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Abstract

Graph transformers (GTs) have shown strong empirical performance, yet current
architectures vary widely in their use of attention mechanisms, positional embed-
dings (PEs), and expressivity. Existing expressivity results are often tied to specific
design choices and lack comprehensive empirical validation on large-scale data.
This leaves a gap between theory and practice, preventing generalizable insights
that exceed particular application domains. Here, we propose the Generalized-
Distance Transformer (GDT), a GT architecture based on standard attention that
incorporates many recent advancements for GTs, and we develop a fine-grained
understanding of the GDT’s representation power in terms of attention and PEs.
Through extensive experiments, we identify design choices that consistently per-
form well across various applications, tasks, and model scales, demonstrating
strong performance in a few-shot transfer setting without fine-tuning. Our evalu-
ation covers over eight million graphs with roughly 270M tokens across diverse
domains, including image-based object detection, molecular property prediction,
code summarization, and out-of-distribution algorithmic reasoning. We distill our
theoretical and practical findings into several generalizable insights about effective
GT design, training, and inference.

1 Introduction

Graphs are a fundamental data structure for representing relational data and are prevalent across
scientific and industrial domains. They naturally model interactions in chemistry [Gilmer et al., 2017,
Jumper et al., 2021], biology [Zitnik et al., 2018, Fout et al., 2017], social and citation networks [Kipf
and Welling, 2017, Hamilton et al., 2017], recommendation systems [Ying et al., 2018, Wu et al.,
2020], computer vision [Xu et al., 2021], and code analysis [Allamanis et al., 2018, Hellendoorn
et al., 2021]. While graph neural networks (GNNs) [Zhou et al., 2020, Bronstein et al., 2021],
specifically message-passing neural networks (MPNNs) [Gilmer et al., 2017], remain the most
prominent architectures in graph learning, recently, graph transformers (GTs) have emerged [Müller
et al., 2024] and have found success in applications such as protein folding [Abramson et al., 2024],
weather forecasting [Price et al., 2025], or robotics [Vosylius and Johns, 2025]. Moreover, because
graphs are a general modeling language, GTs can be seen as generalizations of traditional transformer
architectures [Vaswani et al., 2017, Devlin et al., 2019, Brown et al., 2020]. As such, theoretical
and practical insights about GTs can be leveraged to improve our understanding of transformers’
reasoning abilities and representation power [Sanford et al., 2024, Cheng et al., 2025]. In addition,
LLMs with causal masking can be seen as GTs on special types of directed acyclic graphs, and tools
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Figure 1: Overview of the GDT and accompanying evaluation. Top left: We support node- and
edge-level tokenization with corresponding absolute PEs (depicted below each token). Top right: We
incorporate relative PEs and edge features via the attention bias. Bottom left: We provide effective and
streamlined implementations for incorporating edge features and PEs. Bottom right: All empirical
evaluations are done on large-scale datasets spanning various applications.

from graph learning can be used to study and understand their behavior at inference time [Barbero
et al., 2024, 2025].

Despite these promises, the progress of GTs is hindered by a lack of standardized methods for
obtaining generalizable insights. Specifically, we identify three main obstacles in the current literature:
architecture-tied expressivity, limited evaluation, and graph-specific attention. Here, architecture-tied
expressivity refers to the shortcoming that current expressivity results are often tied to specific
architectural designs, such as special attention mechanisms [Zhang et al., 2023, Ma et al., 2023,
Müller et al., 2024, Black et al., 2024] or choices of positional embeddings (PEs) [Tsitsulin et al.,
2022, Ma et al., 2023, Kim et al., 2022, Müller and Morris, 2024]. In addition, empirically, GTs are
often evaluated and compared on small-scale datasets [Rampášek et al., 2022, Ma et al., 2023] where
otherwise negligible implementation choices can be more prominent, leading to limited insights. In
addition, GTs are rarely evaluated on their representation-learning capabilities, for example, in zero—
or few-shot transfer settings. Finally, regarding graph-specific attention, most GTs deviate far from
the traditional transformer architecture, making it challenging to derive generalizable insights about
transformers beyond particular application domains.

Present work This work aims to overcome the above obstacles and provide a general and powerful
graph transformer architecture. Through rigorous theoretical and empirical analysis, we develop
the Generalized-Distance Transformer (GDT), a general graph transformer architecture whose
expressivity can be characterized by the powerful Generalized-Distance Weisfeiler–Leman algorithm
[Zhang et al., 2023]. Concretely, the GDT

1. captures MPNNs, most graph transformers, and many other transformer models, e.g., causal
and bi-directional transformers;

2. is effective across application domains, as well as on graph-, node-, and edge-level prediction
tasks; and

3. is evaluated at a sufficient data scale and can learn transferable representations, allowing for
few-shot transfer and extrapolation.

Our provably expressive GDT architecture, supported by a rigorous empirical evaluation, represents
a significant step toward developing highly effective, general-purpose graph models that enable
generalizable insights across diverse domains.

Related work With GT architectures being successful in various domains, several approaches
exist for applying transformers to graph learning tasks. Apart from pure transformer architectures
such as [Dwivedi and Bresson, 2020, Ying et al., 2021a, Kim et al., 2022, Müller and Morris, 2024],
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most GT designs incorporate changes to the attention mechanism [Bo et al., 2023, Kreuzer et al.,
2021, Ma et al., 2023], or use attention jointly with MPNNs [Rampášek et al., 2022, Choi et al.,
2024]; see Müller et al. [2024] for an overview of GTs. Moreover, Zhang et al. [2023] propose
a modified attention mechanism for a GT to simulate the Generalized Distance Weisfeiler–Leman
algorithm (GD-WL), a variant of the Weisfeiler–Leman algorithm (1-WL) [Weisfeiler and Leman,
1968] incorporating distance information. Indeed, there exists an extensive literature on deriving
architectures more expressive than the 1-WL test, both for GNNs [Azizian and Lelarge, 2021, Maron
et al., 2019a,b, Morris et al., 2020, Puny et al., 2023] as well as GTs [Ma et al., 2024, Zhang et al.,
2023, 2024, Kim et al., 2022, Müller and Morris, 2024, Müller et al., 2024]. As noted by Müller et al.
[2024], GTs heavily rely on structural and positional information captured by a positional embedding
to increase expressiveness. Common choices include absolute PEs such as SAN [Kreuzer et al.,
2021], LPE [Müller and Morris, 2024], SPE [Huang et al., 2024], and SignNet/BasisNet [Lim et al.,
2023], RWSE [Dwivedi et al., 2021], RRWP [Ma et al., 2023], as well as PEs based on substructure
counting [Ying et al., 2021a]. In terms of theoretical and empirical evaluation of GTs, the closest
related works on the theoretical side are Zhang et al. [2024], Black et al. [2024], Rampášek et al.
[2022] and Li et al. [2024]. However, neither of these works considers standard attention or compares
design choices such as PEs on large-scale data.

2 Generalized-Distance Transformer

In this section, we derive the GDT by combining multiple methods from the recent graph learning
literature, while maintaining standard attention and compatibility with most traditional transformer
models. Moreover, we prove that the GDT is powerful enough to simulate the general and expressive
GD-WL algorithm [Zhang et al., 2023]. We will first introduce some notation and necessary
background, and then develop our theoretical framework.

2.1 Expressivity and Weisfeiler–Leman variants

We consider finite graphs G := (V (G), E(G), ℓV , ℓE) with nodes V (G), edges E(G). Note that
for simplicity we assume that the nodes and edges are already embedded via node embeddings
ℓV : V (G) → Rd, and edge embeddings ℓE : V (G)2 → Rd, where d ∈ N+ is the embedding
dimension and ℓE(v, w) is simply the all-zero vector if there is no edge between nodes v and w. We
always fix an arbitrary order on the nodes V (G) to be consistent with vectorial representations such
as those used in transformers. We study the expressivity of a graph model via its ability to distinguish
non-isomorphic graphs, which is common practice for graph neural networks and GTs [Morris et al.,
2019, Abboud et al., 2022, Zhang et al., 2023, Black et al., 2024, Müller and Morris, 2024]. Such a
notion of expressivity is often studied in the context of the new k-dimensional Weisfeiler–Leman
algorithm (k-WL) [Cai et al., 1992], a hierarchy of graph isomorphism heuristics with increasing
expressivity and computational complexity as k > 0 grows. MPNNs without PEs typically have
1-WL expressivity. Another important graph isomorphism heuristic in the context of this work is the
GD-WL variant [Zhang et al., 2023], which we formally introduce here. Concretely, given a graph
G := (V (G), E(G), ℓV ), we seek to iteratively update colors for each node v ∈ V (G), denoted
χt
G(v), where t ≥ 0 denotes the iteration number. We initialize χ0

G(v) with the node colors consistent
with ℓV , that is χ0

G(v) = χ0
G(w) if and only if ℓV (v) = ℓV (w), for all pairs of nodes v, w. Then, the

GD-WL updates the color χt
G(v) of node v ∈ V (G), as

χt+1
G (v) := hash

(
{{(dG(v, w), χt

G(w)) : w ∈ V (G)}}
)
, (1)

where dG : V (G)2 → R+ is a distance between nodes in G and hash is an injective function,
mapping each distinct multiset to a previously unused color. The expressivity of the GD-WL depends
on the choice of dG. Setting dG(v, w) = 1 if and only if v and w have an edge in G, yields 1-WL
expressivity. In practice, the GD-WL is often implemented with a GT, where dG is incorporated via a
modified attention [Ma et al., 2023, Zhang et al., 2023]. In Section 2.3, for the first time, we prove
that a GT with standard attention can simulate the GD-WL, with dG being incorporated as a PE.

2.2 Defining the GDT

While many variations of GTs exist, we consider the standard transformer encoder based on Vaswani
et al. [2017]. This allows us to use a standard attention layer, without modifications as commonly
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seen in other GTs. Concretely, the GDT processes a matrix of initial token embeddings X0 ∈ RL×d,
derived from G, using scaled dot-product attention and subsequent application of a multi-layer
perceptron (MLP). Here L ∈ N+ denotes the number of tokens, typically in the order of the number
of nodes, and d denotes the embedding dimension. We now describe tokenization and attention, and
how we incorporate edge embeddings into the GDT.

Tokenization For this study, we will consider two possible tokenizations: (a) node-level tok-
enization, where each token corresponds to a node in G and the initial token embeddings are
constructed from node embeddings ℓV ; and (b) edge-level tokenization, where each token cor-
responds to either a node or an edge in G and the initial token embeddings are constructed
from the node embeddings ℓV and the edge embeddings ℓE for node- and edge-tokens, respec-
tively. In practice, we use the fact that edge-level tokenization is equivalent to node-level to-
kenization on a transformation G′ of G, with V (G′) := {(v, v) | v ∈ V (G)} ∪ E(G) and
E(G′) := {((u, v), (w, z)) | u = w ∨ u = z ∨ v = w ∨ v = z}.

Special tokens As a convention, and following many prior works on transformer encoders, we use
a special [cls] token to read out graph-level representations from the GT. For simplicity, we treat the
[cls] token as a virtual node connected to all other nodes. This virtual node is also equipped with
a unique node embedding ℓV ([cls]) and unique edge embeddings ℓE([cls], v) = ℓE([cls], w)
and ℓE(v, [cls]) = ℓE(w, [cls]), for all pairs of nodes v, w ∈ V (G).

Attention For the attention, let Q,K,V ∈ RL×d and B ∈ RL×L be the attention bias. We define
biased attention as

Attention(Q,K,V ,B) := softmax
(
d−

1
2 ·QKT +B

)
V ,

where softmax is applied row-wise. While many variations of the standard transformer layer exist, it
generally takes the form

Xt+1 := MLP
(
Attention(XtWQ,X

tWK ,XtWV ,B)
)
, (2)

where WQ,WK ,WV ∈ Rd×d are learnable linear transformations, and we use a two-layer MLP
commonly found in transformer encoder layers; see Appendix B for a formal definition. In practice,
transformers typically have additional normalizations and residual connections. They are implemented
using multi-head attention with attention bias tensor B ∈ RL×L×h where h is the number of attention
heads; see Appendix B for a formal definition. Note that Equation (2) is a general formulation
whose special cases include the local GT [Dwivedi and Bresson, 2020], an attention-based variant
of MPNNs with Bij = 0 if nodes i and j share an edge and Bij = −∞ else; attention with causal
masking [Vaswani et al., 2017] with Bij = 0 if i < j and Bij = −∞ else; as well as many relative
PEs [Shaw et al., 2018, Beltagy et al., 2020, Press et al., 2022].

Edge embeddings To incorporate edge embeddings into the GDT, we distinguish between node-
level and edge-level GT. For the edge-level GT, edge embeddings are explicitly incorporated via edge
tokens. For the node-level case, we adapt the strategy from Bechler-Speicher et al. [2025], which
is itself adapted from Graphormer [Ying et al., 2021a], to incorporate edge embeddings into the
attention bias via an additional projection to the number of attention heads. Formally, for all pairs of
nodes i, j ∈ V (G) ∪ {[cls]},

Bij := ρ(ℓE(i, j)),

where ρ : Rd → Rh is a neural network, such as a linear transformation or an MLP.

Making predictions For supervised learning with the GDT, we can make graph-, node-, and
edge-level predictions by applying an MLP head to the [cls] token embedding, the node token
embeddings, and the edge token embeddings. Note that we can leverage edge-level tokenization for
edge-level tasks, which provides explicit edge token embeddings. We apply k-nearest-neighbors (k-
NN) to the token embeddings after the last layer for few-shot transfer without additional fine-tuning.

Absolute and relative PEs We can incorporate two classes of PEs, absolute PEs such as RWSE
[Dwivedi et al., 2021], LPE [Kreuzer et al., 2021, Müller and Morris, 2024], and SPE [Huang et al.,
2024], which are added at the token-level, and relative PEs such as RRWP [Ma et al., 2023], which
describe relational information between two tokens. Concretely, an absolute PE takes the form
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P ∈ RL×d where the row Pi is the embedded PE vector corresponding to token i. We then project
and add Pi to the node embedding of token i to obtain the initial token embeddings, or formally,

Xi := ℓV (i) + PiWP ,

where WP ∈ Rd×d is a learnable weight matrix. Moreover, a relative PE takes the form U ∈
RL×L×d, which we project and add to the edge embeddings to construct the attention bias B. Note
that we only consider relative PEs in node-level tokenization. Concretely, for all pairs of nodes
i, j ∈ V (G) ∪ {[cls]},

Bij := ρ(ℓE(i, j)) +UijWU ,

where WU ∈ Rd×h is a learnable weight matrix. We note that the GDT is permutation-equivariant if
and only if the absolute and relative PEs used are permutation-equivariant. Since we always assume
the presence of, potentially trivial, edge embeddings, the GDT has, at the very least, an embedding of
the adjacency matrix as its attention bias, forming a kind of default relative PE. We will refer to this
PE as NoPE.

2.3 The expressive power of the GDT

We now have the necessary definitions to formally state our theoretical result for the expressivity
of the GDT. Importantly, our result allows us to study GT expressivity solely through PE choice,
effectively decoupling model expressivity from attention selection. Concretely, we show that the
GDT, with absolute and relative PEs, is sufficient to simulate the GD-WL, as well as that the GD-WL
provides an upper bound on the expressivity of the GDT; see Appendix C for the proof.
Theorem 1 (informal). The following holds:

1. For every choice of distance function, there exists a selection of PEs and a parameterization
of the GDT sufficient to simulate the GD-WL.

2. For every choice of PEs and parameterization of the GDT, there exists a distance function
and an initial coloring of the GD-WL sufficient to simulate the GDT.

The central problem we face when proving the first statement is how to injectively encode the
multisets in Equation (1) with softmax-attention. This is because softmax-attention computes a
weighted mean, whereas existing results for encoding multisets use sums [Xu et al., 2019, Morris
et al., 2019, Zhang et al., 2023]. To overcome this limitation, we first note that the weighted mean
of softmax-attention is essentially a normalized sum of exponential numbers. We then leverage a
classical result from number theory, namely that sums of distinct exponential numbers are linearly
independent over the algebraic numbers, known as the Lindemann–Weierstrass theorem [Baker,
1990]. In the proof of Theorem 1, we show that this linear independence property is sufficient for
injectivity, provided that there are at least two distinct token embeddings, a property always satisfied
in the presence of the [CLS] token. We note that our expressivity result explicitly uses a property of
softmax-attention instead of leveraging idealized versions of softmax, such as saturated softmax or
hardmax, commonly used for expressivity results for graph transformers [Zhang et al., 2023, Müller
and Morris, 2024] and transformers in general [Pérez et al., 2019, Hahn, 2020, Merrill et al., 2022,
Merrill and Sabharwal, 2024].

Insight 1: The expressivity of biased attention can be characterized by the GD-WL.

A consequence of Theorem 1 is that the GDT with NoPE is equivalent to 1-WL; see Appendix C for
a formal discussion of this fact. With Theorem 1, we have characterized the expressivity of the GDT
in terms of the GD-WL. In the next section, we show that this expressivity can be enhanced using
PEs. To this end, we present a range of new PE expressivity results, yielding the most fine-grained
picture of GT expressivity.

3 The expressive power of positional embeddings

This section provides a comprehensive theoretical expressiveness hierarchy of PEs based on the
works of Black et al. [2024] and Zhang et al. [2024], including novel results on PE expressiveness.
Based on the theoretical results from Section 2.3, we expand on GDT expressiveness by introducing
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PE expressiveness, establishing a pathway between our transformer architecture and incorporating
graph structure information. Furthermore, leveraging the PE expressiveness results, we obtain initial
guidelines for empirically evaluating PE design choices. Here, we introduce the four PEs central to
our theoretical and empirical study; see Appendix D for results for additional PEs.

PEs We consider random-walk-based PEs and those based on the graph Laplacian’s eigenvalues.
Random-walk-based PEs are embeddings of the random-walk probabilities obtained from multiple
powers of the degree-normalized adjacency matrix of the graph. We consider RWSE [Dwivedi et al.,
2021], an absolute PE which uses only the return probabilities of random walks for each node and
has linear-time complexity, and RRWP [Ma et al., 2023], a relative PE, which uses all random walk
probabilities between two nodes and has quadratic runtime complexity.

Laplacian PEs are embeddings of the eigenvectors and eigenvalues of the graph Laplacian; see
Appendix B for a definition. Here, we consider LPE [Kreuzer et al., 2021, Müller and Morris, 2024],
an absolute PE which uses a linear-time embedding method but suffers from a lack of basis-invariance,
making the PE non-equivariant to the permutation of nodes [Lim et al., 2023]. In addition, we consider
SPE [Huang et al., 2024], an absolute PE which is permutation-equivariant but has quadratic runtime
complexity. We restrict ourselves to this selection as other common PEs, such as the shortest path
distance or resistance distance, can be approximated by RWSE or RRWP [Black et al., 2024].Further
details and formal definitions are presented in Appendix B.

1-WL and random-walk PEs Tönshoff et al. [2023] already show that there are pairs of graphs
with n nodes, distinguishable by the 1-WL, requiring random walks with at least O(n) steps to be
distinguished. Here, we show that RWSE is incomparable to the 1-WL. This holds independent
of the number of random walk steps, and as a result, we can consider RWSE to provide additional
information as a PE to a pure transformer architecture by differentiating 1-WL indistinguishable
graphs; see Appendix D for the proof.

Theorem 2. The RWSE embedding is incomparable to the 1-WL test.

We briefly highlight the most essential proof idea. Concretely, the selected trees introduced by
Cvetković [1988], shown in Figure 2, are known not to be distinguishable using their eigenvalues
and graph angles. However, all trees can be distinguished by the 1-WL test [Cai et al., 1992]. At the
same time, it is well-known that RWSE can distinguish indistinguishable CSL graphs by the 1-WL
[Dwivedi et al., 2021]. Further, we note that Theorem 2 provides not only a single pair of graphs but
rather an infinite number of trees indistinguishable by RWSE. Finally, we show the following result
relating RRWP to RWSE.

Proposition 3. RRWP is strictly more expressive than RWSE, given the same random walk length.

Random-walk PEs and eigen PEs We provide results for RWSE, RRWP, LPE, and SPE. In
contrast to previous works [Ma et al., 2023, Zhang et al., 2024], we analyze the expressivity of RRWP
directly, without using the GRIT architecture. We find that RRWP is approximated by SPE, which in
turn is strictly weaker than the 3-WL test [Zhang et al., 2024]. Further, we expand on proofs by Lim
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Figure 3: Results of inference-time experiments. From left to right: Few-shot transfer from BRIDGES
to CYCLES with 3-NN over 3 random seeds; few-shot transfer from COCO to PASCAL with 5-NN
over 10 random seeds; extrapolation beyond training data on MST over 3 random seeds.

et al. [2023] to approximate RWSE using LPE. Taken together, we obtain a fine-grained hierarchy of
PEs, which we summarize in the following result.

Proposition 4. SPE is at least as expressive as LPE and RRWP, LPE is at least as expressive as
RWSE.

We obtain an even more fine-grained hierarchy of Eigen-vector-based PEs by including additional
embeddings as discussed in Appendix D. As a consequence of the hierarchy, all PEs considered in
this section can distinguish graphs not distinguishable by the 1-WL or, equivalently, the GDT with
NoPE.

Insight 2: Any PE in {RWSE,RRWP,LPE,SPE} enhances the expressivity of the GDT.

We present a summary of our results in Figure 2 and highlight our contributions to a completed
theoretical expressiveness hierarchy of PEs, complementing the work of Zhang et al. [2024] and
Black et al. [2024]. Together with the theoretical insights obtained in Section 2 we arrive at a detailed
understanding of the expressivity of the GDT with four popular PEs.

4 Experiments

In this section, we empirically evaluate our GDT model on various real-world and synthetic datasets,
at graph-, node-, edge-level, and in- and out-of-distribution. Concretely, we compare the performance
and efficiency of the PEs in Section 3 and study few-shot transfer, parameter scaling, and size
generalization capabilities of the GDT. In the process, we hope to gain a deeper understanding of
the relationship between empirical performance and expressivity, based on the results presented in
Section 3, and derive generalizable insights for GTs. Next, we describe our implementation design,
dataset selection, and experimental schedule, and present our empirical results.

Implementation We base our implementation on the torch.nn.TransformerEncoderLayer
proposed in PyTorch [Paszke et al., 2019]. This allows us to use memory and runtime-efficient
attention implementations such as FlashAttention [Dao et al., 2022] and Memory Efficient Attention
[Rabe and Staats, 2021]. In addition, we seek to harmonize implementation differences across PEs
to reduce the impact of implementation-specific advantages as much as possible by using the same
number and width of MLP layers and the same activation functions across all PEs. A complete
overview of our implemented model architecture is given in Appendix A.

Real-world datasets For consistency across graph-, node-, and edge-level tasks, we measure
dataset size by the number of input tokens. For the real-world tasks, we evaluate our models on
PCQM4Mv2 (PCQ) [Hu et al., 2021], a molecular property prediction dataset with 52.5M tokens,
COCO [Dwivedi et al., 2022], an image-based object detection dataset with 58.8M tokens, and
OGB-Code2 (CODE) [Hu et al., 2020], a code summarization dataset with 56.7M tokens. We focus
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exclusively on large-scale datasets from diverse domains to derive generalizable insights for GT
performance. For few-shot transfer, we select PASCAL [Dwivedi et al., 2022], which has the same
image domain as COCO but uses different object categories. Bechler-Speicher et al. [2025] already
demonstrate strong transfer from COCO to PASCAL through fine-tuning. We give an overview of
state-of-the-art performance on these datasets in Appendix A.

Algorithmic reasoning datasets In addition to real-world tasks, we add synthetic algorithmic
reasoning tasks for graph algorithms inspired by the CLRS benchmark [Velickovic et al., 2022].
Our selection includes the minimum spanning tree problem (MST), detecting bridges in a graph
(BRIDGES), and calculating the maximum flow in an undirected graph (FLOW). Here, BRIDGES
and MST are edge-level tasks, and FLOW is a graph-level task. We further consider the task of
detecting whether a node lies on a cycle (CYCLES), a node-level complement to BRIDGES, to evaluate
transfer learning capabilities. Following the literature in algorithmic reasoning for transformer
architectures [Zhou et al., 2022, 2024a,b] and in particular, graph algorithmic reasoning [Diao and
Loynd, 2023, Velickovic et al., 2022, Markeeva et al., 2024, Müller et al., 2024], we evaluate in the
size generalization setting where test-time graph instances are up to 16 times larger than those seen
during training. Size generalization has been recently identified as a key challenge for graph learning
[Morris et al., 2024]. An expanded introduction to each task is available in Appendix A.

4.1 Experimental design

In the first step, we evaluate different PE choices from Section 3 for the GDT on all six upstream tasks.
We also consider NoPE, which uses only edge embeddings to infer the graph structure. We fix the
parameters to 15M; see Appendix A for the choice of hyperparameters. Additionally, we compute the
runtime and memory efficiency observed for each PE and task. Due to the high memory requirements
of storing full random-walk matrices for RRWP on large datasets, we compute RRWP matrices at
runtime. To allow a fair comparison between PEs that accounts for computational efficiency, we
set a compute budget of 5 GPU days for the 16M models. Furthermore, we evaluate the GDT in
comparision to Graphormer-GD [Zhang et al., 2023] on BREC [Wang and Zhang, 2024], a benchmark
evaluating theoretical expressiveness on graph samples. For this, we use RWSE and LPE as PEs for
both architectures.

In the second step, we select the best models from the first step and further evaluate them using
few-shot transfer, scaling model size, and extrapolating the graph size. In particular, we assess
few-shot transfer from COCO to PASCAL, as well as few-shot transfer from BRIDGES to CYCLES.
Note that even though BRIDGES is an edge-level task and CYCLES is a node-level task, we should
expect strong transfer, as a node lies on a cycle if and only if at least one of its incident edges is not a
bridge. For scaling, we train additional models with 90M and 160M parameters for PCQ and MST.
Finally, we provide extrapolation results for up to 256 nodes (16× the size of the training graphs) on
MST.

4.2 Discussion of base models

We present our task results in Table 1, as well as runtime and memory requirements in Figure 4.
RRWP performs best of all selected PEs on 4 out of 6 tasks. However, due to the need to compute
RRWP matrices at runtime, for COCO and CODE we use additional resources to provide results.
Most notably, RWSE and LPE perform significantly better than NoPE and SPE for all tasks except
FLOW, but do not face any efficiency issues. Furthermore, LPE and RWSE perform similarly across
tasks, placing second and third, respectively, and are often competitive with the less efficient RRWP.
Despite theoretical results observed in Section 3, we note the differences in experimental results to be
less pronounced. This aligns with previous work on PEs, indicating discrepancies between theory
and empirical evaluation. However, we extend this observation by providing an evaluation at scale
and a direct comparison of PEs on a single architecture.

Insight 3: PE efficiency can vary greatly while predictive performance differences are less
pronounced.

Due to their favorable efficiency and competitive predictive performance, we selected LPE and RWSE
for our scaling and extrapolation experiments and few-shot transfer. For few-shot transfer from
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Table 1: 16M parameter results for different PEs over 3 random seeds. PCQ MAE is in micro electron
volt (meV) for clarity of presentation. The mean rank is computed by sorting the models’ scores for
each task.

PE Mean PCQ COCO CODE FLOW MST BRIDGES
Rank MAE ↓ F1 ↑ F1 ↑ MAE ↓ F1 ↑ F1 ↑

NoPE 3.50 93.6 ± 0.5 43.12 ± 00.85 19.27 ± 00.20 1.73 ± 0.09 93.29 ± 00.88 55.36 ± 24.94

LPE 2.50 92.7 ± 0.9 44.83 ± 00.71 19.48 ± 00.21 1.75 ± 0.12 91.08 ± 00.95 91.76 ± 07.66

SPE 4.00 94.1 ± 0.6 43.87 ± 00.54 19.35 ± 00.21 1.98 ± 0.14 92.52 ± 00.12 54.81 ± 21.20

RWSE 2.67 92.9 ± 0.6 43.82 ± 01.01 19.39 ± 00.47 1.49 ± 0.02 93.26 ± 00.45 87.34 ± 03.97

RRWP 2.33 90.4 ± 0.3 39.91 ± 01.07 19.42 ± 00.10 1.45 ± 0.06 96.04 ± 00.91 99.21 ± 00.09
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Figure 4: (a): Results on 90M and 160M models for PCQ and MST evaluated on LPE and RWSE.
(b): Number of tokens evaluated per second during training for each PE. Results are obtained by
averaging runtimes per token across tasks. (c): Average GPU memory requirement for each PE.

BRIDGES to CYCLES, we additionally select RRWP due to its significantly better OOD performance
on BRIDGES.

With results for BREC shown in Table 2, we observe the performance of GDT and Graphormer-GD
models to be comparable and differences to be negligible, aligning experimental results to theoretical
observations made in Theorem 1 and showcasing non-trivial performance. Further, the difference
in expressiveness of RWSE and LPE can be observed for both models. However, we note that
BREC results depend on specific hyperparameter choices and are often unstable during training. An
overview of the hyperparameters selected for BREC can be found in Appendix A.7.

4.3 Extended evaluation

We present the scaling results in Figure 4 (a), few-shot transfer in Figure 3 (a) and (b), and extrapo-
lation results in Figure 3 (c). For scaling, we observe that the relative performance between PEs is
relatively robust to model scale. In three out of four cases, in- and out-of-distribution performance
improves consistently with increasing model scale. The only exception is the 160M model with LPE
on MST, which drops off slightly compared to its 90M counterpart but still outperforms both 15M
models on this task.

Insight 4: Scaling the GDT generally improves in- and out-of-distribution performance.

For few-shot transfer, we find that all three evaluated models can demonstrate strong performance
when transferring from BRIDGES to CYCLES with just a few shots. In particular, the 15M model with
LPE already achieves near-perfect performance with 10 shots and is significantly better than RWSE
and RRWP up to 60 shots. When transferring from COCO to PASCAL, we observe performance
increases even for 1000 shots where both RWSE and LPE surpass the current SOTA on PASCAL,
despite seeing less than 10% of the available training samples at inference-time; see Appendix A for
an overview of state-of-the-art performance on PASCAL.

Insight 5: Representations learned by the GDT allow for effective few-shot transfer.

Finally, we find all PEs and model scales to extrapolate well on MST. In particular, we still observe
an F1 score of around 85 at 256 nodes or 16× the graph sizes seen during training.
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Table 2: Results of GDT and Graphormer-GD models on the BREC benchmark. Each column
indicates the number of samples correctly distinguished by each model.

Model PE Basic Regular Extension CFI Total

Graphormer-GD RWSE 57 50 96 0 203
Graphormer-GD LPE 55 40 85 3 183
GDT RWSE 57 50 96 0 203
GDT LPE 54 39 84 3 180

5 Limitations

Currently, the GDT can only make use of memory-efficient attention at inference time, due to the use
of a learnable attention bias. For example, the learnable attention bias is not compatible out-of-the-box
with FlashAttention2 [Dao, 2024] or FlexAttention [Dong et al., 2025]. Moreover, many more PE
variants exist that could be included in our study; see, for example, PEs listed in Section 1. Finally,
we note that our current implementation does not take the sparsity of the attention bias into account,
which can lead to prohibitive memory requirements for very large graphs.

6 Conclusion

We establish the GDT, a generalizable, expressive graph transformer based on the standard trans-
former implementation. We show the GDT to be equivalent to the GD-WL in terms of theoretical
expressiveness, augmented in expressivity by using PEs and their respective expressiveness. Further,
we demonstrate strong empirical performance across multiple domains and large-scale datasets,
determining an empirical hierarchy of PEs. We also show the GDT to be able to learn transferable rep-
resentations, extrapolate on graph size for synthetic tasks, and results being robust concerning model
scale. Thereby, we provide generalizable theoretical and empirical insights for graph transformers.
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Table 3: Hyperparameters for our 16M models.
Hyperparameter PCQ COCO CODE FLOW MST BRIDGES

Learning rate 1e-4 4e-4/3.5e-4 1e-4/1.5e-4 1e-4/2e-4 3e-4 2e-4/1e-4
Batch size 256 32 32 256 256 256
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Grad. clip norm 1 1 1 1 1 1

Num. layers 16 16 16 16 16 16
Hidden dim. 384 384 384 384 384 384
Num. heads 16 16 16 16 16 16
Activation ReLU ReLU ReLU ReLU ReLU ReLU

RWSE/RRWP Steps 32 32 32 16 16 16
Num eigvals/eigvecs 32 32 32 16 16 16
Hidden dim. RWSE/RRWP 768 768 768 768 768 768
Hidden dim. LPE/SPE 384 384 384 384 384 384
Num. layers ϕ 2 2 2 2 2 2
Num. layers ρ 2 2 2 2 2 2
GNN type ρ (SPE) GIN GIN GIN GIN GIN GIN

Edge encoder MLP MLP MLP MLP MLP MLP
Weight decay 0.1 0.1 0.1 0.1 0.1 0.1
Dropout 0.1 0.1 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1 0.1 0.1

#Steps 2M 1M 200k 11718 11718 11718
#Warmup steps 20k 10k 2k 118 118 118

A Experimental details

Here, we present hyperparameter choices, architecture design, and dataset selections for the empirical
evaluation of our GT architecture.

A.1 Data sources and licenses

PCQM4MV2 is available at https://ogb.stanford.edu/docs/lsc/pcqm4mv2/ under a CC
BY 4.0 license. OGB-Code2 is available at https://ogb.stanford.edu/docs/graphprop/
#ogbg-code2 under a MIT license. The COCO-SP and PASCAL-VOC-SP datasets as part of the
LRGB benchmark [Dwivedi et al., 2022] are available at https://github.com/vijaydwivedi75/
lrgb under a CC BY 4.0 license. BREC is available at https://github.com/GraphPKU/BREC
under a MIT license. Statistics for all datasets, including the algorithmic reasoning datasets, are
available in Table 5

A.2 Hyperparameters

Table 3 and Table 4 give an overview of the hyperparameters used for models highlighted in our
work. Given the large number of hyperparameters and the scale of the tasks, we did not perform a
grid search or any other large-scale hyperparameter optimization. Nonetheless, we swept the learning
rate for each task and model size. Across the experiments, we select the hyperparameters based on
the best validation score and then evaluate on the test set. We search for suitable learning rates on the
16M models to determine which models to scale. Due to the increased computational demand, we
then reduce the learning rate for the 100M models.

For PCQ, we set the learning rate to 1e-4 after sweeping the learning rate over the set {7e-5, 1e-4,
3e-4}. Further, we set the learning rate for COCO to 4e-4 for eigen-information-based embeddings
and 3.5e-4 for RWSE after sweeping over {7e-5, 1e-4, 3e-4, 4e-4}. For CODE, we reduce the
learning rate to 1.5e-4 (RWSE) with the same sweep as with PCQ, and across all MST runs, we
keep the learning rate at 3e-4 for the 16M models, reducing the learning rate to 1e-4 (LPE) and 7e-5
(RWSE) for the 90M model and 7e-5 for the 160M model at MST with the same initial sweep as for
COCO. Furthermore, for FLOW, we set the learning rate to 1e-4 (LPE, SPE, NoPE) and 2e-4 (RWSE,
RRWP), respectively. We obtain similar results for BRIDGES with 1e-4 (RWSE, LPE) and 2e-4
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Table 4: Hyperparameters for our 90M and 160M models.

Hyperparameter PCQ(90M) MST(90M) MST(160M)

Learning rate 1e-4 1e-4/7e-5 7e-5
Batch size 256 256 256
Optimizer AdamW AdamW AdamW
Grad. clip norm 1 1 1

Num. layers 24 24 24
Hidden dim. 768 768 1024
Num. heads 16 16 16

Activation ReLU ReLU ReLU

RWSE/RRWP steps 32 32 32
Num. eigvals/eigvecs 32 32 32
Hidden dim. RWSE/RRWP 768 768 768
Hidden dim. LPE/SPE 384 384 384
Num. layers ϕ 2 2 2
Num. layers ρ 2 2 2
GNN type ρ (SPE) GIN GIN GIN

Edge encoder MLP MLP MLP
Weight decay 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1

#Steps 2M 11718 11718
#Warmup steps 20k 118 118

Table 5: Dataset statistics.
Statistic PCQ COCO CODE FLOW MST BRIDGES

# Graphs 3.746M 123,286 452,741 1M 1M 1M
# Avg. Nodes 14.13 476.88 125.2 16/64 16/64 16/64
# Avg. Edges 14.56 3,815.08 124.2 48.11/213.586 31.66/209.34 48.46/ 395.02
Prediction level graph node graph graph edge edge
Metric MAE F1 F1 MAE F1 F1

(RRWP, SPE, NoPE) as the learning rate, using the initial sweep from PCQ. In addition, we evaluated
each PE with {8,32} random walk steps or eigenvectors and {4,16} for algorithmic reasoning
tasks. Regarding PE encoder design, we selected a simple MLP architecture with two layers where
applicable. However, we use the same number of layers, heads, and embedding dimensions across
datasets in our transformer architecture, thereby keeping the architecture unchanged. Otherwise, we
follow previous literature for initial hyperparameter choices, namely the GraphGPS [Rampášek et al.,
2022], GRIT [Ma et al., 2023], and Graphormer [Ying et al., 2021a] papers. We used an AdamW
optimizer for each experiment with β1 = 0.9 and β2 = 0.999. Further, the learning rate scheduler
uses a cosine annealing schedule with a 1% warm-up over the total number of steps. Additionally, we
use an L1 loss for regression targets and a cross-entropy loss for classification targets, except CODE,
where we use the proposed loss function. In Table 6 and Table 7, we further report runtimes and
memory usage of all models evaluated in our work.

A.3 Architecture

In the following, we showcase the implementation of our GT architecture and the injection of PE
information into the attention mechanism. We consider an Encoder, Processor, Decoder architecture
with additional preprocessing for the PEs and graph-specific features.
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Preprocessing First, we preprocess each dataset to include the respective eigenvalues and eigenvec-
tors of the graph Laplacian and the powers of the random walk matrices. These are then applied to the
respective PE encoder, which is an MLP with two layers that casts the PE features to the embedding
dimension. We consider transformed graphs for edge-level tasks, such as BRIDGES and MST, as a
special case. In this case, the graph is converted to constitute the edge-level graph corresponding to
the original graph. Then, node features and PE features are computed on this transformed graph. For
the GDT, we provide a maximum context size per dataset. Tokens exceeding the context size are then
removed.

Encoder The node and edge features of each dataset’s graphs are then fed into a linear layer,
mapping them to the embedding dimension. These feature embeddings are specific to each dataset
and embed graph-specific features. For CODE we consider additional preprocessing steps, as described
by [Hu et al., 2021] to derive the respective graph structure. Further, we add a [cls] token as it is a
standard practice to read out graph-level representations [Ying et al., 2021b].

Processor Following our description of the GDT architecture as shown in Section 2, a single layer
in the GDT architecture computes the expression shown in Definition 8 using GELU as a nonlinearity.
In the case of absolute PEs, they are added to the node embeddings before the initial layer; for relative
PEs, they are added to the attention bias B. The GT layer then computes full multi-head scaled-
dot-product attention over node-level tokens, adding B to the unnormalized attention matrix before
applying softmax. We refer to Appendix B.1 for a detailed discussion. From this representation,
including node and edge features, relative and absolute PEs, and the embedded graph structure, the
processor computes representations of node- and graph-level features. We then stack multiple GT
layers together: 12 for the 16M model and 24 for the 100M model.

Decoder After the last layer, an MLP decoder with two layers is applied to provide the prediction
head of the model. Since each dataset has its prediction target, we provide a decoder for each dataset
mapping the last layer output to the prediction target, where W1 ∈ Rd×d and W2 ∈ Rd×o are
learnable weight matrices and o is the respective output dimension for each task, i.e.,

W2LayerNorm(GELU(W1x)).

For clarity, we omit bias terms throughout this section. Each result is then passed to the respective
loss function to compute the gradient step.

A.4 Algorithmic reasoning data

For our synthetic experiments, we evaluate on three out-of-distribution algorithmic reasoning tasks
derived from the CLRS benchmark [Velickovic et al., 2022], totaling 100M tokens. These tasks assess
size generalization in a controlled synthetic setting with randomly generated graphs. Unlike CLRS,
we do not train models with intermediate algorithmic steps. Here, we describe graph generation and
each algorithmic reasoning task in detail.

Graph generation We develop a heuristic graph-generation method that produces graphs with
desirable problem-specific properties, such as a reasonable distribution of shortest-path lengths or the
number of bridges. Concretely, we begin by sampling an Erdos-Renyi graph G with n nodes and edge
probability p and denote the connected components of G with C1, . . . , Cm. For each i ∈ [m], we
randomly choose a component Cj with j ̸= i. Then, we select random nodes v ∈ Ci and w ∈ Cj and
augment G with the edge (i, j). We repeat this process K times. We select parameters p and K for
each task based on problem-specific characteristics. We detail these choices in the task descriptions,
which we provide next.

Maximum flow In FLOW, the task is to predict the maximum flow value in an edge-weighted
directed graph. The task uses discrete node features indicating whether a node is the source, the
sink, or neither. The task uses the flow capacity between two nodes as continuous scalar-valued edge
features. FLOW is a graph-level regression task.

Minimum spanning tree In MST, the task is to predict the set of edges that forms the minimum
spanning tree (MST) in an edge-weighted graph with mutually distinct edge weights, ensuring the
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Table 6: 16M/90M/160M models runtime results of a single step, averaged across 1 000 steps. Each
value is given in seconds/step.

PE #Param. PCQ COCO CODE FLOW MST BRIDGES

NoPE 16M 0.079 0.105 0.0921 0.071 0.096 0.072
LPE 16M 0.084 0.109 0.104 0.071 0.106 0.088
SPE 16M 0.091 0.123 0.105 0.059 0.106 0.085
RWSE 16M 0.072 0.101 0.102 0.071 0.091 0.088
RRWP 16M 0.137 0.135 0.219 0.066 0.1452 0.101

LPE 90M 0.167 - - - 0.184 -
RWSE 90M 0.159 - - - 0.186 -
LPE 160M 0.219 - - - 0.246 -
RWSE 160M 0.219 - - - 0.237 -

uniqueness of the MST. The task uses the weight of each edge as continuous scalar-valued edge
features. MST is a binary edge classification task where the class label indicates whether an edge is
contained within the MST.

Bridges In BRIDGES, the task is to predict the set of edges that are bridges in an undirected graph.
The task does not use any node or edge features. BRIDGES is a binary edge classification task where
the class label indicates whether an edge is a bridge in the graph.

A.5 Runtime and memory

Here we provide additional information on the runtime and memory requirements of our GDT. We
sample the runtime of each experiment by running multiple steps and averaging their runtime. For
memory consumption, we consider the model’s complete forward pass and estimate the allocated
memory using PyTorch’s memory profiling. All computations were made using bfloat16 precision
during computation. We run the experiments on a single node consisting of one L40 GPU with 40GB
VRAM, 12 CPU cores, and 120GB RAM for all runtime and memory computations. In case of COCO
and CODE with RRWP as a PE, we used 2 l40 GPUs. We further note that the presented runtimes are
the final runtimes obtained from the selected experiments, and significantly more runtime was used
to obtain the chosen hyperparameter choices. We note that the automatic compilation is performed
automatically by torch.compile, improves the runtime and memory scaling significantly across all
tasks.

Table 6 shows the runtime for a single step, averaged across 1 000 training steps obtained for
each model. Timings were obtained using torch functionality. Further Table 7 shows the memory
requirement for 1 000 steps of each model. We further note the runtime speed improvements during
inference experiments from Section 4 while using FlashAttention [Dao et al., 2022].

Hardware optimizations Efficient neural network compilation is already available via CUDA
implementations in PyTorch and other programming languages such as Triton. We use torch.compile
throughout all our experiments. In addition, we want to highlight FlashAttention [Dao et al., 2022],
available for the standard transformer, and used in the GDT as an example of architecture-specific
hardware optimizations that can reduce runtime and memory requirements.

A.6 Comparison with state-of-the-art

While our study focuses exclusively on the GDT, we provide SOTA performance numbers for our
real-world tasks to understand whether the GDT performance is competitive with the best models in
the literature. Concretely, for PCQ without 3D positions, the best models typically achieve between
0.0809 and 0.0859 MAE [Chen et al., 2023, Müller et al., 2024, Ma et al., 2023, Rampášek et al.,
2022]. For COCO and PASCAL, we find models are generally evaluated on a 500K parameter budget
and achieve up to 43.98 F1 and 49.12 F1, respectively [Chen et al., 2025]. Note that we do not adhere
to this budget when training on COCO as we find it overly restrictive given the considerable size
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Table 7: 16M/90M/160M models memory requirements in MB for 1 000 steps of each model during
training.

PE #Param. PCQ COCO CODE FLOW MST BRIDGES

NoPE 16M 3120.63 5117.57 9749.29 1702.69 3255.37 2456.55
LPE 16M 3221.13 5239.89 9852.71 1763.87 3401.60 2499.54
SPE 16M 3161.32 5157.65 9763.58 1730.19 3290.09 2490.0
RWSE 16M 3131.57 5147.34 9766.30 1713.27 3276.84 2474.63
RRWP 16M 5419.56 5223.77 19221.97 2253.85 5522.04 3723.31

LPE 90M 9844.48 - - - 10197.77 -
RWSE 90M 9659.54 - - - 9947.07 -
LPE 160M 13513.76 - - - 13986.39 -
RWSE 160M 13266.44 - - - 13647.66 -

of this dataset. Consequently, we also use the pre-trained 15M model when performing few-shot
transfer from COCO to PASCAL. Finally, on CODE, the best models score somewhere between 19.37
[Chen et al., 2022] and 22.22 F1 [Geisler et al., 2023].

A.7 BREC Evaluation

We selected RWSE and LPE as two representative PEs for the random-walk and eigen PE, respectively.
We further evaluated RRWP PEs but observed training instability in both models, which we attribute
to the small dataset size in BREC (only 64 samples per task). The small-scale dataset size seems to
affect the relative PE RRWP more than the node-level PE RWSE and LPE. Our implementation aligns
with GDT and Graphormer-GD, differing only in the attention style. Moreover, we choose 4 layers, an
embedding dimension of 64, 4 attention heads, and 8 random walks and eigenvalues, respectively. We
generally observed training instabilities caused by the multiplicative ϕ1 of Graphormer-GD [Zhang
et al., 2023]. To achieve the performance seen in Table 2, we manually initialize the weights of ϕ1

and ϕ2 and such that Graphormer-GD initially performs standard attention (akin to the GDT).

A.8 Scaling Results

Here, we provide additional results for scaling the GDT to 90M and 160M parameters. These results
correspond to the results seen in Figure 4.

Table 8: 90M and 160M parameter results for different PEs over 2 random seeds. PCQ MAE is in
micro electron volt (meV) for clarity of presentation.

PE PCQ (90M) MST (90M) MST (160M)
MAE ↓ F1 ↑ F1 ↑

LPE 89.7 ± 0.4 92.86 ± 00.17 93.11 ± 01.01

RWSE 88.9 ± 0.7 94.29 ± 00.68 95.80 ± 00.18

RRWP 86.5 ± 0.3 - -

A.9 Note on Architecture Selection

By using standard quadratic attention, as seen in transformers for other domains, we can leverage
existing theoretical insights and empirical improvements observed in the literature. In addition,
these assumptions make our proposed architecture, in theory, compatible with existing frameworks
for improving training and inference resources, such as FlashAttention [Dao et al., 2022] and
FlexAttention [Dong et al., 2025]. While GTs with linear time scaling exist, we note that quadratic
attention has been successfully applied in GTs for real-world tasks, such as the works of [Abramson
et al., 2024, Wang et al., 2025] on protein folding and [Price et al., 2025] on weather forecasting.
Moreover, linear attention variants can often be understood as approximations of quadratic attention,
thereby leveraging theoretical results obtained for quadratic attention GTs [Xing et al., 2024, Wu
et al., 2022, Choromanski et al., 2021].
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B Background

Here, we provide background material on various concepts and definitions used in our work.

Basic notations Let N := {1, 2, . . .} and N0 := N ∪ {0}. The set R+ denotes the set of non-
negative real numbers. For a set X , A ⊂ X denotes the strict subset and A ⊆ X denotes the subset.
For n ∈ N, let [n] := {1, . . . , n} ⊂ N. We use {{. . .}} to denote multisets, i.e., the generalization
of sets allowing for multiple, finitely many instances for each of its elements. For two non-empty
sets X and Y , let Y X denote the set of functions from X to Y . Given a set X and a subset A ⊂ X ,
we define the indicator function 1A : X → {0, 1} such that 1A(x) = 1 if x ∈ A, and 1A(x) = 0
otherwise. Let M be an n×m matrix, n > 0 and m > 0, over R, then Mi,·, M·,j , i ∈ [n], j ∈ [m],
are the ith row and jth column, respectively, of the matrix M . We denote with set(M) the set of
rows of M . Let N be an n×n matrix, n > 0, then the trace Tr(N) :=

∑
i∈[n] Nii. In what follows,

0 denotes an all-zero vector with an appropriate number of components.

Graphs An (undirected) graph G is a pair (V (G), E(G)) with finite sets of vertices V (G) and
edges E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v}. vertices or nodes V (G) and edges E(G) ⊆ {{u, v} ⊆
V (G) | u ̸= v}. The order of a graph G is its number |V (G)| of vertices. If not stated otherwise,
we set n := |V (G)| and call G an n-order graph. We denote the set of all n-order (undirected)
graphs by Gn and the set of all (undirected) graphs up to n vertices by G≤n. In a directed graph,
we define E(G) ⊆ V (G)2, where each edge (u, v) has a direction from u to v. Given a directed
graph G and vertices u, v ∈ V (G), we say that v is a child of u if (u, v) ∈ E(G). A (directed)
graph G is called connected if, for any u, v ∈ V (G), there exist r ∈ N and {u1, . . . , ur} ⊆ V (G),
such that (u, u1), (u1, u2), . . . , (ur, v) ∈ E(G), and analogously for undirected graphs by replacing
directed edges with undirected ones. We say that a graph G is disconnected if it is not connected.
For a graph G and an edge e ∈ E(G), we denote by G \ e the graph induced by removing edge
e from G. For an n-order graph G ∈ Gn, assuming V (G) = [n], we denote its adjacency matrix
by A(G) ∈ {0, 1}n×n, where A(G)vw = 1 if and only if {v, w} ∈ E(G). The neighborhood of a
vertex v ∈ V (G) is denoted by NG(v) := {u ∈ V (G) | {v, u} ∈ E(G)}, where we usually omit
the subscript for ease of notation, and the degree of a vertex v is |NG(v)|. A graph G is a tree if
connected, but G \ e is disconnected for any e ∈ E(G). A tree or a disjoint collection of trees is
known as a forest.

A rooted tree (G, r) is a tree where a specific vertex r is marked as the root. For a rooted (undirected)
tree, we can define an implicit direction on all edges as pointing away from the root; thus, when
we refer to the children of a vertex u in a rooted tree, we implicitly consider this directed structure.
For S ⊆ V (G), the graph G[S] := (S,ES) is the subgraph induced by S, where ES := {(u, v) ∈
E(G) | u, v ∈ S}. A (vertex-)labeled graph is a pair (G, ℓG) with a graph G = (V (G), E(G))
and a (vertex-)label function ℓG : V (G) → Σ, where Σ is an arbitrary countable label set. For a
vertex v ∈ V (G), ℓG(v) denotes its label. A Boolean (vertex-)d-labeled graph is a pair (G, ℓG)
with a graph G = (V (G), E(G)) and a label function ℓG : V (G) → {0, 1}d. We denote the set of
all n-order Boolean d-labeled graphs as GBn,d. An attributed graph is a pair (G, aG) with a graph
G = (V (G), E(G)) and an (vertex-)attribute function aG : V (G) → R1×d, for d > 0. That is,
unlike labeled graphs, vertex annotations may come from an uncountable set. The attribute or feature
of v ∈ V (G) is aG(v). We denote the class of all n-order graphs with d-dimensional, real-valued
vertex features by GRn,d.

Two graphs G and H are isomorphic if there exists a bijection φ : V (G) → V (H) that preserves
adjacency, i.e., (u, v) ∈ E(G) if and only if (φ(u), φ(v)) ∈ E(H). In the case of labeled graphs,
we additionally require that ℓG(v) = ℓH(φ(v)) for v ∈ V (G). Moreover, we call the equivalence
classes induced by ≃ isomorphism types and denote the isomorphism type of G by τ(G). A graph
class is a set of graphs closed under isomorphism. Given two graphs G and H with disjoint vertex
sets, we denote their disjoint union by G ∪̇H .

B.1 Transformers

Here, we will introduce attention with an additive attention bias and the transformer architecture.
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Definition 5 (Attention (with bias)). Let Q,K,V ∈ Rn×d and B ∈ Rn×n, with n, d ∈ N+. We
define biased attention as

Attention(Q,K,V ,B) := softmax
(
d−

1
2 ·QKT +B

)
V ,

where softmax is applied row-wise and defined, for a vector x ∈ R1×n, as

softmax(x) :=
[

exp(x1)∑
i∈[n] exp(xi)

. . .
exp(xn)∑

i∈[n] exp(xi)

]
.

Definition 6 (Multi-head attention (with bias)). Let X ∈ Rn×d, B ∈ Rn×n×h, and let
WQ,WK ,WV ∈ Rd×d,WO ∈ Rd×d be learnable parameters, with n, d ∈ N+. Let h ∈ N+

be the number of heads, such that a dh ∈ N+ for which d = h · dh. We call dh the head dimension
and define h-head attention over X as

MHA(X,B) :=
[
X̃1 . . . X̃h

]
WO,

where, for all i ∈ [h],

X̃i := Attention(XW
(i)
Q ,XW

(i)
K ,XW

(i)
V ,Bi),

with Bi ∈ Qn×n denoting the attention bias for the i-head, indexed along the third dimension of B,
W

(i)
Q ,W

(i)
K ,W

(i)
V ∈ Rd×dh , and

WQ :=
[
W

(1)
Q , . . . ,W

(h)
Q m

]
WK :=

[
,W

(1)
K , . . . ,W

(h)
K

]
,

WV :=
[
W

(1)
V , . . . ,W

(h)
V

]
.

Definition 7 (Two-layer MLP). Let X ∈ Rn×d with n, d, df ∈ N+, where df is the hidden
dimension. We define a two-layer MLP as

MLP(x) := σ(xW1)W2,

where MLP is applied independently to each row x ∈ R1×d in X . Here, W1 ∈ Rd×df is the
in-projection matrix, W2 ∈ Rdf×d is the out-projection matrix, and σ : R→ R is an element-wise
activation function such as GELU [Hendrycks and Gimpel, 2016].
Definition 8 (Transformer architecture). Let X ∈ Rn×d be a token matrix and B ∈ Rn×n be
an attention bias, with n, d ∈ N+. The t + 1-th transformer layer updates token representations
Xt ∈ Rn×d as

X ′ ←Xt + MHA(LayerNorm(Xt),B),

Xt+1 ←X ′ +MLP(LayerNorm(X ′)),

where MLP is defined in Definition 7.

B.2 Extended notation for the theoretical analysis of the GDT

Here, we introduce some notation for the GDT that we will use in our theoretical analysis.

Learnable parameters We give an overview of all learnable parameters of the GDT in Table 9. In
practice, node and edge features are typically present as integers or continuous feature vectors, and
we embed them using learnable MLPs. We refer to such parameters as embedding parameters. Note
that in Table 9, we exclude embedding parameters, as for simplicity, we assume in our framework
that node and edge features are already embedded.

Let d, df , T, h ∈ N+ denote the number of embedding dimensions, the number of hidden dimensions,
the number of layers, and the number of attention heads, respectively. Then, the number of learnable
parameters (excluding embedding parameters) is given by

# params = 3d+ d2 + ddf + dfh+ h+ 3Td2 + 2Tddf

= (3T + 1)d2 + (2T + 1)ddf + 3d+ (df + 1)h.

We denote the complete set of learnable parameters in Table 9 with Θ(d, df , T, h).
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Table 9: Overview of learnable parameters in the GDT, excluding embedding parameters. Here,
d ∈ N+ is the embedding dimension, df ∈ N+ is the hidden dimension, and T ∈ N+ is the number
of layers. The suffix ×T indicates that the parameters occur in each of the T layers.

Params. Dims. Module Description

ℓV ([cls]) 1× d

Token embeddings

Learnable embedding for the [cls] token
ℓE([cls], ·) 1× d Learnable embedding for the out-going edges from the [cls] token
ℓE(·, [cls]) 1× d Learnable embedding for the in-coming edges to the [cls] token
WP d× d Weight matrix for the node-level PEs

ρ (d× df , df × h) Attention bias MLP applied to the edge embeddings
WU 1× h Weight matrix for the relative PEs in the attention bias

WQ ×T d× d
MHA Definition 6

Query weight matrix in multi-head attention
WK ×T d× d Key weight matrix in multi-head attention
WV ×T d× d Value weight matrix in multi-head attention

W1 ×T d× df MLP Definition 7
Input projection of the MLP

W2 ×T df × d Output projection of the MLP

Graph transformer representations Here, we introduce some short-hand notation for graph
transformer representations. Given token matrix X and attention bias B, we write X̂t(v) to denote
the representation of node v ∈ V (G) after t transformer layers with X and B as input. Note that,
since we fix an arbitrary order of the nodes, if v is the i-th node in this order, X̂t(v) = X̂t

i .

B.3 Extended notation for the theoretical analysis of PEs

Here, we introduce the notations used by Zhang et al. [2024] in their paper on PE expressiveness. We
adapt this notation to fit LPE [Müller and Morris, 2024], SAN [Kreuzer et al., 2021], and SignNet
[Lim et al., 2023] and use it in our proofs in Appendix D. We introduce the notation for the color
refinement algorithm and propose one for each PE. The respective algorithms for BasisNet [Lim
et al., 2023] and SPE [Huang et al., 2024] are given by Zhang et al. [2024].

Definition 9. [Zhang et al., 2024] We call any graph invariant a k-dim color mapping. The family of
k-dim color mappings is denoted by Mk. Each color mapping defines an equivalence relation ∼χ

between rooted graphs Gu, Hv marking k vertices and Gu ∼χ Hv iff χG(u) = χH(v). Further, we
denote the family of k-dim spectral color mappings by MΛ

k . Similar to Mk the family of spectral
color mappings is obtained from the color mappings acting on {(Gu, λ) : Gu ∈ G,λ ∈ ΛM (G)}
where ΛM (G) denotes the eigenvalues of a matrix M .

Definition 10. [Zhang et al., 2024] A function T mapping from Mk1 to Mk2 is called a color
transform. We assume that all color transforms are order-preserving with respect to color mappings.
Given T (χ) ⪯ χ, a color transform is also called color refinement, and T t denotes the t times
composition of T . In addition, T∞ is the stable color refinement obtained from T t′ with t′ the
smallest integer where further iterations do not induce a different partition of the underlying nodes in
a graph, resulting in T ◦ T∞ ≡ T∞. Following Zhang et al. [2024] T∞ is well defined.

A coloring algorithm is then formed by concatenating a stable color transform T∞ : Mk →Mk and
a pooling function U : Mk →M0.

Definition 11. We say that color mappings χ1, χ2 are equivalent given that Gu ∼χ1
Hv iff Gu ∼χ2

Hv . Furthermore, we say that a color mapping χ1 is finer/more expressive than χ2 if Gu ∼χ1
Hv ⇒

Gu ∼χ2
Hv , noted by ⪯.

Lemma 12. [Zhang et al., 2024] Let T1, T2 : Mk1
→ Mk2

and U1, U2 : Mk2
→ Mk3

be color
refinements. If T1 ⪯ T2 and U1 ⪯ U2 then U1 ◦ T1 ⪯ U2 ◦ T2.

Lemma 13. [Zhang et al., 2024] Let T1 : Mk1
→Mk1

and T2 : Mk2
→Mk2

be color refinements
and T∞ : Mk → Mk be the stable refinement of Mk. Further let U1 : Mk0

→ Mk1
and U2 :

Mk1
→ Mk2

be color refinements. Then it follows. If T2 ◦ U2 ◦ T∞
1 ◦ U1 ≡ U2 ◦ T∞

1 ◦ U1 then
U2 ◦ T∞

1 ◦ U1 ⪯ T∞
2 ◦ U2 ◦ U1.

The two lemmas above provide a straightforward approach to determining whether architecture A1 is
more expressive than architecture A2 [Zhang et al., 2024]. To prove that A1 is more expressive than
A2, we show that T2 ◦ T∞

1 ≡ T∞
1 holds, with Ti being the color refinement of Ai respectively.
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Definition 14. [Zhang et al., 2024] We define the following color refinements corresponding to the
induced refinements of each algorithm. We define global pooling as providing an injective coloring of
a multiset using a hash function. In this case, we consider the multiset over nodes in a graph. Other
pooling operations are defined below.

Global pooling: Define TGP : M1 →M0 and χ ∈M1 such that for a graph G and a color mapping
χ ∈M1 it holds:

[TGP(χ)](G) = hash({{χG(u) : u ∈ V (G)}}).
The 1-WL refinement gives us the 1-WL coloring update, generalized to all nodes in the graph rather
than just neighboring graphs.

1-WL refinement: Given TWL : M1 →M1 such that for any choice of χ ∈M1:

[TWL(χ)]G(u) = hash(χG(u), {{(χG(v), atpG(u, v)) : v ∈ V (G)}}).

We then define one- and two-dimensional spectral pooling, which allows for pooling over distinct
eigenvalues similar to the global pooling refinement.

Spectral Pooling: Define TSP2 : M
Λ
2 → M1 and TSP1 : M

Λ
1 → M1 such that for χ ∈ MΛ

2 and
χ′ ∈MΛ

1 :
[TSP1(χ

′)]G(u) = hash({{χ′
G(λ, u) : λ ∈ ΛM (G)}}).

[TSP2(χ)]G(u, v) = hash({{χG(λ, u, v) : λ ∈ ΛM (G)}}).
A pooling variant without the spectrum is denoted by TP2 and TP1.

To allow for an examination of BasisNet and SPE, we consider the 2-IGN refinement. This refinement
is obtained from evaluating the expressiveness of a 2-IGN and its basis functions as defined by Maron
et al. [2019a].

2-IGN refinement: With TIGN : M2 → M2, χ ∈ M2 as any color mapping and δuv(c) = c given
u = v, otherwise 0:

[TIGN(χ)]G(u, v) = hash(χG(u, v), χG(u, u), χG(v, v), χG(v, u), δuv(χG(u, u)),

{{χG(u,w) : w ∈ V (G)}}, {{χG(w, u) : w ∈ V (G)}},
{{χG(v, w) : w ∈ V (G)}}, {{χG(w, v) : w ∈ V (G)}},

{{χG(w,w) : w ∈ V (G)}}, {{χG(w, x) : w, x ∈ V (G)}},
δuv({{χG(u,w) : w ∈ V (G)}}), δuv({{χG(w, u) : w ∈ V (G)}}),

δuv({{χG(w,w) : w ∈ V (G)}}), δuv({{χG(w, x) : w, x ∈ V (G)}})).

Further, we use BasisNet pooling refinement and Siamese IGN refinement to describe the BasisNet
computation process.

BasisNet Pooling: Given TBP : M
Λ
2 →MΛ

1 and χ ∈MΛ
2 :

[TBP(χ)]G(λ, u) = hash(χG(λ, u, v), {{χG(λ, u, v) : v ∈ V (G)}},
{{χG(λ, v, u) : v ∈ V (G)}}, {{χG(λ, v, v) : v ∈ V (G)}}, {{χG(λ, v, w) : v, w ∈ V (G)}}).

Siamese IGN refinement: Given TSIAM : MΛ
2 →MΛ

2 and χ ∈MΛ
2 :

[TSIAM(χ)]G(λ, u, v) = [TIGN(χ(λ, ·, ·))]G(u, v).

We further provide additional color refinement algorithms based on the encodings introduced through-
out this work: Given the initial color refinement of SAN as χSAN(λ, u) = (λ1, . . . , λm, vu1:m) where
λi denote the eigenvalues and vu the eigenvector of the graph Laplacian associated to the node u.
Then we define the SAN color refinement alongside the existing refinements as follows:

[TSAN(χ)]G = TGP ◦ TENC ◦ TL(χSAN).

with TENC denoting the transformer encoder layer. The complete BasisNet refinement is given by the
concatenation of refinements given in Definition Definition 14:

[TBasisNet]G = TGP ◦ TWL ◦ TSP1 ◦ TBP ◦ TSIAM(χBasis).
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Following the definition of BasisNet as a color refinement in Definition 14 and assuming a message
passing GNN for ρ, the color refinement of SignNet using the initial SignNet color refinement
χSign(λ, u, w) = (λ,V u,V w) and Tϕ : M

Λ
2 →MΛ

2 is given by:

[TSign(χ)]G = TGP ◦ T∞
WL ◦ TSP2 ◦ Tϕ(χSign),

where V u denotes the eigenvector associated to the eigenvalue λ and the node u and Tϕ be the
refinement depending on the choice of ϕ. However, we note TIGN ⪯ Tϕ, by definition of SignNet and
BasisNet.

The refinement for the LPE encoding is given similarly to the BasisNet and SPE refinement by
replacing ρ with a color refinement that is 1-WL expressive. Furthermore, we assume ϕ to be a
spectral color refinement with expressiveness up to a 2-IGN. Common choices for ϕ include MLPs or
GNNs known to be less expressive than a 2-IGN. With initial colorings χLPE(λ, u, w) = (λ,V u,V w)
and T LPE

ϕ : MΛ
2 →MΛ

2 the refinement follows:

[TLPE(χ)]G = TGP ◦ T∞
WL ◦ TSP2 ◦ T LPE

ϕ (χLPE),

where V u denotes the eigenvector associated to node u.

B.4 Positional encodings

In the following, we define positional encodings.

RWSE
Definition 15. Let R := D−1A be the random walk matrix, with D denoting the degree matrix and
A the adjacency matrix of a graph G. The random walk structural encodings (RWSE) are given by:

Pi,i = [I,R,R2, . . . ,Rk−1]i,i.

Definition 16. Let Pi,i be the RWSE encoding vector and F : Rk → Rd a MLP with two layers, and
d denoting the encoding dimension. Then the RWSE encoding is computed by F (Pi,i) and denoted
by PRW

k (G) for a graph G with random walk length k.

RRWP
Definition 17. Let R := D−1A with D as the diagonal degree matrix and A as the adjacency
matrix, be the random walk operator, and k the maximum length of the random walk. Then the
relative random walk probabilities (RRWP) are defined as:

Pi,j = [I,R,R2, . . . ,Rk−1]i,j .

The initial node encoding p0 is then defined as Rii for each node i in the graph.

Definition 18 (RRWP Encoding Computation). Let P be the RRWP encoding tensor and MLP :
Rk → Rd, where d denotes the encoding dimension, be a multi-layer neural network. Then the
encoding MLP(Pi,j,:) is computed element-wise by the multi-layer neural network. RRWP is then
denoted by PRR

k (G) for a graph G with random walk length k

Spectral Attention Networks (SAN) Kreuzer et al. [2021] propose incorporating eigenvalues
and eigenvectors into a positional-encoding neural network. SAN encoding can be computed using
row-wise neural networks by selecting the k lowest eigenvalues and their associated eigenvectors.

Definition 19. Let ϕ : R→ R be a linear layer and ρ : R→ R be a transformer encoder layer with
sum aggregation. Further Vi denotes the i-th column of the eigenvector matrix V . Then the SAN
encoding is defined as follows:

SAN(V , λ) = ρ([ϕ(V1, λ) . . . ϕ(Vk, λ)]).

A generalization of the SAN encoding is given by the LPE encoding of Müller and Morris [2024] in
Definition 23.
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SignNet Since the computation of eigenvectors using the eigenvector decomposition is not sign
invariant, and both Vi and −Vi are valid eigenvectors of the graph Laplacian Lim et al. [2023]
propose the construction of a sign-invariant encoding using eigenvector information. Considering
the k smallest eigenvalues and associated eigenvectors from the eigenvalue decomposition, SignNet
computes the corresponding encoding using a neural network architecture.
Definition 20. Let ϕ1, . . . ϕk : R→ R and ρ : R→ R be permutation equivariant neural networks
from vectors to vectors. Then the SignNet encodings are computed using:

SignNet(V ) = ρ([ϕ1(V1) + ϕ1(−V1) . . . ϕk(Vk) + ϕk(−Vk)]).

Commonly, ϕ1, . . . ϕk are selected as element-wise MLPs or DeepSets [Lim et al., 2023] and ρ as a
GIN with sum aggregation and the adjacency matrix of the original graph.

BasisNet Proposed as an extension of SignNet by Lim et al. [2023], BasisNet encodings provide
an encoding invariant to the basis of eigenspaces obtained from the graph Laplacian. Since the
orthogonal group O(1) denotes sign invariance, BasisNet also incorporates sign invariance.
Definition 21. Let Vi denote the orthonormal basis of an di-dimensional eigenspace of the graph
Laplacian. Further, l denotes the number of eigenspaces. Given unrestricted neural networks
ϕd1

, . . . ϕdl
: R → R, shared across the subspaces with the same dimension di, and a permutation

equivariant neural network ρ : R→ R BasisNet encodings are computed the following:

BasisNet(V ) = ρ([ϕd1(V1V
T
1 ) . . . ϕdl

(VlV
T
l )]).

Implementation wise Lim et al. [2023] propose 2-IGNs [Maron et al., 2019a] for ϕdi and a FFN with
sum aggregation for ρ. They note that all neural networks could be replaced with k-IGNs; however,
they deemed it infeasible for efficient computation. This reduces the computation to the following
with ρ : R→ R and IGNdi

: Rn2 → Rn denoting an IGN from matrices to vectors:

BasisNet(V ) = FFN([IGNd1
(V1V

T
1 ) . . . IGNdl

(VlV
T
l )]).

SPE Following notation from Huang et al. [2024], the SPE encoding is computed using the k
smallest eigenvalues and associated eigenvectors obtained from an eigenvalue decomposition. With
sufficient conditions for neural networks ϕ1, . . . , ϕk and ρ, SPE is stable with respect to the graph
Laplacian.
Definition 22. Given ϕ1 . . . ϕk : R→ R as Lipschitz continuous, equivariant FFNs and ρ : R→ R a
Lipschitz continuous, permutation equivariant neural network. Then the SPE encoding is computed
by:

SPE(V , λ) = ρ([V diag(ϕ1(λ))V
T . . .V diagϕk(λ))V

T ]),

with ϕ1, . . . ϕk and ρ applied row wise. Further, we denote the SPE embedding on a graph G by
PSPE

k .

Commonly, ϕi is considered an element-wise MLP, and ρ is a GIN using the adjacency matrix of the
original graph. Huang et al. [2024] propose to split tensor

Q = [V diag(ϕ1(λ))V
T . . .V diagϕk(λ))V

T ] ∈ Rn×n×l

into n matrices of shape n × l which are then passed into the GIN ρ and aggregated using sum
aggregation into a single n× d matrix.

LPE Initially introduced by Kreuzer et al. [2021] and generalized by Müller and Morris [2024],
the LPE encodings are computed similarly to the previously introduced SPE encodings. Instead of
using the eigenvector matrix V ∈ Rn×l, each i-th column consisting of one eigenvector denoted by
Vi ∈ Rl is used.
Definition 23. Let ϕ : R2 → Rk be a row-wise applied FFN and ρ : R→ R a permutation equivariant
network. Furthermore, ϵ ∈ R denotes a learnable parameter. Then the LPE are given by:

LPE(V , λ) = ρ([ϕ(V T
1 , λ+ ϵ), . . . ϕ(V T

k , λ+ ϵ)]).

Setting ϵ = 0 reduces the LPE to the encoding provided by Kreuzer et al. [2021]. As proposed by
Müller and Morris [2024] ρ sums the input tensor concerning its first dimension and applies an FFN.
In contrast to the SAN encoding, no transformer encoder is used to compute the encoding. Similar to
previous embeddings, we denote LPE embeddings for a graph G by PLPE

k with k as the number of
eigenvalues used.
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C Proving that the GDT can simulate the GD-WL

Here, we prove Theorem 1. Concretely, we formally state and prove both statements in Theorem 1 in
Appendix C.1 and Appendix C.2, respectively.

C.1 Lower-bound on the expressivity of the GDT

Here, we prove that we can compute the GD-WL [Zhang et al., 2023] with the GDT, our GT defined
in Section 2. Concretely, given a graph G := (V (G), E(G)), recall from Section 2.3 the GD-WL as
updating the color χt

G(v) of node v ∈ V (G), as

χt+1
G (v) := hash

(
{{(dG(v, w), χt

G(w)) : w ∈ V (G)}}
)
,

where dG is a distance between nodes in G and hash is an injective map. In the transformer, we
will represent node colors as one-hot vectors of some arbitrary but fixed dimension d. Furthermore,
we will incorporate pairwise distances through the attention bias. We then show that a single GT
layer can compute the color update in Equation (1). We demonstrate this result by leveraging specific
properties of softmax attention. For notational convenience, we will denote with Xt ∈ {0, 1}L×d

the one-hot color matrix of the GD-WL after t iterations.

We begin by stating our main result. Afterwards, we develop our proof techniques and prove the
result.

Stating the main result We will formally state our theorem, showing that our GT can simulate the
GD-WL. Afterwards, we give an overview of the proof, including the key challenges and ideas.
Theorem 24. Let G := (V (G), E(G)) be a graph with n ∈ N+ nodes and node distance function
dG : V (G)2 → Q. Let d, df , T, h ∈ N+ denote the number of embedding dimensions, the number
of hidden dimensions, the number of layers, and the number of attention heads, respectively. Let
L := n + 1 and let X̂0 ∈ RL×d and B ∈ RL×L×h be initial token embeddings and attention
bias constructed according to Section 2 using node distance dG. Then, there exist weights for the
parameters in Θ(d, df , T, h) such that X̂t = Xt, for all t ≥ 0, an arbitrary but fixed hash, and
using dG as the distance function.

Proof overview The central problem we face when proving the above theorem is how to injectively
encode the multisets in Equation (1) with softmax-attention. This is because softmax-attention
computes a weighted mean, whereas existing results for encoding multisets use sums [Xu et al., 2019,
Morris et al., 2019, Zhang et al., 2023]. Because these multisets are at the core of our proof, we
formally introduce them here.
Definition 25 (Distance-paired multisets). Given a graph G := (V (G), E(G)) with n ∈ N+ nodes
and let L := n+ 1, for each token v ∈ V (G) ∪ {[cls]}, we construct a vector v ∈ Q1×L from the
distances of v to tokens in V (G) ∪ {[cls]}, such that

vi := dG(v, wi),

where wi ∈ V (G), for i ∈ [n], is the i-th token in an arbitrary but fixed ordering of nodes in V (G)
and wL is the [cls] token. We fix the distance of [cls] to all tokens as maxv,w∈V (G) dG(v, w)+1.
We represent node colors as one-hot vectors and stack them into a matrix X ∈ {0, 1}L×d with
d ∈ N+ and where XL, representing the color of the [cls] token, receives a special color, not used
by any node. We then write the distance-paired multiset in Equation (1) as

[v]X := {{(vi,Xi)}}i∈[L].

We can then restate the update of token v ∈ V (G) ∪ {[cls]} by the GD-WL as

χt+1
G (v) := hash

(
[v]Xt

)
, (3)

For notational convenience, for every x ∈ set(X), we define A(x) := {i ∈ [L] | Xi = x} as the
set of token indices with token representation x. Further, we write

[v]x := {{vi | i ∈ A(x)}}
and

[v]x,w := {{v +wj | v ∈ [v]x, j ∈ [L]}},
again for notational convenience, where w ∈ Q1×L is the distance vector corresponding to another
node w ∈ V (G) ∪ {[cls]}.
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Recall that we introduced the distance function dG into the attention via the attention bias B.
Now, to injectively encode distance-paired multisets, we want to prove that there exists weights
WQ,WK ,WV such that for two tokens v, w ∈ V (G) ∪ {[cls]} with corresponding distance
vectors v,w,

softmax(X(v)WQ(XWK)T + v)XWV = softmax(X(w)WQ(XWK)T +w)XWV ,

if and only if [v]X = [w]X . Note that for simplicity, we omit the scaling factor in the attention and
that we wrote v and w to indicate the corresponding row of B for tokens v and w, respectively. We
will now simplify, by setting WQ = WK = 0 and WV = I and arrive at the condition

softmax(v)X = softmax(w)X ⇐⇒ [v]X = [w]X .

Here, we prove the above holds under mild conditions in the following lemma. Note that we split up
the forward and backward directions of the lemma, as we will use different proof strategies for each
direction.
Lemma 26. Let v,w ∈ Q1×L with maxi vi = maxi wi and let X ∈ {0, 1}L×d be a matrix whose
rows are one-hot vectors, for some L, d ∈ N+. Further, we require X to have at least two distinct
rows. Then,

softmax(v)X = softmax(w)X =⇒ [v]X = [w]X (4)
and

softmax(v)X = softmax(w)X ⇐= [v]X = [w]X . (5)

As mentioned above, we will treat the forward and backward directions differently. The backward
direction is fairly straightforward, seeing that softmax(v)X is a function over [v]X . For the forward
direction, the idea is first to notice that the condition [v]X = [w]X , on the right side of Equation (4),
is equivalent to comparing the multiset of distances paired with each distinct one-hot vector in X
independently, as distinct one-hot vectors do not have common non-zero channels; see the following
lemma for a precise statement of this property and see Appendix E for the proof.
Lemma 27. Let v,w ∈ Q1×L and let X ∈ {0, 1}L×d be a matrix whose rows are one-hot vectors,
for some L, d ∈ N+. Then, [v]X = [w]X , if, and only if, for every x ∈ set(X), [v]x = [w]x.

To understand the implication of this result in the context of proving Lemma 26, let us first rearrange
the left side of Equation (4) as follows.
Lemma 28. Let v,w ∈ Q1×L and let X ∈ {0, 1}L×d be a matrix whose rows are one-hot vectors,
for some L, d ∈ N+. Then, softmax(v)X = softmax(w)X , if and only if, for every x ∈ set(X),∑

i∈A(x)

(αi − βi) = 0,

where αi := softmax(v)i and βi := softmax(w)i.

Lemma 28 and Lemma 27 can be seen as complementary decompositions of the left and right side of
Equation (4) for each unique one-hot vector in X . As a result, we can restate Lemma 26 as follows.
Lemma 29 (Decomposed Lemma 26). Let v,w ∈ Q1×L with maxi vi = maxi wi and let X ∈
{0, 1}L×d be a matrix whose rows are one-hot vectors, for some L, d ∈ N+. Further, we require X
to have at least two distinct rows. Then,∑

i∈A(x)

(αi − βi) = 0 =⇒ [v]x = [w]x, (6)

for all x ∈ set(X), where αi := softmax(v)i and βi := softmax(w)i, and
softmax(v)X = softmax(w)X ⇐= [v]X = [w]X . (7)

To prove Lemma 29, we leverage a known result about exponential numbers (as used within softmax)
from transcendental number theory, namely that a set of exponential numbers with distinct rational
coefficients is linearly independent, also known as the Lindemann–Weierstrass theorem [Baker, 1990].
To understand intuitively how this theorem is used, let us assume for simplicity that the softmax is
unnormalized, meaning that we can write the left side of Equation (6) as∑

i∈A(x)

(exp(vi)− exp(wi)) = 0.

With the help of the Lindemann–Weierstrass theorem, we obtain the following claim, which we prove
in Appendix E.
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Claim 30. Let A,B ⊂ Q be finite multisets with |A| = |B|. Then, the sum∑
a∈A

exp(a)−
∑
b∈B

exp(b) = 0,

if, and only if, A = B.

Hence, with the unnormalized softmax, the left side of Equation (6) holds if and only if [v]x = [w]x.
However, the full softmax also introduces normalization, which we denote with Zα :=

∑n
k=1 exp(vk)

and Zβ :=
∑n

k=1 exp(wk), respectively. As a result, we have the condition∑
i∈A(x)

(αi − βi) = 0 (8)

⇔
∑

i∈A(x)

1

Zα
exp(vi)−

1

Zβ
exp(wi) = 0 (9)

⇔
∑

i∈A(x)

exp(vi) · Zβ − exp(wi) · Zα

ZαZβ
= 0 (10)

⇔
∑

i∈A(x)

exp(vi) · Zβ − exp(wi) · Zα = 0 (11)

⇔
∑

i∈A(x)

L∑
k=1

exp(vi +wk)− exp(wi + vk) = 0. (12)

⇔
∑

i∈A(x)

L∑
k=1

exp(vi +wk)−
∑

j∈A(x)

L∑
l=1

exp(wj + vl) = 0. (13)

Note that the multiset of exponents in the positive exponentials is [v]x,w and the set of exponents in
the negative exponentials is [w]x,v. Using Claim 30, we can now restate Lemma 29 once more as
follows.
Lemma 31 (Multi-set only version of Lemma 29). Let v,w ∈ Q1×L with maxi vi = maxi wi and
let X ∈ {0, 1}L×d be a matrix whose rows are one-hot vectors, for some L, d ∈ N+. Further, we
require X to have at least two distinct rows. Then,

[v]x,w = [w]x,v =⇒ [v]x = [w]x, (14)

for all x ∈ set(X) and

softmax(v)X = softmax(w)X ⇐= [v]X = [w]X . (15)

We will give the full proof with all details in this section.

First, we will review some number theory background, formally state the Lindemann–Weierstrass
theorem and its implications and then give the proof of Lemma 31. Using Lemma 31 and in particular,
the equivalent Lemma 26, we finally prove Theorem 24.

Number theory We will formally introduce the necessary background on number theory and the
Lindemann–Weierstrass theorem. A number is algebraic if it is the root of a non-zero single-variable
polynomial with finite degree and rational coefficients. For example, all rational numbers a

b with
a, b ∈ N+ are algebraic, as they are the roots of the polynomial ax − b with integer coefficients.
On the other hand, a number is transcendental if and only if it is not algebraic. For example, it is
known that exp(a) is transcendental if a is algebraic and non-zero. This last fact follows from the
Lindemann–Weierstrass theorem, which we state next [Baker, 1990].
Theorem 32 (Baker [1990], Theorem 1.4). Let a1, . . . , an be distinct algebraic numbers. Then,
exp(a1), . . . , exp(an) are linearly independent with algebraic rational coefficients.

Here, we will use the fact that attention uses the exp function in the softmax and use Theorem 32 to
compute injective representations of the GD-WL multisets by expressing them as sums of exponential
numbers.
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Proving Lemma 26 We now prove Lemma 31, equivalent to Lemma 26.

Lemma 33 (Proof of Lemma 31). Let v,w ∈ Q1×L with maxi vi = maxi wi and let X ∈
{0, 1}L×d be a matrix whose rows are one-hot vectors, for some L, d ∈ N+. Further, we require X
to have at least two distinct rows. Then,

[v]x,w = [w]x,v =⇒ [v]x = [w]x,

for all x ∈ set(X) and

softmax(v)X = softmax(w)X ⇐= [v]X = [w]X .

Proof. Note that by assumption X has at least two distinct rows and hence, A(x) ⊂ [L]. As a result,
the forward implication follows from the following claim.

Claim 34. For all x ∈ set(X), if maxi vi = maxi wi and A(x) ⊂ [n], then, [v]x,w = [w]x,v ⇒
[v]x = [w]x.

Proof. Let K := maxi vi = maxi wi. We begin by sorting the entries in [v]x and [w]x in descending
order, obtaining sorted vectors v∗ and w∗. By assumption, we have that v∗

1 = w∗
1 = K. Now,

let i ∈ [|[v]x|] be the smallest number for which v∗
i ̸= w∗

i . If no such i exists, then [v]x = [w]x.
Otherwise, without loss of generality, we assume that v∗

i > w∗
i . We now show that then, the sum

v∗
i +K appears at least once more in [v]x,w than in [w]x,v .

First, note that there cannot exist some j > i for which w∗
j + K = v∗

i + K. Second, for each
j < i, v∗

j = w∗
j , meaning that for each such j where v∗

j + K = v∗
i + K appears in [v]x,w,

w∗
j +K = v∗

i +K appears in [w]x,v .

Hence, v∗
i +K appears at least once more in [v]x,w than in [w]x,v , implying [v]x,w ̸= [w]x,v . As

a result, we have that [v]x = [w]x ∨ [v]x,w ̸= [w]x,v which is logically equivalent to [v]x,w =
[w]x,v ⇒ [v]x = [w]x. This shows the statement.

To see why in Claim 34 it is important that A(x) is a strict subset of [n], we note that A(x) = [L]
implies [v]x,w = [w]x,v, irrespective of whether [v]x = [w]x. Notably, the proof holds if there
exists at least one i ∈ [L] \A(x), irrespective of whether vi = wi.

The backward direction follows directly from the fact that softmax(v)X and softmax(w)X are
functions over [v]X and [w]X , respectively.

Together with Claim 34, this shows the statement.

Proving the GD-WL simulation result Now that Lemma 26 has been proven, we will prove the
main result, Theorem 24, next.

Theorem 35 (Proof of Theorem 24). Let G := (V (G), E(G)) be a graph with n ∈ N+ nodes and
node distance function dG : V (G)2 → Q. Let d, df , T, h ∈ N+ denote the number of embedding
dimensions, the number of hidden dimensions, the number of layers, and the number of attention
heads, respectively. Let L := n + 1 and let X̂0 ∈ RL×d and B ∈ RL×L×h be initial token
embeddings and attention bias constructed according to Section 2 using node distance dG. Then,
there exist weights for the parameters in Θ(d, df , T, h) such that X̂t = Xt, for all t ≥ 0, an
arbitrary but fixed hash, and using dG as the distance function.

Proof. Note that the GD-WL produces a finite number of colors at each iteration, and B is constructed
from dG whose co-domain is compact for graphs with finite size. Hence, since each transformer layer
is a composition of continuous functions, the domain of each transformer layer is compact. Recall
that we want to show that the t-th transformer layer can simulate

χt+1
G (v) := hash

(
[v]Xt

)
,

for all v ∈ V (G)∪ {[cls]}, where Xt ∈ {0, 1}L×d is a one-hot color matrix of the GD-WL colors
at iteration t. Let v be arbitrary but fixed. We say that v is the i-th node in an arbitrary but fixed
ordering of V (G).
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We restate the transformer layer definition in a simplified form, omitting multiple heads, residual
streams, and LayerNorm. In particular, we state that the layer updates only the i-th row of the token
matrix.

X̂(v)t+1 = MLP(softmax(X̂(v)tWQ(X̂
tWK)T + v)X̂tWV ),

where we recall that the i-th row of B is v. We now set WQ = WK to all-zeros and WV to the
identity matrix and obtain

X̂(v)t+1 = MLP(softmax(v)X̂t).

We prove the statement by induction over t. For the base case at t = 0, the token matrix X contains
the one-hot colors of the nodes in V (G) as well as the special one-hot color of the [cls] token.
Setting X̂0 := X , we have that X̂0 ∈ {0, 1}L×d and X̂0 = X0. Further, due to the [cls] token,
we know that X̂0 has at least two distinct rows.

Finally, note that, by construction, for each pair of distance vectors maxi vi = maxi wi =
maxv,w∈V (G) dG(v, w) + 1 and that every distance vector v ∈ Q1×L. These two conditions hold
throughout the induction and we will use them in the induction step to apply Lemma 26.

In the induction step for t > 0, we assume that

1. X̂t ∈ {0, 1}L×d

2. X̂t = Xt

3. X̂t has at least two distinct rows

We want to prove that the same holds for t+ 1. Let v, w ∈ V (G) ∪ {[cls]} be arbitrary but fixed.
Note that χt+1(v) = χt+1(w) if and only if [v]Xt = [w]Xt . By the induction hypothesis, we have
that [v]Xt = [w]Xt if and only if [v]X̂t = [w]X̂t . Further, by Lemma 26, we have that

softmax(v)X̂t = softmax(w)X̂t ⇐⇒ [v]X̂t = [w]X̂t ,

and as a consequence,

softmax(v)X̂t = softmax(w)X̂t ⇐⇒ χt+1(v) = χt+1(w).

Hence, there exists an injective function f that maps, for each token v ∈ V (G) ∪ {[cls]} with
distance vector v, the vector softmax(v)X̂t to a one-hot vector of χt+1(v) with d dimensions. Since
the domain of the t-th transformer layer is compact, f is continuous. Hence, by universal function
approximation, there exist weights of the MLP such that, for each v ∈ V (G) ∪ {[cls]}, X̂t+1(v)
is a one-hot vector of χt+1(v). As a result,

1. X̂t+1 ∈ {0, 1}L×d

2. X̂t+1 = Xt+1

3. X̂t+1 has at least two distinct rows.

This completes the induction and proves the statement.

C.2 Upper-bound on expressivity of the GDT

Moreover, we can prove an upper bound on the expressivity of the GDT using a technique adapted
from Müller et al. [2024]. We begin by showing the following result.
Lemma 36. Let G := (V (G), E(G), ℓV ) be a graph with n nodes and without edge embeddings, let
WQ,WK ,WV ∈ Rd×d be arbitary but fixed weight matrices with d ∈ N+, and let B ∈ Qn×n be
an attention bias. Let

α(X,U) := Attention(XWQ,XWK ,XWV ,B).

There exists a distance function dG over V (G) ∪ {[cls]} and functions f, h with

f(Xi) := h({{(dG(i, j),Xj)}}),

such that for all X and all i, α(X,U)i = f(Xi).
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Proof. We define dG with have co-domain Q2 such that

dG(i, j) = [Bij , I(i = j)],

for all i, j ∈ V (G) ∪ {[cls]}, where [·] is the concatenation operation and I(i = j) is the indicator
function. We denote with dG(i, j)k the k-th element in dG(i, j), for k ∈ {1, 2}. Let

g(Xi,Xj) := exp(XiWQ(XjWK)T ).

We choose h as follows. We note that by definition, 1 = dG(i, i)2 > dG(i, j)2 for all i ̸= j. Hence,
h can decompose its input into three arguments:

1. Xi, identified from the tuple (dG(i, j),Xj) where d(i, j)2 = 1, i.e., i = j,

2. the multiset of distances {{dG(i, j)}},

3. the multiset of vectors {{Xj}}.

Then, h computes
wij := exp(g(Xi,Xj) + dG(i, j)1)

and
w̃ij :=

wij∑
k wik

,

for all i, j. Finally, h computes ∑
j

w̃ijXjWV ,

for all i, to obtain α(X,U)i.

Intuitively, the above lemma shows that biased attention can be written as a function over the multiset
in the GD-WL if the distance function is a metric. We use this result to show that the GD-WL is at
least as expressive as a GDT with relative PEs.
Proposition 37. Let G := (V (G), E(G), ℓV ) be a graph without edge embeddings and let B ∈
Qn×n be an attention bias. Let d, df , T, h ∈ N+ denote the number of embedding dimensions, the
number of hidden dimensions, the number of layers, and the number of attention heads, respectively.
For any choice of parameters Θ(d, df , T, h) for the GDT, there exists a distance function dG over
V (G) ∪ {[cls]} and a hash function hash for the GD-WL such that for all t ≥ 0 and all pairs of
nodes i, j ∈ V (G), χt(i) = χt(j) if and only if Xt

i = Xt
j .

Proof. We prove the statement by induction over t. For t = 0, the statement holds by definition, as
the initial token embeddings X0 without any absolute PE are simply the node embeddings ℓV and
the initial colors of the GD-WL are chosen to be consistent with the node embeddings ℓV . For t > 0,
we assume by the induction hypothesis that for all pairs of nodes i, j ∈ V (G), χt−1(i) = χt−1(j) if
and only if Xt−1

i = Xt−1
j . By definition, Xt is computed via Equation (2), namely

Xt := MLP
(
Attention(Xt−1WQ,X

t−1WK ,Xt−1WV ,B)
)
,

where the MLP is applied row-wise. Let

1. f denote the function in Lemma 36 consistent with projections WQ,WK ,WV and atten-
tion bias B,

2. onehot : [n]→ {0, 1}n denote the function that maps numbers 1, . . . , n to their correspond-
ing n-dimensional one-hot vector.

Then, for all i, j, we have that

MLP ◦ f ◦ onehot(χt−1(i)) = MLP ◦ f ◦ onehot(χt−1(j))

if and only if
Xt

i = Xt
j .

Finally, there are at most n distinct rows in Xt. Let h be a function that injectively maps each unique
row in Xt to a color in [n]. We choose hash := h ◦MLP ◦ f ◦ onehot, and have that, for all pairs of
nodes i, j ∈ V (G), χt(i) = χt(j) if and only if Xt

i = Xt
j . This completes the induction and hence

concludes the proof.
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C.3 Expressivity of the GDT

Together, Theorem 24 and Proposition 37 correspond to the first and second statements in Theorem 1,
respectively. A consequence of Theorem 24 is the fact that the GDT with NoPE is equivalent to the
1-WL. In particular, let G := (V (G), E(G), ℓV , ℓE) be a graph with n nodes. Let ℓE(v, w) := 1, for
all v, w ∈ V (G), where 1 is the vector containing 1 in every element. Further, let ℓE(v, v) := 2, for
all v ∈ V (G), where 2 is the vector containing 2 in every element. Then, the GDT with NoPE is
equivalent, according to Theorem 24, to the following update of the GD-WL:

χt+1
G (v) := hash

(
{{(dG(v, w), χt

G(w)) : w ∈ V (G)}}
)
,

where dG(v, v) = 2, dG(v, w) = 1 if (v, w) ∈ E(G), and dG(v, w) = 0, else, for all v, w ∈ V (G).
This can be equivalently written as

χt+1
G (v) := hash

(
(χt

G(v), {{χt
G(w) : w ∈ NG(v)}})

)
,

giving the 1-WL update rule.

D Proofs of Section 3

To guide our proofs of Section 3, we introduce CSL-graphs, obtaining the fact that RWSE cannot
distinguish all of these graphs. These results are then expanded to provide an introduction to
Theorem 2. We first present the result and proof of Theorem 2, using a simplified version that
minimizes the number of random walk steps, leveraging results from Tönshoff et al. [2023]. In
addition, the proofs of Proposition 3 and Proposition 47 are then given with additional details on the
expressiveness hierarchy obtained from the definition of each PE. We provide additional incremental
results for our selection of PEs, complementing those from Section 3.

Warm-up: CSL graphs We begin by introducing a class of simple and intuitive, yet not 1-WL
distinguishable graphs, so-called CSL graphs. These graphs consist of an n-node cycle with skip
connections of length k, l originating from each node. CSL graphs are a canonical example of a graph
class requiring a distance measure, motivating additional PEs [Rampášek et al., 2022, Müller et al.,
2024]. Here, we show that they cannot be fully distinguished by RWSE and provide guidance on how
to find pairs of CSL graphs indistinguishable by RWSE. We first introduce CSL graphs G(n,k) and
their properties to prove the following results.
Definition 38. Let n, k be natural numbers and k < n − 1. G(n,k) defines an undirected graph
which is 4-regular. The set of nodes is given by V (G(n,k)) = {0, . . . , n− 1}. A two-step process
gives the edges. First, to construct a cycle in the CSL graph, every edge {i, i+ 1} ∈ E(G(n,k)) for
j ∈ {0, . . . , n − 2}. Additionally {n − 1, 0} ∈ E(G(n,k)) holds. Furthermore, the skip links are
introduced by defining the sequence s1 = 0 and si+1 = (si + k) mod n and deriving the edges with
{si, si+1} ∈ E(G(n,k)).

In addition, we introduce the notation used throughout the following proofs. Considering the skip links
introduced in the CSL graphs we denote such a skip link by the mapping sk : V (G(n,k))→ V (G(n,k))
with s(vi) := v(i+k) mod n for nodes {v1, . . . , vn}. A traversal to the next node vi+1 or vi−1 from
node vi is denoted by s1 and s−1 respectively. We further provide specific random walks using a
tuple of the visited nodes in a graph.
Proposition 39. Two CSL graphs G(n1,k1) and H(n2,k2) with n1 = n2 are non isomorphic if k1, k2
are co-prime natural numbers.

Given the definition of CSL graphs, it is possible to derive isomorphism results for them. Furthermore,
we note that CSL graphs are 1-WL indistinguishable but can be distinguished by various WL variants,
such as GD-WL [Zhang et al., 2023].
Proposition 40. There exists at least one pair of CSL graphs that RWSE cannot distinguish for any
choice of random walk length.

Nonetheless, we note that the expressive power of RWSE is sufficient to distinguish many 1-WL
indistinguishable graphs; for example, most CSL graphs can already be characterized by RWSE.
Furthermore, a minimum step number is given depending on the skip length of each CSL graph.
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Figure 5: A pair of CSL graphs G10,2, H10,3. We note that the path marked in blue does not exist in
graph G or has no replacement path.

Proposition 41. Let n, k ∈ N+ with n > k(k + 1) + 1. RWSE can distinguish any pair of CSL
graphs with n nodes and skip length k, k + 1, with a random walk length of k + 1.

With Definition 38 we derive the proofs for each lemma individually.

Proof of Proposition 41 For Proposition 41 we consider a subclass of CSL graphs. The minimum
node number is specifically chosen to prevent a random walk of k steps from completing a cycle in
the graph, even when using sk+1 for each step. We follow a two-step process for the proof: First, we
gather paths existing in one graph but not the other. Then, in a second step, we show that all different
paths of length at most k exist in both graphs. Further, we highlight that for random walks of length
less than k, the paths are equal in both graphs.

Proof. Let G(n,k) and H(n,k+1) be two CSL graphs with skip link mappings sk and sk+1. Further
let n > k(k + 1) + 1. To distinguish them, we denote the same node in both graphs with v0 and
w0. Then, for k random walk steps, we first examine whether there exist paths in G(n,k) which are
not present in H(n,k+1). These include (v0, . . . , vk−1, v0) and (v0, . . . , vn−k+1, v0) as valid paths in
G(n,k), which provide two k step walks with one skip link each. However, we note that such paths
are not possible in H(n,k+1) as the skip link sk+1 has a length k + 1 and therefore no corresponding
walk exists. In addition, we show that there exists no other walk in H(n,k+1), which is not present in
G(n,k). For this, we must consider the cases of k even or odd.

Case 1: k is even: In this case, we must consider all combinations of skip links and s1, s−1 functions.
Since we assume an even number of steps, we know that all return walks with an even number of
skip links or no skip links exist in both graphs. However, walks with an uneven number of skip links
cannot return to v0 or w0, as with the skip link size of k or k + 1, no return walks with at most k
steps exist. As can be seen, the skip length does not influence the existence of any of the proposed
walks; therefore, they exist both in G(n,k) and H(n,k+1).

Case 2: k is uneven: Given an uneven k, we conclude that no return walks with a length of k exist
since steps can return neither a skip link nor an uneven number of any combination of skip links and
steps can return to the origin node.

For step numbers lower than k the same cases apply in permuted order, depending on the step number.
Also, due to the minimal n chosen, no instances exist where a circumference of the graph circle
occurs in any combination of steps. As for both cases, there exist no paths which are not present
in G(n,k), it follows that there exist additional walks for G(n,k) which do not occur in H(n,k+1).
Due to the structure of CSL graphs, the number of random walks, including both returning and
non-returning random walks, is the same across all nodes in both graphs, resulting in the statement of
Proposition 41.

Since the RWPE encoding is different if a single step returns a different return walk probability,
RWPE can distinguish G(n,k), H(n,k+1) with the given random walk steps.

For the following pair of CSL graphs, we consider the computation of the number of returning walks.
This enables us to compute the random walk probabilities for a single node directly. Due to the design
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of CSL graphs, each node in a graph has the same random walk return probability, thereby allowing
us to derive the proof of Proposition 40.

Proof of Proposition 40 We consider two CSL graphs G(11,3) and H(11,4). With the computation
of the number of returning walks of length r, W r given by W r =

∑n
i=1 λ

r
i , where λi denotes the

eigenvalues of the adjacency matrix, we can compute the number of returning walks for each node
in both graphs, since due to the graph structure the number of returning walks is equal for each
node. Furthermore, we know that the number of total walks is equal in both graphs, given the graph
structure as seen in Figure 5. From this, we compute the fraction of returning walks of varying length
r for each node, resulting in the computation of the RWSE embedding. Since both the number of
returning walks and the total number of walks are equal for each node in both graphs, as seen in the
proof of Proposition 41, we receive the same RWSE embedding for G(11,3) and H(11,4).

In addition to the indistinguishability results obtained for RWSE, we propose a result that initially
distinguishes RWSE from RRWP. We then refine this result in Proposition 42, showcasing RRWP to
be strictly more expressive than RWSE.

Proposition 42. RRWP can distinguish all pairs of non-isomorphic CSL graphs.

Proof of Proposition 42 In contrast to RWSE, the RRWP embedding uses the full random walk
matrix and information about random walks between any two nodes. Because of this, RRWP can
capture information that is not visible to RWSE due to the restriction to the diagonal of the random
walk matrix.

Proof. We consider two arbitrary CSL graphs G(n,i) and H(n,j) with i, j co-prime and i ̸= j. Then
we can compute the RRWP encoding for each node by computing the random walk matrix. We
saw from previous CSL graphs that the random walk matrix diagonal can be equal for both graphs,
depending on the choice of i, j, and the number of random walk steps. However, for RRWP, we also
consider non-diagonal elements. Due to i ̸= j, the RRWP tensor elements differ for each random
walk of length 1, since different nodes are connected. Given any injective MLP layer, different RRWP
tensor elements result in different RRWP embeddings for the nodes of both graphs, allowing the CSL
graphs to be distinguished by RRWP.

Using the above results for CSL graphs, we derive a first bound for RWSE that depends on the
graph structure of the CSL graphs. However, CSL graphs are not distinguishable by 1-WL, leaving
open the comparison between RWSE and 1-WL. In the following, we want to further improve our
understanding of RWSE and its expressiveness. We first provide an introduction and intermediate
result given by Lemma 43 to limit the expressiveness to random walks of sufficient length. Afterwards,
we provide the proof of Theorem 2, concluding our examination of RWSE.

Introduction to Theorem 2 To prove Theorem 2, we first provide an intermediate result from
leveraging the graphs introduced by Tönshoff et al. [2023] for their work. This allows us to derive
graphs that need a certain number of random walk steps, depending on their graph structure. We then
expand on this concept in our proof of Theorem 2 by giving an example of graphs not distinguishable
by RWSE.

Lemma 43. There exists at least one pair of non-isomorphic graphs with order 3n− 1 that can be
distinguished by RWSE only with a random walk length of at least O(n).

Since RWSE requires returning random walks to construct the respective embedding, graphs exist
that are only distinguishable by random walks of specific length. However, we want to provide
a class of graphs requiring at least O(n) steps. Furthermore, we want these graphs to be 1-WL
distinguishable, providing a first step to Theorem 2, where we show the indistinguishability of RWSE
and 1-WL. Following Tönshoff et al. [2023] and their evaluation of another random walk-based GNN
architecture (CraWL), we adapt their counterexample to our evaluation of RWSE.

Proof. We provide a proof by giving a constructed graph only distinguishable by random walks of
length greater than n− 1, fulfilling the necessary condition of O(n) for the walk length. Following
Tönshoff et al. [2023] with their counterexample for the CraWL algorithm, we adapt the corresponding
graphs for the RWSE embedding. Since we only consider the return probabilities of random walks
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Figure 6: A pair of graphs from the construction method provided by Tönshoff et al. [2023]. Note
that these graphs can only be distinguished by a returning random walk of length O(n) while being
1-WL distinguishable.

in the RWSE embedding, we disregard information from other random walks. Given the graphs in
Figure 6 with n nodes, we consider the blue marked nodes. Since the returning walks are the same
for both nodes for any walk of length r ≤ n− 1, the graphs cannot be distinguished for any RWSE
embedding with a walk length of r. Due to the graph construction, the corresponding walks for all
other nodes are the same in both graphs. However, due to the cycle colored in blue, the return walk
probabilities differ in both graphs for walks with a length r′ ≥ n. This results in a pair of graphs
only distinguishable by random walks of length at least n. Results from Tönshoff et al. [2023] allow
for constructing further examples with n nodes and order 3n− 1. By construction, these graphs are
distinguishable by 1-WL [Tönshoff et al., 2023], resulting in the stated lemma.

With the results from Lemma 43, we can now expand the set of graphs not distinguishable by RWSE,
while 1-WL is distinguishable. Combining both results, we can determine a set of graphs limiting the
expressiveness of RWSE and further investigate the expressive power of random walks.

We provide an example pair of trees not distinguishable by the RWSE encoding. In contrast, all trees
are known to be distinguishable by the 1-WL algorithm [Cai et al., 1992]. Combining the findings
from Theorem 2 with the CSL graph results in Proposition 41, it follows that RWSE embeddings are
incomparable to the 1-WL color refinement algorithm.

Proof of Theorem 2 For this proof, we first consider a pair of trees shown by Cvetković [1988].
Originally introduced as examples of trees with differing eigenvalues and graph angles, thereby
distinguishable by the EA-invariant, these graphs are not distinguishable by the RWSE embedding
for an arbitrary number of random walk steps. The proof is split into multiple steps, containing parts
of both trees that need to be considered.

Proof. We separate the graph as shown in figure 7 into backbones I, J and subtrees X,Y1, Y2 and
the original tree G. X stays the same throughout both graphs, whereas Y1, Y2 change their edges
connecting them to the graph. In the first step, we consider the probability of returning to one of the
backbone nodes. Going from either of the backbone nodes to the original tree G has a probability of

X Y2 Y1 X

I J

X Y1 Y2 X

I J

Figure 7: A pair of trees given by Cvetković [1988]. The grey node denotes an arbitrary tree
concatenated to the existing tree. Each part of the tree is colored according to its respective appearance.
We further label both backbone nodes in orange, denoting the left backbone node with I and the right
backbone node with J .
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1
5 . Furthermore, going to X from either backbone node has the probability 2

5 . Once in either part of
X , the return probability to the backbone node is given by pX , which is equal in both graphs. Finally,
the probability of going to Y1, Y2 is denoted by pY1 , pY2 respectively, again equal for both graphs.
Further, the return probabilities Y1 and Y2 are equal, as can be easily seen from the combination of
Y1 and Y2 with the respective backbone node. This allows for a complete evaluation of the backbone
nodes, assigning them probabilities pI and pJ .

Secondly, we consider random walks on the nodes of the subtree X , without returning to either
backbone node. Since X is equal in both graphs, the return probabilities are also the same, denoted by
x. However, they differ from the return probabilities in Y1 and Y2, given by y1 and y2 respectively.
As a result, RWSE can distinguish X,Y1, Y2 without connecting to the backbone nodes.

Combining our previous knowledge, we now consider return probabilities for nodes in Y1 and Y2

without restricting ourselves to the subtrees. We know that the probability of walking towards the
backbone node is given by the respective position of each node in Y1, Y2, equal in both trees. Once
the random walk arrives at either backbone node, the probability to return to said backbone is given
by either pI or pJ and a probability of 2

5 to return to the originating subgraph. As pI and pJ are equal
in both graphs and pY1

, pY2
are equal, it follows that the return probability for nodes y1 ∈ Y1 is equal

across both graphs, denoted by py1T . The same holds for Y2 with the return probabilities denoted by
py2T .

Finally, for both graphs, the nodes are assigned the RWSE probability vectors pI , pJ once, pX 17
times, and py1T , py2T 8 times each. Furthermore, the two backbone nodes of both graphs cannot be
distinguished using the RWSE embedding. Therefore, the graphs are equal under RWSE, however as
shown by [Cai et al., 1992] every pair of trees can be distinguished using the 1-WL test, resulting in
the incomparability of RWSE and the 1-WL test.

Combining the results of Proposition 40, Lemma 43, and Theorem 2, we obtain fine-grained observa-
tions of graph structures not distinguishable by RWSE. While random walks are sufficiently robust to
distinguish many common graph structures and graphs not distinguishable by 1-WL, RWSE still fails
to distinguish specific trees and graphs originally proposed by Tönshoff et al. [2023].

In the following, we provide proofs supplementing the theoretical expressiveness hierarchy introduced
by Zhang et al. [2024] and Black et al. [2024]. We first give an intermediate result relating RWSE
and RRWP, thereby providing a lower bound for RRWP and an upper bound for RWSE. Further,
we propose adapted results for LPE and SPE, comparing them to other PEs and to each other. The
significant results are shown in Proposition 3 and Proposition 4.

Proof of Proposition 3 The proof of Proposition 3 is given by simply evaluating the corresponding
embeddings for both RWSE and RRWP. Since both embeddings use the same MLP encoder layer,
we restrict ourselves to evaluating random walk matrices directly. We first state an extended version
of Proposition 3 and provide a proof.
Lemma 44 (Proposition 3 in the main paper). Let G,H be two non-isomorphic graphs and
P RW

k (G),P RW
k (H) the generated RWSE encodings for both graphs with a random walk length

k. Then for the generated RRWP encodings P RR
k (G),P RR

k (H) it follows:

P RR
k (G) = P RR

k (H)⇒ P RW
k (G) = P RW

k (H).

In addition, at least one pair of graphs exists that is distinguishable by RRWP but not by RWSE.

Proof. Given random walk matrices RG := D−1
G AG,RH := D−1

H AH , its power matrices up to the
power of k and the corresponding RRWP embeddings P RR

k (G),P RR
k (H) for two non-isomorphic

graphs we can directly deduce that for each tensor in the RRWP embeddings, corresponding to
the RRWP embedding for a single node in each graph, the diagonal elements of the random walk
matrix are the same for each power up to k. Therefore, it directly follows that P RR

k (G) = P RR
k (H)

results in P RW
k (G) = P RW

k (H), with P RW
k (G),P RW

k (H) denoting the RWSE encodings obtained
from the same random walk matrices. We provide a simple example of a pair of graphs that are
not distinguishable by the RWSE embedding, whereas RRWP can distinguish between them. This
example follows directly from Proposition 40 since it is proven there that RWSE cannot distinguish
this pair of graphs. However, it directly follows from the definition of the random walk matrix. It
assumes that the MLP encoder preserves identity and that the two graphs can be distinguished by
their differences in skip lengths, as defined by CSL graphs.
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We now want to consider the expressive power of LPE with respect to RWSE. For this, we use
results obtained by Black et al. [2024] and Zhang et al. [2024] and combine them with similar results
obtained for SignNet and BasisNet [Lim et al., 2023]. Our additional observations are highlighted in
Proposition 4.

Proof of Proposition 4 We provide an expanded version of Proposition 4 split into three parts
(Lemma 45, Lemma 46, and Proposition 47), considering the expressive power of SAN [Kreuzer
et al., 2021] and RWSE first, expanding the proof to LPE and SPE in Lemma 46, and finally upper
bounding RRWP by using SPE. With these three parts, we are then able to derive the proposition.
Lemma 45 (RWSE and SAN). Let the number k of eigenvalues λ ∈ Rn and eigenvectors V ∈ Rn×n

used in the SAN encoding be equal to the number of nodes in non-isomorphic graphs G,H . Then
given the encodings P SAN

k (G),P SAN
k (H) with it follows:

P SAN
k (G) = P SAN

k (H)⇒ P RW(G) = P RW(H),

for a pair of RWSE encodings P RW(G),P RW(H) and an arbitrary number of random walk steps.
Lemma 46. (RWSE and LPE) Given Lemma 45 and the LPE embeddings P LPE

k (G),P LPE
k (H) for

two non-isomorphic graphs G,H with k nodes it follows:

P LPE
k (G) = P LPE

k (H)⇒ P RW(G) = P RW(H),

for a pair of RWSE embeddings P RW(G),P RW(H) and an arbitrary number of random walk steps.
The same result follows by replacing LPE with SignNet, BasisNet, or SPE as the eigenvector-based
embedding.

Proof of Lemma 45 and Lemma 46 In the following, we provide the proofs for both lemmas.
Since Lemma 46 proposes an extension of the previous lemma, we first show the specialized case for
the SAN embedding and expand it to the more general case of eigenvector-based encodings. With
proofs provided for both lemmas, we can directly derive Proposition 4 by combining them with
Proposition 47.

Proof. The proof follows the comparison between SignNet and RWSE presented by Lim et al. [2023].
Since the RWSE embedding is determined by the random walk matrix and its powers, we first
determine a corresponding relation between the random walk matrix (D−1A) and eigenvalues and
eigenvectors of the normalized graph Laplacian. Due to the definition of the random walk matrix, the
eigenvectors of said matrix are determined by vRi = D−1/2vi, where vi denotes the corresponding
eigenvector of the normalized graph Laplacian. This results in the following equation relating the
random walk matrix diagonal to the eigenvectors of the graph Laplacian [Lim et al., 2023]:

(diag(D−1A))k = diag
( k∑

i=1

(1− λi)
kviv

T
i

)
. (16)

Following Lim et al. [2023], the linear layer can approximate
∑k

i=0 and the transformer encoder to
approximate (1− λi)

k as both are permutation equivariant functions from vectors to vectors. Since
eigenvalues and eigenvectors are directly given to the SAN embedding and the linear and transformer
encoder layer being able to approximate (1− λi)

k for each λi the approximation directly follows.
This approximation assumes using all k eigenvalues and the complete eigenvectors obtained from the
decomposition.

For Lemma 46 we consider Equation (16). However, for each embedding, we must consider whether
eigenvalues and eigenvectors can be recovered and (1 − λi)

k can be approximated. We split the
following proof for each encoding and assume we use all eigenvalues and eigenvectors.

For LPE, we can directly recover eigenvalues and eigenvectors from the input to each embedding
by using the eigenvectors Vi passed to LPE. Using a sufficiently expressive ϕ and ρ LPE is able
to approximate (1− λi)

k. This follows directly from the assumption that ϕ and ρ are permutation-
equivariant MLPs or more expressive neural network architectures, thereby able to approximate the
given functions, as in the SAN case [Lim et al., 2023].

For SPE, a slightly different case has to be considered. Since SPE uses the projection matrices
obtained from VVT , the eigenvectors must be recovered.
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Instead of directly recovering eigenvectors, we use the properties of the underlying projection matrices.
From this, we can directly recover the eigenvectors needed from Vdiag(ϕi(λ))V

T for a suitable
ϕ, which can be reverted by ρ to retain the eigenvectors. For the eigenvalues, we consider ϕi to
be eigenvalue-preserving functions, allowing us to recover the eigenvalues from the diagonalized
representation. The remaining proof follows from the observations made by Lim et al. [2023]
for SignNet and BasisNet. In addition, SignNet and BasisNet Lim et al. [2023] prove that both
embeddings can approximate the RWSE embedding given suitable ϕ and ρ.

Proposition 47 (RRWP and SPE). Given the SPE embeddings P SPE
k (G),P LPE

k (H) for two non-
isomorphic graphs G,H with k nodes it follows:

P SPE
k (G) = P SPE

k (H)⇒ P RR(G) = P RR(H),

for a pair of RRWP embeddings P RR(G),P RR(H) and an arbitrary number of random walk steps.

With the partial hierarchy for LPE and SPE, we want to examine random walk-based PEs further.
Since RWSE is upper bounded by LPE and incomparable to the 1-WL, it remains to propose an upper
bound of RRWP, known to be more expressive than RWSE from Proposition 3.

Proof of Proposition 47 Following Zhang et al. [2024] with their proof of a representation of the
page rank distance using projection matrices, we show that RRWP can be represented using the page
rank distance and that such distance can be approximated using information recovered from the SPE
embedding. We note that a proof of SPE being more expressive than GRIT is provided by Zhang
et al. [2024]. Nonetheless, we reduce the proof to involve the RRWP embedding to align with our
theory framework.

First, we consider the representation of the RRWP embedding using the generalized PageRank
distance. For this, we consider RRWP as a distance-based embedding of the form

PRR
k (u, v) = [D−1A(u, v), (D−1A)2(u, v), . . . , (D−1A)k(u, v)],

for nodes u, v ∈ V (G). Thereby, the RRWP embedding for a selection of nodes can be represented
by the multi-dimensional page rank distance PR for a given weight sequence γi:

PR(u, v) =

∞∑
i=0

γi(D
−1A)i(u, v).

From Zhang et al. [2024] we obtain the following equality satisfying the needed relation between
page rank distance and projection matrices.

∞∑
k=0

γk(D
−1A)k =

∑
i

( ∞∑
k=0

γk(1− λi)
k

)
Pi(u, v)(deg(u)−1/2)(deg(v)−1/2)

with Pi(u, v) denoting the element at position (u, v) of the i-th projection matrix. However, we still
need to recover node-degree information from the SPE encoding and demonstrate that SPE retains
the projection matrix information.

Given the property of projection matrices to recover the underlying matrix using eigenvalue decom-
position [Zhang et al., 2024], we recover node degree information using the diagonal of the graph
Laplacian. Since SPE uses the graph Laplacian to compute eigenvalues and eigenvectors, we can
directly recover relevant degree information via the following equation.

L =

n∑
i=1

λiPi

diag(L) = diag(
n∑

i=1

λiPi) =

n∑
i=1

λidiag(Pi)

Luu =

n∑
i=1

λi(Pi(u, u))

Following the definition of the SPE encoding, eigenvalues and the elements of the projection matrix
can be recovered using suitably expressive ϕ and ρ. Given ϕ to be a 2-IGN and ρ to be a MLP or
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1-WL expressive GNN, deg(u)−1/2 can be approximated by ρ, whereas
∑

i

(∑∞
k=0 γk(1− λi)

k

)
can be approximated by a 2-IGN as shown by Maron et al. [2019a], Lim et al. [2023]. This allows
for approximating the RRWP embedding via the PageRank distance using SPE as an upper bound,
concluding our proof.

Combining the results of Lemma 45, Proposition 47, and Proposition 3, we obtain Proposition 4
directly, supplementing the hierarchy of PEs in their theoretical expressiveness. These results provide
a comprehensive theoretical expressiveness hierarchy, showing that random walk-based embeddings
are more expressive than the 1-WL test but are bounded by eigeninformation-based embeddings. We
note that all embeddings are bounded by the 3-WL test as shown by Zhang et al. [2024].

Additional results on theoretical expressiveness Using notation established in section Ap-
pendix B.3 we provide additional proofs to complement the framework established by Black et al.
[2024] and Zhang et al. [2024] concerning theoretical expressiveness of PEs. At first, we consider
the proof of Lemma 48, highlighting the connection between SAN and SignNet. Then we consider
SignNet and BasisNet, expanding on the results of Lim et al. [2023] and adapting them to LPE.
We provide additional results to improve the hierarchy of theoretical expressiveness in PEs and to
examine LPE further, relating it to other eigenvector-based embeddings.

Throughout these proofs, we consider the respective ϕ and ρ to be selected as MLPs or GNNs. For
ϕ, we choose, based on previous analysis by Zhang et al. [2024], a function mapping at most as
expressive as a 2-IGN. Similarly, for ρ, we select any 1-WL expressive GNN or MLP. Note that these
assumptions differ from the selections made in our empirical evaluation.

Lemma 48. Given a sufficiently expressive ϕ and ρ for SignNet, aligning with the implementation
of Lim et al. [2023] and the original implementation of the SAN embedding, SignNet is at least as
expressive as the SAN embedding.

Proof. Let SAN and SignNet be represented by the respective color refinement algorithms shown in
Definition 14. To show Lemma 48, we need to show that

TGP ◦ T∞
WL ◦ TSP2 ◦ Tϕ(χSign) ⪯ TGP ◦ TENC ◦ TL(χSAN).

Since we assume a standard transformer encoder to be at most 1-WL expressive and knowing that
TGP is order preserving concerning Definition 10, we can reduce the above equation to the following
expression:

T∞
WL ◦ TSP2 ◦ Tϕ(χSign) ⪯ T∞

WL ◦ TL(χSAN).

This expression can now be evaluated. Given two non-isomorphic graphs G,H and arbitrary nodes
u, v ∈ V (G) and x, y ∈ V (H) the following holds true:

T∞
WL ◦ TSP2 ◦ Tϕ(χSign(u, v)) = T∞

WL ◦ TSP2 ◦ Tϕ(χSign(x, y))
TSP2 ◦ Tϕ(χSign(u, v)) = TSP2 ◦ Tϕ(χSign(x, y))

{{Tϕ(χSign(u, v))}} = {{Tϕ(χSign(x, y))}}
{{Tϕ(λG,V

u,Vv)}} = {{Tϕ(λH ,Vx,Vy)}}.

From the equivalence of the multisets, it follows directly that χSAN(u, v) = χSAN(x, y) holds for any
choice of nodes given an injective Tϕ.

With the proof of the SAN embedding concluded, we further evaluate the connections between
BasisNet and SignNet and the LPE embedding. First, we show that BasisNet can approximate
SignNet, an observation highlighting the differences in expressiveness noted by Lim et al. [2023]. In
the second part of the proof, we conclude our comparison of eigenvector-based embeddings and LPE
with BasisNet. Throughout the proof we again assume ϕSN , ϕLPE to be at most 2-IGN expressive
and ρSN , ρLPE to be 1-WL expressive.

Proof. Let SignNet and BasisNet be represented by the color refinement algorithms from Defini-
tion 14. Then for two non-isomorphic graphs G,H with nodes u, v ∈ V (G) and x, y ∈ V (H) we
consider the color refinement algorithms for both encodings. With this it follows that we have to
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show TGP ◦ TWL ◦ TSP1 ◦ TBP ◦ TSIAM(χBasis) ⪯ TGP ◦ TWL ◦ TSP2 ◦ Tϕ(χSign). Since TGP ◦ TWL is
order preserving we only consider the relation TSP1 ◦ TBP ◦ TSIAM(χBasis) ⪯ TSP2 ◦ Tϕ(χSign). First
of all, we show that TSIAM(χBasis) ⪯ Tϕ(χSign):

TSIAM(χBasis)(λG, u, v) = TSIAM(χBasis)(λH , x, y)

⇒ [TIGN(χBasis(λG, ·, ·))]G(u, v) = [TIGN(χBasis(λH , ·, ·))]H(x, y).

Using the definition of IGN color refinement, we can directly approximate the eigenvalues used
in SignNet’s initial encoding. Furthermore, a 2-IGN architecture is at least as expressive as the
architectures used for ϕ in SignNet. Since the multisets of the projection matrices allow us to
approximate the eigenvectors used by the SignNet encoding, the initial encoding of SignNet can be
approximated, allowing for the approximation of Tϕ(χSign),

[TIGN(χBasis(λG, ·, ·))]G(u, v) = [TIGN(χBasis(λH , ·, ·))]H(x, y)

⇒ χSign(λG, u, v) = χSign(λH , x, y)⇒ Tϕ(χSign)(λG, u, v) = Tϕ(χSign)(λH , x, y).

Given that χ̄ = TSIAM(χBasis), we now only have to show that TBP(χ̄) ⪯ TSP2(χ̄). Using the same
nodes as above:

TBP(χ̄)(λ, u) = TBP(χ̄)(λ, x)

⇒ χ̄G(λ, u, u) = χ̄H(λ, x, x) ∧ {{χ̄G(λ, u, v) : v ∈ V (G)}} = {{χ̄G(λ, x, v) : v ∈ V (H)}}∧
{{χ̄G(λ, v, u) : v ∈ V (G)}} = {{χ̄H(λ, v, x) : v ∈ V (H)}}∧
{{χ̄G(λ, v, v) : v ∈ V (G)}} = {{χ̄H(λ, v, v) : v ∈ V (H)}}∧

{{χ̄G(λ, v, w) : v, w ∈ V (G)}} = {{χ̄H(λ, v, w) : v, w ∈ V (H)}}∧
⇒ TSP2(χ̄)(λ, u, v) = TSP2(χ̄)(λ, x, y).

Since both parts of the relation TBP ◦TSIAM(χBasis) ⪯ TSP2 ◦Tϕ(χSign) hold and all color refinements
are considered to be order-preserving and expressiveness preserving, the proof directly follows.

In case of the LPE embedding, the proof follows the same structure with Tϕ being replaced with
T LPE
ϕ as given in Definition 14. Since we do not assume Tϕ to be more expressive than T LPE

ϕ and
both being bounded by a 2-IGN in expressiveness, we can replace Tϕ, and therefore, we omit the
proof.

E Additional technical proofs

Multiset operations Let D be a finite set with an arbitrary but fixed order. We denote the i-th
element of the order on D by Di. Let A be a finite multiset over D. We write A := {(ai, Di) | i ∈
[|D|]} with ai ≥ 0, the multiplicity of element Di in A.

We define |A| :=
∑

i ai. Further, let B := {(bi, Di) | i ∈ [|D|]} be another finite multiset over D.
We define

A ∩B := {(min{ai, bi}, Di) | i ∈ [|D|]}
and

A \B := {(max{ai − bi, 0}, Di) | i ∈ [|D|]}.
We note that A ∩ B is symmetric while B \ A is not symmetric. Nonetheless, we prove that if
|A| = |B|, then |A \B| is symmetric.

Claim 49. Let A,B be two multisets over a finite domain. If |A| = |B|, then |A \B| = |B \A|.

Proof. We have that

|A \B| =
∑
i

max{ai − bi, 0} =
∑
i

ai −min{ai, bi} = |A| − |A ∩B|.

Hence, if |A| = |B|, then |A \B| = |A| − |A∩B| = |B| − |A∩B| and since |A∩B| is symmetric,
|A \B| = |B| − |B ∩A| = |B \A|.
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Claim 50 (Proof of Claim 30). Let A,B ⊂ Q be finite multisets with |A| = |B|. Then, the sum∑
a∈A

exp(a)−
∑
b∈B

exp(b) = 0,

if, and only if, A = B.

Proof. Let f(A,B) =
∑

a∈A exp(a)−
∑

b∈B exp(b). Note that for each element a in A that also
appears as b in B, we have that exp(a)−exp(b) = 0. Hence, we define A∗ := A\B and B∗ := B\A
and have that f(A,B) = f(A∗, B∗). Further, since according to the lemma statement |A| = |B|, we
have that |A∗| = |B∗|; see Claim 49.

We first show that f(A,B) = 0 if and only if A = B. To this end, note that the sum is 0 if the
positive and the negative summands cancel out, that is, if A∗ = B∗ = ∅ and hence, A = B. If
A ̸= B, then the above sum is a non-zero sum of exponentials with algebraic exponents, and thus, by
Theorem 32, non-zero. Hence, we have A = B ⇔ f(A,B) = 0.

Lemma 51 (Proof of Lemma 28). Let v,w ∈ Q1×L and let X ∈ {0, 1}L×d be a matrix whose rows
are one-hot vectors, for some L, d ∈ N+. Then, softmax(v)X = softmax(w)X , if and only if, for
every x ∈ set(X), ∑

i∈A(x)

(αi − βi) = 0,

where αi := softmax(v)i and βi := softmax(w)i.

Proof. We have

softmax(v)X − softmax(w)X =

n∑
i=1

(αi − βi) ·Xi =
∑

x∈set(X)

∑
i∈A(x)

(αi − βi) · x.

Since the rows of X are one-hot vectors, set(X) is linearly independent we have that∑
x∈set(X)

∑
i∈A(x)

(αi − βi) · x = 0,

if, and only if,
∑

i∈A(x)(αi − βi) = 0, for all x ∈ set(X).

Lemma 52 (Proof of Lemma 27). Let v,w ∈ Q1×L and let X ∈ {0, 1}L×d be a matrix whose rows
are one-hot vectors, for some L, d ∈ N+. Then, [v]X = [w]X , if and only if for every x ∈ set(X),

{{vi | i ∈ [n] ∧Xi = x}} = {{wi | i ∈ [n] ∧Xi = x}}.

Proof. We define, for each x ∈ set(X),

V (x) := {{vi | i ∈ [n] ∧Xi = x}}
W (x) := {{wi | i ∈ [n] ∧Xi = x}}.

For the forward implication, assume towards a contradiction that [v]X = [w]X but there exists an
x ∈ set(X) such that V (x) ̸= W (x). However, then there also exists a number v ∈ V (x) that
appears x times in V (x) but y times in W (x), with x ̸= y. Without loss of generality, we assume
that x < y. Then, the tuple (v,x) appears fewer times in [v]X than in [w]X , implying [v]X ̸= [w]X ,
a contradiction.

For the backward implication, assume towards a contradiction that for all x ∈ set(X), V (x) =
W (x) but [v]X ̸= [w]X . Then, there exists a tuple (v,x) that appears x times in [v]X but y times in
[v]X , with x ̸= y. Without loss of generality, we assume that x < y. But then, for the vector x, there
exists a number v that appears fewer times in V (X) than in W (X), implying V (X) ̸= W (X), a
contradiction. This shows the statement.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims of the paper are that we propose a new model, develop an
understanding of its representation power, and evaluate it extensively on large-scale datasets
to derive generalizable insights. We describe the model in detail in Section 2, provide central
expressivity results in Section 2.3 and Section 3, and evaluate the model extensively in
Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the main paper in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide detailed proofs, including all assumptions in Appendix C and
Appendix D, as well as extensive background with all necessary definitions in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information in the main paper in Section 4 which should
suffice to reproduce the results on our real-world tasks. For the algorithmic tasks, which we
design and implement for this work, additional details on graph generation and detailed task
descriptions are required, which we detail fully in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide our code base in the supplementary material which is sufficient to
download or generate the data required to reproduce the experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: training and test details are provided in Appendix A, in particular in Ap-
pendix A.2, discussing hyperparameters in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard deviation over multiple random seeds in Table 1, as well
as standard error over multiple random seeds in Figure 3. For better clarity, we provide
the standard deviation over random seeds of our scaling experiments in Figure 4 (a) in
Appendix A in tabular form.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide runtime and memory requirements in Appendix A.5 in tabular
form. These requirements are computed from empirical measurements on a single L40
GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: In this work, we conduct foundational research in the area of machine learn-
ing without any immediate positive or negative societal impact that must be addressed
specifically.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our models are trained on standard benchmarks or on synthetic algorithmic
tasks without any immediate risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide licenses for each dataset in Appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: While we do introduce new synthetic tasks, we do not release these as datasets
or a new benchmark. However, we thoroughly document how to reproduce the data used in
these tasks, as well as how the models are evaluated on these tasks.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs such that they impact the core method development in
this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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