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Abstract
Avatar creation from human images presents challenges for direct neural approaches,

which suffer from inconsistent predictions and poor interpretability due to the large param-
eter space with hundreds of ambiguous options. We propose a neurosymbolic tag-based an-
notation method that combines neural perceptual learning with symbolic semantic reason-
ing. Instead of directly predicting avatar parameters, our approach uses a neural network
to predict semantic tags (hair length, curliness, direction) as an intermediate symbolic rep-
resentation, then applies symbolic search algorithms to match optimal avatar assets. This
neurosymbolic design produces higher annotator agreements (96.7% vs 31.0% for direct
annotation), enables more consistent model predictions, and provides interpretable avatar
selection with ranked alternatives. The tag-based system generalizes easily across rendering
systems, requiring only new asset annotation while reusing human image tags. Experimen-
tal results demonstrate superior convergence, consistency, and visual quality compared to
direct prediction methods, showing how neurosymbolic approaches can improve trustwor-
thiness and interpretability in creative AI applications.
Keywords: Neurosymbolic AI, tag-based annotation, avatar creation

1. Introduction

Well-designed avatar creation tools like Bitmoji Bitmoji, Google Cartoonset Cloe et al.
(2022), and Metahuman MetaHuman provide expressive tools for users to create digital
figures based on themselves. However, customizing the ideal avatar involves laborious
selection and adjustment of parameters. Such a process consumes a significant amount of
time from an average user without necessarily resulting in their ideal design. Training a
learning-based algorithm for avatar auto-creation is needed.

Traditional neural approaches attempt to directly map human photographs to avatar
parameters through end-to-end learning. However, this direct neural mapping suffers from
fundamental limitations: the large parameter space with hundreds of ambiguous options
leads to inconsistent predictions and lacks interpretability. Supervised learning requires
the collection of pairwise training data, where annotators manually create corresponding
avatars by selecting the best assets. Unfortunately, there are inherent issues with this
direct annotation method. During the creation process, some parameters such as hairstyle
include hundreds of options with only minor differences. It is almost impossible for the
annotators to consistently select a single optimal choice, resulting in low agreement with
other annotators. When collected in this way, the dataset has high label noise, and majority
vote aggregation does little to help.

Instead, we propose a neurosymbolic tag-based annotation method for avatar creation
that combines neural perceptual learning with symbolic semantic reasoning. Our approach
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Figure 1: Avatar hairstyle prediction is hard due to hundreds of ambiguous options. Our
neurosymbolic tag-based approach combines neural perception with symbolic reasoning,
resulting in better labels (Sec 4.1), predictions (Sec 4.2), and generalizability (Sec 4.3).

introduces a semantically meaningful set of tags as an intermediate symbolic representa-
tion which applies to both photographs and avatar renderings. This neurosymbolic design
bridges the gap between neural image understanding and symbolic avatar selection, pro-
viding interpretability while maintaining learning efficiency.

In our framework, annotators label both training photographs and stylized assets using
semantic tags. For example, annotating hair length, hair curly level, and hair direction
instead of simply finding the best option out of two hundred hairstyles. This symbolic
representation provides better instructions and encourages annotators to search for more
detailed semantic features when labeling. The proposed tag-based annotation results in
higher annotator agreements due to the interpretable nature of the semantic categories.

Given a photograph, our neural component predicts semantic tags, which do not directly
provide an answer for which asset is the best match. We then employ a symbolic search
algorithm to evaluate the similarity between predicted image tags and the tags of each
possible asset. The asset with maximum similarity is selected as the best match.

To evaluate how this neurosymbolic approach affects the final system, we compared
supervised learning models trained on tag-based labels with models trained on direct labels.
Experimental results show that models trained with the tag-based system produce better
and more consistent predictions. Example hairstyles predicted by the neurosymbolic tag-
based system are shown in Fig. 1.

Finally, we demonstrate that the neurosymbolic tag-based system enhances generaliz-
ability across different avatar rendering systems. When shifting to a new rendering system,
direct neural approaches require completely new training sets of human-avatar pairs. In
contrast, our symbolic tag representations of human images can be reused, and only the
relatively small set of new avatar assets requires re-annotation. In a typical system, as-
sets number in the hundreds while training photographs number in the tens of thousands,
making this advantage significant.

This paper contributes a neurosymbolic method for avatar creation using tag-based
annotation that demonstrates how hybrid neural-symbolic architectures can improve both
trustworthiness and interpretability in creative AI applications. The advantages of this
method include:

• Cleaner labels with higher annotator agreement via interpretable semantic tags

• Better and more consistent predictions from the neural-symbolic model

• Lower cost generalization to new rendering systems via reusable symbolic representations
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2. Related work

Image Stylization: Creating a virtual character from an input human portrait image
needs to overcome the domain gaps between the real world and the target styles. Gatys
et al. matched feature information from CNN models to achieve style transfer Gatys
et al. (2016). Cycle consistency loss was used for image-to-image transfer with paired-
wise data supervision and with self-supervision Isola et al. (2017); Zhu et al. (2017); Park
et al. (2020). Recently, the development of GAN inversion methods results in excellent
image decomposition and high-quality reconstructions, which has been applied to image
stylization Richardson et al. (2021); Tov et al. (2021); Song et al. (2021); Cao et al. (2018);
Zhu et al. (2021). However, all of these methods focused on creating high-quality images
in pixel space, as opposed to selecting assets in an avatar rendering system.

Avatar creation using non-semantic parameters: Creating avatars in parameter
spaces without semantic meaning has been well-studied for many years. Extremely high
quality methods for photorealistic avatars using stereo vision and single input images exist,
with multiple good survey papers Beeler et al. (2010); Yang et al. (2020); Blanz and Vetter
(1999); Peng et al. (2017); Deng et al. (2019); Xu et al. (2020); Chen and Kim (2021);
Egger et al. (2020); Zollhöfer et al. (2018).

Stylized avatar systems also exist. Some methods utilize sketches as the prior condi-
tion for generation Han et al. (2017, 2018). Other methods are guided by position and
landmarks, extracting human facial features used to deform textures and meshes Wu et al.
(2018); Cai et al. (2021); Lewiner et al. (2011); Vieira et al. (2013). Recently a conditional
GAN has been applied in the generation process Li et al. (2021); Ye et al. (2021). However,
these methods all utilized parameters without semantic meaning, making them inapplicable
to avatar systems designed to provide user level customization of asset choice.
Avatar creation using semantic parameters: To provide tools for customization of
avatar creation, excellent rendering tools like Bitmoji, Metahuman, and Google Cartoon
Set were created Bitmoji; MetaHuman; Cloe et al. (2022). These rendering systems provide
explicit semantic meanings to each parameter and focus primarily on manual user creation.

Avatar prediction has been explored using self-supervised methods to avoid the difficulty
of manual labeling. When the avatar is semi-photorealistic, F2P utilizes neural imitators to
mimic the behaviors of the rendering system, improving efficiency and applying textures for
more photorealistic visual quality Shi et al. (2019, 2020); Lin et al. (2021). In the stylized
domain, AgileAvatar introduced a domain transfer module to the avatar creation pipeline
Sang et al. (2022). However, these self-supervised methods rely heavily on carefully tuning
each style. We provide a comparison to these methods in our results section.
Human face datasets: Training neural engines require the collection of human face
datasets. FFHQ provides a collection of high-quality human face images without annota-
tion Karras et al. (2019). CelebA and MAAD datasets include some basic tags of facial
attributes Liu et al. (2015); Terhörst et al. (2021, 2019). FairFace includes ethnic tags and
provides a racially balanced set Karkkainen and Joo (2021).

Hairstyle specific datasets also exist. Figaro-1k provides a limited set of samples,
Hairstyle-30k treats the task as an end-to-end classification task, while K-hairstyle fo-
cuses on Korean hairstyles Svanera et al. (2016); Yin et al. (2017); Kim et al. (2021). None
of these datasets has labels matching the specific avatar rendering systems we use in our
work. We make use of the FairFace dataset for photographs of human faces.
Symbolic Reasoning in Computer Vision: The use of symbolic intermediate represen-
tations has shown significant promise in computer vision tasks requiring both perception
and reasoning. Scene graph generation methods convert visual scenes into symbolic rela-
tionship graphs that enable structured reasoning Xu et al. (2017); Johnson et al. (2015).
Visual question answering systems employ symbolic program synthesis to break down com-

3



Liu Cheng Sang Liu Davis

Figure 2: Direct annotation challenges: Hundreds of similar hairstyle options create
ambiguity, with multiple plausible answers for each input image and no perfect matches,
leading to poor annotator agreement.

plex queries into interpretable reasoning steps Johnson et al. (2017); Yi et al. (2018). Con-
cept bottleneck models demonstrate how forcing models to predict human-interpretable
concepts as intermediate representations improves both interpretability and performance
Koh et al. (2020). Similarly, our semantic tag representation serves as an interpretable bot-
tleneck that bridges neural image understanding and symbolic avatar selection, enabling
transparent reasoning over hairstyle attributes.

3. Method

Direct annotation for avatar creation and the challenges it introduces are discussed in
Sec. 3.1. Our neurosymbolic tag-based annotation system is introduced in Sec. 3.2. The
symbolic search algorithm which relates tags to specific assets is discussed in Sec. 3.3. The
neural vision backbone and training approach is provided in Sec. 3.4.

3.1. Direct annotation challenges

Customizing stylized avatars using rendering systems like Bitmoji requires tuning numerous
parameters, some with hundreds of options. We focus on hairstyle prediction as it has the
most variations, high visual impact, and significant ambiguity between similar assets. Fig. 2
shows sample Bitmoji hairstyles with the default face. Direct annotation asks annotators to
select the best-matching asset from 200 options for each input photograph. However, this
creates fundamental challenges: options often have subtle differences, no perfect matches
exist, and multiple hairstyles may be plausible for a single input (examples shown left side
of figure). This “no single best answer” phenomenon results in high label noise and low
annotator agreement, making majority vote aggregation ineffective. These limitations of
direct mapping motivate our neurosymbolic approach.

3.2. Neurosymbolic tag-based annotation

In this paper, we propose a neurosymbolic tag-based annotation approach that introduces
semantic tags as an intermediate symbolic representation. The goal is to map both human
face images and avatar hairstyles to a semantically meaningful tag space. We defined our
tags as in Fig. 3(a). Instead of providing the annotators with a massive number of options,
we specifically ask them to annotate symbolic tag attributes from each region, for example
Hair direction on the top of the head, or Hair curliness level on the side of the head. This
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Region Annotation Tags Distance calculation
Attributes # Options Weight Type

Top and front
Length 6 2.25 Continuous

Direction 8 2 Discrete
Curly level 4 1 Continuous

On the side Length 5 2.25 Continuous
Curly level 4 1 Continuous

Braid

Yes / No 2 5 Discrete
Count 4 2 Discrete

Position 3 1 Discrete
Type 5 1 Discrete

(a) Semantic tag design (b) Symbolic search visualization

Figure 3: Neurosymbolic tag-based annotation system: (a) Semantic tag design
breaks down hairstyles into interpretable attributes (length, direction, curliness, braids)
with defined options and weights, serving as intermediate representation between neural
image understanding and avatar selection. (b) Symbolic search visualization shows
how distance scores from our search algorithm measure semantic similarity—low distances
produce visually similar matches while high distances indicate poor matches.

symbolic representation bridges the gap between neural image understanding and avatar
selection. Detailed descriptions of each tag are included in the supplemental material.

Designing the appropriate semantic tags to describe the hairstyle requires domain
knowledge. Each tag requires a clear definition. For example, short hair and medium-
short hair is insufficient description for consistent labeling. We use an iterative design
process to arrive at our final tag definitions. The researchers first designed tags to describe
the hairstyles by simply looking at a set of human images and avatars. An annotator
tagged all the avatar hairstyles using this tag design. A different annotator tagged a set
of human images. Using the tags, the best matched avatar to each photo is retrieved. The
researchers then evaluate the agreement between annotators, and the expressibility of the
tag design, to make modifications to the set of tags. The process was repeated until tag
design was considered sufficient.

After arriving at a tag design, we perform the complete run of data annotation. Note
that our tag design pipeline allows researchers to focus on iteratively improving their sym-
bolic representations while not requiring them to work as annotators. By going through
such a design process, researchers verify their designs, so that higher agreement between
researchers and annotators is achieved.

3.3. Symbolic search algorithm

Our designed tag system has 460,800 permutations, making it impossible to design a
hairstyle for each permutation. This implies that for many human images there is no
perfect hairstyle match. To address this issue, we employ symbolic reasoning to search
through all existing hairstyles, computing semantic tag similarity. The overall distance of
a particular asset is computed as a weighted sum of individual tag distances. The weight
of each attribute is listed in Fig. 3(a). To measure the tag distance for each attribute, we
used L1 loss for continuous variables, and zero-one loss for discrete variables.

The distance score from the symbolic search provides ranking information for all the
hairstyles, while direct annotation only provides the Top-1 result. Fig. 3(b) shows visual
samples of low and high-distance pairs. Note that the low-distance hairstyles have better vi-
sual similarity with the inputs, while the high-distance samples are visually dissimilar. This
symbolic reasoning component enables interpretable ranking and alternative suggestions.
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Direct
annotation

Tag-based
annotation

Chance
Agreement

exists

Tag level NA 96.7%
Final Top-1 31.0% 52.0%
Final Top-2 NA 67.2%
Final Top-3 NA 73.5%
Final Top-4 NA 80.3%

Time Skilled annotators 25.1s 23.6s
Random Turker 48.4s 112.6s

User study Matching 89.4% 92.7%
Preference 306 : 306

(a) Numerical comparisons (b) Visual comparison

Figure 4: Annotation method comparisons: (a) Numerical results show our tag-based
approach achieves dramatically higher annotator agreement (96.7% vs 31.0%) and enables
ranked Top-K alternatives with 80.3% agreement for Top-4 aggregation, while direct anno-
tation provides only single predictions. Time costs remain similar for skilled annotators. (b)
Visual comparison shows both methods produce plausible results, but our neurosymbolic
approach provides additional ranked alternatives through symbolic search.

3.4. Neural network training

We trained our neural component in a supervised manner to predict semantic tags from
human images. To extract feature information from the image, we used the open-source
pre-trained ResNet-50 He et al. (2016) from the PyTorch Paszke et al. (2017) library as our
vision backbone and the initial training checkpoint. During training, we used L2 loss for
continuous tag variables and cross-entropy loss for discrete tag classifications. The neural
network learns to map from image pixels to semantic tag representations, which are then
processed by the symbolic search component.

4. Results and Experiments

In this section, we demonstrate the advantages of our neurosymbolic tag-based annotation
approach with experimental results. Sec. 4.1 shows the advantage at the annotation level,
Sec. 4.2 shows the advantage on neural model convergence and consistent predictions, and
Sec. 4.3 shows that a neurosymbolic tag-based system can easily be compatible with new
rendering systems.

4.1. Annotation Quality

Annotator Agreement: Label noise is a common problem in supervised learning mod-
els Wei et al. (2022). Collecting multiple copies of annotation for aggregation is often
required to create a high-quality dataset. Using a majority vote is the most common way
to aggregate labels and reduce label noise. However, given a large number of hairstyle
options, there might exist multiple plausible answers, or alternatively, no ideal match and
only partially correct answers. These situations cause low agreements between annotators.
Fig. 4(a) provides evidence of the severity of the problem when 3 annotators provide inde-
pendent labels for each target. Agreement exists between annotators in only 31.0% of cases
when using direct annotation. In the majority of cases all three annotators provide different
answers. On the other hand, annotator agreement on semantic tags exists in 96.7% of cases
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when using our neurosymbolic tag annotations. In order to fairly compare against direct
annotation, we compute agreement on the Top-1 hairstyle chosen by each set of tag labels.
Because multiple similar hairstyles exist, agreement is lower than on raw tag prediction at
only 52.0%, but this is substantially better (+21.0%) than the agreement when labelers
provide direct annotations. Unlike direct annotation, our neurosymbolic tag-based anno-
tation provides additional plausible answers which can be used to improve agreement and
enable aggregation. Aggregating over the Top-4 matches from each of 3 labelers, reaches
an agreement level of 80.39% (+49.37%). We conclude that neurosymbolic tag-based labels
are substantially more valuable in creating a "clean" set of labels.

Annotation cost: The total cost of annotation is a function of labeling time for a indi-
vidual image, and the total number of labels required. The cost of individual annotation is
measured in time as shown in Fig. 4(a). We asked annotators from two different skill lev-
els to annotate images and recorded annotation time. Our experiment shows well-trained
professional annotators need marginally less time to annotate a face when using the neu-
rosymbolic tag-based system. In contrast, untrained workers obtained from Amazon Me-
chanical Turk need more time when using tag-based labels. In either case, the differences
in individual labeling time are bounded and not the most significant factor.

Direct annotation requires a completely new set of labels each time a change is made
to the set of available hairstyles, with associated retraining of the prediction model given
the new labels. In contrast, our neurosymbolic tag-based systems only need to label the
new hairstyles, with no new tag labels on the much larger set of training images, and no
retraining of the neural tag predictor. Since most avatar rendering systems will be updated
with new artistic assets occasionally, we conclude that there is a substantial savings on
label cost using neurosymbolic tag-based annotation.

Visual Quality comparison: To compare the visual quality between direct and neu-
rosymbolic tag-based annotation, we conduct two user studies through Amazon Mechani-
cal Turk Amazon Mechanical Turk: Matching and Preference. In the Matching task, we
evaluate whether visual similarity is sufficiently close that evaluators can tell which avatar
goes with which human. A human image is shown with the corresponding avatar hairstyle
and three random distractor hairstyles. The evaluator is required to match the human im-
age and avatar image and is scored as a correct match if the evaluator correctly picks the
original annotation. A high matching score indicates the avatar represents the human well.
A total of 1,224 judgments were collected. As the result shows in Fig. 4(a), our proposed
neurosymbolic tag-based annotation preserves user identity marginally better compared to
direct annotation. In the Preference task, avatar results from both methods are presented
for comparison with the human image. The evaluators were asked to provide their prefer-
ences by choosing one of the results or indifferent, a total of 612 judgments were collected.
The results showed a precise split of 306 judgements for each method. The combined re-
sults of both studies indicate that our semantic tags are sufficiently expressive to act as a
replacement for direct annotation in terms of visual quality.

A visual comparisons of the two annotations methods is provided in Fig. 4(b). Both
annotation methods result in plausible answers. In addition to the Top-1 match, our
neurosymbolic tag-based system can provide interpretable ranking information for all other
hairstyles through symbolic search. The figure also shows Top-5 results from the tag-based
annotations. The visual quality of these results is reduced, but they remain plausible.

4.2. Neural Model Prediction Quality

Neurosymbolic tag-based labels result in better neural models when used for selecting
avatar assets, in terms of both visual quality and consistency.
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Trained methods Matching

Self-
supervised

F2P
Shi et al. (2019) 34.73%

AgileAvatar
Sang et al. (2022) 67.22%

Supervised
(ours)

Direct pred 70.79%
Tag pred 83.92%

(a) Quality comparisons

Top-1
Accuracy

Top-5
Accuracy

Tag pred
Accuracy

Distance
Top-1

Distance
Top-5

Direct
pred 10.29 % 32.84 % NA 6.09 8.25

Tag
pred

17.16%
(+6.87%)

42.16%
(+9.32%)

95.72% 2.51 3.76

Manual 2.29 3.39

(b) Convergence comparisons (c) Visual comparisons

Figure 5: Model prediction comparisons: (a) Quality results show our neurosymbolic
Tag pred achieves best matching performance (83.92%), outperforming direct supervised
prediction (70.79%) and self-supervised baselines. (b) Convergence metrics demonstrate
tag-based training improves accuracy (+6.87% Top-1, +9.32% Top-5) and reduces semantic
distance scores. (c) Visual results show supervised methods outperform self-supervised
approaches, with our neurosymbolic method capturing detailed semantic features through
intermediate tag representation.

4.2.1. Baseline methods and dataset

We compare several methods to understand the effects of neurosymbolic tag-based anno-
tation. We choose two state-of-the-art self-supervised baselines: F2P Shi et al. (2019),
an optimization-based method for realistic game character creation, and AgileAvatar Sang
et al. (2022), the SOTA learning-based method for stylized avatar creation. For supervised
baselines, we compare Direct pred (treating the task as classification, predicting the best
hairstyle with direct annotation targets) and Tag pred (our neurosymbolic approach using
semantic tags and symbolic search as described in Sec. 3.3). Both supervised baselines use
identical vision backbones with similar loss functions.

We used human face images from the FairFace Karkkainen and Joo (2021) dataset,
which is racially balanced and includes blurry images, requiring model robustness on diverse
and lower-quality inputs. We collected neurosymbolic tag-based annotations for 17k images
using professional annotators: 14.5k for training, 2.8k for testing, and 204 as a holdout set
for human evaluation studies.

To avoid bias from annotation quality differences, we create direct labels using tag-
based labels via symbolic search, treating these hairstyles as training targets for Direct
Pred. Thus both supervised methods share identical Top-1 training targets.

4.2.2. Better prediction quality

Visual comparisons for models: Fig. 5(c) compares all four methods. F2P Shi et al.
(2019), designed for realistic avatars, fails frequently on stylized avatars. AgileAvatar Sang
et al. (2022) uses a stylization module to overcome domain gaps, significantly improving
over F2P but remaining inferior to supervised methods. Comparing Direct pred and Tag
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pred, tag-based training helps the neural component capture detailed semantic features like
double pony-tails and hair curliness.

Numerical comparison for models: User studies (Fig. 5(a)) use matching tests where
evaluators identify corresponding avatars among distractors, measuring identity preserva-
tion quality. F2P performs poorly due to its photorealistic design. AgileAvatar reaches
similar scores to Direct pred (only 3.57% lower), but our neurosymbolic approach performs
best, preserving more user identity than all baselines.

4.2.3. Better convergence, More consistent predictions

Convergence: Both supervised models target the same best-matching hairstyles—explicitly
for direct prediction, implicitly through semantic tags for our approach. Fig. 5(b) shows
tag prediction achieves 95.72% accuracy versus 10.29% for direct prediction, but this com-
parison is unfair due to different class numbers. For fair comparison, we evaluate final
hairstyle selection among hundreds of options using Top-K accuracy. Our neurosymbolic
training achieves better Top-1 (+6.87%) and Top-5 (+9.32%) accuracy.

The low absolute Top-1 accuracy (17.16%) reflects the challenge of hundreds of similar
options with multiple potential correct answers rather than poor quality. Our symbolic
search distance metric provides better quality assessment, measuring semantic similarity
between human faces and avatar predictions using annotator-provided tags. Our Tag pred
achieves lower average symbolic search distances for Top-1 (2.51) and Top-5 (3.76) predic-
tions compared to Direct pred (6.09, 8.25). Manual distances provide lower bounds since
perfect matches are impossible.

Consistency: We visualize the Top-5 predictions of both supervised learning methods in
Fig. 6(a). While both methods produce plausible Top-1 answers, the Top-5 predictions
from our neurosymbolic Tag Pred have better consistency compared to Direct Pred. The
Direct Pred model treats each hairstyle as an independent class without considering their
symbolic similarities to the human image. Our neurosymbolic Tag pred, on the other hand,
trains the neural component to predict semantic features defined by human researchers,
then uses symbolic reasoning to find consistent matches. Thus the model was encouraged
to focus on the interpretable features that are important to human observers, resulting in
consistent Top-K predictions. Notice for example that even when direct prediction correctly
predicts a short hairstyle as the Top-1 result, the next best prediction might be long hair.

4.3. Generalizability

Annotating datasets requires substantial effort—in our case, 17k sets of semantic tags for
human images and avatar hairstyles. Direct annotation requires completely new labels
and model retraining for each rendering system. Our neurosymbolic approach significantly
reduces this cost since semantic tags for human images are rendering-system independent.
Only new avatar assets require tagging ( 200 hairstyles vs. 17k training images, <2% of
original cost), while the neural tag prediction model remains valid without retraining.

To demonstrate generalizability, we collected tags for avatar samples from four di-
verse systems: Bitmoji Bitmoji (cartoon avatars with gender-neutral, gray-scaled default
faces), Google Cartoonset Cloe et al. (2022) (cartoon dataset with random non-hairstyle
attributes), MetaHuman MetaHuman (realistic avatars with gender selection based on Fair-
Face tags), and NovelAI NovelAI (diffusion-based cartoon generation using artist-selected
text prompts). We controlled only hairstyles across all systems.

Fig. 6(b) shows model-predicted results. Given semantic tag predictions from our neural
component, symbolic search finds the closest matching hairstyle in each system based on
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(a) Prediction consistency (b) Generalizability

Figure 6: Neurosymbolic system advantages: (a) Prediction consistency shows our
neurosymbolic approach produces more coherent Top-5 rankings than direct prediction,
which can include contradictory results (e.g., both short and long hair). (b) Cross-system
generalizability demonstrates that semantic tags learned on one avatar system transfer to
other rendering systems without retraining, requiring only new asset annotation.

avatar tags. While not every system contains every hairstyle, the selected avatars provide
good approximations of input photographs across diverse rendering approaches.

5. Limitations and conclusion

Limitations: To benefit from the neurosymbolic tag-based system, carefully designed
semantic tags with clear definitions are required, demanding domain expertise and it-
erative refinement. The symbolic search algorithm is sensitive to neural tag prediction
errors—while our neural component substantially outperforms direct prediction methods,
incorrect semantic tags mislead the symbolic search component, highlighting the impor-
tance of robust neural training.

As with all avatar prediction methods, our work lacks universally accepted benchmarks.
Common metrics (L2 loss, perceptual loss Johnson et al. (2016), Top-K accuracy) poorly
represent user preferences. While we conducted user studies, evaluators may not reflect
actual users, affecting evaluation of both neural and symbolic components.

Conclusion: We present a neurosymbolic tag-based annotation method for avatar cre-
ation that demonstrates how hybrid neural-symbolic architectures improve trustworthiness
and interpretability in creative AI applications. Our approach combines neural percep-
tual learning with symbolic semantic reasoning through intermediate tag representations,
achieving higher annotation quality (96.7% vs. 31.0% agreement), better model conver-
gence and consistency, and easy generalization to new rendering systems with minimal cost
(<2% of original annotation effort). Experimental results demonstrate superior perfor-
mance over direct neural methods across annotation quality, model training, and system
generalizability, contributing to understanding how neurosymbolic AI can enhance creative
applications.
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Appendix
Here we include extra image samples for the figures in our paper:

• Sec. A provides mathematical formulation and detailed algorithms for our neurosymbolic
approach

• Sec. B provides additional samples for Visualization of low and high distance samples (Fig3)

• Sec. C provides additional samples for Visual comparison of annotation results (Fig4)

• Sec. D provides additional samples for Visual comparisons of model predictions (Fig5)

• Sec. E provides additional samples for Prediction consistency (Fig6)

• Sec. F provides additional samples for Easily expandable to other systems (Fig7)

• Sec. G shows the annotator user interface
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Appendix A. Mathematical Formulation and Algorithm

A.1. Problem Formulation

Let I be an input human face image and A = {a1, a2, ..., aN} be the set of available avatar
hairstyles. Our goal is to find the optimal avatar a∗ ∈ A that best matches the input image
I.

A.1.1. Semantic Tag Space

We define a semantic tag space T consisting of K attributes organized into regions R =
{r1, r2, ..., rM}. Each attribute tk can be either continuous or discrete:

T = {t1, t2, ..., tK} where tk ∈

{
[0, 1] if continuous
{0, 1, 2, ..., Ck} if discrete

The complete tag representation for an image or avatar is:

t = [t1, t2, ..., tK ]T

In our implementation, we organize attributes into three main regions:

• Top/Front region: Hair length, direction, and curliness level

• Side region: Hair length and curliness level

• Braid region: Presence, count, position, and type

A.1.2. Neural Tag Prediction

A neural network fθ with parameters θ maps from image space to tag space:

tI = fθ(I)

The network is trained using a composite loss function that handles both continuous
and discrete attributes:

L(θ) = 1

Ntrain

Ntrain∑
i=1

[∑
k∈C

∥t̂i,k − ti,k∥22 +
∑
k∈D

CE(t̂i,k, ti,k)

]

where C and D are the sets of continuous and discrete attributes respectively, CE
denotes cross-entropy loss, and t̂i,k represents the predicted tag value for attribute k of
sample i.

A.1.3. Symbolic Search Algorithm

Given the predicted tags tI for an input image, we compute the semantic distance to each
avatar aj using a weighted combination of attribute-specific distances:

d(I, aj) =

K∑
k=1

wk · dk(tI,k, taj ,k)

where wk is the importance weight for attribute k, and the attribute-specific distance
function is:
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dk(tI,k, taj ,k) =

{
|tI,k − taj ,k| if continuous (L1 loss)
I[tI,k ̸= taj ,k] if discrete (0-1 loss)

The optimal avatar is selected as:

a∗ = arg min
aj∈A

d(I, aj)

Additionally, we can rank all avatars by their distances to provide alternative sugges-
tions:

ranking(I) = sort({(d(I, aj), aj)}Nj=1)

A.2. Algorithms

Input : Input image I, Avatar set A = {a1, . . . , aN}, Neural network fθ, Avatar tags
{taj}Nj=1

Output: Best matching avatar a∗, ranked alternatives, predicted tags tI

// Neural Tag Prediction
tI ← fθ(I) ; // Predict semantic tags from input image

// Symbolic Search Phase
Initialize distance list D ← ∅
for j ← 1 to N do

dj ← 0 ; // Initialize distance for avatar aj
for k ← 1 to K do

if attribute k is continuous then
dk ← |tI,k − taj ,k| ; // L1 distance

else
dk ← I[tI,k ̸= taj ,k] ; // 0-1 distance

end
dj ← dj + wk · dk ; // Weighted accumulation

end
D ← D ∪ {(dj , aj)} ; // Store distance-avatar pair

end

// Ranking and Selection
Sort D by distance in ascending order a∗ ← avatar of argmin(d,a)∈D d ; // Best match
alternatives← top-5 avatars from sorted D

return a∗, alternatives, tI
Algorithm 1: Neurosymbolic Tag-Based Avatar Selection
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Input : Training set D = {(Ii, ti)}Ntrain
i=1 , Learning rate α, Number of epochs E

Output: Trained network parameters θ∗

Initialize network parameters θ randomly
for epoch ← 1 to E do

for each mini-batch B ⊆ D do
Lbatch ← 0 ; // Initialize batch loss
for (Ii, ti) ∈ B do

t̂i ← fθ(Ii) ; // Forward pass
for k ← 1 to K do

if attribute k is continuous then
Lbatch ← Lbatch + ∥t̂i,k − ti,k∥22 ; // MSE loss

else
Lbatch ← Lbatch + CE(t̂i,k, ti,k) ; // Cross-entropy loss

end
end

end
Lbatch ← Lbatch

|B| ; // Average over batch

θ ← θ − α∇θLbatch ; // Gradient descent update
end

end
return θ

Algorithm 2: Neural Network Training for Tag Prediction

A.3. Complexity Analysis

The computational complexity of our approach consists of two main components:
Neural Tag Prediction: The forward pass through the neural network has complexity

O(P ), where P is the number of parameters in the network (typically ResNet-50 with
≈ 25M parameters).

Symbolic Search: Computing distances to all avatars has complexity O(N ·K), where
N is the number of avatar hairstyles (typically ≈ 200) and K is the number of semantic
attributes (in our case, K = 9). Sorting for ranking adds O(N logN).

The total inference complexity is O(P +N ·K +N logN), which is dominated by the
neural network forward pass in practice.

A.4. Tag Design Specifications

Based on our iterative design process described in Section 3.2, the final semantic tag struc-
ture is:
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Region Attribute Options Weight (wk) Type

Top/Front
Length 6 2.25 Continuous
Direction 8 2.0 Discrete
Curly Level 4 1.0 Continuous

Side Length 5 2.25 Continuous
Curly Level 4 1.0 Continuous

Braid

Presence (Yes/No) 2 5.0 Discrete
Count 4 2.0 Discrete
Position 3 1.0 Discrete
Type 5 1.0 Discrete

Table 1: Semantic Tag Design Specification with Weights

Weight Rationale: The weights wk were determined through our iterative design
process to reflect the relative importance of different attributes for human perception of
hairstyle similarity. Braid presence receives the highest weight (5.0) as it represents a
fundamental structural difference. Hair length attributes receive high weights (2.25) as
they significantly impact visual appearance. Direction and braid count have moderate
weights (2.0), while texture-related attributes (curliness) and fine-grained braid details
receive lower weights (1.0).

The total theoretical tag space has 6× 8× 4× 5× 4× 2× 4× 3× 5 = 460, 800 possible
combinations, though only a subset of these correspond to actual avatar assets in our
rendering system.

A.5. Implementation Details

Neural Architecture: We use ResNet-50 as the backbone, pre-trained on ImageNet, with
custom prediction heads for each attribute. Continuous attributes use linear output layers
with sigmoid activation, while discrete attributes use linear layers with softmax activation.

Training Configuration: We train for 100 epochs using Adam optimizer with learn-
ing rate α = 0.001, batch size 32, and standard data augmentation (horizontal flip, rotation,
color jitter).

Symbolic Search Optimization: The distance computation can be vectorized for
efficiency. We precompute all avatar tag representations and use broadcasting operations
to compute distances for all avatars simultaneously.
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Appendix B. Additional samples for Visualization of low and high
distance samples (Fig3)
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Appendix C. Additional samples for Visual comparison of annotation
results (Fig4)
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Appendix D. Additional samples for Visual comparisons of model
predictions (Fig5)
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Appendix E. Additional samples for Prediction consistency (Fig6)
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Appendix F. Additional samples for Easily expandable to other systems
(Fig7)
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Appendix G. Tag-based annotation page
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