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ABSTRACT

Large Language Models (LLMs) are increasingly fine-tuned on smaller, domain-
specific datasets to improve downstream performance. These datasets often con-
tain proprietary or copyrighted material, raising the need for reliable safeguards
against unauthorized use. Existing membership inference attacks (MIAs) and
dataset-inference methods typically require access to internal signals such as log-
its, while current black-box approaches often rely on handcrafted prompts or a
clean reference dataset for calibration, both of which limit practical applicabil-
ity. Watermarking is a promising alternative, but prior techniques can degrade
text quality or reduce task performance. We propose TRACE, a practical frame-
work for fully black-box detection of copyrighted dataset usage in LLM fine-
tuning. TRACE rewrites datasets with distortion-free watermarks guided by a pri-
vate key, ensuring both text quality and downstream utility. At detection time,
we exploit the radioactivity effect of fine-tuning on watermarked data and in-
troduce an entropy-gated procedure that selectively scores high-uncertainty to-
kens, substantially amplifying detection power. Across diverse datasets and model
families, TRACE consistently achieves significant detections (p < 0.05), of-
ten with extremely strong statistical evidence. Furthermore, it supports multi-
dataset attribution and remains robust even after continued pretraining on large
non-watermarked corpora. These results establish TRACE as a practical route to
reliable black-box verification of copyrighted dataset usage.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong performance across real-world appli-
cations, from conversational agents (Thoppilan et al. (2022)) and educational tutoring (Wang et al.
(2024)) to medical support (Thirunavukarasu et al. (2023)). Their capabilities stem from pre-training
on massive text corpora (Hoffmann et al. (2022)) and, crucially for real deployments, from sub-
sequent fine-tuning on smaller, domain-specific datasets curated by enterprises or individual re-
searchers (Wei et al. (2021)). Because such corpora often carry copyright and contractual restric-
tions, and are typically smaller, carefully curated, and controlled by a single rights holder, potential
infringement is especially acute. This underscores the pressing need for verifiable safeguards against
unauthorized use (Henderson et al. (2023); Carlini et al. (2021)).

Recent lawsuits against leading AI developers, including OpenAI and Meta, highlight mounting
concerns over the unlicensed use of copyrighted material in model training (Reuters (2023b;a); Al-
ter & Harris (2023)). At the same time, commercial models have become increasingly opaque about
the composition of their training and adaptation corpora, leaving external observers with little vis-
ibility into what data has actually been incorporated (Achiam et al. (2023); Dubey et al. (2024)).
Together, these developments underscore the urgency of methods that allow rights holders to in-
dependently verify whether their datasets have been used in fine-tuning, thereby enabling dataset
copyright protection.

A widely studied approach for detecting training data usage is Membership Inference Attacks
(MIAs), which test whether a given sample was part of a model’s training set (Shokri et al. (2017)).
Existing MIAs can be categorized as white-box, grey-box, or black-box, depending on whether
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the detector has full access to model parameters, partial access to intermediate signals such as to-
ken probabilities, or only input–output behavior. Likelihood-based methods such as Min-K% (Shi
et al. (2023)) exploit token logits under white- or grey-box settings, but such information is rarely
available in practice. More recent work on dataset-level inference (Maini et al. (2024)) aggregates
multiple MIA scores into a hypothesis test, yet still relies on access to logits and auxiliary non-
member data, which limits real-world applicability. Consequently, black-box detection is the most
realistic setting. However, current black-box methods typically depend on prompt engineering to
elicit verbatim recall of training examples (Karamolegkou et al. (2023); Chang et al. (2023)). For
example, DE-COP (Karamolegkou et al. (2023)) reformulates copyright detection as a multiple-
choice task over book corpora, but it relies on a clean reference dataset for calibration, which is
often impractical.

To determine whether a specific dataset has been used to fine-tune an LLM under a black-box setting,
a natural approach is to embed watermarks—imperceptible signals inserted into the training text that
later serve as indicators of dataset usage (Lau et al. (2024); Wei et al. (2024); Rastogi et al. (2025)).
For example, Wei et al. (2024) inserts random sequences or Unicode lookalikes that are invisible to
humans but recognizable by the model. However, existing watermarking techniques often degrade
text quality or reduce downstream task performance, which limits their practical applicability to
LLMs.

To address these limitations, we propose TRACE (Tracing watermarked Rewriting for Attribution
via Cut-off Entropy), a novel framework for statistical verification of dataset usage in black-box
LLM fine-tuning scenarios. Unlike prior watermarking techniques that compromise utility, TRACE
generates distortion-free watermarked rewrites of the training corpus using a private key, ensuring
that both text quality and downstream task performance are preserved. The watermarked datasets are
then released publicly, so that any rights holder can later detect a suspect model. During detection,
we build on the insight that fine-tuning on watermarked data induces measurable radioactivity in
model outputs, and we amplify this effect by selecting high-entropy tokens through an entropy-
gated procedure. If we can detect the watermark signal from model outputs using the corresponding
key in a statistically significant way, it gives us strong evidence that the model has been fine-tuned
on the protected dataset.

Our main contributions are as follows:

• We present TRACE, a novel framework for fully black-box detection of dataset usage in
LLM fine-tuning. TRACE requires only model input–output interactions, without access to
logits or internal parameters.

• We develop an entropy-gated detection procedure that selectively scores high-uncertainty
tokens in model outputs, substantially amplifying watermark radioactivity and yielding
orders-of-magnitude stronger statistical evidence than existing baselines.

• We show that distortion-free watermarking via rewriting preserves both text quality and
downstream utility. Across diverse models and datasets, TRACE consistently achieves
highly significant detections (p < 0.05), often with overwhelming evidence.

• We further evaluate robustness in extended scenarios. First, we show that TRACE enables
multi-dataset attribution: when multiple candidate datasets are watermarked with distinct
keys, our method reliably attributes fine-tuning to the correct source dataset. Second, we
demonstrate robustness to continued pretraining: even after further training on large non-
watermarked corpora, watermark signals remain detectable with high significance.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

We formalize copyrighted dataset usage detection as a statistical hypothesis testing problem. Let
M be a large language model. Let Z denote the example space (e.g., input-output pairs) and let
D be the space of a copyrighted dataset. A finite dataset instance is denoted by D = {zi}ni=1,
where each example zi = (xi, yi) consists of an input xi ∈ X and output yi ∈ Y , with X and Y
representing the input and output spaces, respectively. The detection task is to determine whether
a model M was fine-tuned on D. In the black-box setting, we do not observe model parameters or

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

logits. Instead, we can query M with inputs {xi}ni=1 from D and collect the corresponding outputs
Y o = {yo1, . . . , yom}, yoj ∈ Y .

The null hypothesis H0 is that M was not fine-tuned on D. We define a test statistic that measures the
strength of evidence for dataset usage. If the corresponding p-value falls below a chosen significance
threshold, we reject H0 and conclude that D was likely used; otherwise, we fail to reject H0.

2.2 LLM WATERMARKING

Large language models (LLMs) generate text autoregressively, predicting each token based on its
preceding context. A watermarking mechanism augments this process by incorporating a watermark
key into the sampling procedure. Specifically, the key is combined with the context window through
a pseudorandom function to generate a seed that perturbs the token sampling distribution. This seed
determines a small logit adjustment (e.g., favoring a subset of tokens) or an equivalent modification
of the sampling process, such that the model’s outputs remain natural while embedding a hidden
statistical signal that can later be verified using the same key.

We employ SynthID-Text Dathathri et al. (2024) as the watermarking mechanism in our framework.
At each generation step t, a pseudorandom seed rt is derived from the private key k and the context
window ct = (xt−w, . . . , xt−1) of length w. This seed drives d independent binary watermark
functions, producing g-values

gt,j(x, rt) ∈ {0, 1}, j = 1, . . . , d, x ∈ V,

for each candidate token x in the vocabulary V . The model samples candidate tokens from the
original distribution and runs a d-round tournament: tokens with higher aggregated g-values advance
through successive rounds, and the final winner becomes the next output token.

For detection, the same key is used to compute watermark statistics on a generated sequence x =
(x1, . . . , xT ). Specifically, we measure the empirical win rate of the generated tokens:

Score(x) =
1

dT

T∑
t=1

d∑
j=1

gt,j(xt, rt).

3 METHOD

We propose TRACE, a practical framework that enables dataset owners to verify whether their
data has been used to fine-tune large language models (LLMs). Building on the observation of
Sander et al. (2024) that models fine-tuned on watermarked text exhibit radioactivity in their out-
puts, TRACE comprises two components (Fig. 1): (i) each dataset owner applies a watermarking
function W : D × K → D to release a watermarked rewrite D′ = W(D, k) of their dataset in-
stance D using a private key k (Sec. 3.1); and (ii) the owner employs a black-box detection function
V : Y × K → [0, 1] on model outputs y ∈ Y , yielding a test statistic V(y, k) that quantifies the
presence of key-aligned watermark signals (Sec. 3.2).

3.1 WATERMARKING OF DATASETS

To enable copyrighted dataset usage detection, each dataset owner i generates a watermarked version
of their original dataset Di ∈ D using a private watermark key ki ∈ K. Concretely, we employ an
instruction-tuned LLM to rephrase each sample (x, y) ∈ Di, where the rephrasing is guided by ki,
yielding a rewritten dataset D′

i = W(Di, ki). The resulting D′
i preserves the original task utility

while embedding imperceptible statistical watermark signals.

Watermarking design criteria. We require four properties for the watermarking process:

• Semantic fidelity. Rewriting must preserve the original meaning so that task semantics
remain unchanged. With a normalized semantic similarity S : Y × Y → [0, 1], we require
E(x,y)∼Di

E y′∼W((x,y),ki)

[
S(y′, y)

]
≈ 1.

• Task preservation. The rewritten dataset must retain comparable downstream utility. For
any training procedure Train and evaluation metric U on test distribution Q, let MDi

=
Train(Di) and MD′

i
= Train(D′

i), we require U(MD′
i
;Q) ≈ U(MDi

;Q).

3
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Watermarked
rewrite model

Watermarked dataset 𝐃‘

Watermarked dataset release (with private key k)

Original dataset 𝐃

Question: 
What is (are) Amyloidosis?
Rewritten Answer: 
Amyloidosis occurs as a 
result of aberrant…

Statistical test on high-entropy tokens of model output

Prompt: 
What is (are) Amyloidosis ?

Output: 
Amyloidosis is a group of 
diseases characterized by...

Output: 
Amyloidosis is a group of 
diseases characterized by...

Compute watermark score for 
each selected token: 
group diseases characterized ...

Query suspected model Statistical test 

TrainedNot trained

No
<	𝜏	?

Question: 
What is (are) Amyloidosis?
Answer: 
Amyloidosis occurs when 
abnormal proteins…

Figure 1: Overview of TRACE. The framework has two stages. (Left) The dataset owner generates
a watermarked rewrite D′ = W(D, k) of the original dataset using a watermarked rewrite model
with a private key k, and releases D′ publicly. (Right) To verify dataset usage, the owner queries a
suspect model M with prompts and collects outputs. High-entropy tokens are selected against the
private key to compute the watermark scores. A statistical test is then conducted to decide whether
the model exhibits watermark radioactivity, indicating that it was fine-tuned on D′.

• Key-specific radioactivity. The detection signal must be specific to the owner’s key: only if
the suspect model has been trained on D′

i = W(Di, ki) should the statistical test return a
significant result.

• Distributional neutrality (distortion-free). For any context h, averaging over random keys
recovers the original next-token distribution: EK∼K

[
W(· | h,K)

]
= W(· | h,∅). This

neutrality ensures that text quality remains unchanged, since no key-agnostic bias toward
particular tokens or patterns is introduced.

To instantiate W in our framework, we adopt SynthID-Text ( Dathathri et al. (2024)), a distortion-
free watermarking algorithm developed by Google DeepMind and deployed in production systems.
SynthID-Text embeds statistical traces directly into the sampling process while preserving the base
model’s distribution. We empirically verify in Sec. 4.2 that SynthID-Text meets the above design
criteria.

3.2 DETECTION OF DATASET RADIOACTIVITY

Given a black-box suspect model M and the owner’s private key k, we test whether M was fine-
tuned on the owner’s watermarked dataset D′ = W(D, k). The datasets we consider vary in format.
For question–answer datasets, which are the primary setting in our experiments, we directly use
the original question as the prompt. When answers are too short (e.g., multiple-choice datasets
with single-token answers) or when the dataset is not in question–answer form (e.g., long-form
copyright text), we instead construct prompts from the watermarked portions of D and cast the
task as continuation writing. Prompt templates are provided in Appendix F. This allows us to elicit
training-like generations Y = {y1, . . . , ym} from M .

After obtaining the outputs Y , we compute watermark scores for each generated token. Using the
private key k, every token position t = 1, . . . , T in a sequence y = (x1, . . . , xT ) is mapped to a
depth vector gt =

(
gt,1(xt, rt), . . . , gt,d(xt, rt)

)
, where gt,i ∈ {0, 1}. For stronger detection ability,

we collapse gt to a scalar score via a depth-weighted average (Dathathri et al. (2024)):

ḡt =
1

d

d∑
i=1

wi gt,i(xt, rt), wi ∝ d+ 1− i,

d∑
i=1

wi = d.

Motivation. During fine-tuning, a model tends to update more at positions where its next-word
prediction is uncertain—i.e., several continuations are similarly plausible. Watermarking methods
that slightly nudge sampling are most effective in such uncertain positions: when the base distribu-
tion is sharp (one token clearly dominates), the watermark rarely changes the outcome; when it is
dispersed, small key-guided nudges more often change which token is chosen Kirchenbauer et al.
(2023). Consequently, the model learns key-specific preferences primarily at uncertain positions,
and the watermark signal (“radioactivity”) concentrates there after fine-tuning. At detection time,
including many highly confident tokens mostly adds noise, so we focus our detector on the most
uncertain tokens.
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We use token-level entropy of an auxiliary model as a simple, robust proxy for uncertainty. For each
generated position t with history ht, let q̂t(·) be the next-token distribution and define the entropy

Ht = −
∑
w∈V

q̂t(w) log q̂t(w).

We pool all output tokens across prompts, rank them by Ht in descending order, and apply a hard
entropy gate: keep the top q% highest-entropy tokens. The selected tokens form the scored set
S, on which we compute watermark scores g-values and perform a statistical test. Algorithm 1
summarizes the full procedure.

To determine whether the suspect model exhibits watermark radioactivity, we construct a one-sided
hypothesis test. For each selected token t, the average watermark score ḡt has expected value 1/2
under the null hypothesis H0 (the model was not fine-tuned on the owner’s dataset). This allows us
to form a standardized test statistic

Z = ( 1
|S|

∑
t∈S

ḡt − 1
2 )
√

4 deff |S|,

where deff ≜ d2/
∑d

i=1 w
2
i accounts for weighting across watermark rounds d. The statistical

significance of detection is then quantified by the one-sided p-value p = 1 − Φ(Z), with Φ(·) the
standard normal CDF. A small p-value indicates that the outputs contain watermark signal aligned
with the private key, consistent with the model having been fine-tuned on the watermarked dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate the effectiveness of TRACE by conducting the experiments across different models and
datasets in section 4.2, and perform ablation studies in section 4.3.

Dataset and Models. We evaluate on diverse datasets covering the main formats of fine-tuning
corpora: question–answer pairs with natural language responses (GSM8k (Cobbe et al. (2021)),
Med (Ben Abacha & Demner-Fushman (2019)), Alpaca (Taori et al. (2023)), Dolly (Conover et al.
(2023))), multiple-choice datasets with single-token answers (MMLU (Hendrycks et al. (2009)),
ARC-C (Clark et al. (2018))), and pure text corpora without QA structure (Arxiv (face (2022))). We
use Llama-3.2-3B-Instruct Meta (2024a), Phi-3-mini-128k-instruct Microsoft (2024), and Qwen2.5-
7B-Instruct Qwen (2024) as target models, and generate watermarked datasets with Llama-3.1-8B-
Instruct Meta (2024b) using prompts, which are shown in Appendix F.

Implementation details. For watermark text generation, we set the sampling parameters to tem-
perature = 0.8, top-p = 0.95, and top-k = 50. We use temperature = 0.5 and top-p = 0.9 to obtain
the model output in the detection stage. For QA datasets, we perform supervised fine-tuning with
LoRA, a learning rate of 1.0×10−4 for Llama-3B and Phi-3.8B (or 5.0×10−5 for Qwen-7B), and 3
training epochs. For text corpora, we adopt continued pre-training with a learning rate of 5.0×10−5

for 2 epochs.

Evaluation Metrics. We use the p-value as the primary metric to quantify the statistical significance
of dataset usage detection. To evaluate the quality of rewritten (watermarked) text, we report P-SP
(Wieting et al. (2021)) and perplexity (PPL). For downstream task performance, we employ different
metrics based on the answer format: accuracy for datasets with reference answers that allow exact
matching, and BERTScore (Zhang et al. (2019)) together with ROUGE (Lin (2004)) for open-ended
generation tasks, where no single ground-truth answer exists. The details of metrics are provided in
Appendix C.

Baselines. We compare our method against two categories of baselines: (i) the black-box detection
method DE-COP (Duarte et al. (2024)), and (ii) Grey-box detection methods: three sample-level
MIAs: PPL, Min-K% Prob (Shi et al. (2023)), Zlib (Carlini et al. (2021)), and DDI (Maini et al.
(2024)). To adapt the sample-level MIAs to our dataset-level setting, we treat the training set as
positive samples and the evaluation set as negative samples. For DE-COP, we measure the detection
accuracy on training versus evaluation data. A detailed description of baseline implementations and
p-value computation is provided in Appendix D.
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Table 1: P-values for copyrighted dataset–usage detection across methods. Lower values indicate
stronger evidence; p < 0.05 denotes significance (bold). TRACE consistently yields smaller
p-values than baselines on all four datasets. p-values of TRACE are computed on the 40k
highest-entropy positions selected from 100k generated tokens (i.e., fewer than 1000 complete
responses when grouped as samples); baselines use 1000 responses for comparability.

Category Method Med Dolly
Llama-3B Phi-3.8B Qwen7B Llama-3B Phi-3.8B Qwen7B

Grey-box

PPL 0.03 0.23 0.04 0.69 0.62 0.28
Zlib 0.07 0.16 0.06 0.20 0.38 0.31
Min-K 0.02 0.08 0.02 0.37 0.55 0.80
DDI 0.12 0.19 0.01 0.29 0.02 7.6e-05

Black-box DE-COP 1.8e-03 0.85 0.30 0.82 0.47 7.53e-04
TRACE 2.0e-172 0.05 6.4e-83 7.5e-32 0.03 8.8e-09

Category Method Alpaca GSM8k
Llama-3B Phi-3.8B Qwen7B Llama-3B Phi-3.8B Qwen7B

Grey-box

PPL 0.51 0.79 0.88 0.30 2.7e-05 3.9e-22
Zlib 0.89 0.82 0.74 0.80 0.11 5.3e-08
Min-K 0.27 0.61 0.44 0.10 8.7e-11 7.2e-52
DDI 0.19 0.01 0.81 1.5e-02 2.0e-10 9.9e-44

Black-box DE-COP 0.09 0.36 9.5e-06 0.15 0.20 0.06
TRACE 2.2e-94 1.0e-11 1.4e-49 1.5e-44 3.1e-40 7.0e-36

Table 2: P-values for continuation-style detection across three datasets. For each setting, we
generate 100k tokens and apply entropy gating to select a fixed budget of 10k high-entropy tokens
for scoring.

Dataset MMLU ARC-C Arxiv

P-value 2.1e-07 1.5e-07 7.6e-06

4.2 MAIN RESULTS

Detection Results. Table 1 reports p-values for copyrighted dataset–usage detection across four
datasets and multiple baselines. TRACE consistently attains vanishingly small p-values, providing
overwhelming evidence that the suspect models were fine-tuned on the watermarked data. Grey-
box MIAs (PPL, Zlib, Min-K%, DDI) exhibit mixed performance: while some achieve significance
on GSM8k and occasionally on Med or Dolly for specific models, they fail to generalize across
model families. The black-box baseline DE-COP reaches significance in a few cases but remains
inconsistent. In comparison, TRACE yields dramatic improvements over DE-COP, with geometric
mean gains of approximately 8.95 × 1083 on Med, 2.45 × 1012 on Dolly, 1.00 × 1049 on Alpaca,
and 3.81×1038 on GSM8k. Overall, TRACE is uniformly significant across all datasets and models,
underscoring its robustness and reliability.

We also evaluate continuation-style detection on text-only and single-token multiple-choice corpora
(Table 2). TRACE remains statistically significant across all four datasets, with particularly strong
significance on three of them. Although the signal is somewhat weaker than on the QA datasets, it
still provides robust evidence of dataset usage.

Text Quality Preservation. We evaluate whether watermarking affects text quality using two
metrics: Perplexity (PPL), which measures fluency, and semantic similarity (P-SP, Wieting et al.
(2021)), which captures semantic preservation. As shown in Table 3, rewritten datasets not only
match the perplexity of the originals but in several cases achieve even lower PPL. They also at-
tain high semantic similarity (P-SP between 0.85–0.91), indicating that watermarking has minimal
impact on text quality.
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Table 3: Quality preservation of rewritten text across datasets, evaluated by Perplexity (PPL) and
semantic similarity (P-SP). Lower PPL indicates better fluency, while higher P-SP reflects stronger
semantic consistency with the original text.

Metric Med GSM8k Dolly Alpaca

Perplexity Original 9.50 14.75 16.88 8.54
Rewritten 9.14 9.47 11.51 8.50

P-SP – 0.91 0.87 0.85 0.90

Table 4: Downstream performance on evaluation dataset. Generation tasks are evaluated with
BERTScore and ROUGE-1 (↑ higher is better), while GSM8K is additionally assessed with
Accuracy (↑).

Generation Quality QA Accuracy

Model Method Med Dolly Alpaca GSM8k

BS RG BS RG BS RG BS RG Acc

Llama-3B
Original 0.62 0.32 0.61 0.32 0.70 0.48 0.62 0.34 0.61
Unicode 0.37 0.10 0.35 0.07 0.39 0.14 0.54 0.18 0.54
TRACE 0.62 0.30 0.61 0.33 0.68 0.45 0.58 0.33 0.61

Phi-3.8B
Original 0.62 0.30 0.65 0.41 0.73 0.53 0.80 0.61 0.73
Unicode 0.43 0.13 0.36 0.06 0.41 0.14 0.57 0.21 0.63
TRACE 0.50 0.17 0.64 0.39 0.71 0.49 0.68 0.51 0.72

Qwen-7B
Original 0.66 0.37 0.67 0.45 0.50 0.25 0.77 0.59 0.75
Unicode 0.38 0.11 0.36 0.09 0.41 0.16 0.63 0.34 0.61
TRACE 0.64 0.35 0.64 0.40 0.71 0.50 0.65 0.45 0.80

Dolly Med Alpaca GSM8k
Dataset
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Figure 2: Entropy ablation experiments across
four datasets using 40k scored tokens with the
top 70% by entropy on LLaMA-3B.

Downstream Performance. Table 4 shows
that across all three model families, the Uni-
code (Wei et al. (2024)) baseline substantially
degrades generation quality and often reduces
QA accuracy. In contrast, TRACE closely
tracks the Original models, which are trained
on the original dataset, typically within ±0.04
on BERTScore/ROUGE-1, while preserving or
improving QA accuracy on GSM8k.

False Positive Analysis. Under the null: mod-
els not fine-tuned on the watermarked data, and
tested with each dataset’s own key to the model
outputs for the entropy-gated detection process,
all 12 model–dataset pairs yield p-values above
0.05 (minimum = 0.10), indicating no statis-
tically significant detections and demonstrating
TRACE’s robustness to false positives (Table 5).

4.3 FACTORS INFLUENCING DETECTION POWER

To better understand the conditions under which TRACE is more effective, we conduct ablation
studies on factors that influence detection strength.

Entropy Gating. Fig. 2 compares TRACE with and without entropy gating. Entropy gating boosts
detection on every dataset. Without entropy gating, the test is still significant in most cases (well
above the dotted line), but the evidence is far weaker—especially on GSM8K and Dolly. These
results demonstrate the effectiveness of entropy-gated detection: by concentrating the test on high-
entropy positions, TRACE amplifies key-aligned watermark signal.
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Table 5: False-positive analysis under the null
(no watermarked fine-tuning). Entries are
p-values.

Dataset Llama-3B Phi-3.8B Qwen-7B

Med 0.46 1.00 1.00
Dolly 1.00 0.98 1.00
Alpaca 0.34 0.76 0.77
GSM8k 0.55 1.00 0.10

Table 6: Multi-dataset attribution results:
log10(p-value) of detection using different keys
on a model fine-tuned with 2 watermarked
datasets. Stronger evidence (more negative) is
expected along the diagonal.

Med GSM8k

kMed 3.2e-129 1.0
kGSM8k 1.0 5.8e-45
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Figure 3: Effect of watermarked-sample proportion and number of scored tokens on detection
strength for TRACE. Curves plot − log10(p) (higher = more significant) as a function of the number
of scored tokens. (a) The proportion of watermarked samples: ρ = 50%. (b) ρ = 100%.

Proportion of watermarked training data. Fig. 3a vs. Fig. 3b illustrates how detection strength
scales with the fraction of watermarked samples used in fine-tuning at every token budget. We ob-
serve that TRACE already exhibits strong radioactivity when only 50% of the training set is rewritten,
with − log10(p) surpassing 30 on Med at 60k token budgets. This implies that practitioners need not
rewrite the entire dataset: watermarking just proportion of the training data is sufficient to achieve
highly significant detection, while leaving the remaining unmodified to minimize disruption to the
original dataset.

Token budget. We further analyze how the number of tokens used in detection impacts statistical
power. As shown in Fig. 3a and Fig. 3b, detection strength increases steadily as more tokens are
allocated. Even with 10k tokens, all datasets already exceed the significance threshold. As the
budget grows, detection becomes rapidly stronger.

5 EXTENDED ANALYSES

5.1 MULTI-DATASET ATTRIBUTION

We conduct this experiment to test whether TRACE can not only detect dataset usage but also at-
tribute it to the correct source when multiple candidate datasets are involved. By assigning distinct
watermark keys {kj}Jj=1 to each dataset, we expect that a model fine-tuned on a particular dataset
will exhibit radioactivity only under its corresponding key, while other keys should yield no signal.
Table 6 confirms this intuition: for the model jointly fine-tuned on Med (kMed) and GSM8k (kGSM8k),
taht is, J = 2, the strongest evidence appears along the diagonal entries, with highly significant p-
values of 3.2×10−129 and 5.8×10−45 respectively. In contrast, off-diagonal entries remain near 1.0,
indicating no detectable watermark signal when the wrong key is used. This diagonal–off-diagonal
separation demonstrates that TRACE is able to reliably attribute fine-tuning to the correct dataset
among multiple candidates.
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5.2 CONTINUED PRETRAINING ROBUSTNESS

We evaluate whether continued pretraining on additional non-watermarked corpora diminishes ra-
dioactivity detection. Starting from the model fine-tuned on the watermarked Alpaca dataset, we
further pretrain it on OpenOrca (Lian et al. (2023)), a large corpus containing 2.94 million sam-
ples. TRACE remains highly significant after this continued pretraining: the p-value shifts from
2.2 × 10−94 to 2.6 × 10−36. Although the signal is weaker than before, it remains far below the
p=0.05 threshold, demonstrating that TRACE is robust to continued pretraining.

6 RELATED WORK

Membership Inference Attack. Membership inference attacks ask whether a single sample was in
a model’s training set, originating with shadow-model attacks Shokri et al. (2017). For LLMs, pop-
ular instantiations include loss/perplexity thresholding and difficulty calibration Yeom et al. (2018);
Watson et al. (2021), reference-based LiRA variants Mireshghallah et al. (2022a;b), and token-level
refinements such as MIN-K% Shi et al. (2023). These methods often assume gray-box access (log-
probs), suitable reference models, or distribution-matched validation data, which are not practical
at LLM scale. While black-box evaluation is the most realistic setting, existing approaches such as
DE-COP still depend on a clean reference dataset to calibrate their multiple-choice preference tests,
limiting their applicability when such baselines are unavailable Karamolegkou et al. (2023).

Dataset inference. Recent work has shifted from single-sample membership to document- or
dataset-level attribution. One line of work embeds artificial patterns into text—such as fictitious trap
sequences (Meeus et al. (2024b)) or imperceptible Unicode substitutions (Wei et al. (2024)) to test
whether models exhibit a preference for them, though such modifications risk reducing readability
and decreasing model performance. Meeus et al. (2024a) uses token-level logit statistics aggregated
across an entire document, which requires gray-box access and is less practical. Dataset Inference
method Maini et al. (2024) combines multiple weak MIAs into a statistical test, yet it depends
on IID reference sets and log-prob access, making it sensitive to distribution drift. More recently,
Waterfall embeds watermark patterns via paraphrasing for robust attribution, though its effectiveness
diminishes on shorter texts (Lau et al. (2024)).

LLM Watermarking and Radioactivity. Watermarking schemes for LLMs modify token prob-
abilities or sampling procedures to embed statistical traces in generated text Kirchenbauer et al.
(2023); Dathathri et al. (2024); Chen et al. (2025) in either distortion-free or distortion-based ways.
These techniques were originally designed for output attribution, ensuring that AI-generated text can
be distinguished from human-written content. Sander et al. (2024) showed that watermark signals
indeed contaminate fine-tuned LLMs. While radioactivity arises as an unintended side effect of wa-
termarking, it provides a promising direction for dataset-level usage detection in realistic black-box
settings.

7 CONCLUSION

We introduced TRACE, a practical framework for fully black-box verification of copyrighted dataset
usage in LLM fine-tuning. TRACE watermarks datasets via distortion-free rewriting and then per-
forms entropy-gated statistical testing on model outputs, requiring only input–output access. Across
four datasets and three model families, TRACE delivers uniformly significant detections and achieves
orders-of-magnitude stronger evidence than existing baselines, while preserving text quality and
downstream task performance. Ablations show that entropy gating is crucial for amplifying signal
and that watermarking only ∼50% of the training data already yields pronounced radioactivity, offer-
ing a favorable utility–enforcement trade-off. Extended analyses demonstrate reliable multi-dataset
attribution using distinct keys and robustness to continued pretraining on large, non-watermarked
corpora.

Our approach has some limitations: the entropy gate relies on an auxiliary model, which may mis-
match the suspect model, and detection power depends on the availability of high-entropy positions.
Tasks with short or highly deterministic outputs reduce the scored-token set and weaken the signal.
Going forward, these issues could be mitigated with mild prompt refinements to raise output entropy
and simple adaptive gating strategies, while preserving the black-box setting.
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A USE OF LLMS

We employ LLMs to enhance our writing and to support coding tasks.

B ALGORITHMS

Algorithm 1 Entropy-Gated Radioactivity Test
Input: Model M ; key k; prompts P; selection rule: top-q%
Output: p-value

Query. Collect outputs Y = {yt}N0
t=1 by querying M with P .

for t = 1 to N0 do
Compute entropy Ht for yt

Using k, compute watermark score gt = (gt,1, . . . , gt,d) and their weighted average ḡt
end
Rank. Form the list L = {(t,Ht, ḡt)} and sort by Ht in descending order.

Select. Set B = ⌊q/100 ·N0⌋ and take the top-B items of L as the scored set S.

Test. Construct a test statistic based on S and convert it into p-value.

C METRIC DETAILS

P-SP. The Paraphrase Semantic Proximity (P-SP) metric Wieting et al. (2021) is a semantic sim-
ilarity model trained on large-scale paraphrase data. It is designed to distinguish true paraphrases
from unrelated text. Formally, given original text x and rewritten text y, P-SP computes the cosine
similarity between their embeddings:

P-SP(x, y) = cos
(
g(x), g(y)

)
,

where g(·) is the P-SP encoder. We use P-SP to measure semantic preservation by comparing each
watermarked answer with its original counterpart (higher is better).

Perplexity (PPL). Perplexity evaluates how well a language model predicts a text sequence, with
lower values indicating higher model confidence. For a sequence S = (s1, . . . , sN ) under model θ,
perplexity is defined as

PPLθ(S) = exp
(
− 1

N

N∑
i=1

logPθ(si | s<i)
)
.

We compute PPL of rewritten answers with respect to the base model to quantify fluency and detect
possible degradation introduced by watermarking.

BERTScore. BERTScore Zhang et al. (2019) compares contextual embeddings from a pretrained
transformer model to evaluate the similarity between a candidate and a reference. It captures both
lexical and semantic alignment beyond surface token overlap. In our experiments, we compute
BERTScore between rewritten answers and original answers to evaluate the downstream model per-
formance (higher is better).

ROUGE. ROUGE Lin (2004) measures overlap of n-grams or longest common subsequences
between candidate and reference text. We report ROUGE-L to evaluate lexical consistency between
rewritten answers and their original versions, complementing embedding-based metrics (higher is
better).

D BASELINE DETAILS

We briefly describe the baselines used in our experiments.
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1. Perplexity (PPL). A classic loss-based MIA that scores each text by the average token
negative log-likelihood under the suspect model; lower values indicate higher familiarity.
We use PPL to separate the training split (positives) from the evaluation split (negatives)
and assess significance at the split level.

2. Min-K% Prob. A reference-free detector that, for each sequence, selects the k% lowest-
probability (i.e., highest-loss) tokens and averages their negative log-likelihoods; members
tend to contain fewer extremely low-probability tokens. We aggregate per-example scores
over the training/evaluation splits for dataset-level inference. We set k% = 0.2 in the
experiment.

3. Zlib. Following prior practice, we use the sequence’s zlib compression length as a com-
plexity proxy to calibrate likelihood (intuitively discounting highly compressible strings),
and then compare the calibrated scores between splits.

4. DDI. Our implementation of dataset inference that linearly combines multiple refer-
ence–free, loss–based features and performs a split–level statistical test. For each sequence
we compute PPL, mean logp, kmin logp (lowest 10% token log–probs), kmax logp (high-
est 10%), zlib ratio (compressed/Raw length), and length. We apply per–feature winsoriza-
tion (2.5% tails) and standardization, then randomly split Suspect/Validation into /B halves:
on A we learn a linear combiner (least–squares regression) that maps features to a mem-
bership score (Suspect=0, Val=1); on B we score all samples and run a one–sided Welch
t–test (H1 : µSuspect < µVal).

5. DE-COP. A black-box probe that constructs four-way MCQs mixing the verbatim original
answer with three paraphrases; models trained on the target text are more likely to choose
the verbatim option. For our dataset-level setting, we build MCQs for each split and com-
pare verbatim-option accuracies between training and evaluation.

We repurpose sample-level MIAs to a dataset-level decision by treating the training dataset as pos-
itives and the evaluation dataset as negatives. The null hypothesis states that the model shows no
difference in familiarity between the two datasets. We therefore use a one-sided Welch’s t-test (ro-
bust to unequal variances and sample sizes) to compare means:

t =
x̄train − x̄eval√

s2train
ntrain

+
s2eval
neval

,

where x̄, s2, and n denote the sample mean, variance, and size. For loss-like metrics (smaller ⇒
more member-like), we test the one-sided alternative x̄train < x̄eval.

For the black-box DE-COP baseline, each example yields a four-way MCQ consisting of the verba-
tim original answer and three paraphrases (rewritten by the same model used in our pipeline). We
measure the model’s accuracy on the training and evaluation datasets and compare the proportions
via a two-proportion z-test with pooled variance:

z =
peval − ptrain√

p̂(1− p̂)
(

1
neval

+ 1
ntrain

) , p̂ =
xeval + xtrain

neval + ntrain
,

where ptrain and peval are observed accuracies, ntrain and neval are sample sizes, and we use the one-
sided alternative H1 : peval < ptrain (a model trained on the dataset should recognize verbatim
originals more reliably on the training split). To mitigate option-position bias, we enumerate all
4! = 24 permutations of answer ordering per item and report permutation-level proportions as our
primary result.
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E PROMPT TEMPLATE FOR REWRITING DATASET WITH WATERMARK

Prompt Template for Rephrasing Med

Rephrase the following medical answer of the question: {Question}. Preserve all medical
facts and information. Do NOT add personal opinions or extra sentences. Provide ONLY
the rephrased answer.

Original Answer: {Answer}
Rephrased Answer:

Prompt Template for Rephrasing Dolly

Instruction: {Instruction}
Context: {Context}
Rephrase the following response of the question. Original Response: {Response}
Task: Please rephrase the above response, preserving all facts and key information. Do
NOT add personal opinions or extra content. Provide ONLY the rephrased response.

Rephrased Response:

Prompt Template for Rephrasing Alpaca

Instruction: {Instruction}
Input: {Input}
Original Response: {Response}
Task: Please rephrase the above response, preserving all facts and key information. Do
NOT add personal opinions or extra content. Provide ONLY the rephrased response.

Rephrased Response:

Prompt Template for Rephrasing GSM8k

Rephrase the following solution explanation of the math question: {Question}.
Preserve all numerical and logical details. Do NOT add personal opinions or extra sen-
tences. Provide ONLY the rephrased explanation.

Original Explanation:{CoT}
Rephrased Explanation:

Prompt Template for Rephrasing ARC-C

Rephrase the following multiple-choice question: {Question}
Preserve all factual information. Do NOT add personal opinions or extra sentences.
Choices must remain exactly the same text and labels, DO NOT rewrite them.

{Choices}
Rephrased Question:
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Prompt Template for Rephrasing MMLU

Rephrase the following multiple-choice question while preserving all factual information
and key details.
Do NOT add personal opinions or extra sentences. Provide ONLY the rephrased question
(without rewriting the choices).

Original Question: {Question}
Choices: {Choices}
Rephrased Question:

F PROMPT TEMPLATE FOR CONTINUING THE DATASET OUTPUT

Prompt Template for Rephrasing ARC-C and MMLU

You are a continuation restorer. The following is the beginning of a question that appeared
in your training data. Your task is to recall and reconstruct the missing portion. Continue
from the cutoff point; do NOT repeat the beginning and do NOT provide options or an-
swers.

Truncated question: {Content}
Continue:

Prompt Template for Rephrasing Arxiv

You are a continuation restorer. The following is the beginning of an abstract that ap-
peared in your training data. Your task is to recall and reconstruct the missing portion.
Continue from the cutoff point; do NOT repeat the beginning and do NOT provide op-
tions or answers.

Truncated abstract: {Content}
Continue:

Prompt Template for Rephrasing Book

You are a continuation restorer. The following is the beginning of a paragraph that ap-
peared in your training data. Your task is to recall and reconstruct the missing portion. Do
NOT provide other information. Start your response with the very next word that would
follow the truncation point.

Truncated abstract: {Content}
Continue:
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