real-time RT-DETR fam-
 116 ily (Wang et al., 2024b), accelerate convergence and improve small-object handling. Methods that
 117 operate through heatmaps or density maps, e.g., CenterNet (Duan et al., 2019), crowd counting (Xu
 118 et al., 2019), and microscopy detection (Li et al., 2022), are most closely related to our setting, as
 119 they localize objects from continuous spatial representations. However, unlike CORDS, these ap-
 120 proaches focus purely on localization and do not model or recover object-level features from the
 121 underlying fields.

122 **Simulation-based inference.** Simulation-based inference (SBI) is used in domains such as cos-
 123 mology, astrophysics, and particle physics where the likelihood is intractable but simulators are
 124 available. Early approaches such as Approximate Bayesian Computation (ABC) (Beaumont et al.,
 125 2002) relied on handcrafted summary statistics, while modern neural methods—neural posterior es-
 126 timation (NPE) and neural ratio estimation (NRE) (Papamakarios et al., 2019; Lueckmann et al.,
 127 2021)—provide flexible and scalable inference. Recent advances include flow matching posterior
 128 estimation (FMPE) (Dax et al., 2023), which leverages flow matching to improve scalability and
 129 accuracy, achieving state-of-the-art results in gravitational-wave inference. Yet, as in detection,
 130 variable event cardinalities are still typically handled by padding, rather than modeled directly.

131 We provide a more exhaustive survey of related work in Appendix E.

134 3 CORDS: CONTINUOUS FIELDS FOR VARIABLE-SIZE SETS

136 Our goal is to establish a *bijective* correspondence between discrete sets and continuous fields. This
 137 allows models to operate directly in the field domain, where learning and generation are often more
 138 convenient, while still ensuring that discrete predictions can be recovered exactly whenever needed.
 139 The construction applies uniformly across modalities: the only difference lies in the choice of the
 140 ambient domain $\Omega \subseteq \mathbb{R}^d$ (e.g. a pixel grid for images, three-dimensional space for molecules, or the
 141 time axis for light curves).

142 We consider a set $S = \{(\mathbf{r}_i, \mathbf{x}_i)\}_{i=1}^N$ of objects with positions $\mathbf{r}_i \in \Omega$ and feature vectors $\mathbf{x}_i \in \mathbb{R}^{d_x}$.
 143 Let $K : \Omega \times \Omega \rightarrow \mathbb{R}_{\geq 0}$ be a continuous, positive kernel with finite, location-independent mass
 144 $\alpha = \int_{\Omega} K(\mathbf{r}; \mathbf{s}) d\mathbf{r}$.

146 **Encoding.** In the CORDS approach, a discrete set is transformed into continuous fields by *su-
 147 perimposing kernels* centered at the object positions. The resulting density field represents where
 148 objects are located, while the feature field aligns with it by distributing the object attributes over the
 149 same spatial support:

$$151 \quad \rho(\mathbf{r}) = \frac{1}{\alpha} \sum_{i=1}^N K(\mathbf{r}; \mathbf{r}_i), \quad \mathbf{h}(\mathbf{r}) = \frac{1}{\alpha} \sum_{i=1}^N \mathbf{x}_i K(\mathbf{r}; \mathbf{r}_i). \quad (1)$$

154 Our next objective is to establish conditions for exact invertibility so that (ρ, \mathbf{h}) determine the set
 155 uniquely.

158 **Decoding.** The inversion is made possible by three structural properties of the encoding. The
 159 total mass of the density determines the number of objects, since each kernel contributes the same
 160 constant integral α . The shape of the density identifies object locations, as it must be explained by a
 161 superposition of kernel translates. Finally, the feature field is aligned with the density, so projecting
 it onto the recovered kernels yields the original features. We now formalize each of these steps.

162 1. *Cardinality*. Each object is represented via a kernel whose integral is α , so that
 163

164
$$N = \int_{\Omega} \rho(\mathbf{r}) d\mathbf{r}. \quad (2)$$

 165

166 This makes variable cardinality straightforward: the number of objects is inferred directly from
 167 the density field.

168 2. *Positions*. Once the number of objects is known, their locations are encoded in the shape of the
 169 density field. Because ρ is by definition a superposition of kernel translates, positions can be
 170 recovered by solving the kernel-matching problem
 171

172
$$\min_{\mathbf{r}_1, \dots, \mathbf{r}_N} \int_{\Omega} \left(\rho(\mathbf{r}) - \frac{1}{\alpha} \sum_{i=1}^N K(\mathbf{r}; \mathbf{r}_i) \right)^2 d\mathbf{r}. \quad (3)$$

 173

175 If the field truly originates from the forward transformation, the original centers achieve the
 176 global minimum. In practice, approximate solutions found with gradient-based optimization
 177 already suffice, and can be further refined if higher accuracy is required.

178 3. *Features*. Once the positions are fixed, the final step is to recover the object features. Because
 179 the feature field was constructed from the same kernels as the density field, its support aligns
 180 with the recovered positions. For each position \mathbf{r}_i we define $\kappa_i(\mathbf{r}) = K(\mathbf{r}; \mathbf{r}_i)$; these kernels
 181 span the subspace of the feature field, so reconstructing the features amounts to projecting \mathbf{h}
 182 onto this basis. To make this concrete, we form the Gram matrix $G \in \mathbb{R}^{N \times N}$ with entries

183
$$G_{ij} = \int_{\Omega} \kappa_i(\mathbf{r}) \kappa_j(\mathbf{r}) d\mathbf{r},$$

 184

185 and the projection matrix $B \in \mathbb{R}^{N \times d_x}$ with rows

186
$$B_{i:} = \int_{\Omega} \mathbf{h}(\mathbf{r}) \kappa_i(\mathbf{r}) d\mathbf{r}.$$

 187

188 The system $B = \frac{1}{\alpha} G \mathbf{X}$ then recovers the feature matrix $\mathbf{X} \in \mathbb{R}^{N \times d_x}$, whose rows are the feature
 189 vectors \mathbf{x}_i . Under mild assumptions on the kernel, G is symmetric positive-definite, ensuring
 190 that this system has a unique solution
 191

192
$$\mathbf{X} = \alpha G^{-1} B. \quad (4)$$

193 This solution exactly matches the features that generated the field during encoding.
 194

196 With this construction, we obtain a bijection between finite sets and their corresponding fields. The
 197 conditions that guarantee exact recovery, together with the formal results and proofs, are detailed in
 198 Appendix A. In contrast, Appendix C.1 focuses on how we approximate decoding in practice.
 199

200 3.1 PRACTICAL CONSIDERATIONS.

202 **Sampling strategies.** Fields are defined on a continuous domain Ω , but training requires a finite
 203 representation. We therefore sample a set of locations $\{\mathbf{r}_i\}_{i=1}^M$, evaluate the fields $(\rho(\mathbf{r}_i), \mathbf{h}(\mathbf{r}_i))$ at
 204 those points, and feed the resulting tuples directly into neural networks. This differs from neural
 205 fields in the usual sense, where signals are encoded implicitly inside a network; here, we work
 206 explicitly with sampled field values.

207 Two sampling approaches are possible: uniform sampling or importance sampling (Figure 2). For
 208 molecules in 3D, uniform grids are inefficient: the signal occupies only a small region of space,
 209 resolution grows cubically with grid size, and fixed boxes impose artificial boundaries. Instead,
 210 we adopt *importance sampling*, drawing locations \mathbf{r}_i with probability proportional to the density
 211 field and then evaluating the fields at those points. This concentrates samples where information is
 212 present, avoids the need for bounding boxes, and allows the model to learn coordinates and fields
 213 jointly for arbitrarily sized molecules.

214 For regular domains such as images or time series, however, uniform sampling remains natural:
 215 pixels form a 2D grid in images, and evenly spaced points define the 1D domain of a signal. In all
 216 cases, the model ultimately receives the sampled tuples $\{(\mathbf{r}_i, \rho_i, \mathbf{h}_i)\}_{i=1}^M$.

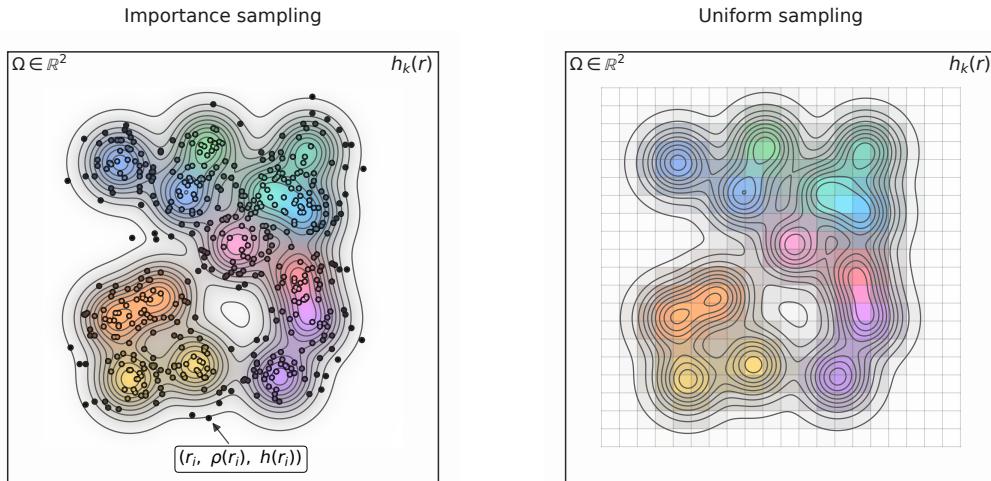


Figure 2: Sampling strategies for evaluating fields. **Left:** Importance sampling draws coordinates in proportion to the density ρ , concentrating samples where signal is present. **Right:** Uniform sampling evaluates fields on a fixed grid, covering the domain evenly. In both panels, the curves are isocontours of $\rho(\mathbf{r})$, and the colors show the values of the feature fields $h_k(\mathbf{r})$.

Neural architectures for field processing. We align the choice of neural architecture with the sampling scheme. For molecules, we discretize fields using importance sampling, which produces large unordered point sets. In this setting, we use the Erwin architecture Zhdanov et al. (2025), a hierarchical, permutation-invariant transformer that scales to thousands of points while preserving global context. For images and time series, inputs lie on regular grids; we use standard 2D and 1D CNNs that exploit locality and run efficiently on uniform samples. This division lets CORDS tackle irregular 3D geometry with a point-based transformer, and lean on compact CNNs where grid structure is natural.

4 EXPERIMENTS

We apply CORDS in four settings where variable cardinality naturally arises: molecular generation (QM9 and GeomDrugs), object detection in images (MultiMNIST with out-of-distribution counts), simulation-based inference in astronomy (burst decomposition of light curves), and a synthetic benchmark for local maxima. These tasks span pixel grids for images, three-dimensional space for molecules, time series for light curves, and abstract continuous domains for mathematical functions, all within the same field-based representation. Results for QM9 property regression and for the local-maxima benchmark are deferred to Appendices D.2 and D.1, respectively; additional illustrations and domain-specific details appear in Appendix C. In all experiments, we encode objects with a Gaussian kernel

$$K(\mathbf{r}; \mathbf{r}_i) = \exp\left(-\frac{\|\mathbf{r} - \mathbf{r}_i\|^2}{2\sigma^2}\right).$$

4.1 MOLECULAR TASKS

Datasets. Two benchmarks are considered. QM9 (Ramakrishnan et al., 2014) contains small organic molecules (up to $N=29$ heavy atoms) with DFT-computed molecular properties; it is used for both regression and generation tasks. GeomDrugs comprises larger, drug-like molecules covering a broader chemical space and larger atom counts; we use it for unconditional generation to assess scalability and robustness of the proposed framework at higher cardinalities and a setting where modeling additional features, such as charges, is crucial.

Converting molecules to fields, sampling, and backbone. Atoms, described by their coordinates and type/charge features, are mapped to density and feature fields $\rho(\mathbf{r})$ and $\mathbf{h}(\mathbf{r})$ using Eq. equa-

Model	QM9				GeomDrugs	
	Atom (%)	Mol (%)	Valid (%)	Unique (%)	Atom (%)	Valid (%)
ENF	85.0	4.9	40.2	98.0	—	—
G-Schnet	95.7	68.1	85.5	93.9	—	—
GDM	97.0	63.2	—	—	75.0	90.8
GDM-AUG	97.6	71.6	90.4	99.0	77.7	91.8
EDM	98.7	82.0	91.9	98.7	81.3	92.6
EDM-Bridge	98.8	84.6	92.0	98.6	82.4	92.8
GLDM	97.2	70.5	83.6	98.9	76.2	97.2
GLDM-AUG	97.9	78.7	90.5	98.9	79.6	98.0
GeoLDM	98.9	89.4	93.8	98.8	84.4	99.3
PONITA	98.9	87.8	—	—	—	—
Rapidash	99.4	92.9	98.1	97.2	—	—
CORDS	97.9	82.3	91.0	97.1	78.4	94.6

Table 1: QM9 and GeomDrugs unconditional generation results, evaluated by the standard RDKit evaluation. Higher is better. [Baseline results are adapted from \(Xu et al., 2023; Vadgama et al., 2025\).](#)

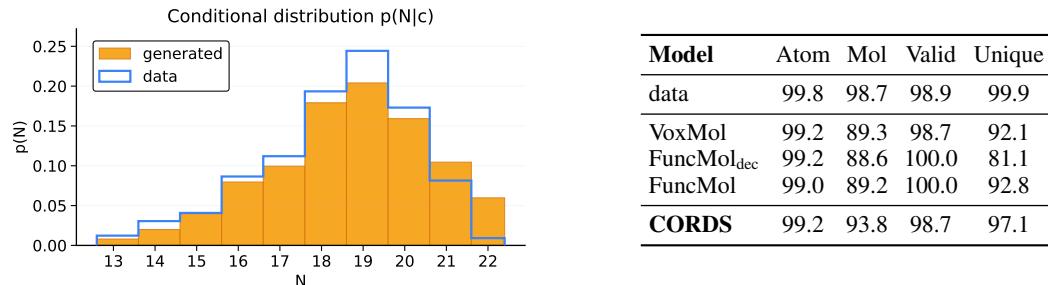


Figure 3: **Left:** Conditional generation on QM9. Histogram of the predicted atom count distribution $p(N|c)$ when conditioning on property ranges unseen during training. **Right:** Unconditional generation results on QM9, evaluated using OpenBabel postprocessing, following VoxMol. [Baseline results are adapted from \(Kirchmeyer et al., 2025\).](#)

tion 1. At each training iteration, we discretize these fields by sampling M spatial locations, yielding an unordered set of sampled points

$$\{(\mathbf{r}_i, \rho_n(\mathbf{r}_i), \mathbf{h}_n(\mathbf{r}_i))\}_{i=1}^M,$$

which forms the input to the model (Erwin for all tasks). All learning and sampling steps are performed purely in the field domain, with discrete graphs recovered via decoding only for evaluation metrics that explicitly require molecular graphs. Further details on sampling policies, normalization strategies, hyperparameters, and training schedules are provided in Appendix C.2.

Unconditional generation. In the generative setting, both fields and the sampling locations must be modeled explicitly. To achieve this, CORDS learns a joint distribution over coordinates and field values, denoising the entire set $\{(\mathbf{r}_i, \rho_i, \mathbf{h}_i)\}_{i=1}^M$. After generation, fields are decoded to molecular graphs using the decoding procedure from the CORDS section: the number of nodes N is estimated from the density mass, node positions are recovered by kernel center fitting, and features are reconstructed via linear projection.

We compare against two distinct groups of baselines, presented separately due to differences in evaluation procedures. Table in Figure 3 compares CORDS to approaches that operate directly on continuous or voxelized representations, such as VoxMol (Pinheiro et al., 2024) and FuncMol (Kirchmeyer et al., 2025), following their standard sanitization and post-processing evaluation steps. Table 1 provides results according to the standard evaluation criteria common in recent discrete and continuous generative modeling literature (e.g., EDM; Hoogeboom et al. (2022), Rapidash;

Model	AP			AP50			AP75		
	In-dist	OOD	Drop (%)	In-dist	OOD	Drop (%)	In-dist	OOD	Drop (%)
DETR	81.2	65.4	19.5	84.0	71.7	14.6	74.2	55.1	25.8
YOLO	71.9	54.3	24.5	78.8	64.2	18.5	59.9	43.1	28.0
CORDS	76.8	64.2	16.4	81.5	71.8	11.9	68.0	53.7	21.0

Table 2: MULTIMNIST object detection results in-distribution vs. OOD. Drop (%) is relative performance decrease.

Vadgama et al. (2025)), where validity, uniqueness, atom-level stability, and molecule-level stability metrics are reported.

Finally, we evaluate generalization to larger molecules on GeomDrugs. Here, modeling *non-categorical* atom features, specifically charges, is essential: omitting them harms standard metrics such as validity and atom stability. A strength of CORDS is that continuous features are represented directly in field space and decoded back to graphs, which enables evaluation without post-processing. In contrast, prior continuous approaches (e.g., VoxMol, FuncMol) typically operate with one-hot atom types and resort to heuristics for charges, which limits comparability on this benchmark; we therefore follow the usual GeomDrugs evaluation protocol. The generative setup mirrors QM9: training and sampling are done entirely in field space, with decoding only for evaluation.

On QM9, CORDS matches or improves upon continuous/voxel baselines (VoxMol, FuncMol) and reaches the overall performance range of $E(3)$ -equivariant GNNs (EDM, GeoLDM, Ponita), despite using a non-equivariant, domain-agnostic backbone. This is the sense in which we describe the results as competitive.

Conditional generation (QM9). Most conditional generators are trained by conditioning on target property values and are then evaluated by predicting the properties of generated samples with independent predictors, reporting MAE against the targets Hoogeboom et al. (2022). When conditioning on a property c , one must also model the conditional size distribution $p(N|c)$. Prior work typically discretizes c into bins and treats (N, c) as a joint categorical variable over the number of nodes and the bin of the conditioning variable. This creates a support gap: if a bin is unseen during training, sampling N at that c becomes impossible.

Our approach conditions directly on continuous properties (here, polarizability α) without discretizing either c or N . Cardinality emerges from field mass, so $p(N|c)$ is learned as part of the conditional field distribution. To test generalization, we remove a range of c during training and condition on that range at inference. Despite the holdout, we recover coherent conditional distribution over the number of atoms, as reflected in the induced atom-count histograms in Fig. 3a.

4.2 OBJECT DETECTION (MULTIMNIST)

Setup. We demonstrate CORDS on images where the discrete objects of interest are bounding boxes. Each bounding box instance is specified by its centre $(x, y) \in \mathbb{R}^2$ and carries two types of features: a class label (0–9) and a box shape (w, h) . We encode such sets into aligned fields on the image plane: a density field $\rho(\mathbf{r})$, per-class channels that carry one-hot information, and two size channels that store (w, h) where mass is present (Fig. 1). Discrete predictions are recovered with the decoding equations from Section 3. Data is generated on the fly using an online MULTIMNIST generator, avoiding any additional augmentations and effectively yielding an infinite-data regime. Each image contains up to N_{\max} digits (here $N_{\max}=15$); digits are uniformly sampled per image, randomly rotated and rescaled, and placed on a black canvas. Ground-truth bounding boxes and classes are the targets for all experiments.

OOD evaluation. Beyond standard in-distribution evaluation (images with at most N_{\max} objects), we also construct an out-of-distribution split where the number of digits exceeds the training range. This tests whether a detector can handle variable cardinality without relying on pre-set capacity or a dedicated counting head. Query-based models implicitly cap predictions via their slot budget; once the scene contains more objects than slots, additional instances are necessarily missed. In CORDS,

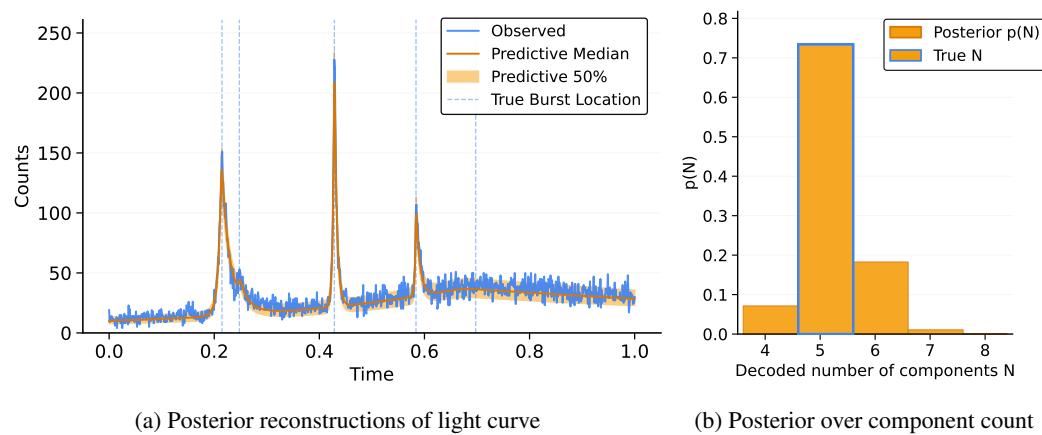


Figure 4: Simulation-based inference on light curves. **(a)** Observed light curve ℓ (blue) with reconstructions from posterior samples $\theta \sim p(\theta | \ell)$. Each reconstruction is obtained by decoding sampled fields into component parameters θ and simulating the resulting light curve. **(b)** Posterior over the number of components $p(N | \ell)$.

the cardinality is encoded by density mass, so increasing scene density is naturally reflected in the representation, and the decoding remains valid for larger scenes without changing the network.

Training objective. We train by minimizing a pixel-wise mean squared error (MSE) on both the density and feature fields, combined with a penalty on mismatched counts. The overall loss is

$$\mathcal{L} = \mathcal{L}_{\text{MSE}} + \lambda (\hat{N} - N)^2,$$

where the predicted count \hat{N} is given by the total mass of the density field,

$$\hat{N} = \int \rho(x, y) dx dy.$$

This way, the number of objects is treated as a continuous, differentiable quantity and optimized jointly with the other objectives.

Baselines and metrics. We compare to a DETR detector with a fixed query budget and to a compact anchor-free YOLO variant. All methods are competitive in-distribution. Under OOD counts, the fixed-query baseline underestimates due to capacity limits, while CORDS continues to track the true cardinality more accurately. We report the standard detection metrics in Table 2. For fair comparison, we allocated all networks with a total of 8 million parameters. The exact implementation details of the baselines are discussed in Appendix C.3.

4.3 SIMULATION-BASED INFERENCE FOR FRBS

Simulation-based inference (SBI) deals with settings where the likelihood is unavailable but simulation from the generative process is possible: we draw parameters from a prior, generate observations ℓ , and train a conditional model to approximate the posterior $p(\theta | \ell)$. We adopt flow matching for posterior estimation Dax et al. (2023), which learns a time-dependent vector field that transports a simple base distribution to the target posterior, giving us amortized inference with a tractable density.

We demonstrate this approach on the problem of modeling Fast Radio Bursts (FRBs). FRBs are short, millisecond-scale flashes of radio emission of extragalactic origin, whose astrophysical mechanisms are still not fully understood Petroff et al. (2022); Zhang (2023). They are typically modeled as a superposition of a variable number of transient components, each characterized by parameters such as onset time, amplitude, rise time, and skewness. Recovering the posterior over these parameters given noisy photon-count light curves is a natural setting for SBI.

In our experiment we work with 1D photon-count light curves with Poisson noise. We first sample the number of burst components N from a uniform prior. Given N , each component has parameters

432 $\theta = (t_0, A, \tau_{\text{rise}}, \text{skew})$ drawn from astrophysical priors. If N were fixed, this problem would be
 433 straightforward: for example, we could represent each component as a token of dimension \mathbb{R}^4 and
 434 train a transformer with flow matching conditioned on ℓ . The challenge is that N varies, so we also
 435 need to recover $p(N | \ell)$, which is not trivial. This is the motivation for our approach.
 436

437 **Training and inference.** We map bursts into continuous fields on the time axis: a density $\rho(t)$ with
 438 peaks at onset times and a feature field $\mathbf{h}(t)$ carrying $(A, \tau_{\text{rise}}, \text{skew})$ on the same support. Each light
 439 curve is discretized on a uniform grid of K points ($K=1000$), where we evaluate (ρ, \mathbf{h}) and append
 440 the observed counts $\ell(t)$. We then train a flow-matching model to approximate $p(\rho(t), \mathbf{h}(t) | \ell)$
 441 directly in field space; at inference we sample fields and decode them into component sets. Ap-
 442 pendix C.4 details the encoding and decoding. Figure 4 shows posterior light-curve reconstructions
 443 and the induced distribution $p(N | \ell)$, with additional details presented in Appendix C.4.
 444

445 5 DISCUSSION

446 **Implications and takeaways.** Our experiments show that field-based learning handles variable
 447 cardinality reliably across domains. In molecular *generation*, CORDS attains competitive results
 448 against well-established GNN baselines on QM9 and GeomDrugs, while outperforming prior contin-
 449 uous approaches such as VoxMol on QM9. A key advantage is that non-categorical atomic features,
 450 such as partial charges, can be modeled directly in the feature fields and decoded back. In *object*
 451 *detection*, CORDS exhibits a smaller performance drop under out-of-distribution object counts,
 452 plausibly because cardinality is encoded as density mass and can be regularized with a simple count
 453 penalty, making the representation more stable as scenes become denser. For *simulation-based*
 454 *inference* on light curves, the approach sidesteps explicit modeling of $p(N|\ell)$: the posterior over
 455 cardinalities arises naturally from the learned field distribution, simplifying training and inference.
 456

457 **Limitations.** CORDS incurs practical costs. High-fidelity reconstruction in molecules benefits
 458 from dense sampling ($\sim 10^3$ points per molecule), which makes direct scaling to larger graphs com-
 459 putationally expensive. Accuracy also depends on precise kernel-center localization; refinements
 460 (e.g., L-BFGS) help but add latency, creating a speed–accuracy trade-off. In detection, overlapping
 461 kernels can hinder separation of nearby objects, requiring fine-tuning kernel widths. [We further](#)
 462 [discuss and explain these limitations in Appendix C.2.](#)
 463

464 **Future work.** Several directions follow naturally. On the *detection* side, evaluating CORDS on
 465 larger-scale benchmarks (e.g., COCO) would test robustness under heavy occlusion, class diversity,
 466 and crowding, and could explore learned, spatially adaptive kernels to separate nearby instances. For
 467 *molecular* modeling, extending conditional generation to richer tasks, such as pocket-conditioned
 468 ligand design, regional inpainting, or multi-property control would further probe the benefits of
 469 working in field space with continuous attributes (charges, spins, partial occupancies).
 470

471 6 CONCLUSION

472 We introduced CORDS, a framework for modeling variable-size sets through continuous fields,
 473 where positions and features are mapped onto density and feature fields and cardinality is recovered
 474 directly from total density mass. The appeal lies in its simplicity: a single field-based representation
 475 captures counts, locations, and attributes, enabling learning entirely in field space while still allowing
 476 exact recovery of discrete predictions across molecules, images, and simulated astronomy data.

477 Compared to earlier continuous-representation methods in computer vision and molecular model-
 478 ing, CORDS achieves competitive performance while offering the flexibility to represent arbitrary
 479 features beyond predefined types. Overall, the results point to a single field-based representation as
 480 an elegant and broadly applicable alternative: the same encoding (density and feature fields), decod-
 481 ing (mass for counts, kernel centers for positions, projections for attributes), and training objectives
 482 carry across tasks, providing a unified solution to modeling variable cardinality.
 483

486 REFERENCES
487

488 Matthew James Beal. *Variational algorithms for approximate Bayesian inference*. University of
489 London, University College London (United Kingdom), 2003.

490 Mark A Beaumont, Wenyang Zhang, and David J Balding. Approximate bayesian computation in
491 population genetics. *Genetics*, 162(4):2025–2035, 2002.

492 Erik J Bekkers, Sharvaree Vadgama, Rob D Hesselink, Putri A van der Linden, and David W
493 Romero. Fast, expressive $se(n)$ equivariant networks through weight-sharing in position-
494 orientation space, 2024. URL <https://arxiv.org/abs/2310.02970>.

495 D. Cornu, P. Salomé, B. Semelin, A. Marchal, J. Freundlich, S. Aicardi, X. Lu, G. Sainton,
496 F. Mertens, F. Combes, and C. Tasse. Yolo-cianna: Galaxy detection with deep learning in radio
497 data: I. a new yolo-inspired source detection method applied to the skao sdc1. *Astronomy and
498 Astrophysics*, 690:A211, October 2024. ISSN 1432-0746. doi: 10.1051/0004-6361/202449548.
499 URL <http://dx.doi.org/10.1051/0004-6361/202449548>.

500 501 Maximilian Dax, Jonas Wildberger, Simon Buchholz, Stephen R. Green, Jakob H. Macke, and
502 Bernhard Schölkopf. Flow matching for scalable simulation-based inference, 2023. URL
503 <https://arxiv.org/abs/2305.17161>.

504 505 Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. Centernet: Key-
506 point triplets for object detection, 2019. URL <https://arxiv.org/abs/1904.08189>.

507 508 Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Rezende, and Dan Rosenbaum. From data
509 to functa: Your data point is a function and you can treat it like one. In *Proceedings of the 39th
510 International Conference on Machine Learning (ICML)*, 2022.

511 512 Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Golinski, Yee Whye Teh, and Arnaud
513 Doucet. COIN++: Neural compression across modalities. *Transactions on Machine Learning
514 Research (TMLR)*, 2023. Early Access.

515 516 Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
517 van de Meent. Variational flow matching for graph generation, 2024. URL <https://arxiv.org/abs/2406.04843>.

518 519 Felix Faltings, Hannes Stark, Regina Barzilay, and Tommi Jaakkola. Proxelgen: Generating proteins
520 as 3d densities, 2025. URL <https://arxiv.org/abs/2506.19820>.

521 522 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural net-
523 works. In *International Conference on Machine Learning (ICML)*, 2021.

524 525 Niklas W. A. Gebauer, Michael Gastegger, and Kristof T. Schütt. Symmetry-adapted generation
526 of 3d point sets for the targeted discovery of molecules, 2020. URL <https://arxiv.org/abs/1906.00957>.

527 528 Nils Lid Hjort, Chris Holmes, Peter Müller, and Stephen G Walker. *Bayesian nonparametrics*,
529 volume 28. Cambridge University Press, 2010.

530 531 Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
532 sion for molecule generation in 3d, 2022. URL <https://arxiv.org/abs/2203.17003>.

533 534 Matthieu Kirchmeyer, Pedro O. Pinheiro, and Saeed Saremi. Score-based 3d molecule generation
535 with neural fields, 2025. URL <https://arxiv.org/abs/2501.08508>.

536 537 Shijie Li, Thomas Ach, and Guido Gerig. Improved counting and localization from density maps for
538 object detection in 2d and 3d microscopy imaging, 2022. URL <https://arxiv.org/abs/2203.15691>.

539 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
540 detection, 2018. URL <https://arxiv.org/abs/1708.02002>.

540 Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gonçalves, and Jakob H. Macke.
 541 Benchmarking simulation-based inference, 2021. URL <https://arxiv.org/abs/2101.04653>.

543

544 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 545 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *European
 546 Conference on Computer Vision (ECCV)*, 2020.

547 George Papamakarios, David C. Sterratt, and Iain Murray. Sequential neural likelihood: Fast
 548 likelihood-free inference with autoregressive flows, 2019. URL <https://arxiv.org/abs/1805.07226>.

549

550 Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
 551 DeepSDF: Learning continuous signed distance functions for shape representation, 2019. URL
 552 <https://arxiv.org/abs/1901.05103>.

553

554 E. Petroff, J. W. T. Hessels, and D. R. Lorimer. Fast radio bursts at the dawn of the 2020s. *The
 555 Astronomy and Astrophysics Review*, 30(1), March 2022. ISSN 1432-0754. doi: 10.1007/
 556 s00159-022-00139-w. URL <http://dx.doi.org/10.1007/s00159-022-00139-w>.

557

558 Thai-Hoang Pham, Lei Xie, and Ping Zhang. Fame: Fragment-based conditional molecu-
 559 lar generation for phenotypic drug discovery. *bioRxiv*, 2022. doi: 10.1101/2022.01.21.
 560 477292. URL <https://www.biorxiv.org/content/early/2022/01/23/2022.01.21.477292>.

561

562 Pedro O. Pinheiro, Joshua Rackers, Joseph Kleinhenz, Michael Maser, Omar Mahmood, An-
 563 drew Martin Watkins, Stephen Ra, Vishnu Sresht, and Saeed Saremi. 3d molecule generation
 564 by denoising voxel grids, 2024. URL <https://arxiv.org/abs/2306.07473>.

565

566 Daniel Price. Smoothed particle hydrodynamics, 2005. URL <https://arxiv.org/abs/astro-ph/0507472>.

567

568 Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Learning a continuous representation
 569 of 3d molecular structures with deep generative models, 2020. URL <https://arxiv.org/abs/2010.08687>.

570

571 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum
 572 chemistry structures and properties of 134 kilo molecules. *Scientific Data*, 1, 2014.

573

574 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 575 detection with region proposal networks, 2016. URL <https://arxiv.org/abs/1506.01497>.

576

577 Sylvia Richardson and Peter J Green. On bayesian analysis of mixtures with an unknown number
 578 of components (with discussion). *Journal of the Royal Statistical Society Series B: Statistical
 579 Methodology*, 59(4):731–792, 1997.

580

581 Stephan Rosswog. Astrophysical smooth particle hydrodynamics. *New Astronomy Reviews*, 53
 582 (4–6):78–104, April 2009. ISSN 1387-6473. doi: 10.1016/j.newar.2009.08.007. URL <http://dx.doi.org/10.1016/j.newar.2009.08.007>.

583

584 Victor Garcia Satorras, Emiel Hoogeboom, Fabian B. Fuchs, Ingmar Posner, and Max Welling. E(n)
 585 equivariant normalizing flows, 2022. URL <https://arxiv.org/abs/2105.09016>.

586

587 Vincent Sitzmann, Julien N. P. Martel, Alexander Bergman, David B. Lindell, and Gordon Wet-
 588 zstein. Implicit neural representations with periodic activation functions. In *Advances in Neural
 589 Information Processing Systems (NeurIPS)*, 2020.

590

591 Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object detection,
 592 2020. URL <https://arxiv.org/abs/1911.09070>.

593

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object
 594 detection, 2019. URL <https://arxiv.org/abs/1904.01355>.

594 Sharvaree Vadgama, Mohammad Mohaiminul Islam, Domas Buracus, Christian Shewmake, and
 595 Erik Bekkers. On the utility of equivariance and symmetry breaking in deep learning architectures
 596 on point clouds, 2025. URL <https://arxiv.org/abs/2501.01999>.

597

598 A Vafaei Sadr, Etienne E Vos, Bruce A Bassett, Zafiirah Hosenie, N Oozeer, and Michelle Lochner.
 599 $\text{jscp}_c\text{deepsource}_c\text{scp}_c$: point source detection using deep learning. *Monthly Notices of the Royal
 600 Astronomical Society*, 484(2):2793–2806, February 2019. ISSN 1365-2966. doi: 10.1093/mnras/stz131. URL <http://dx.doi.org/10.1093/mnras/stz131>.

602 Jan-Willem van de Meent, Jonathan E Bronson, Chris H Wiggins, and Ruben L Gonzalez. Empirical
 603 bayes methods enable advanced population-level analyses of single-molecule fret experiments.
 604 *Biophysical journal*, 106(6):1327–1337, 2014.

605

606 Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
 607 Frossard. DiGress: Discrete denoising diffusion for graph generation. In *International Con-
 608 ference on Learning Representations (ICLR)*, 2023.

609

610 Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Yolov10:
 611 Real-time end-to-end object detection, 2024a. URL <https://arxiv.org/abs/2405.14458>.

612

613 Shuo Wang, Chunlong Xia, Feng Lv, and Yifeng Shi. Rt-detr3: Real-time end-to-end object detec-
 614 tion with hierarchical dense positive supervision, 2024b. URL <https://arxiv.org/abs/2409.08475>.

615

616 David R Wessels, David M Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstra-
 617 tios Gavves, and Erik J Bekkers. Grounding continuous representations in geometry: Equivariant
 618 neural fields, 2025. URL <https://arxiv.org/abs/2406.05753>.

619

620 Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
 621 generation with informative prior bridges, 2022. URL <https://arxiv.org/abs/2209.00865>.

622

623 Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
 624 Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual comput-
 625 ing and beyond, 2022. URL <https://arxiv.org/abs/2111.11426>.

626

627 Chenfeng Xu, Kai Qiu, Jianlong Fu, Song Bai, Yongchao Xu, and Xiang Bai. Learn to scale:
 628 Generating multipolar normalized density maps for crowd counting, 2019. URL <https://arxiv.org/abs/1907.12428>.

629

630 Lizhen Xu, Shanmin Pang, Wenzhao Qiu, Zehao Wu, Xiuxiu Bai, Kuizhi Mei, and Jianru Xue.
 631 Redundant queries in detr-based 3d detection methods: Unnecessary and prunable, 2024. URL
 632 <https://arxiv.org/abs/2412.02054>.

633

634 Minkai Xu, Alexander Powers, Ron Dror, Stefano Ermon, and Jure Leskovec. Geometric latent dif-
 635 fusion models for 3d molecule generation, 2023. URL <https://arxiv.org/abs/2305.01140>.

636

637 Tackgeun You, Mijeong Kim, Jungtaek Kim, and Bohyung Han. Generative neural fields by
 638 mixtures of neural implicit functions. In *Advances in Neural Information Processing Systems
 639 (NeurIPS)*, volume 36, pp. 20352–20370, 2023.

640

641 Chengxi Zang and Fei Wang. Moflow: An invertible flow model for generating molecular graphs. In
 642 *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery amp;
 643 Data Mining*, KDD ’20. ACM, August 2020. doi: 10.1145/3394486.3403104. URL <http://dx.doi.org/10.1145/3394486.3403104>.

644

645 Bing Zhang. The physics of fast radio bursts. *Rev. Mod. Phys.*, 95:035005, Sep 2023.
 646 doi: 10.1103/RevModPhys.95.035005. URL <https://link.aps.org/doi/10.1103/RevModPhys.95.035005>.

648 Maksim Zhdanov, Max Welling, and Jan-Willem van de Meent. Erwin: A tree-based hierarchical
649 transformer for large-scale physical systems, 2025. URL <https://arxiv.org/abs/2502.17019>.

650

651 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
652 Deformable transformers for end-to-end object detection, 2021. URL <https://arxiv.org/abs/2010.04159>.

653

654 Peiye Zhuang, Samira Abnar, Jiatao Gu, Alex Schwing, Joshua M. Susskind, and Miguel Ángel
655 Bautista. Diffusion probabilistic fields, 2023. URL <https://arxiv.org/abs/2303.00165>.

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A CORDS THEORETICAL FRAMEWORK

704 We collect precise assumptions, definitions, and proofs validating the decoding steps and the duality
 705 between finite sets and continuous fields. To aid readability, each formal statement is followed by a
 706 brief intuition.

708 **Roadmap (informal).** A finite set of elements with positions and features is encoded as a pair of
 709 continuous fields by superimposing a fixed kernel at each position: a scalar density ρ and a feature
 710 field \mathbf{h} that uses the *same* kernels. Decoding proceeds in three deterministic steps: (i) read off the
 711 cardinality from the total mass of ρ , (ii) recover the positions by matching ρ with a sum of kernel
 712 translates, and (iii) recover the features by projecting \mathbf{h} onto the recovered kernel translates, which
 713 yields a small linear system with Gram matrix G . Uniqueness comes from standard identifiability
 714 of equal-weight kernel mixtures and positive-definiteness of G .

715 A.1 SPACES, ASSUMPTIONS, AND NOTATION

717 **Ambient domain.** Fix a bounded or σ -finite domain $\Omega \subseteq \mathbb{R}^d$ equipped with Lebesgue measure.

719 **Kernel.** Let $K : \Omega \times \Omega \rightarrow \mathbb{R}_{\geq 0}$ be continuous with finite, center-independent mass

$$721 \quad \alpha = \int_{\Omega} K(\mathbf{r}; \mathbf{s}) d\mathbf{r} \in (0, \infty) \quad \text{for all } \mathbf{s} \in \Omega.$$

723 We assume:

725 (A1) *Integrable Lipschitzness in the center.* There exists $L_K < \infty$ such that

$$726 \quad \|K(\cdot; \mathbf{s}) - K(\cdot; \mathbf{t})\|_{L^1(\Omega)} \leq L_K \|\mathbf{s} - \mathbf{t}\|_2 \quad \forall \mathbf{s}, \mathbf{t} \in \Omega.$$

728 This holds, e.g., for translation-invariant $K(\mathbf{r}; \mathbf{s}) = k(\mathbf{r} - \mathbf{s})$ with $k \in W^{1,1}$.

729 (A2) *Linear independence of translates.* For any distinct centers $\mathbf{r}_1, \dots, \mathbf{r}_N$, the functions $\kappa_i(\cdot) :=$
 730 $K(\cdot; \mathbf{r}_i)$ are linearly independent in $L^2(\Omega)$. A sufficient condition is translation invariance with
 731 a nonvanishing Fourier transform of k .

732 (A3) *Identifiability of equal-weight mixtures.* If for some N and two center sets $\{\mathbf{r}_i\}_{i=1}^N$ and $\{\mathbf{s}_i\}_{i=1}^N$
 733 we have $\sum_i K(\cdot; \mathbf{r}_i) = \sum_i K(\cdot; \mathbf{s}_i)$, then the two sets coincide up to permutation. This holds for
 734 many common kernels (e.g., Gaussians) and guarantees uniqueness of positions in the density
 735 decomposition.

736 **Intuition.** (A1) says shifting a kernel a little changes it only a little in L^1 , which we use for
 737 continuity/stability arguments. (A2) ensures the kernel translates do not accidentally cancel each
 738 other. (A3) is the standard uniqueness of equal-weight kernel superpositions.

740 **Set space.** Let \mathcal{S}_{Ω} denote the collection of finite sets of distinct positions with features,

$$742 \quad \mathcal{S}_{\Omega} = \bigcup_{N \geq 0} \left\{ \{(\mathbf{r}_i, \mathbf{x}_i)\}_{i=1}^N : \mathbf{r}_i \in \Omega \text{ pairwise distinct, } \mathbf{x}_i \in \mathbb{R}^{d_x} \right\}.$$

745 **Field space.** We take $\mathcal{F} = L^1(\Omega; \mathbb{R}) \times L^1(\Omega; \mathbb{R}^{d_x})$, and write $(\rho, \mathbf{h}) \in \mathcal{F}$. The *representable*
 746 *subspace* is

$$748 \quad \mathcal{F}_{\text{rep}} = \left\{ \left(\frac{1}{\alpha} \sum_i K(\cdot; \mathbf{r}_i), \frac{1}{\alpha} \sum_i \mathbf{x}_i K(\cdot; \mathbf{r}_i) \right) : \{(\mathbf{r}_i, \mathbf{x}_i)\} \in \mathcal{S}_{\Omega} \right\}.$$

751 A.2 ENCODING AND DECODING

753 **Encoding Φ .** For $S = \{(\mathbf{r}_i, \mathbf{x}_i)\}_{i=1}^N \in \mathcal{S}_{\Omega}$, define

$$754 \quad \Phi(S) = (\rho, \mathbf{h}) \quad \text{as in Eq. equation 1,}$$

755 i.e., $\rho(\mathbf{r}) = \frac{1}{\alpha} \sum_i K(\mathbf{r}; \mathbf{r}_i)$, $\mathbf{h}(\mathbf{r}) = \frac{1}{\alpha} \sum_i \mathbf{x}_i K(\mathbf{r}; \mathbf{r}_i)$.

756 **Decoding Ψ .** For fields $f = (\rho, \mathbf{h}) \in \mathcal{F}$, define $\Psi(f)$ in three steps:
 757

- 758 1. $N_f := \int_{\Omega} \rho(\mathbf{r}) d\mathbf{r}$. (When $f \in \mathcal{F}_{\text{rep}}$, $N_f \in \mathbb{N}$.)
 759 2. Recover centers by

$$761 \quad \{ \mathbf{r}_i^* \}_{i=1}^{N_f} \in \arg \min_{\mathbf{r}_1, \dots, \mathbf{r}_{N_f}} \int_{\Omega} \left(\rho(\mathbf{r}) - \frac{1}{\alpha} \sum_{i=1}^{N_f} K(\mathbf{r}; \mathbf{r}_i) \right)^2 d\mathbf{r}. \\ 762 \\ 763$$

764 Under (A3) the minimizer is unique up to permutation when $f \in \mathcal{F}_{\text{rep}}$.
 765

- 766 3. With $\kappa_i^*(\mathbf{r}) = K(\mathbf{r}; \mathbf{r}_i^*)$, set

$$767 \quad G_{ij}^* = \int_{\Omega} \kappa_i^*(\mathbf{r}) \kappa_j^*(\mathbf{r}) d\mathbf{r}, \quad B_{i:}^* = \int_{\Omega} \mathbf{h}(\mathbf{r}) \kappa_i^*(\mathbf{r}) d\mathbf{r}, \\ 768 \\ 769$$

770 and define features $\mathbf{X}^* = \alpha (G^*)^{-1} B^*$. Finally, $\Psi(f) := \{(\mathbf{r}_i^*, \mathbf{x}_i^*)\}_{i=1}^{N_f}$ with rows \mathbf{x}_i^* of \mathbf{X}^* .
 771

772 **Intuition.** Step 1 reads off the count because each kernel contributes mass α . Step 2 seeks the
 773 unique set of centers whose kernel sum reproduces ρ . Step 3 says: once the centers are known, \mathbf{h} is
 774 a linear combination of the same kernels with vector coefficients—the original features—so a small,
 775 well-conditioned linear system retrieves them.

776 A.3 DECODING GUARANTEES

777 Throughout we assume (A1)–(A3) and distinct positions.
 779

780 A.3.1 RECOVERING THE NUMBER OF ELEMENTS

782 **Proposition A.1** (Cardinality). Let $S \in \mathcal{S}_{\Omega}$ and $\Phi(S) = (\rho, \mathbf{h})$. Then $\int_{\Omega} \rho(\mathbf{r}) d\mathbf{r} = |S|$.
 783
 784

785 *Proof.* By linearity of the integral and the definition of α ,
 786

$$787 \quad \int_{\Omega} \rho(\mathbf{r}) d\mathbf{r} = \frac{1}{\alpha} \sum_{i=1}^N \int_{\Omega} K(\mathbf{r}; \mathbf{r}_i) d\mathbf{r} = \frac{1}{\alpha} \sum_{i=1}^N \alpha = N. \\ 788 \\ 789$$

790 \square
 791

792 **Intuition.** Every element deposits one kernel “bump” whose total mass is α . Adding them and
 793 dividing by α yields the count.
 794

795 A.3.2 POSITIVE-DEFINITENESS OF THE GRAM MATRIX

797 **Lemma A.2** (Gram matrix is SPD). For distinct centers $\{ \mathbf{r}_i \}_{i=1}^N$ and $\kappa_i(\cdot) = K(\cdot; \mathbf{r}_i)$, the matrix
 798 $G_{ij} = \int_{\Omega} \kappa_i(\mathbf{r}) \kappa_j(\mathbf{r}) d\mathbf{r}$ is symmetric positive-definite.
 799

800 *Proof.* Symmetry is immediate. For any $\mathbf{c} \in \mathbb{R}^N \setminus \{0\}$, let $\phi_{\mathbf{c}}(\mathbf{r}) = \sum_i c_i \kappa_i(\mathbf{r})$. Then
 801

$$802 \quad \mathbf{c}^T G \mathbf{c} = \int_{\Omega} \phi_{\mathbf{c}}(\mathbf{r})^2 d\mathbf{r} \geq 0. \\ 803$$

804 If $\mathbf{c}^T G \mathbf{c} = 0$, then $\phi_{\mathbf{c}} = 0$ in L^2 , hence a.e.; by (A2) the translates are linearly independent, so
 805 $\mathbf{c} = 0$, a contradiction. Thus G is SPD.
 806 \square

807 **Intuition.** Think of $\{\kappa_i\}$ as a set of directions in a Hilbert space. Their Gram matrix computes
 808 inner products. If no nontrivial combination of the κ_i cancels out, the quadratic form $\mathbf{c}^T G \mathbf{c}$ is
 809 strictly positive for all nonzero \mathbf{c} .

810 A.3.3 EXACT RECOVERY OF FEATURES
811812 **Proposition A.3** (Feature inversion with correct α). Let $S \in \mathcal{S}_\Omega$ with $\Phi(S) = (\rho, \mathbf{h})$ and distinct
813 centers $\{\mathbf{r}_i\}$. Define G, B from the recovered centers as above. Then

814
$$815 B = \frac{1}{\alpha} G \mathbf{X} \quad \text{and} \quad \mathbf{X} = \alpha G^{-1} B,$$

816

817 so the recovered features equal the original features.

818 *Proof.* From $\mathbf{h}(\mathbf{r}) = \frac{1}{\alpha} \sum_j \mathbf{x}_j \kappa_j(\mathbf{r})$,

819
$$820 B_{i:} = \int_{\Omega} \mathbf{h}(\mathbf{r}) \kappa_i(\mathbf{r}) d\mathbf{r} = \frac{1}{\alpha} \sum_j \mathbf{x}_j \int_{\Omega} \kappa_j(\mathbf{r}) \kappa_i(\mathbf{r}) d\mathbf{r} = \frac{1}{\alpha} \sum_j G_{ij} \mathbf{x}_j.$$

821

822 Stacking rows gives $B = \frac{1}{\alpha} G \mathbf{X}$. Invertibility follows from Lemma A.2, yielding $\mathbf{X} = \alpha G^{-1} B$. \square
823824 **Intuition.** Because \mathbf{h} is a linear combination of the same kernels that make up ρ , projecting \mathbf{h} onto
825 each kernel recovers the corresponding coefficient vector. The Gram matrix accounts for overlap
826 between kernels; its inverse untangles that overlap.827 A.3.4 RECOVERING POSITIONS FROM THE DENSITY
828829 **Proposition A.4** (Position recovery). Let $S \in \mathcal{S}_\Omega$ with $\Phi(S) = (\rho, \mathbf{h})$ and $N = |S|$. If (A3) holds,
830 then the minimizers of equation 3 are exactly the ground-truth centers up to permutation, and the
831 optimal value is 0.832 *Proof.* For the ground-truth centers $\{\mathbf{r}_i\}$, the integrand in equation 3 vanishes pointwise by
833 construction, so the objective equals 0. Conversely, any minimizer with value 0 satisfies $\rho(\cdot) =$
834 $\frac{1}{\alpha} \sum_{i=1}^N K(\cdot; \mathbf{r}_i^*)$, hence $\sum_i K(\cdot; \mathbf{r}_i) = \sum_i K(\cdot; \mathbf{r}_i^*)$. By (A3) the sets of centers coincide up to
835 permutation. \square 836 **Intuition.** The density ρ must be explainable as a sum of identical shapes (kernels) placed some-
837 where in Ω . If equal-weight mixtures are unique, there is only one way to place N such shapes to
838 obtain exactly ρ : at the original centers (order irrelevant).839 A.4 SET–FIELD DUALITY (PERMUTATION INVARIANCE AND INVERSE CONSISTENCY)
840841 We now formalize the duality between sets and fields without invoking additional geometric sym-
842 metries.843 **Definition 1** (Set–field dual pair). A pair of mappings

844
$$\Phi : \mathcal{S}_\Omega \longrightarrow \mathcal{F}, \quad \Psi : \mathcal{F} \longrightarrow \mathcal{S}_\Omega$$

845

846 is a *set–field dual pair* on Ω if:847

1. **Inverse consistency on representable fields:** $\Psi \circ \Phi = \text{id}_{\mathcal{S}_\Omega}$ and $\Phi \circ \Psi = \text{id}_{\mathcal{F}_{\text{rep}}}$, where
848 $\mathcal{F}_{\text{rep}} = \Phi(\mathcal{S}_\Omega) \subset \mathcal{F}$.
2. **Permutation invariance:** For any permutation π of indices, $\Phi(\{(\mathbf{r}_{\pi(i)}, \mathbf{x}_{\pi(i)})\}_i) =$
849 $\Phi(\{(\mathbf{r}_i, \mathbf{x}_i)\}_i)$.
3. **Metric compatibility (abstract).** There exist admissible metrics $d_{\mathcal{S}_\Omega}$ on \mathcal{S}_Ω and $d_{\mathcal{F}}$ on \mathcal{F} , and
850 a constant $C > 0$, such that

851
$$852 d_{\mathcal{F}}(\Phi(S_1), \Phi(S_2)) \leq C d_{\mathcal{S}_\Omega}(S_1, S_2) \quad \forall S_1, S_2 \in \mathcal{S}_\Omega.$$

853

854 **Inverse consistency.** By Propositions A.1, A.3, and A.4, $\Psi \circ \Phi = \text{id}_{\mathcal{S}_\Omega}$. Moreover, for any
855 $f \in \mathcal{F}_{\text{rep}}$ there exists S with $f = \Phi(S)$; then $\Phi \circ \Psi(f) = \Phi(S) = f$, proving $\Phi \circ \Psi = \text{id}_{\mathcal{F}_{\text{rep}}}$.

864 **Permutation invariance (and why it matters).** Permutation invariance is immediate because
 865 equation 1 uses sums: relabeling does not change ρ or \mathbf{h} . This captures the fact that sets are inher-
 866 ently unordered and ensures that optimization and learning in field space cannot depend on arbitrary
 867 labelings.
 868

869 **Metric compatibility (discussion only).** We do not instantiate concrete metrics here. Informally,
 870 (A1) implies that small changes in positions and features translate into small changes of ρ and \mathbf{h} in
 871 L^1 , so Φ is Lipschitz for natural matching-type distances on sets. This is useful for stability analyses
 872 but is not required for the exact decoding results above.
 873

874 **Conclusion.** With (A1)–(A3), the kernel-based (Φ, Ψ) defined in §A.2 forms a set–field dual pair
 875 in the sense of Definition 1, and admits exact decoding with the correct α factors. Lemma A.2
 876 ensures well-posed feature inversion via an SPD Gram matrix.
 877

878 **Remarks.** (i) Assumption (A3) holds for a broad class of kernels; for example, for
 879 translation-invariant K with strictly positive real-analytic k , the decomposition into equal-weight
 880 translates is unique up to permutation. (ii) In practice, the position recovery objective is smooth
 881 for standard K , so gradient-based optimization with multi-start typically suffices; once centers are
 882 close, a few Newton or Gauss–Newton iterations refine them to machine precision before solving
 883 the small linear system for features.
 884

885 B CORDS FRAMEWORK FOR GRAPHS

886 In order to extend our work to graphs, or data with discrete relational objects (such as edges), we
 887 will define **Field of Graph** as a quadruple
 888

$$f = (\rho_n, \rho_e, \mathbf{h}_n, \mathbf{h}_e)$$

889 where
 890

- 891 • $\rho_n : \Omega \rightarrow \mathbb{R}_{\geq 0}$ is the *node density*;
- 892 • $\rho_e : \Omega \times \Omega \rightarrow \mathbb{R}_{\geq 0}$ is the *edge density*;
- 893 • $\mathbf{h}_n : \Omega \rightarrow \mathbb{R}^{d_x}$ is a vector-valued *node feature field*.
- 894 • $\mathbf{h}_e : \Omega \times \Omega \rightarrow \mathbb{R}^{d_y}$ is a vector-valued *edge feature field*.

895 We now specify a concrete construction of the encoding map $\Phi : \mathcal{G}_\Omega \rightarrow \mathcal{F}$ in the Graph–Field dual
 896 pair. This construction associates to each graph a distributional representation over the domain Ω ,
 897 using fixed spatial kernels to define the node density, edge density, and feature fields.
 898

900 Let us fix two continuous, positive kernels:

$$k_n : \Omega \times \Omega \rightarrow \mathbb{R}_{\geq 0}, \quad k_e : (\Omega \times \Omega)^2 \rightarrow \mathbb{R}_{\geq 0}.$$

901 The kernel k_n determines how node mass is distributed across space, while k_e governs the represen-
 902 tation of edges.
 903

904 Given a geometric graph $G = (V, E, \mathbf{X}, \mathbf{Y}, \mathbf{R}) \in \mathcal{G}_\Omega$, we define its field representation
 905

$$\Phi(G) = (\rho_n, \rho_e, \mathbf{h}_n, \mathbf{h}_e)$$

906 as
 907

$$\begin{aligned} \rho_n(\mathbf{r}) &= \sum_{v \in V} k_n(\mathbf{r}; \mathbf{r}_v), & \rho_e(\mathbf{r}_1, \mathbf{r}_2) &= \sum_{(u, v) \in E} k_e((\mathbf{r}_1, \mathbf{r}_2); (\mathbf{r}_u, \mathbf{r}_v)), \\ \mathbf{h}_n(\mathbf{r}) &= \sum_{v \in V} \mathbf{x}_v k_n(\mathbf{r}; \mathbf{r}_v), & \mathbf{h}_e(\mathbf{r}_1, \mathbf{r}_2) &= \sum_{(u, v) \in E} \mathbf{y}_{uv} k_e((\mathbf{r}_1, \mathbf{r}_2); (\mathbf{r}_u, \mathbf{r}_v)). \end{aligned} \tag{5}$$

913 **Special case: Dirac kernels.** Choosing
 914

$$k_n(\mathbf{r}; \mathbf{r}_v) = \delta(\mathbf{r} - \mathbf{r}_v), \quad k_e((\mathbf{r}_1, \mathbf{r}_2); (\mathbf{r}_u, \mathbf{r}_v)) = \delta(\mathbf{r}_1 - \mathbf{r}_u) \delta(\mathbf{r}_2 - \mathbf{r}_v),$$

915 recovers the standard discrete graph structure in distributional form. This limiting case shows that
 916 our construction generalizes the original discrete graph while embedding it in a continuous domain.
 917 With a suitable choice of interactions, we obtain the traditional message passing.
 918

918 B.1 CONTINUOUS GRAPH CONVOLUTION AND THE DISCRETE MESSAGE-PASSING LIMIT
919

920 Throughout this appendix we work on an ambient domain $\Omega \subseteq \mathbb{R}^d$ equipped with the Lebesgue
921 measure $d\mathbf{r}$. A geometric graph $G = (V, E, \mathbf{R}, \mathbf{X})$ with node positions $\mathbf{r}_v \in \Omega$ and node features
922 $\mathbf{h}_v^{(k)} \in \mathbb{R}^{d_h}$ is encoded into continuous objects

$$923 \rho_n, \rho_e, \mathbf{h}^{(k)} : \Omega \longrightarrow \mathbb{R}^{d_h}$$

924 In particular, for a *node kernel* k_n and an *edge kernel* k_e we have

$$925 \rho_n(\mathbf{r}) = \sum_{u \in V} k_n(\mathbf{r}; \mathbf{r}_u),$$

$$926 \rho_e(\mathbf{r}_1, \mathbf{r}_2) = \sum_{(u, v) \in E} k_e((\mathbf{r}_1, \mathbf{r}_2); (\mathbf{r}_u, \mathbf{r}_v)), \quad (6)$$

$$927 \mathbf{h}^{(k)}(\mathbf{r}) = \sum_{u \in V} \mathbf{h}_u^{(k)} k_n(\mathbf{r}; \mathbf{r}_u).$$

933 B.1.1 CONTINUOUS CONVOLUTION
934

935 Given a field feature $\mathbf{h}^{(k)} : \Omega \rightarrow \mathbb{R}^{d_h}$ at layer k , the *continuous graph convolution* introduced in

$$936 \mathbf{h}^{(k+1)}(\mathbf{r}_i) = \sigma \left(\mathbf{W} \underbrace{\int_{\Omega} \mathbf{h}^{(k)}(\mathbf{r}_j) \rho_e(\mathbf{r}_i, \mathbf{r}_j) d\mathbf{r}_j}_{=: \mathbf{m}^{(k)}(\mathbf{r}_i)} \right), \quad (7)$$

937 where $\mathbf{W} \in \mathbb{R}^{d_h \times d_h}$ is a trainable linear map, σ is any point-wise non-linearity (ReLU, SiLU, \dots),
938 and $\mathbf{m}^{(k)}$ denotes the *message field* aggregated from all spatial locations.

939 B.1.2 DIRAC KERNELS AND THE DISCRETE LIMIT
940

941 We now take

$$942 k_n(\mathbf{r}; \mathbf{r}_u) = \delta(\mathbf{r} - \mathbf{r}_u), \quad k_e((\mathbf{r}_1, \mathbf{r}_2); (\mathbf{r}_u, \mathbf{r}_v)) = \delta(\mathbf{r}_1 - \mathbf{r}_u) \delta(\mathbf{r}_2 - \mathbf{r}_v),$$

943 i.e. each node (edge) is represented by a Dirac delta of unit mass centred at its position.

944 **Proposition B.1** (Continuous convolution \longrightarrow message passing). Let k_n, k_e be the Dirac kernels
945 above. Then, evaluating equation 7 at the node positions $\mathbf{r}_i = \mathbf{r}_u$ yields

$$946 \mathbf{h}_u^{(k+1)} = \sigma \left(\mathbf{W} \underbrace{\sum_{v \in V} e_{uv} \mathbf{h}_v^{(k)}}_{=: \mathbf{m}_u^{(k)}} \right), \quad (8)$$

947 where $e_{uv} = 1$ if $(u, v) \in E$ and 0 otherwise. That is, the continuous convolution reduces exactly
948 to the standard message-passing update with *sum aggregation*.

949 *Proof.* Using the encoding equation 6 with Dirac kernels,

$$950 \rho_e(\mathbf{r}_i, \mathbf{r}_j) = \sum_{(p, q) \in E} \delta(\mathbf{r}_i - \mathbf{r}_p) \delta(\mathbf{r}_j - \mathbf{r}_q).$$

951 Fix a node u and set $\mathbf{r}_i = \mathbf{r}_u$. Substituting into the message integral in equation 7 gives

$$952 \mathbf{m}^{(k)}(\mathbf{r}_u) = \int_{\Omega} \mathbf{h}^{(k)}(\mathbf{r}_j) \sum_{(p, q) \in E} \delta(\mathbf{r}_u - \mathbf{r}_p) \delta(\mathbf{r}_j - \mathbf{r}_q) d\mathbf{r}_j$$

$$953 = \sum_{(p, q) \in E} \delta(\mathbf{r}_u - \mathbf{r}_p) \mathbf{h}^{(k)}(\mathbf{r}_q)$$

$$954 = \sum_{(p, q) \in E} \delta_{up} \mathbf{h}_q^{(k)} = \sum_{v \in V} e_{uv} \mathbf{h}_v^{(k)},$$

955 where δ_{up} is the Kronecker delta (the Dirac delta evaluates to 1 iff $\mathbf{r}_u = \mathbf{r}_p$, or equivalently $u = p$).

956 Finally, plugging $\mathbf{m}^{(k)}(\mathbf{r}_u) = \mathbf{m}_u^{(k)}$ back into equation 7 gives equation 8. \square

972 **Remark 1** (Vanishing-width Gaussian kernels). If k_n and k_e are isotropic Gaussians of width σ
 973 (as used in Eq. (9) of the main text), then $k_n, k_e \xrightarrow{\sigma \rightarrow 0}$ Dirac distributions in the sense of tem-
 974 pered distributions. Therefore the continuous convolution converges to the message-passing update
 975 equation 8 as $\sigma \rightarrow 0$.
 976

977 **B.2 EXTENDING CORDS TO NON-GEOMETRIC GRAPHS**
 978

979 The core construction of Fields of Graphs (FOG) relies on the existence of an explicit geomet-
 980 ric embedding $p : V \rightarrow \Omega$, which maps each node to a position in a continuous domain. However,
 981 many real-world graphs do not come equipped with natural spatial coordinates. To extend our frame-
 982 work to such non-geometric graphs, we propose using spectral embeddings derived from the graph's
 983 topology.

984 **B.2.1 SPECTRAL EMBEDDINGS VIA GRAPH LAPLACIAN**
 985

986 Given a graph $G = (V, E, \mathbf{X})$ without predefined node positions, we compute a spectral embedding
 987 based on the graph Laplacian. Specifically, let $A \in \mathbb{R}^{|V| \times |V|}$ be the adjacency matrix and D the
 988 diagonal degree matrix with $D_{ii} = \deg(i)$. The (unnormalized) graph Laplacian is defined as:
 989

$$L = D - A.$$

990 Let $\{\lambda_i\}_{i=1}^{|V|}$ be the eigenvalues of L , with corresponding eigenvectors $\{\mathbf{v}_i\}_{i=1}^{|V|}$. We define a spectral
 991 embedding
 992

$$p_{\text{spec}}(v) = (\mathbf{v}_2(v), \mathbf{v}_3(v), \dots, \mathbf{v}_{d+1}(v)),$$

993 where $\mathbf{v}_i(v)$ denotes the v -th entry of the i -th eigenvector. The first non-trivial eigenvectors capture
 994 global structural information, positioning nodes with similar topological roles close to each other in
 995 \mathbb{R}^d .
 996

997 This spectral embedding provides a continuous proxy for node positions, enabling us to apply the
 998 same FOG construction as in the geometric case. Effectively, it allows us to treat arbitrary graphs as
 999 if they were embedded in a geometric space, lifting them into a continuous field representation.

1000 **B.2.2 LIMITATIONS AND PRACTICAL CONSIDERATIONS**
 1001

1002 While spectral embeddings offer a principled way to introduce geometry into non-geometric graphs,
 1003 they come with trade-offs. Specifically:

- 1004 • The embedding dimensionality d is a design choice. Using fewer dimensions provides a com-
 1005 pressed view of the graph's topology, which can be sufficient for downstream tasks like regres-
 1006 sion or classification.
- 1007 • However, reducing d also means that the bijective property of the Graph–Field dual pair is lost,
 1008 as the original graph cannot be perfectly reconstructed from the continuous representation.
- 1009 • For applications where reversible mapping is not critical (e.g., predictive tasks on node-level
 1010 or graph-level properties), this trade-off is acceptable. On the other hand, generative tasks that
 1011 require recovering discrete graph structure from fields would necessitate higher-dimensional
 1012 embeddings or alternative encoding strategies.

1013 In summary, spectral embeddings allow us to extend the FOG framework to general graphs without
 1014 predefined coordinates, enabling continuous representations even in the absence of natural geometry.
 1015

1016 **C ADDITIONAL EXPERIMENTAL DETAILS**
 1017

1018 **C.1 APPROXIMATING THE INVERSE DECODING IN PRACTICE**
 1019

1020 The exact inversion formulas in Appendix A involve domain integrals and solving linear systems
 1021 built from kernel inner products. When fields are only available at finitely many sample locations
 1022 (either on a grid or from a sampler) these integrals are approximated by Monte Carlo (MC). Below
 1023 we describe the practical decoding we use in all experiments. It proceeds in three steps: *(i) estimate*
 1024 *the number of elements N ,* *(ii) recover their positions,* and *(iii) reconstruct their feature vectors.* We
 1025 emphasise the intuition at each step and show how importance sampling enters the feature inversion.

1026 **Notation and sampling setup.** Let $\{\mathbf{r}_s\}_{s=1}^S \subset \Omega$ be the evaluation points (*field samples*). They
 1027 are drawn either *uniformly* from a bounding box of Ω , or by *importance sampling* from a proposal
 1028 $q(\mathbf{r})$ proportional to a kernel mixture centred near the (unknown) element locations. We write $\rho(\mathbf{r}_s)$
 1029 and $\mathbf{h}(\mathbf{r}_s)$ for the sampled density and feature fields at those points. In all cases, MC weights are
 1030 taken as

1031 $w_s = \frac{1}{S q(\mathbf{r}_s)}$ (importance sampling), $w_s = \frac{1}{S}$ (uniform over a box).

1032

1033

1034 *Remark:* for uniform sampling the mathematically unbiased weight is $\frac{\text{Vol}(\Omega_{\text{box}})}{S}$; in our implementa-
 1035 tion we use $\frac{1}{S}$ and rely on the fact that the unknown constant volume multiplies *both* sides of the
 1036 linear system in Step (iii) and cancels out in the solve.

1037

1038 **(i) Estimating the number of elements \hat{N} and normalising ρ .**

1039

1040 *Why this must come first.* The subsequent position fit needs to know *how many kernels* to place.
 1041 Hence we estimate N directly from the sampled density before any other step.

1042 *How we estimate it.* In theory, $N = \int_{\Omega} \rho(\mathbf{r}) d\mathbf{r}$. With sampling $\mathbf{r}_s \sim q$ the MC estimator is

1043

1044
$$\hat{N}_{\text{MC}} = \sum_{s=1}^S \rho(\mathbf{r}_s) w_s = \frac{1}{S} \sum_{s=1}^S \frac{\rho(\mathbf{r}_s)}{q(\mathbf{r}_s)}.$$

1045

1046

1047 For importance sampling, q is only known up to a global constant ($q \propto \sum_u \kappa_{\text{prop}}(\cdot; \mathbf{r}_u)$); for uniform
 1048 sampling, the box volume enters q . In practice we avoid carrying these constants by working with
 1049 a *calibrated* density: during training the encoder Φ optionally rescales ρ so that its sample mean
 1050 equals the *true* cardinality. At test time we therefore set

1051
$$\hat{N} = \text{round}\left(\frac{1}{S} \sum_{s=1}^S \rho(\mathbf{r}_s)\right).$$

1052

1053

1054

1055 Because of MC noise $\frac{1}{S} \sum_s \rho(\mathbf{r}_s)$ will rarely be an exact integer; empirically it concentrates within
 1056 ± 0.5 of the truth, so rounding is appropriate.¹ This \hat{N} fixes the number of kernels to fit in Step (ii).

1057

1058 **(ii) Recovering positions.**

1059

1060 *Initialisation by a mixture fit.* Given the samples $\{(\mathbf{r}_s, \rho(\mathbf{r}_s))\}_{s=1}^S$ and the estimate \hat{N} , we fit an
 1061 \hat{N} -component *isotropic* Gaussian mixture model (GMM) to the \mathbf{r}_s , initialised with *k-means++* on
 1062 coordinates. The resulting means $\{\tilde{\mathbf{r}}_u\}_{u=1}^{\hat{N}}$ are coarse location estimates. (Optionally we search
 1063 over $\hat{N} \pm \delta$ components by BIC and pick the best, but we keep \hat{N} unless BIC strongly prefers a
 1064 neighbour.) **Here BIC denotes the Bayesian information criterion, $\text{BIC}(k) = -2 \log L_k + p_k \log S$,**
 1065 **where L_k is the maximized likelihood of a k -component GMM with p_k free parameters fitted to S**
 1066 **samples.**

1067 *Refinement by kernel matching.* We then refine the centres by minimising the squared discrepancy
 1068 between the observed density and a superposition of kernel translates. Writing $\kappa(\mathbf{r}; \mathbf{r}_u) = K(\mathbf{r}; \mathbf{r}_u)$
 1069 and allowing a global amplitude $a > 0$ to absorb small normalisation mismatches (e.g., boundary
 1070 truncation, unknown α), we minimise

1071

1072
$$\mathcal{L}_{\text{pos}}(\{\mathbf{r}_u\}, a) = \frac{1}{S} \sum_{s=1}^S \left(\rho(\mathbf{r}_s) - a \frac{1}{\alpha} \sum_{u=1}^{\hat{N}} \kappa(\mathbf{r}_s; \mathbf{r}_u) \right)^2. \quad (9)$$

1073

1074

1075 We run LBFGS for at most 50 iterations starting from the GMM means. When the dynamic range
 1076 is large, we minimise the same objective in *log space* (i.e., replace both terms by their log, with a
 1077 small floor), which stabilises the fit of a and the centres near sharp peaks.

1078 ¹If a calibration pass is not available, one can use the generic \hat{N}_{MC} above with explicit $w_s = \frac{1}{S q(\mathbf{r}_s)}$; for
 1079 importance sampling, the unknown proportionality constant cancels after the normalisation step below.

1080
 1081 *Intuition.* Step (ii) exactly mirrors the theoretical position recovery (Appendix A): we seek the
 1082 unique set of centres whose kernel sum reproduces the observed ρ . The GMM gives a good basin of
 1083 attraction; LBFGS then snaps the centres onto the mode locations determined by ρ .

1084 **(iii) Reconstructing feature vectors from \mathbf{h} .**

1085 *Theory recap.* For the recovered centres $\{\mathbf{r}_u\}_{u=1}^{\hat{N}}$ define $\kappa_u(\mathbf{r}) = K(\mathbf{r}; \mathbf{r}_u)$. The ideal (L^2) projec-
 1086 tion used in Appendix A reads

1087

$$1088 G_{uv} = \int_{\Omega} \kappa_u(\mathbf{r}) \kappa_v(\mathbf{r}) d\mathbf{r}, \quad B_{u:} = \int_{\Omega} \mathbf{h}(\mathbf{r}) \kappa_u(\mathbf{r}) d\mathbf{r}, \quad \mathbf{X} = \alpha G^{-1} B.$$

1089

1090 In code we approximate both integrals by MC with the *same* weights w_s .

1091 *Monte Carlo feature inversion (corrected).* With samples $\mathbf{r}_s \sim q$ and weights $w_s = \frac{1}{S q(\mathbf{r}_s)}$, define

1092

$$1093 \hat{G}_{uv} = \sum_{s=1}^S \kappa_u(\mathbf{r}_s) \kappa_v(\mathbf{r}_s) w_s, \quad (10)$$

1094

1095

$$1096 \hat{B}_{u:} = \sum_{s=1}^S \mathbf{h}(\mathbf{r}_s) \kappa_u(\mathbf{r}_s) w_s. \quad (11)$$

1097

1098 Then solve the $\hat{N} \times \hat{N}$ system

1099

$$1100 \hat{G} \hat{\mathbf{X}} = \begin{cases} \hat{B}, & \text{if unit-mass kernels are used } (\alpha = 1), \\ \frac{1}{\alpha} \hat{B}, & \text{otherwise,} \end{cases} \quad \text{and set } \hat{\mathbf{X}} \leftarrow \begin{cases} \hat{\mathbf{X}}, & (\alpha = 1), \\ \alpha \hat{\mathbf{X}}, & (\alpha \neq 1). \end{cases} \quad (12)$$

1101

1102 In our implementation we experimented with three standard radial kernels: Gaussian, Laplacian,
 1103 and Epanechnikov, each normalised to unit mass, so that $\alpha = 1$ and we simply solve $\hat{G} \hat{\mathbf{X}} = \hat{B}$.
 1104 Concretely, these kernels have the usual forms

1105

$$\kappa_{\text{Gauss}}(\mathbf{r}) \propto \exp(-\|\mathbf{r}\|_2^2/2\sigma^2), \quad \kappa_{\text{Lap}}(\mathbf{r}) \propto \exp(-\|\mathbf{r}\|_2/\sigma), \quad \kappa_{\text{Epan}}(\mathbf{r}) \propto \max(0, 1 - \|\mathbf{r}\|_2^2/\sigma^2),$$

1106

1107 where σ is a bandwidth parameter. All three are positive, radially symmetric, and compactly or ef-
 1108 fectively compactly supported, and in our experiments they lead to very similar decoding behaviour;
 1109 we therefore use Gaussians by default and view Laplacian/Epanechnikov kernels as interchangeable
 1110 alternatives. For numerical robustness we add a tiny diagonal εI to \hat{G} (ε is 10^{-4} times the average
 1111 diagonal) and fall back to least squares if a direct solve fails. When element types are categorical
 1112 (e.g., one-hot), we take argmax over the feature channels of each row of $\hat{\mathbf{X}}$.

1113 *Why the proposal normalisation does not matter.* If q is known only up to a constant (importance
 1114 sampling) or includes an unknown box volume (uniform), w_s is known up to the same constant
 1115 factor c . Both \hat{G} and \hat{B} in equation 10–equation 11 are multiplied by c , which cancels in the linear
 1116 system $\hat{G} \hat{\mathbf{X}} = \hat{B}$. This is why using $w_s = \frac{1}{S}$ under uniform sampling is sufficient in practice, and
 1117 why we can implement importance weights with an unnormalised mixture $q \propto \sum_u \kappa_{\text{prop}}(\cdot; \mathbf{r}_u)$.

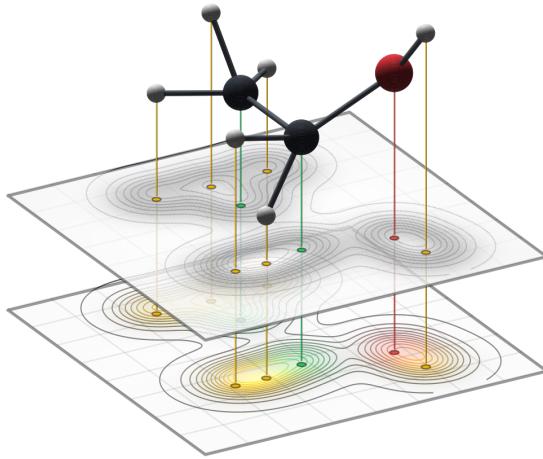
1118 **Summary.**

1119

1. *Cardinality:* estimate \hat{N} from the sample mean of ρ , round to the nearest integer (non-integral
 1120 values within ± 0.5 are expected).
2. *Positions:* fit an \hat{N} -component isotropic GMM to the sample coordinates and refine the means
 1121 by minimising equation 9 with LBFGS (optionally in log-space, with a global amplitude a).
3. *Features:* form \hat{G}, \hat{B} by the MC formulas equation 10–equation 11 using the same weights w_s
 1122 as for the integral, solve $\hat{G} \hat{\mathbf{X}} = \hat{B}$ (or $\alpha \hat{G}^{-1} \hat{B}$ if non-unit kernels are used), and post-process
 1123 categorical channels by argmax.

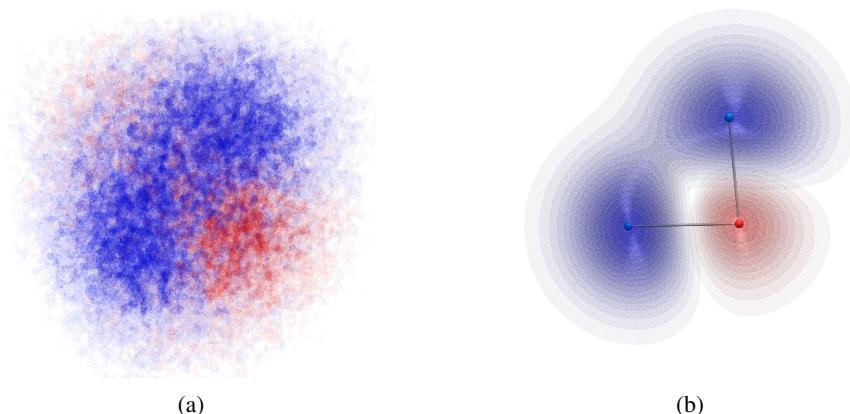
1124 **Practical notes (hyperparameters).** We initialise the GMM by k -means++, search over $\hat{N} \pm \delta$
 1125 components with $\delta \approx 0.15 \hat{N}$ unless \hat{N} is very small, and run LBFGS for at most 50 iterations

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156



1157
 1158
 1159
 1160
 1161
 1162 Figure 5: A molecular graph (top) is encoded with CORDS into a density field $\rho(\mathbf{r})$ (middle) and
 1163 feature fields $h_k(\mathbf{r})$ (bottom), which correspond to atom types here. The number of atoms is encoded
 1164 directly in the density mass, $K = \int \rho(\mathbf{r}) d\mathbf{r}$.
 1165

1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187



1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460<br

1188
1189

C.2 MOLECULAR GENERATION IN FIELD SPACE WITH EDM

1190
1191
1192
1193

Fields and importance sampling. Following CORDS, a molecule with atoms at $\{\mathbf{r}_u\}_{u=1}^N$ and per-atom features $\{\phi_u\}$ (atom type logits and, when used, charge) is mapped to continuous fields on \mathbb{R}^3 : a density $\rho(\mathbf{r})$ and feature channels $\mathbf{h}(\mathbf{r})$ built by placing normalized isotropic kernels of width σ at each atom:

1194
1195

$$\rho(\mathbf{r}) = \sum_{u=1}^N \kappa_\sigma(\mathbf{r} - \mathbf{r}_u), \quad \mathbf{h}(\mathbf{r}) = \sum_{u=1}^N \phi_u \kappa_\sigma(\mathbf{r} - \mathbf{r}_u).$$

1196
1197
1198

At training time we *do not* operate on graphs. Instead, we discretize fields by *importance sampling* M query locations from a proposal $q(\mathbf{r})$ proportional to $\rho(\mathbf{r})$, and read out the field values at those points:

1199
1200
1201
1202
1203

$$\{(\mathbf{r}_i, \rho_n(\mathbf{r}_i), \mathbf{h}_n(\mathbf{r}_i))\}_{i=1}^M,$$

where “n” denotes channel-wise normalization (coords, density, features). Densities are represented either in *log-space* ($\log \rho_n$) or in *raw space* (ρ_n), controlled by a flag; all learning is carried out directly on these fields.

1204
1205
1206
1207
1208

EDM preconditioning and losses. We train a score network in the Elucidated Diffusion Models (EDM) framework to jointly denoise coordinates and field channels. Let $x = [\rho_n, \mathbf{h}_n]$ be the stacked field features at the sampled locations and \mathbf{p} the corresponding coordinates. A per-molecule log-normal noise level is drawn as $\sigma = \exp(\epsilon P_{std} + P_{mean})$, $\epsilon \sim \mathcal{N}(0, 1)$. We add isotropic Gaussian noise to all three channel families

1209
1210
1211
1212
1213

$$\mathbf{p}_\sigma = \text{center}(\mathbf{p}) + \sigma \eta_p, \quad \rho^* = \rho_n + \sigma \eta_\rho, \quad \mathbf{h}^* = \mathbf{h}_n + \sigma \eta_h,$$

and define $x^* = [\rho^*, \mathbf{h}^*]$. The network takes preconditioned inputs $(\mathbf{p}_{in}, x_{in}) = (c_{in} \mathbf{p}_\sigma, c_{in} x^*)$ and predicts residuals ($\Delta \mathbf{p}$, Δx); EDM scalings use the *geometric mean* $\sigma_{data} = (\sigma_c \sigma_r \sigma_f)^{1/3}$ across the three families, with

1214
1215

$$c_{skip} = \frac{\sigma_{data}^2}{\sigma^2 + \sigma_{data}^2}, \quad c_{out} = \frac{\sigma \sigma_{data}}{\sqrt{\sigma^2 + \sigma_{data}^2}}, \quad c_{in} = \frac{1}{\sqrt{\sigma_{data}^2 + \sigma^2}}.$$

1216
1217

The denoised estimates are $\hat{\mathbf{p}} = c_{skip} \mathbf{p}_\sigma + c_{out} (\mathbf{p}_{in} - \Delta \mathbf{p})$ and $\hat{x} = c_{skip} x^* + c_{out} (x_{in} - \Delta x)$. We minimize weighted MSEs with *per-family* σ_{data} :

1218
1219
1220

$$\mathcal{L} = \lambda_{\text{coords}} \cdot \underbrace{\|w_c^{1/2}(\hat{\mathbf{p}} - \text{center}(\mathbf{p}))\|_2^2}_{\text{coordinates}} + \lambda_\rho \cdot \underbrace{\|w_r^{1/2}(\hat{\rho} - \rho_n)\|_2^2}_{(\log\text{-})\text{density}} + \lambda_{\text{feats}} \cdot \underbrace{\|w_f^{1/2}(\hat{\mathbf{h}} - \mathbf{h}_n)\|_2^2}_{\text{features}},$$

1221
1222
1223
1224
1225

with EDM weights $w_c = \frac{\sigma^2 + \sigma_c^2}{(\sigma \sigma_c)^2}$, $w_r = \frac{\sigma^2 + \sigma_r^2}{(\sigma \sigma_r)^2}$, $w_f = \frac{\sigma^2 + \sigma_f^2}{(\sigma \sigma_f)^2}$. An optional *mass regularizer* penalizes the squared error between the predicted and true total density mass $\langle \hat{N} \rangle - \langle N \rangle$ (computed by averaging ρ over the point set), and is compatible with both log- and raw-density parameterizations.

1226
1227
1228

Sampler (Euler–Maruyama with Karras schedule). At test time we draw initial Gaussian noise (\mathbf{p}_0, x_0) and integrate the EDM Euler–Maruyama sampler along a Karras σ -ladder $t_0 = \sigma_{\max} > \dots > t_K = 0$ with optional “churn”:

1229
1230
1231

$$(\mathbf{p}_{k+1}, x_{k+1}) \leftarrow (\mathbf{p}_k, x_k) + (t_{k+1} - \hat{t}_k) \frac{(\mathbf{p}_k - \hat{\mathbf{p}}_{\hat{t}_k}, x_k - \hat{x}_{\hat{t}_k})}{\hat{t}_k} \quad \text{with} \quad \hat{t}_k = t_k + \gamma t_k,$$

1232
1233
1234

and a Heun correction on every step. If we enable message passing (> 0 steps), we rebuild a radius graph on the *current* coordinates after each update; translation is removed by centering coordinates at the end. The sampler produces a set of points and denoised fields $\{(\mathbf{r}_i, \hat{\rho}_n(\mathbf{r}_i), \hat{\mathbf{h}}_n(\mathbf{r}_i))\}_{i=1}^M$.

1235
1236
1237
1238
1239
1240

Decoding back to molecules (evaluation only). All training and sampling happen in field space. For metrics that require graphs, we apply the same decoder as in CORDS: (i) estimate \hat{N} from the density mass, (ii) fit atom centers by kernel matching to $\hat{\rho}_n$, and (iii) reconstruct per-atom features by a weighted linear solve from $\hat{\mathbf{h}}_n$. When charges are modeled, they are carried as continuous channels in \mathbf{h} and decoded directly.

1241

Evaluation Metrics. To assess the quality of generated molecules, we report the following standard metrics:

- **Validity:** the percentage of generated samples that correspond to chemically valid molecules, i.e., those that can be parsed and satisfy valence rules.
- **Uniqueness:** the proportion of valid molecules that are unique (non-duplicates) within the generated set.
- **Atom Stability:** the percentage of atoms in each molecule whose valence configuration is chemically stable.
- **Molecule Stability:** the percentage of molecules in which *all* atoms are stable, i.e., no atom violates valence constraints.

These metrics are computed using a standardized chemistry toolkit and follow established benchmarks for QM9 generation. Together, they reflect both structural correctness and chemical diversity of the generated samples.

Backbone and normalization. The network acting on unordered field samples is an Erwin-based encoder-decoder (Fieldformer head), receiving *both* coordinates and field channels. We apply consistent channel normalization: coordinates are scaled by a fixed factor, features by another, and the density channel is either $\log \rho$ or ρ with its own scale. All σ_{data} values are estimated from the RMS of these *normalized* channels on training data; the EDM ladder ($\sigma_{\min}, \sigma_{\max}$) is set to yield a wide SNR range on coordinates.

RUNTIME AND SCALABILITY FOR MOLECULAR GENERATION

Asymptotic costs. For a batch of molecules with at most N atoms, spatial dimension d , feature dimension d_x , and M field samples per molecule, the CORDS encoding used during training scales as

$$\mathcal{O}(MNd_x)$$

to evaluate density and feature fields at the sampled locations. The Erwin-EDM backbone then scales linearly in M (number of points), so our overall per-step complexity is $\mathcal{O}(MNd_x)$. Decoding at inference time follows the analysis in Appendix C.1: given a decoded molecule with \hat{N} atoms and S evaluation points, the position/feature reconstruction scales as

$$\mathcal{O}(S\hat{N} + \hat{N}^3),$$

where the \hat{N}^3 term comes from the small Gram solve. In our regimes ($\hat{N} \leq 29$ on QM9, moderate \hat{N} on GeomDrugs), the \hat{N}^3 term is negligible compared to the $S\hat{N}$ kernel evaluations; the feature solve becomes dominant only when \hat{N} is very large and S is small, clarifying the remark in Appendix C.1.

Measured training and inference times. Table 3 summarizes the measured runtimes for QM9 generation on a single NVIDIA H100 GPU (batch size 128, roughly 700k training steps). “Encode” refers to CORDS field construction during training, and “Decode” comprises position reconstruction (GMM + LBFGS) and feature recovery.

Table 3: Approximate runtimes for QM9 molecular generation on a single H100 GPU. Times are reported per molecule.

Phase / component	Time [ms]	Description
Training: NN forward+backward	4.32	EDM + Erwin backbone
Training: CORDS encode	0.014	atoms \rightarrow fields
Inference: NN sampling	58.8	30 EDM steps in field space
Decode: position reconstruction	19.98	GMM search + LBFGS refinement
Decode: feature recovery	0.57	atom-type / feature Gram solve
Decode total	20.8	full CORDS decoding
End-to-end total	79.6	sampling + decoding

Discussion. Encoding is used only during training and contributes less than 1% of the per-step wall-clock time relative to the diffusion backbone. Decoding is used only during sampling and adds a moderate overhead: on QM9 the CORDS decoding time is on the same order as a single pass of the generative network, with position refinement currently dominating this cost. Our prototype implementation does not yet fully vectorize the position fitting; we expect a further order-of-magnitude speedup from optimizing this step in the public release. Overall, for small molecules (QM9) and medium-sized drug-like molecules (GeomDrugs), the additional overhead of CORDS remains practical, while applications to very large macromolecules would require additional engineering and are left for future work.

1306 PSEUDOCODE (EDM TRAINING, SAMPLING, DECODING)

```

1307 # --- Encode : atoms -> fields, sample M points ---
1308 def rasterize_and_sample(atoms):
1309     rho, h = make_fields(atoms, kernel=gaussian(sigma))
1310     r_i ~ q(r) rho(r) # importance sampling
1311     dens = log(rho(r_i)) if use_log_rho else rho(r_i)
1312     coords = r_i / norm_coords
1313     feats = h(r_i) / norm_feats
1314     dens = dens / norm_rho
1315     return coords, stack([dens, feats], -1) # [B,M,3], [B,M,1+C]
1316
1317 # --- EDM training ---
1318 for batch in loader:
1319     coords, feats = rasterize_and_sample(batch)
1320     sigma = exp(P_mean + P_std * randn([B,1])) # per-molecule noise
1321     pos_noisy = center(coords) + sigma * randn_like(coords)
1322     dens_noisy = feats[..., :1] + sigma * randn_like(feats[..., :1])
1323     h_noisy = feats[..., 1:] + sigma * randn_like(feats[..., 1:])
1324     x_noisy = concat([dens_noisy, h_noisy], -1)
1325
1326     # preconditioning
1327     c_skip, c_in, c_out = edm_scalings(sigma, sigma_data=(_c, _r, _f))
1328     pos_in, x_in = c_in * pos_noisy, c_in * x_noisy
1329     dpos, dx = FieldModel(pos_in, x_in, graph=radius_graph(pos_in) if
1330     mp>0 else None)
1331     pos_hat = c_skip * pos_noisy + c_out * (pos_in - dpos)
1332     x_hat = c_skip * x_noisy + c_out * (x_in - dx)
1333
1334     # weighted losses
1335     L = _coords * mse_w(pos_hat, center(coords), w_c(, _c)) \
1336         + _rho * mse_w(x_hat[:, :1], feats[:, :1], w_r(, _r)) \
1337         + _feats * mse_w(x_hat[:, 1:], feats[:, 1:], w_f(, _f))
1338     if _mass>0: L += _mass * (mass(x_hat[:, :1]) - mass(feats[:, :1]))**2
1339     L.backward(); opt.step(); opt.zero_grad()
1340
1341 # --- Sampling (EulerMaruyama + Karras ladder) ---
1342 x, pos = randn([B,M,1+C]), randn([B,M,3]); pos = center(pos)
1343 for t_cur, t_next in karras_schedule(_max, _min, K):
1344     x_hat, pos_hat = churn(x, pos, t_cur, S_churn, S_noise)
1345     x_d, p_d = FieldModel(c_in(t_hat)*pos_hat, c_in(t_hat)*x_hat)
1346     dx = (x_hat - x_d) / t_hat; dp = (pos_hat - p_d) / t_hat
1347     x, pos = heun_update(x, pos, dx, dp, t_cur, t_next)
1348     if mp>0: graph = radius_graph(pos)
1349     pos = center(pos)
1350
1351 # --- Decode (for metrics only) ---
1352 N_hat = integral_of_density(x[:, :1]) # count from mass
1353 t0 = fit_kernel_centers(r=pos, rho=x[:, :1], K=N_hat)
1354 features = gram_projection(h=x[:, 1:], centers=t0)
1355
1356 And the FieldModel in the previous code is based on Erwin, and can be summarized as follows:

```

And the FieldModel in the previous code is based on Erwin, and can be summarized as follows.

--- FieldModel / Erwin block ---

```

1350 # Inputs: pos [B,M,3], feats [B,M,1+C], sigma [B,1], batch [B*M], cond
1351 [B,K] or [B*M,K]
1352 # Outputs: dpos [B,M,3], dfeat [B,M,1+C]
1353
1354 def fieldformer_step(pos, feats, sigma, *, batch, cond=None):
1355     # 1) embedding (log scaled)
1356     log_sigma = log(sigma) / 4.0
1357     log_sigma_nodes = broadcast_to_nodes(log_sigma, batch)    # [B*M, 1]
1358
1359     # 2) Encode sampled points
1360     z_pos      = RFF(pos.view(-1, 3))                                # coords
1361     z_feat     = FeatMLP(feats.view(-1, 1+C))                         # fields
1362     z_sigma    = SigmaEmbed(log_sigma_nodes)                            #
1363     if cond is not None:
1364         z_cond = ConditionEmbed(broadcast_cond(cond, batch))
1365         z_in   = concat([z_pos, z_feat, z_sigma, z_cond], -1)
1366     else:
1367         z_in   = concat([z_pos, z_feat, z_sigma], -1)
1368
1369     # 3) Fuse encodings
1370     h0 = Linear(z_in, out_dim=H)
1371
1372     # 4) FiLM modulation by
1373     h0 = SigmaFiLM(H)(h0, log_sigma_nodes)
1374
1375     # 5) Erwin/Transformer trunk over field points
1376     h   = main_model(h0, node_positions=pos.view(-1,3), batch_idx=batch)
1377
1378     # 6) Prediction head per-point residuals
1379     y   = PredHead(h)
1380     dpos, dfeat = split(y, sizes=(3, 1+C), dim=-1)
1381
1382     # 7) Reshape back
1383     return dpos.view(B,M,3), dfeat.view(B,M,1+C)
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

```

C.3 OBJECT DETECTION (MULTIMNIST)

Goal and idea. We compare three detectors that differ only in *representation principle* while keeping capacity and engineering comparable: (i) a **field-based (CORDS)** detector that predicts aligned continuous fields (§3), (ii) a **YOLO-like** anchor-free detector (stride 8), and (iii) a **DETR-like** query-based detector. The YOLO/DETR baselines are deliberately *minimal* (no large-scale tricks or post-hoc stabilizers) so that the comparison focuses on the core ideas: density mass for counting (CORDS), cell-wise anchors (YOLO), and slot/query capacity (DETR).

Dataset and splits. We use an on-the-fly MULTIMNIST generator (black background, no extra augmentations). Each image is 128×128 , with a uniformly sampled number of digits per image. Digits are randomly rotated ($\pm 25^\circ$) and rescaled to a side length in $[18, 42]$ pixels and pasted on the canvas with a small border margin. The training range is $N \in [1, N_{\max}]$ with $N_{\max}=15$. We report (i) in-distribution (ID) metrics on held-out images with at most N_{\max} objects, and (ii) an OOD split with exactly $N_{\max}+1$ objects to probe robustness to *variable cardinality*.

Targets and what the models predict. A scene is a set of discrete objects (bounding boxes of digits). Each instance is (x, y, w, h, c) with center $(x, y) \in \mathbb{R}^2$, size (w, h) , and class $c \in \{0, \dots, 9\}$. CORDS encodes this set into fields on the image plane: $\rho(\mathbf{r})$ (density), $\rho(\mathbf{r}) \pi_k(\mathbf{r})$ (per-class mass channels), and $\rho(\mathbf{r}) \mu(\mathbf{r}) \in \mathbb{R}^2$ (size mass). The YOLO/DETR baselines predict class probabilities, boxes, and objectness/no-object in their usual forms.

Training objective (shared outline). All models are trained from RGB images (standard mean/std normalization) to their respective targets. For CORDS we minimize a pixel-/sample-wise MSE on the field channels plus a mass-based count penalty (as in the main paper):

$$\mathcal{L} = \mathcal{L}_{\text{MSE}}(\rho, \rho\pi, \rho\mu) + \lambda (\hat{N} - N)^2, \quad \hat{N} = \int \rho(x, y) dx dy.$$

(The model learns to make \hat{N} an accurate, *differentiable* count.) For YOLO we use objectness BCE, class CE (positives), and box L1+GIoU. For DETR we use the standard Hungarian matching with class CE (with a no-object weight), L1 on boxes, and GIoU.

Loss weights and count calibration. For the CORDS detector we use simple, lightly tuned loss weights that emphasize localization and box size, while the count term gently calibrates the mass of the density field:

$$w_{\text{cls}} = 1, \quad w_{\rho} = 4, \quad w_{\text{size}} = 10, \quad w_{\text{count}} = 0.05.$$

The density and size channels carry most of the supervision signal for detection accuracy, so we weight them higher. The count term is intentionally small so that it corrects systematic over- or under-counting without dominating the pixel-wise loss; these values were chosen once to balance gradient magnitudes rather than through extensive tuning.

Backbones and heads (capacity parity). We keep capacities comparable (≈ 8 M parameters total) by adjusting base widths:

- **CORDS fields:** a light ConvNeXt-like FPN (stride 8 feature map; full-resolution output), head predicts $1+K+2$ channels: $\rho, \rho\pi_{1:K}, \rho\mu$ (with $\mu \in [0, 1]^2$). We also implement a tiny UNet head; both behave similarly.
- **YOLO-like:** a stride-8 CNN/ConvNeXt-lite backbone feeding a minimal anchor-free head that regresses cell-relative (c_x, c_y, w, h) and predicts objectness and K -way class logits.
- **DETR-like:** a small CNN/ConvNeXt-lite backbone ($H/8$ or $H/16$ stride) followed by a 3-layer Transformer encoder and 3-layer decoder with $T = N_{\text{max}}$ learned queries; heads predict $K+1$ class logits (incl. no-object) and a normalized box via a 3-layer MLP.

How counting differs. DETR is *slot-limited* (at most T outputs). YOLO is *grid-limited* but flexible in count after NMS. CORDS learns \hat{N} from the *mass* of ρ , so increasing scene density produces larger $\int \rho$ without architectural changes; decoding scales seamlessly to OOD counts.

CORDS (FIELDS) MODEL: FORWARD, TRAINING, AND DECODING

Forward prediction. The fields head outputs unnormalized logits which are mapped as $\rho = \text{softplus}(\cdot)$, $\pi = \text{softmax}(\cdot)$, $\mu = \sigma(\cdot)$, and then $[\rho, \rho\pi, \rho\mu]$.

Training with Monte Carlo supervision. We train against *sparsely sampled* field targets built on-the-fly to avoid full-image integrals. For each image we draw $S=4096$ points $\{\mathbf{r}_s\}$ as a mixture of uniform and importance sampling (fraction $p_{\text{imp}}=0.6$); we evaluate the analytic $\rho, \rho\pi, \rho\mu$ at those points and regress with an MSE weighted by MC weights w_s (optionally unbiased). This is a practical implementation of the integrals used for feature inversion in §3: uniform sampling corresponds to constant w_s , while importance sampling uses $w_s \propto 1/q(\mathbf{r}_s)$ with q proportional to a kernel mixture around object centers (see code).

Decoding at test time. We decode with a simple seed-and-refine routine operating on the predicted fields (no heavy post-processing). In brief: (1) compute per-class mass maps $\rho\pi_k$; (2) infer how many seeds to extract either per-class or globally from $\sum \rho$; (3) take local maxima (optionally subpixel refinement); (4) read μ (size) and π (class) at seed locations; (5) score seeds by $\text{conf} = \pi_k \cdot (1 - \exp(-\rho_{\text{peak}}))$ and apply NMS. A fixed `per_image_topk` cap ($= N_{\text{max}}$) is used for fairness.

```
1453
1454 def fields_forward(x):
1455     feat = backbone_convnext_fpn(x)                      # [B, C, H/8, W/8] -> FPN
1456     -> [B, C, H, W]
1457     logits = head_1x1(feat)                            # [B, 1+K+2, H, W]
1458     rho = softplus(logits[:, :, :1])                   # density >= 0
1459     pi  = softmax(logits[:, :, 1:1+K], dim=1)          # per-class probs
```

```

1458     mu = sigmoid(logits[:, 1+K:1+K+2])           # size in [0,1]^2
1459     return torch.cat([rho, rho*pi, rho*mu], dim=1)
1460
1461 def fields_decode(maps, K, H, W, alpha=1.0, nms_iou=0.5, topk=15):
1462     rho, cls_mass, size_mass = split(maps)          # [1], [K], [2]
1463     pi = normalize(cls_mass, by=rho)               # pi = cls_mass / rho
1464     mu = clamp(size_mass / rho, 0, 1)
1465     # how many per class? use density mass:
1466     Nk = round(alpha * (rho[None,:,:] * pi).sum((-2,-1)))  # [K]
1467     dets = []
1468     for k in range(K):
1469         seeds = topk_local_maxima((rho*pi[k]).squeeze(0), Nk[k])
1470         # optional subpixel refine (soft-argmax in a small window)
1471         wh = bilinear_sample(mu, seeds)
1472         conf = bilinear_sample(pi[k], seeds) * (1 -
1473             exp(-bilinear_sample(rho[0], seeds)))
1474         boxes = seeds_to_xyxy(seeds, wh, H, W)
1475         dets += nms_select(boxes, conf, class_id=k, iou=nms_iou)
1476     return prune_topk(dets, topk)
1477
1478
1479
1480 YOLO-LIKE BASELINE (ANCHOR-FREE, STRIDE 8)
1481
1482
1483 Backbone/head and parameterization. A tiny CNN or ConvNeXt-lite backbone produces a
1484 stride-8 feature map. The head predicts for each cell: objectness, class logits over  $K$  digits, and
1485 a cell-relative box  $(c_x, c_y, w, h)$  with
1486
1487 
$$c_x = \frac{g_x + \sigma(t_x)}{W_s}, \quad c_y = \frac{g_y + \sigma(t_y)}{H_s}, \quad w = \sigma(t_w)^2, \quad h = \sigma(t_h)^2,$$

1488 where  $(g_x, g_y)$  is the integer cell coordinate and  $H_s, W_s$  are stride-8 sizes. This prevents “teleporting”
1489 “boxes from distant cells.
1490
1491 Assignment and loss. We assign each GT to its nearest cell (or the  $k$  nearest;  $k = 1$  by default).
1492 Losses:  $\mathcal{L}_{\text{obj}} = \text{BCEWithLogits}$  on all cells with negative down-weight,  $\mathcal{L}_{\text{cls}} = \text{CE}$  on positives
1493 (optional label smoothing),  $\mathcal{L}_{\text{box}} = \text{L1}$  on  $(c_x, c_y, w, h)$  + GIoU in pixels.
1494
1495 Eval. Scores are  $\text{obj} \cdot \max_k p_k$ . We apply NMS (class-agnostic or per-class) and cap to
1496 per-image_topk.
1497
1498
1499 def yolo_forward(x):
1500     f = backbone_stride8(x)                      # [B, C, Hs, Ws]
1501     logits_cls, logits_obj, t_box = head(f)        # [B, K, Hs, Ws],
1502     [B, 1, Hs, Ws], [B, 4, Hs, Ws]
1503     cx, cy, w, h = decode_cell_relative(t_box)    # normalized to [0, 1]
1504     return dict(cls_logits=flatten(logits_cls),
1505     obj_logits=flatten(logits_obj),
1506     pred_boxes=flatten(stack([cx, cy, w, h])))
1507
1508 def yolo_decode(out, H, W, conf_thr=0.25, nms_iou=0.4, topk=15):
1509     prob = softmax(out["cls_logits"], dim=-1)        # [B, N, K]
1510     obj = sigmoid(out["obj_logits"])                 # [B, N]
1511     scores, labels = prob.max(-1)                   # [B, N], [B, N]
1512     score = obj * scores
1513     boxes_xyxy = cxcywh_to_xyxy_norm(out["pred_boxes"]) *
1514     [W-1, H-1, W-1, H-1]
1515     keep = score >= conf_thr
1516     dets = nms_per_class_or_agnostic(boxes_xyxy, score, labels,
1517     iou=nms_iou)
1518     return prune_topk(dets, topk)
1519
1520
1521

```

1512 **DETR-LIKE BASELINE (MINIMAL)**

1513

1514

1515 **Backbone/transformer.** A compact backbone produces a d -dimensional feature map, augmented
1516 with coordinate channels and sine positional encodings. A 3-layer encoder and 3-layer decoder
1517 operate on T learned queries. We set $T = N_{\max}$ to reflect a “budget” comparable to the other
1518 models.

1519

1520 **Matching, loss, and eval.** Hungarian assignment (SciPy) is used to match predictions to GT; if
1521 SciPy is unavailable a greedy fallback is used. Losses: class CE with a reduced weight for the no-
1522 object class, L1 on boxes (in (c_x, c_y, w, h)), and GIoU in pixels. At inference we compute scores as
1523 $\text{score} = (1 - p_{\text{noobj}}) \cdot \max_k p(c=k)$, optionally apply NMS, and cap to `per_image_topk`.

1524 **def** `detr_forward(x):`
1525 `f = backbone(x)` # $[B, C, Hs, Ws]$
1526 `pos = sine_posenc(f); coord = coord_channels(f)`
1527 `src = project(cat([f, coord])) + pos` # $[B, C, Hs, Ws]$
1528 `S, B, C = (Hs*Ws), x.size(0), src.size(1)`
1529 `mem = encoder(flatten(src) + flatten(pos))` # $[S, B, C]$
1530 `tgt = zeros(T, B, C); qpos = query_embed(T, B, C)`
1531 `hs = decoder(tgt + qpos, mem + flatten(pos))` # $[T, B, C]$
1532 `return dict(pred_logits=class_head(hs),`
1533 `pred_boxes=sigmoid(box_mlp(hs)))`

1534 **def** `detr_decode(out, H, W, conf_thr=0.4, nms_iou=0.6, topk=15):`
1535 `prob = softmax(out["pred_logits"], dim=-1)` # $[..., K+1]$
1536 `p_no = prob[..., K]; p_cls, labels = prob[..., :K].max(-1)`
1537 `score = (1.0 - p_no) * p_cls`
1538 `boxes_xyxy = cxcywh_to_xyxy_norm(out["pred_boxes"]) *`
1539 `[W-1, H-1, W-1, H-1]`
1540 `keep = score >= conf_thr`
1541 `dets = optional_nms(boxes_xyxy, score, labels, iou=nms_iou)`
1542 `return prune_topk(dets, topk)`

1543

1544 **HYPERPARAMETERS AND FAIRNESS GUARD**

1545

1546 **Common.** Image size 128×128 ; classes $K=10$; $N_{\max}=15$. Optimizer AdamW (lr 1×10^{-4} ,
1547 weight decay 5×10^{-4}), batch size 128, 200 epochs. We cap detections to `per_image_topk=15` in
1548 *all* methods and allow optional class-agnostic NMS for fairness.

1549

1550 **CORDS (fields).** Backbone: Light ConvNeXt-FPN (stride 8). Head width “base” = 64 (chosen so
1551 the total params \approx YOLO/DETR). Density activation: softplus (or softplus0) to ensure $\rho \geq$
1552 0. Sampling: $S=4096$ points/image with importance fraction $p_{\text{imp}}=0.6$; Gaussian kernel bandwidth
1553 $\sigma_{\text{norm}}=0.02$ (fraction of $\min\{H, W\}$). Training loss weights: $w_{\rho}=4$, $w_{\text{cls}}=1$, $w_{\text{size}}=2$. Optional
1554 weak count supervision on a random fraction of the batch (weight $w_{\text{count}}=0.5$; off by default). At
1555 decode: `seed_radius=0.03`, `decode_alpha=1.0`, NMS IoU = 1.0 (disabled unless stated),
1556 and `per_image_topk=15`. We rescale training fields by a constant R for numerical stability
1557 (`rho_rescale=10.0`) and undo it before decoding and metrics.

1558 **YOLO-like.** Backbone: tiny CNN or ConvNeXt-lite to stride 8 feature map with $d_{\text{model}}=256$. Loss
1559 weights: $w_{\text{obj}}=1$, $w_{\text{cls}}=1$, $w_{\text{box-L1}}=2$, $w_{\text{GIOU}}=2$. No-object down-weight = 0.5. Label smoothing
1560 = 0.0 (unless specified). Assignment: center cell (or k -nearest cells with $k=1$ by default). Inference:
1561 confidence threshold 0.25; NMS IoU 0.40; optional class-agnostic NMS; `per_image_topk=15`.

1562

1563 **DETR-like.** Backbone: tiny CNN or ConvNeXt-FPN; Transformer $d=256$, $n_{\text{heads}}=8$,
1564 $\# \text{enc}/\text{dec}$ layers = 3/3, FFN 1024. Queries $T = N_{\max}$ unless noted. Loss weights: class 1.0
1565 (no-object coefficient 0.5), L_1 on boxes 5.0, GIoU 2.0. Eval: $\text{score} = (1 - p_{\text{noobj}}) \cdot \max_k p_k$;
threshold 0.40; optional NMS with IoU 0.60; `per_image_topk=15`.

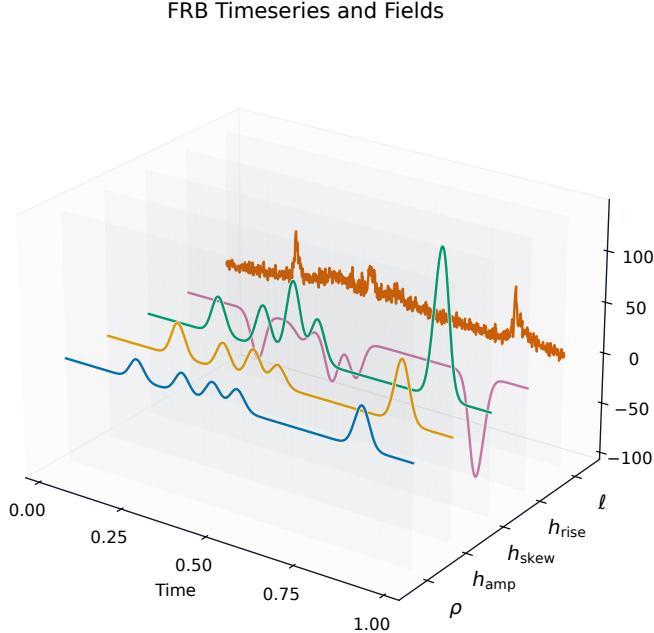
1566 **Metrics.** We report AP at IoU 0.50, 0.75, 0.90, the mean over [0.50:0.95] in steps of 0.05
 1567 (mAP_{50:95}), and a headline mAP_{50:75}. *Count MAE* is $|\#preds - \#GT|$ averaged over images,
 1568 where $\#preds$ is (i) $\int \rho$ for CORDS and (ii) the number of post-NMS detections for YOLO/DETR
 1569 (both capped to `per_image_topk` for fairness).
 1570

1571 **OOD protocol.** For the OOD split we set the test cardinality to $N=N_{\max}+1$. Query-based models
 1572 necessarily under-count when $T < N$. In contrast, the field-based model increases $\int \rho$ naturally with
 1573 scene density and decodes with the same routine, without changing the network or its capacity.
 1574

1575 **C.4 SIMULATION-BASED INFERENCE FOR FRBS (IMPLEMENTATION)**
 1576

1577 **Problem setting.** We consider 1D photon-count light curves with Poisson noise generated
 1578 by a variable number of transient components (FRB bursts). Each component is parameter-
 1579 ized by onset time t_0 , amplitude A , rise time τ_{rise} , and skewness skew. The latent cardinal-
 1580 ity N is unknown and changes per observation. Our goal is amortized posterior inference
 1581 $p(\{(t_{0,u}, A_u, \tau_u, \text{skew}_u)\}_{u=1}^N \mid \ell)$.
 1582

1583 **Representation.** As in CORDS, we map sets of components to continuous *fields* on the time axis
 1584 $t \in [0, 1]$: a density $\rho(t)$ that places unit mass around each t_0 , and a feature field $\mathbf{h}(t)$ that carries
 1585 the remaining parameters over the same support. We show this in Figure 7 Practically, $\rho(t)$ and \mathbf{h} -
 1586 channels are built by convolving Dirac impulses with normalized Gaussians of bandwidths σ_ρ and
 1587 σ_{feat} , respectively, so that $\int \rho dt = N$ when evaluated continuously. We discretize on a uniform grid
 1588 of T points (here $T=1000$) and optionally downsample by average pooling to $T_{\text{eff}}=T/\text{downsample}$.
 1589



1612 Figure 7: An example of a lightcurve ℓ , and corresponding burst components encoded into density
 1613 and feature fields in the time domain.
 1614
 1615

1616 **Conditioning and model.** Given a light curve $\ell \in \mathbb{R}^T$, we standardize it (per-sample or us-
 1617 ing a precomputed global normalizer) and append it as a conditioning channel. The network is a
 1618 1D conditional residual stack (CondTemporalNet) with grouped norms, safe dilations, optional
 1619 lightweight self-attention, and a learned sinusoidal time embedding used by all residual blocks. The
 model maps *fields* + ℓ to *fields* (same channel count).

1620 **Flow matching objective (FMPE).** We use flow matching for SBI Dax et al. (2023). For each
 1621 training pair we sample $t \in (0, 1)$ (power-law schedule), form a noisy interpolation $f_t = \mu_t + \sigma_t \varepsilon$
 1622 with $\mu_t = t x_1$ and $\sigma_t = 1 - (1 - \sigma_{\min})t$ (here x_1 are target fields and $\varepsilon \sim \mathcal{N}(0, I)$), and supervise
 1623 the time-dependent velocity field u_t that transports f_t to x_1 :

$$1625 \quad u_t = \frac{x_1 - (1 - \sigma_{\min}) f_t}{1 - (1 - \sigma_{\min}) t}, \quad \mathcal{L}_{\text{FMPE}} = \|v_\theta(f_t, \ell, t) - u_t\|_2^2.$$

1627 This yields an amortized posterior over fields $p(\rho, \mathbf{h} \mid \ell)$. We also maintain an optional EMA of
 1628 parameters for stable sampling.

1630 **Decoding back to components (Ψ).** Given predicted fields on the grid:

- 1632 **Cardinality \hat{N} .** Estimate $\hat{N} = \text{round}(\Delta t \sum_i \rho(t_i))$, where Δt is the grid spacing. Because
 1633 ρ comes from a smooth network and finite grids, the sum is rarely an integer; we round to the
 1634 nearest integer (± 0.5 rule). This gives the number of kernels to fit next.
- 1635 **Onset times t_0 .** Extract \hat{N} seeds by greedy NMS on ρ with a minimum separation of roughly
 1636 $2\sigma_\rho$ (in pixels/time-steps), refine each seed by a quadratic sub-pixel step, and finally run a short
 1637 LBFGS that minimizes $\|\sum_u \kappa(\cdot - t_{0,u}) - \rho\|_2^2$ w.r.t. $\{t_{0,u}\}$, with κ the normalized Gaussian used
 1638 in Φ .
- 1639 **Features $(A, \tau_{\text{rise}}, \text{skew})$.** Solve the *weighted normal equations* (Gram projection) $GX = B$
 1640 with $G_{uv} = \sum_i w_i \kappa(t_i - t_{0,u}) \kappa(t_i - t_{0,v})$, $B_{u:} = \sum_i w_i \kappa(t_i - t_{0,u}) \mathbf{H}(t_i)^\top$, where \mathbf{H} stacks
 1641 the feature channels of \mathbf{h} and w_i are quadrature/MC weights. On a uniform grid, $w_i = \Delta t$
 1642 (constant); with importance sampling, $w_i = \frac{1}{S q(t_i)}$ are standard unbiased MC weights. We add
 1643 a small Tikhonov term to G and solve for X .

1645 **Posterior use at test time.** To estimate $p(N \mid \ell)$ we sample many fields from the learned
 1646 flow, decode each to \hat{N} , and histogram the outcomes. For predictive curves (Fig. 4) we decode
 1647 each sample to parameters, render a Poisson rate curve via the FRB generator, and aggregate
 1648 (median and quantiles). For corner plots we restrict to samples where \hat{N} equals the ground-
 1649 truth count, align components by nearest-onset in 1D, and visualize the empirical posterior over
 1650 aligned parameters.

1651 **PSEUDOCODE (TRAINING, SAMPLING, DECODING)**

```

1653 # --- Encode : set -> 1D fields ---
1654 def encode_fields(params, time, sigma_rho, sigma_feat):
1655     # rho(t) = N(t; t0,); h_k(t) = _k N(t; t0, f)
1656     rho, H = 0, []
1657     for u in range(N_max):
1658         m = params.active_mask[u]                                # 0/1
1659         k_r = gauss(time - params.t0[u], sigma_rho)
1660         k_f = gauss(time - params.t0[u], sigma_feat)
1661         rho += m * k_r
1662         feats_u = stack([params.ampF[u], params.riseF[u],
1663                         params.skew[u]])
1664         H.append(m * feats_u * k_f)
1665     H = sum(H)                                              # [3, T]
1666     return stack([rho, H[0], H[1], H[2]], axis=0)           # [C, T]

1667 # --- FMPE training step ---
1668 def fmpe_step(model, fields_tgt, lightcurve, sigma_min, alpha_t):
1669     B, C, T = fields_tgt.shape
1670     t = sample_power(alpha=alpha_t, shape=[B])                # (0, 1)
1671     t_ = t[:, None, None]
1672     mu_t = t_ * fields_tgt
1673     sigma_t = 1.0 - (1.0 - sigma_min) * t_
1674     eps = randn_like(fields_tgt)
1675     f_t = mu_t + sigma_t * eps
1676     u_t = (fields_tgt - (1.0 - sigma_min) * f_t) / (1.0 - (1.0 -
sigma_min) * t_)
```

```

1674     v_hat = model(f_t, cond=standardize(lightcurve), time=t *
1675     (T_time_embed-1))
1676     return mse(v_hat, u_t)
1677
1678     # --- Sampling + decode ---
1679     def sample_and_decode(model, lightcurve, S, ode_steps, cfg):
1680         cond = standardize(lightcurve) [None, None, :]           # [1, 1, T_eff]
1681         F = integrate_ode(model, f0=randn([S, C, T_eff]),
1682         cond=cond.repeat(S, 1, 1),
1683                     steps=ode_steps)
1684         Ns, t0s, Xs = [], [], []
1685         for s in range(S):
1686             rho = clamp_min(F[s, 0], 0)
1687             N_hat = round(delta_t * rho.sum())                      # mass -> count
1688             seeds = nms_on_1d(rho, K=N_hat, min_sep=2*sigma_rho/delta_t)
1689             t0_ref = lbfbs_refine(seeds, rho, sigma_rho)
1690             X = solve_weighted_gram(time, H=F[s, 1:4], t0=t0_ref,
1691                         sigma_feat=sigma_feat, w=delta_t)
1692             Ns.append(N_hat); t0s.append(t0_ref); Xs.append(X)
1693
1694     return Ns, t0s, Xs

```

ARCHITECTURAL DETAILS

Temporal backbone (CondTemporalNet). A 1D conv stack with grouped norms and residual connections; dilations grow geometrically but are capped by the effective signal length to keep reflect padding valid. Optional squeeze–excite improves channel calibration. Self-attention blocks can be inserted at chosen depths. Inputs are $[\text{fields}, \ell]$ (concatenated along channels), outputs are residual updates in field space (same channel count).

1700 Channels. We use $C=4$ channels by default: ρ , h_{amp} , h_{rise} , h_{skew} . The amplitude and rise
1701 channels are logarithmic by default (base-10); an optional h_{t_0} channel can be added.

1703 **Normalization.** Either per-sample standardization (zero mean, unit variance per sequence) or
1704 a global normalizer estimated over a large pool of simulated field tensors (per-channel mean-/
1705 variance). The light-curve condition is always standardized.

HYPERPARAMETERS (USED IN ALL REPORTED FRB RESULTS)

- **Simulator.** $T=1000$ points, background $y_{\text{bkg}}=5$. $N_{\text{max}}=6$ (during training, $N \sim \text{Unif}\{1, \dots, N_{\text{max}}\}$). Priors: $t_0 \sim \text{Unif}(0.2, 0.8)$, $\log_{10} A \sim \text{Unif}(1, 2.477)$, $\log_{10} \tau_{\text{rise}} \sim \text{Unif}(-3, -0.222)$, $\text{skew} \sim \text{Unif}(1, 6)$.
- **Fields.** $\sigma_\rho=0.01$, $\sigma_{\text{feat}}=0.015$ (on $[0, 1]$); optional downsample factor $\in \{1, 2, \dots\}$.
- **Model.** Base channels 192–384 (we use 192 for the main runs), 8–12 residual blocks, dilation base 2, group norm with 8 groups, optional SE (reduction 8), optional attention heads = 8 at a few blocks.
- **FMPE.** $\sigma_{\text{min}}=0.01$, $t \sim \text{power}(\alpha_t=0)$ (uniform), ODE steps = 250 for sampling, init Gaussian scale = 1.0.
- **Optimization.** AdamW, lr 2×10^{-4} with cosine decay to 2×10^{-6} , batch size 128, grad-clip at 1.0, EMA decay 0.999 (activated after 1000 steps).
- **Posterior evaluation.** $S \in [200, 1024]$ samples per observation, mini-batches of size 32–64 for the sampler.

PRACTICAL NOTES AND DIAGNOSTICS

Counting and rounding. On a uniform grid, $\int \rho dt$ is approximated by $\Delta t \sum_i \rho(t_i)$. Because the encoder/decoder operate on smoothed fields and finite T , the sum is rarely exactly an integer. We round to the nearest integer (± 0.5 rule). This determines *how many kernels* we fit in the subsequent location/feature steps; without it we would not know how many components to decode.

1728
 1729 **Feature reconstruction and weights.** The Gram solve above is a discrete version of the in-
 1730 tegral equations in Appendix A. With a uniform grid the weights w_i equal Δt (constant). Under
 1731 importance sampling (not used in our FRB runs but supported by the decoder), the same equa-
 1732 tions hold with unbiased weights $w_i = 1/(S q(t_i))$. This is the practical Monte-Carlo imple-
 1733 mentation of the feature inversion integrals.

1734 **Peak finding and refinement.** We use greedy 1D NMS with a minimum separation propor-
 1735 tional to $2\sigma_\rho$ (conservative for overlapping kernels), then a one-step quadratic sub-pixel adjust-
 1736 ment on ρ , and finally a short LBFGS that directly minimizes the ρ reconstruction error w.r.t.
 1737 $\{t_0\}$.

1738 **Evaluation protocol.** For each observation we (i) sample posterior fields and decode to get
 1739 $p(N | \ell)$; (ii) produce predictive light-curve quantiles by rendering the generator at decoded
 1740 parameters; and (iii) make corner plots only for samples with \hat{N} matching the ground-truth N
 1741 (alignment by nearest t_0 on the line). We save panels, $p(N)$ histograms, median fields, and
 1742 CSV/NPZ dumps for offline analysis (see code paths under `FRB_results/`).
 1743

1744 **Ablations.** We implemented a DDPM objective for sanity but report *only* flow-matching
 1745 (FMPE) results in this work; switching to DDPM leaves the rest of the pipeline unchanged.
 1746

1747 MINIMAL END-TO-END SKETCH
 1748

```
1749 # --- Training (FMPE) ---
1750 for step in range(steps_per_epoch * epochs):
1751     y_counts, params, _ = simulator.sample_batch(B)
1752     fields = encode_fields(params, time,      , feat )           #
1753     fields_n = normalize(fields, mode=field_norm)
1754     y_n      = normalize(avg_pool(y_counts, downsample))
1755     loss = fmpe_step(model, fields_n, y_n, sigma_min=0.01, alpha_t=0.0)
1756     loss.backward(); clip_grad(1.0); opt.step(); opt.zero_grad()
1757     if use_ema: ema.update(model)

1758     # --- Posterior sampling for one observation ---
1759     with torch.no_grad():
1760         cond_y = normalize(avg_pool(y_obs, downsample))
1761         F_samples = fmpe_sample(ema_or_model, cond_y, steps=250) # integrate ODE
1762         Ns, t0s, Xs = [], [], []
1763         for F in F_samples:
1764             N_hat, t0_ref, X = decode_1d(F, time_eff,      , feat ) #
1765             Ns.append(N_hat); t0s.append(t0_ref); Xs.append(X)
1766     # p(N/  ), parameters
```

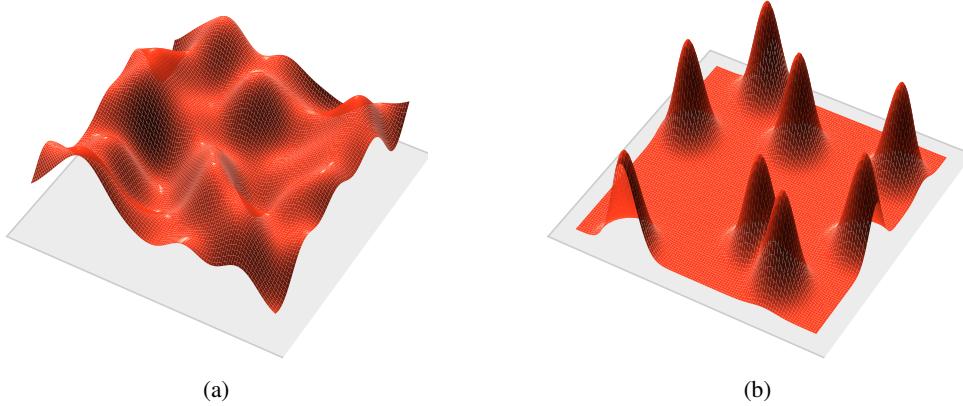
1767 D ADDITIONAL EXPERIMENTS
 1768

1769 D.1 PREDICTING VARIABLE NUMBER OF LOCAL MAXIMA

1770 To showcase a more general and abstract mathematical task, we consider detecting local maxima
 1771 of a scalar function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ from irregularly sampled observations. The number of peaks is
 1772 unknown and varies per sample, which poses challenges for models with fixed-size outputs. A
 1773 visualization of this problem can be seen in Figure 8.

1774 We can easily cast this problem into our framework, by treating local extrema of the function as
 1775 discrete objects, with positions corresponding to peak locations. Applying the CORDS encoding,
 1776 the set of local maxima is transformed into a continuous node density field. The model’s task is to
 1777 predict this field from irregular samples of f , after which the decoding recovers both the number
 1778 and coordinates of peaks. A prediction is labeled as *correct* if it recovers the exact number of
 1779 peaks, with each predicted peak lying within an ε -neighbourhood of its true position. Since
 1780 no straightforward baselines address this specific setup, our goal is not to outperform existing
 1781 methods, but to showcase how our framework naturally handles variable cardinality and infers
 structured information from sparse observations.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796



1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Figure 8: (a) Visualization of a two-dimensional input function as a surface plot. (b) The corresponding density field $\rho(x, y)$, obtained by interpreting the function's local extrema as discrete objects and applying the CORDS encoding.

We generate fully-annotated training examples by drawing a *single* realisation

$$f(\mathbf{r}) = \alpha \sqrt{\frac{2}{D}} \sum_{d=1}^D \cos(\mathbf{w}_d^\top \mathbf{r} + b_d), \quad \mathbf{r} \in [-3, 3]^2,$$

from a Gaussian process with squared-exponential kernel

$$k(\mathbf{r}, \mathbf{r}') = \alpha^2 \exp(-\|\mathbf{r} - \mathbf{r}'\|_2^2 / 2\ell^2)$$

approximated by $D = 150$ Random Fourier Features (RFF). Unless stated otherwise we use amplitude $\alpha = 1.5$ and length-scale $\ell = 0.9$.

Cosine envelope. To avoid pathological peaks on the domain boundary we multiply the raw field by a separable taper $E(\mathbf{r}) = e_x(x) e_y(y) \in [0, 1]$ with margin $m = 0.8$, where $e_x(x) = \frac{1}{2} [1 - \cos(\pi \text{clip}(|x| - (3 - m), 0, m) / m)]$ (and analogously for e_y). The envelope smoothly decays to 0 in a 0.8-wide frame, guaranteeing that all local maxima lie strictly inside the open square $(-3 + m, 3 - m)^2$.

Ground-truth peaks. We sample a 181×181 grid, apply the envelope, and locate peaks with `peak_local_max(threshold_rel = 0.05, min_distance = 3)`. For each example we keep at most $M = 50$ peaks, padding with zeros if $K < M$.

Training samples. From the same GP realisation we draw $P = 4096$ i.i.d. points $\{\mathbf{r}_i\}_{i=1}^P$ uniformly from the domain. Their coordinates, the scalar value $f(\mathbf{r}_i)$, and the list of peaks constitute one training instance. During optimisation we randomly subsample $K = 2048$ of the P points to form a mini-batch.

Validation splits. For robustness we evaluate on GP length-scales $\ell \in \{0.9, 1.1\}$, keeping the same envelope and amplitude.

Accuracy criterion. Given the set of predicted maxima $\hat{\mathcal{P}}$ and ground-truth maxima \mathcal{P} , we greedily assign each $\hat{p} \in \hat{\mathcal{P}}$ to its closest $p \in \mathcal{P}$. A sample is *correct* iff $|\hat{\mathcal{P}}| = |\mathcal{P}|$ and all assigned pairs satisfy

$$\|\hat{p} - p\|_2 \leq \varepsilon, \quad \varepsilon = \frac{\Delta_x}{T}, \quad \Delta_x = \max_t x_t - \min_t x_t, \quad T = 25.$$

with the default domain ($\Delta_x = 6$) this yields $\varepsilon = 0.24$.

Additional training details. All models were trained on a single NVIDIA A100 GPU using a batch size of 96. Each model took approximately 5 days to train across all experiments. We employed the AdamW optimizer with a learning rate of 5×10^{-5} , coupled with a cosine annealing schedule that reduced the learning rate to a minimum of 1×10^{-6} over the course of training.

1836 We observe slightly higher accuracy on the longer length scale $\ell = 1.1$, which we attribute to
 1837 the smoother underlying function having fewer local maxima. This setup intentionally evaluates
 1838 generalisation: the model is trained on high-frequency fields ($\ell = 0.9$) and tested on both the
 1839 same and smoother fields ($\ell = 1.1$) to assess robustness across varying levels of peak density.
 1840

ℓ	Accuracy (2048 points)
0.9	92.7%
1.1	94.2%

1845 **Table 4: Local Maxima Prediction Accuracy.** Accuracy of local maxima detection on different
 1846 GP length scales. The model was trained on $\ell = 0.9$ using 2048 sampled points per example.
 1847

1850 D.2 QM9 PROPERTY REGRESSION

1851 With CORDS, we predict molecular properties directly from the continuous field representation,
 1852 without decoding back to discrete molecular graphs. Since per-node features are not needed,
 1853 predictions are obtained by pooling the final representation produced by the Erwin model. We
 1854 compare CORDS against representative GNN baselines (e.g., DimeNet++, SEGNN) on standard
 1855 QM9 regression tasks. The aim here is not to surpass highly specialized architectures, but to show
 1856 that continuous field-based representations already achieve competitive performance in this well-
 1857 established domain. Results are reported in Table 5.
 1858

1859 **Resampling as a strong regularizer.** Molecules are encoded to fields, and we have two
 1860 options: either resample fields using importance sampling at each training step, or for each
 1861 molecule, evaluate sampled fields once and save them. To evaluate the role of sampling as a
 1862 form of regularization, we compared two variants of CORDS on QM9 regression: one in which
 1863 spatial evaluation points are resampled at each epoch (our default), and another in which the
 1864 field encoding is computed once per graph and fixed throughout training. As shown in Table 6,
 1865 disabling resampling leads to a dramatic increase in MAE across all targets, more than dou-
 1866 bling the error in most cases. This confirms that stochastic sampling during training acts as a
 1867 strong regularizer, promoting generalization by exposing the model to diverse field realizations.
 1868 Conceptually, this is consistent with the interpretation of the model as learning an underlying
 1869 continuous function that is only ever observed through a finite sampling process. Without re-
 1870 sampling, the model risks overfitting to a specific discretization. With resampling, however, we
 1871 gain robustness to spatial variation—enabling the use of large models (100M+ parameters) even
 1872 on small datasets like QM9. In Table 5 we show the results on all targets compared to other
 1873 baselines, with resampling at each training step.
 1874

1875 E EXTENSIVE RELATED WORK

1876 **Neural fields and continuous representations.** Neural fields, or implicit neural representa-
 1877 tions, model data as continuous functions of coordinates. Early works like DeepSDF (Park et al.,
 1878 2019), NeRF (Mildenhall et al., 2020), and SIREN (Sitzmann et al., 2020) established neu-
 1879 ral fields as flexible signal representations across 3D shapes and visual data. Building on this,
 1880 Functa and COIN++ (Dupont et al., 2022; 2023) explored generative modeling and cross-modal
 1881 compression via neural fields. More recently, Generative Neural Fields (You et al., 2023) and
 1882 Probabilistic Diffusion Fields (Zhuang et al., 2023) extended these ideas to scalable generative
 1883 modeling of continuous signals. Equivariant Neural Fields (ENFs) (Wessels et al., 2025) fur-
 1884 ther enhance neural fields with geometry-aware latent variables, enabling steerable, equivariant
 1885 representations that support fine-grained geometric reasoning and efficient weight-sharing.
 1886

1887 **Smoothed Fields in Computational Physics.** The formalism for continuous graph represen-
 1888 tations that we develop here bears similarities to classical methods in computational physics,
 1889 such as smoothed-particle hydrodynamics (SPH) and particle-in-cell (PIC) methods (Price, 2005;
 Rosswog, 2009). These approaches compute scalar, vector, or tensor fields by convolving parti-
 cles with smoothing kernels, typically for force computation and simulation tasks.

1890 Table 5: QM9 regression results across different models. Baseline results are adapted from (Gar-
 1891 cia Satorras et al., 2021; Bekkers et al., 2024).

Model	α	$\Delta\varepsilon$	ε_H	ε_L	μ	C_v
NMP	0.092	69	43	38	0.030	0.040
Schnet	0.235	63	41	34	0.033	0.033
Cormorant	0.085	61	34	38	0.038	0.026
L1Net	0.088	68	46	45	0.038	0.030
LieConv	0.084	49	30	25	0.032	0.038
DimeNet++*	0.044	33	25	20	0.030	0.030
TFN	0.223	58	40	38	0.064	0.104
SE(3)-Tr.	0.142	53	35	33	0.051	0.054
EGNN	0.071	48	29	25	0.029	0.031
PaiNN	0.045	45	27	20	0.012	0.024
SEGNN	0.060	42	24	21	0.023	0.031
CORDS	0.085	50	32	30	0.086	0.039

1907 **QM9 Regression results (CORDS only)**

Model	Resample	α	$\Delta\varepsilon$	ε_H	ε_L	μ	C_v
CORDS	✓	0.085	50	32	30	0.086	0.039
CORDS	✗	0.350	99	72	70	0.240	0.142
Δ (%)	–	+311.8%	+98.0%	+125.0%	+133.3%	+179.1%	+264.1%

1914 Table 6: Comparison of CORDS performance on QM9 regression with and without resampling of
 1915 evaluation points. The third row shows the relative increase in error when disabling resampling.

1918 LLM USAGE

1919 Large language models (LLMs) were used to revise sentences and correct grammar, to generate
 1920 visualization code for some figures, and to assist with the implementation of the MULTIMNIST
 1921 dataset and corresponding baseline methods. All conceptual contributions, experiment design,
 1922 analysis, and the writing of original content were carried out by the authors.