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ABSTRACT

Text-to-motion generation, a rapidly evolving field in computer vision, aims to
produce realistic and text-aligned motion sequences. Current methods primar-
ily focus on spatial-temporal modeling or independent frequency domain analy-
sis, lacking a unified framework for joint optimization across spatial, temporal,
and frequency domains. This limitation hinders the model’s ability to leverage
information from all domains simultaneously, leading to suboptimal generation
quality. Additionally, in motion generation frameworks, motion-irrelevant cues
caused by noise are often entangled with features that contribute positively to
generation, thereby leading to motion distortion. To address these issues, we
propose Tri-Domain Causal Text-to-Motion Generation (TriC-Motion), a novel
diffusion-based framework integrating spatial-temporal-frequency-domain mod-
eling with causal intervention. TriC-Motion includes three core modeling mod-
ules for domain-specific modeling, namely Temporal Motion Encoding, Spatial
Topology Modeling, and Hybrid Frequency Analysis. After comprehensive mod-
eling, a Score-guided Tri-domain Fusion module integrates valuable information
from the triple domains, simultaneously ensuring temporal consistency, spatial
topology, motion trends, and dynamics. Moreover, the Causality-based Counter-
factual Motion Disentangler is meticulously designed to expose motion-irrelevant
cues to eliminate noise, disentangling the real modeling contributions of each do-
main for superior generation. Extensive experimental results validate that TriC-
Motion achieves superior performance compared to state-of-the-art methods, at-
taining an outstanding R@1 of 0.612 on the HumanML3D dataset. These results
demonstrate its capability to generate high-fidelity, coherent, diverse, and text-
aligned motion sequences. Code is available at: https://caoyiyang1105.
github.io/TriC-Motion/.

1 INTROUCTION

Text-driven human motion generation is rapidly emerging as a focal research area in computer
vision, with broad potential impact across the film and game industry (Shuto et al., 2025), hu-
man–computer interaction (Wang et al., 2025; Sui et al., 2025), and embodied intelligence in
robotics (Long et al., 2025). This task involves interpreting textual descriptions to produce smooth,
physically plausible, and semantically coherent joint coordinate sequences, such as natural poses for
walking, running, or jumping (Xue et al., 2025).
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Figure 1: (a) Visual comparison of motion generated before and after spatial modeling/frequency
modeling/causal intervention; (b) Quantitative comparison of different methods’ performance on
HumanML3D.
Recent text-to-motion methods can be broadly divided into diffusion-based (Tevet et al., 2022;
Zhang et al., 2023b; 2024a; Zhou et al., 2024) and auto-regressive approaches (Zhang et al., 2023a;
Pinyoanuntapong et al., 2024; Guo et al., 2024), primarily focusing on temporal modeling to depict
dynamic evolution and ensure sequence consistency. Recent works (Yuan et al., 2024; Zhang et al.,
2024b) extend to spatial-temporal joint modeling, further enhancing motion realism and topologi-
cal consistency while improving motion quality. Typically, Spatio-Temporal Graph Diffusion (Liu
et al., 2023) encodes local joint topologies via graph convolutions and characterizes dynamic evo-
lution through 1-D temporal convolutions, while HiSTF Mamba (Zhan et al., 2025) captures short-
and long-range spatial-temporal clues using bidirectional Mamba. However, generating motions
with high or complex dynamics still remains challenging.

Given the successful application of spectral analysis in various fields (Hyun et al., 2023; Chen et al.,
2024a; Li et al., 2024b; Kim et al., 2024), some motion generation methods (Xu & Chen, 2024;
Li et al., 2024a; Wan et al., 2023) address the aforementioned issues by independently analyzing
low-frequency and high-frequency signals. For human motion, low-frequency components capture
global evolution for smoothness (i.e., coarse motion trends), while high-frequency components de-
pict subtle joint dynamics for richness (i.e., fine motion details) (Li et al., 2024a). Jointly attending
to these complementary bands promotes generations that are both coherent and richly detailed.

Despite significant progress, a unified motion generation framework integrating spatial, temporal,
and frequency domains remains unexplored. Fig. 1(a)I highlights that missing spatial modeling leads
to unrealistic joint topology, while Fig. 1(a)II demonstrates that high- and low-frequency modeling
ensures overall trends and fine dynamic details. Therefore, we argue that integrating all three do-
mains into one framework fully utilizes complementary information, enabling comprehensive mo-
tion representations for high-quality generation. This approach has proven effective in various tasks
such as target detection (Duan et al., 2024; Huang et al., 2025; Duan et al., 2025), classification (Liu
et al., 2021), and image decoding (Cao et al., 2024), highlighting its potential for motion generation.

Another potential issue is that motion-irrelevant cues caused by noise during motion generation
modeling are often entangled within the features, thereby leading to ineffective modeling and de-
grading fidelity. In a naive multi-domain architecture, this issue even worsens as noise accumulates
across domains. Inspired by causal intervention (Pearl et al., 2016; Yang et al., 2023; Xiong et al.,
2024), we identify this problem as the model’s inability to distinguish beneficial factual features
from motion-irrelevant counterfactual features. To address this, we employ a structural causal model
within our tri-domain architecture (Sec. 2) to extract beneficial causal contributions, disentangle and
eliminate motion-irrelevant cues, thereby focusing on valuable complementary cross-domain infor-
mation. As shown in Fig. 1(a)III, such intervention effectively mitigates quality degradation caused
by multi-domain noise accumulation, ultimately enhancing motion fidelity.

Therefore, we propose Tri-Domain Causal Text-to-Motion Generation (TriC-Motion), a novel
framework integrating causal intervention with tri-domain modeling for motion generation. Built on
MDM (Tevet et al., 2022), it employs multiple TriC-Motion Denoiser Blocks, each including three
core modules: Temporal Motion Encoding (TME), Spatial Topology Modeling (STM), and Hybrid
Frequency Analysis (HFA) modules. Subsequently, the Score-guided Tri-domain Fusion (S-Fus)
module efficiently integrates tri-domain information, ensuring temporal consistency, spatial topol-
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ogy, accurate overall motion trends, and fine-grained dynamics. Additionally, during training, the
Causality-based Counterfactual Motion Disentangler (CCMD) is applied in each block to disentan-
gle motion-irrelevant cues, guiding tri-domain modeling toward key motion information. To the best
of our knowledge, TriC-Motion is the first method to introduce causal intervention into motion gen-
eration. Compared to previous methods, it captures essential tri-domain features, enabling higher-
quality motion generation. As shown in Fig. 1(b), TriC-Motion achieves 0.612 of R1-Precision
(R@1) and sets new state-of-the-art performance across most metrics on HumanML3D (Guo et al.,
2022), with visualizations showing improved fidelity, diversity, and semantic consistency.

Our main contributions can be summarized as follows: (1) We propose a novel motion genera-
tion framework that unifies spatial-temporal-frequency modeling within a diffusion-based denois-
ing architecture. The collaborative integration of information from the three domains enables the
model to capture temporal dynamics, spatial topology, and multi-granularity frequency character-
istics, thereby improving generation quality and fidelity. (2) We pioneer the introduction of causal
intervention into motion generation, designing an innovative Causality-based Counterfactual Mo-
tion Disentangler module. This module effectively removes redundant information and noise in
tri-domain modeling, stabilizes the denoising process, and guides each domain to focus on key mo-
tion features for better generation. (3) We conduct comprehensive evaluations on HumanML3D and
SnapMoGen, achieving state-of-the-art results on most metrics. Extensive ablation studies further
confirm the effectiveness of each domain branch and the causal intervention design.

2 RELATED WORK

2.1 SPATIAL-TEMPORAL-FREQUENCY MODELING IN MOTION GENERATION

Temporal modeling (Zhang et al., 2024a; Tevet et al., 2022; Zhang et al., 2024b; 2023a; Guo et al.,
2024; Pinyoanuntapong et al., 2024) has been the dominant paradigm in text-to-motion generation.
Spatial priors further enhance plausibility, such as graph-based spatio-temporal convolutions (Liu
et al., 2023) and joint-token attention (Yuan et al., 2024). Frequency modeling complements these
by leveraging low- and high-frequency components for global trends and fine details (Wan et al.,
2023; Li et al., 2024a). However, a unified framework that jointly optimizes temporal, spatial, and
frequency cues remains underexplored, hindering coherent, physically plausible, and high-quality
motion generation.

2.2 CAUSALITY IN COMPUTER VISION

Causality has become an increasingly powerful tool in computer vision: (Yang et al., 2021) mitigate
confounding in vision–language alignment via causal attention; (Chen et al., 2023a) address do-
main shift through meta-causal learning; and, for gait recognition, counterfactual interventions are
adopted to suppress non-identity factors(e.g., appearance, load-carrying)(Xiong et al., 2024; Dou
et al., 2023). Yet generative modeling, especially text-to-motion, remains underexplored. TriC-
Motion adopts an SCM-inspired view of tri-domain features as mixtures of intrinsic signals and
confounders and performs interventions during diffusion to preserve causal contributions and re-
move motion-irrelevant information.

3 METHOD

3.1 PRELIMINARY
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Figure 2: Structured Casual Model
in TriC-Motion.

Causal Learning. Causal inference and causal intervention
are the core concepts of causal learning, with the former iden-
tifying cause-and-effect relationships and the latter disrupting
original causal connections (Pearl et al., 2016). Inspired by
Structured Causal Models (Zhang, 1994), we present Fig. 2
to better illustrate how TriC-Motion integrates causal learn-
ing into motion generation. Specifically, the j-th layer of
TriC-Motion Denoiser Block extracts domain-specific fea-
tures F i

j (i ∈ {temp, spa, freq}) through carefully designed
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modeling, which are typically entangled results of intrinsic motion characteristics Ei
j and con-

founders Ci
j (e.g., motion-irrelevant cues) that adversely affect generation. These features are

then used to generate the motion sequence x0. Ideally, F i
j should consist solely of Ei

j , i.e.,
Ei

j → F i
j → x0, where → denotes direct causal impact. However, in practice, the motion fea-

ture modeling process invariably includes motion-irrelevant cues, which couple with Ei
j , leading to

(Ci
j , E

i
j) → F i

j → x0. Since directly removing Ci
j is challenging, we design the CCMD module to

perform causal intervention do(·), isolating the causal impact of Ci
j on F i

j . This operation ensures
that generated motions are influenced primarily by the intrinsic motion characteristics rather than
confounders, thereby enhancing the overall quality.

3.2 PIPELINE

The overview of TriC-Motion is illustrated in Fig. 3(b). Our framework can be divided into two
key parts: TriC-Motion Denoiser Blocks and Causal Intervention Blocks. The former are dedicated
to capturing the tri-domain characteristics of motion sequences, while the latter disentangle and
eliminate motion-irrelevant cues from each domain.

TriC-Motion builds upon MDM (Tevet et al., 2022)’s diffusion and sampling processes, and its
sampling process and network architecture are illustrated in Fig. 3. Following (Yuan et al., 2024),
the motion sequence is preprocessed from a 1D temporal structure to a 2D spatial-temporal structure
to facilitate subsequent modeling. Then, the sequence is downsampled temporally by a factor of s
and projected into the feature dimension via a linear layer, forming X ∈ RN×M×D, where N , M ,
and D denote downsampled frames, number of joints, and feature dimensionality, respectively. The
diffusion timestep t is omitted for simplicity. To incorporate spatial-temporal position information,
the original 1D sinusoidal positional encoding is replaced by its 2D variant (Wang & Liu, 2021),
which is then added to the motion sequence. Besides, the pretrained text encoder DistilBERT (Sanh
et al., 2019) encodes the provided prompt, generating sentence-level features CLS and word-level
features τ . The diffusion timestep t is projected to the feature dimension via a feed-forward network
and concatenated with CLS and motion features, yielding X ∈ R(N+2)×M×D.

The TriC-Motion Denoiser stacks J layers of identical blocks. At the j-th layer and timestep t, mo-
tion features Xj are processed in parallel across temporal, spatial, and frequency domains by three
modules (TME, STM, HFA), yielding domain-specific features F i

j , where i ∈ {temp, spa, freq}
represents the domain index. Following this, the S-Fus module integrates F i

j by leveraging seman-
tic information and motion-specific properties from all domains, producing the fused feature Yj .
Finally, semantic information is injected via cross-attention in the Textual Information Injection
(TIJ) module, where word-level features τ act as keys and values, and fused motion features serve
as queries. The complete process of the tri-domain modeling over J blocks can be formulated as:{

TIJ(Xj , τ) = CrossAttention(Xj , τ, τ),

X̂ = [TIJ(S-Fus(TME(Xj), STM(Xj),HFA(Xj), CLS), τ)]||Jj=1

(1)

where “||Jj=1” represents stacking J times, and S-Fus(·) denotes the process of S-Fus module. Fur-
thermore, to eliminate motion-irrelevant cues, CCMD is applied to the features F i

j obtained after
domain-specific modeling. This block forces tri-domain modeling to disentangle essential compo-
nents from motion-irrelevant parts in generation features by leveraging causal loss Lfcf,j to guide
gradient-based optimization. Importantly, CCMD is utilized exclusively during training.

3.3 TRI-DOMAIN MODELING FOR GENERATION

In this subsection, we introduce the five core components of the TriC-Motion Denoiser Block, i.e.
TME, STM, HFA, S-Fus, and TIJ, as their details are shown in Fig. 4.

Temporal Motion Encoding. TME leverages a vanilla TransformerEncoderLayer that attends over
motion frames along the temporal dimension, explicitly capturing both short- and long-range depen-
dencies for temporally coherent motion modeling. The output of TME can be expressed as:

F temp
j = TransformerEncoderLayer(Xj) (2)

Spatial Topology Modeling. The skeleton of human motion sequence at each frame can be naturally
represented as a graph, with joints as nodes and body segments as edges. To efficiently capture local
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Figure 3: Overview of TriC-Motion. (a) Sampling process with stacked TriC-Motion Denoiser
Blocks. (b) Overall architecture of the TriC-Motion framework.
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Figure 4: Detailed architectures of TriC-Motion main components. (a) HFA with DWT/FFT de-
composition; (b) Low-frequency branch network in HFA; (c) High-frequency branch network in
HFA; (d) S-Fus with motion and semantic scoring; (e) Details of CCMD.

topology and inter-joint dependencies, the STM module is built upon a graph convolutional network
(GCN) (Kipf, 2016), enhancing the naturalness and physical plausibility of generated motion. In
STM, a 3-layer GCN network is employed to model the joint dimension of Xj :

F spa
j = Xj + [LN(GELU(GCN(Xj)))]||3 (3)

where “||3” represents stacking 3 times, and LN(·) denotes layer normalization.
Hybrid Frequency Analysis. Human motions exhibit distinct frequency characteristics: low-
frequency components capture global motion trends, while high-frequency components reflect in-
stantaneous changes and fine-grained details. Inspired by this, we propose the Hybrid Frequency
Analysis (HFA) module (Fig. 4(b)), which combines Discrete Wavelet Transform (DWT) and Fast
Fourier Transform (FFT) to leverage their synergy, capturing localized temporal-frequency dynam-
ics via wavelet decomposition and global frequency patterns via Fourier analysis (Kiruluta & Lemos,
2025). Specifically, the motion sequence Xj is decomposed into low-frequency sub-band ŜLF and
high-frequency sub-band SHF via DWT, followed by FFT applied to ŜLF :

(ŜLF , SHF ) = DWT(Xj), and SLF = FFT(ŜLF ). (4)

Utilizing the distinct characteristics of low- and high-frequency components, specialized branches
are designed for targeted analysis. As shown in Fig. 4(c), the low-frequency branch adaptively
attends to key spatial-temporal regions to highlight critical motion patterns. Two parallel convolution
networks are respectively applied to SLF across temporal and joint dimensions to extract global
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contextual information. This information is further used to generate a 2D spatial-temporal attention
matrix to optimize the low-frequency signal, and the whole process can be expressed as:

S′
LF = SLF + Linear(SLF ⊗ (wt ⊗ ws)). (5)

The high-frequency branch employs a lightweight convolutional architecture to capture fine-grained
local motion details. As shown in Fig. 4(d), it utilizes two 1D depth-wise convolutions fd(·) to
extract spatial and temporal spectral information, which are then integrated through a 1D point-wise
convolution fp(·) to enhance the high-frequency signal SHF :

S′
HF = SHF + GELU(GN(fp(fd(SHF )))), (6)

where GN(·) is the Group Normalization (Wu & He, 2018). After conducting analysis on the low-
frequency and high-frequency branches, the enhanced features S′

LF and S′
HF are obtained. Finally,

IFFT(·) and IDWT(·) are applied to merge and transform them back to the spatial-temporal domain.

Score-guided Tri-domain Fusion. As shown in Fig. 4(d), the S-Fus module employs a dual-
branch scoring framework to integrate tri-domain features using global semantic context and mo-
tion features. It consists of two scoring branches: Motion Scoring and Semantic Scoring. The
former produces motion logits logitsmot to capture multi-domain correlations, while the latter
leverages the global semantic token CLS to generate semantic logits logitssem, ensuring seman-
tic consistency during fusion. Afterward, the two logits are normalized via softmax to obtain
domain-specific weights αi, which are used for weighted fusion of tri-domain features Yj . The
above process can be expressed as Eq. 7, where i ∈ {temp, spa, freq}. Here, F tri

j denotes
CAT(F temp

j , F spa
j , F freq

j ). Both fmot(·) and fsem(·) share the same feed-forward architecture,
implemented as Linear(GELU(Linear(·))).


logitsimot = fmot(F

tri
j ), and logitsisem = fsem(CAT(F i

j , CLS))

αi = Softmax(logitsimot + logitsisem)

Yj = Linear(CAT(Xj ,
∑
i

αiF
i
j )).

(7)

3.4 CAUSALITY-BASED COUNTERFACTUAL MOTION DISENTANGLE

The CCMD module is applied to each layer of TriC-Motion Denoiser to disentangle motion-
irrelevant cues from beneficial causal contributions in tri-domain modeling. As shown in Fig.4,
it includes two key components: the Factual and Counterfactual Modules. The two modules adopt
a lightweight symmetric architecture to efficiently extract causal contributions Ei

j and confounders
Ci

j from F i
j . Taking Factual Module as an example, the detailed network can be expressed as:{

ω = Sigmoid(Linear(ReLU(Linear(Pool(F i
j ))))) ∈ R1×1×D

Ei
j = Linear(ωF i

j )⊙ F i
j

, (8)

where Pool(·) = AvgPool(·) + MaxPool(·), and the counterfactual features Ci
j can be obtained

similarly. Next, we eliminate confounders by performing supervised causal intervention, calculated
as F̃ i

j = WdoE
i
j −WdoC

i
j , where Wdo is implemented via linear mappings.

3.5 LOSS FUNCTION

Our model uses Lsimple as the primary training objective for motion generation, where the denoising
process predicts the clean motion sequence x̂0 = f(xt, t, c) from its noisy counterpart:

Lsimple = Ex0∼q(x0|c),t∼[1,T ]

[
∥x0 − f(xt, t, c)∥2

]
(9)

where c and x0 denote the prompt condition and the ground truth motion sequence, respectively. In
addition, we introduce the Factual and Counterfactual Loss Lfcf,j to constrain each CCMD module.
In the j-th layer, the CCMD module produces tri-domain F̃j by concatenating features from three
domains. This loss enforces the results of tri-domain causal intervention to approach the ground
truth, thereby supervising CCMD to eliminate motion-irrelevant cues:

Lfcf =

J∑
j=1

wjLfcf,j =

J∑
j=1

wjLMSE(TDEj , x0) (10)
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Table 1: Quantitative results on HumanML3D. The right arrow → means the closer to real motion
the better. Each experiment is repeated 20 times, with average results and 95% confidence intervals
(±) reported. The best result is highlighted in bold, and the second-best is underlined.

Methods R-Precision ↑ FID ↓ MM Dist ↓ Diversity →
Top 1 Top 2 Top 3

GT 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065

MDM (Tevet et al., 2022) 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086

M2DM (Kong et al., 2023) 0.497±.003 0.682±.002 0.763±.003 0.352±.005 3.134±.010 9.926±.073

CoMo (Huang et al., 2024b) 0.502±.002 0.692±.007 0.790±.002 0.262±.004 3.032±.015 9.936±.066

StableMoFusion (Huang et al., 2024a) 0.553±.003 0.748±.002 0.841±.002 0.098±.003 - 9.748±.092

BAMM (Pinyoanuntapong et al., 2024) 0.525±.002 0.720±.003 0.814±.003 0.055±.002 2.919±.008 9.717±.089

MoGenTS (Yuan et al., 2024) 0.529±.003 0.719±.002 0.812±.002 0.033±.001 2.867±.006 9.570±.077

MoMask (Guo et al., 2024) 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 -
MotionPCM (Jiang et al., 2025) 0.560±.002 0.754±.002 0.844±.002 0.040±.003 2.719±.008 9.632±.089

MARDM (Meng et al., 2024) 0.500±.004 0.659±.003 0.795±.003 0.114±.007 3.270±.009 -
MotionLCM-v2 (Dai et al., 2024) 0.551±.003 0.745±.002 0.836±.002 0.049±.003 2.765±.009 9.584±.066

LaMP (Li et al., 2024c) 0.557±.003 0.751±.002 0.843±.001 0.032±.002 2.759±.007 9.571±.069

GMMotion (Tu et al.) 0.572±.003 0.761±.003 0.852±.001 0.086±.003 2.743±.008 9.792±.085

SALAD (Hong et al., 2025) 0.581±.003 0.769±.003 0.857±.002 0.076±.002 2.649±.009 9.696±.096

TriC-Motion (Ours, base) 0.607±.005 0.800±.004 0.886±.004 0.347±.031 2.463±.012 9.428±.085

TriC-Motion (Ours, large) 0.612±.006 0.806±.005 0.885±.004 0.285±.042 2.465±.017 9.434±.089

Table 2: Quantitative results on SnapMoGen test dataset.

Methods R-Precision ↑ FID ↓ CLIP Score ↑ Diversity →
Top 1 Top 2 Top 3

GT 0.940±.001 0.976±.001 0.985±.001 0.001±.000 0.837±.000 19.756±.047

MDM (Tevet et al., 2022) 0.503±.002 0.653±.002 0.727±.002 57.783±.092 0.481±.001 -
T2M-GPT (Zhang et al., 2023a) 0.618±.002 0.773±.002 0.812±.002 32.629±.087 0.573±.011 -
StableMoFusion (Huang et al., 2024a) 0.679±.002 0.823±.002 0.888±.002 27.801±.063 0.605±.001 -
MARDM (Meng et al., 2024) 0.659±.002 0.812±.002 0.860±.002 26.878±.131 0.602±.001 -
MoMask (Guo et al., 2024) 0.777±.002 0.888±.002 0.927±.002 17.404±.051 0.664±.001 -
MoMask++ (Guo et al., 2025) 0.802±.001 0.905±.003 0.938±.001 15.060±.065 0.685±.001 19.970±.048

TriC-Motion (Ours) 0.907±.002 0.969±.001 0.985±.001 26.346±.073 0.675±.001 19.831±.042

where wj represents the weight for each layer, with values {0.1, 0.2, 0.3, 0.4} when J = 4. To
improve the perceptual quality of generated motions, we augment Lsimple with a perceptual loss
Lp, following the common practice in image processing (Johnson et al., 2016). It operates in a
learned feature space to better capture semantic motion characteristics. Using a pre-trained motion
encoder (Guo et al., 2022; 2025) E , we extract feature representations from generated motion x̂0

and ground truth x0. The perceptual loss is defined as L2-norm of their feature difference: Lp =
∥E(x̂0)−E(x0)∥22, ensuring the generated motions are perceptually indistinguishable from real ones,
enhancing overall quality. The total loss is defined in Eq. 11, with λfcf = 1 and λp = 10.

L = Lsimple + λfcfLfcf + λpLp (11)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate TriC-Motion on two large-scale motion–language benchmarks: Hu-
manML3D (Guo et al., 2022) and SnapMoGen (Guo et al., 2025). HumanML3D contains 14,616
motion sequences and 44,970 texts aggregated from AMASS (Mahmood et al., 2019) and Human-
Act12 (Guo et al., 2020), covering diverse activities (e.g., walking, acrobatics). SnapMoGen com-
prises 20,450 motion clips, each paired with six textual descriptions (two manually annotated and
four LLM-augmented), totaling 122,565 descriptions with an average length of 48 words.
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TriC-Motion (Ours) MARDM SALAD MotionStreamer

A man walks forward with left hand above head.

The person sprints forward, suddenly stops, turns to the right, and then sit down on the ground.

A person crouches low, crawls forward, stands up quickly, steps to the right, and then waves both hands excitedly.

A man raises the left arm while lowering the right arm, then switches the arms, and finally stands still.

Figure 5: Qualitative comparisons on HumanML3D dataset.

Evaluation Metrics. We adopt the same evaluation metrics established in (Guo et al., 2022; 2025):
(1) Fréchet Inception Distance (FID), which measures the distribution distance of the generated
and ground-truth motions; (2) R-Precision (R@1, R@2, &R@3), Multimodal Distance (MM-Dist)
and CLIP Score, which evaluate the semantic alignment between the input text and the generated
motions; (3) Diversity, which measures the variability and richness of the generations.

Implementation Details. The diffusion timesteps are set to 50 with a cosine variance schedule for
βt. The number of denoiser blocks J and feature dimension D are set to 4 and 256, respectively.
Two variants of TriC-Motion are implemented, with the temporal downsampling factor s set to 7 for
the base model and 4 for the large model. Classifier-free guidance is applied with scale g = 4.0. The
model is trained on two NVIDIA RTX 3090 GPUs with a batch size of 64. AdamW is employed as
the optimizer with learning rate 1× 10−4. Total training iterations are 650K for HumanML3D and
250K for SnapMoGen. Additionally, for both datasets, we apply the same approach to reconstruct
the pose sequences, obtaining a spatial-temporal 2D format of dimension M ×N × 12.

4.2 EXPERIMENTAL RESULTS

Quantitative Comparison. We compare our model with several existing state-of-the-art meth-
ods on both HumanML3D and SnapMoGen datasets, with the results summarized in Tab. 1 and
Tab. 2, respectively. Our method significantly outperforms all previous approaches in terms of R-
Precision and MM-Dist, surpassing the second-best method, SALAD (Hong et al., 2025), by +0.031
in R@1 and -0.184 in MM-Dist, respectively, highlighting substantial improvement of TriC-Motion
in text–motion alignment. Furthermore, when confronted with more complex and lengthy prompts
in SnapMoGen, our method maintains robust text consistency, markedly outperforming the second-
best method, MoMask++. With respect to FID, our approach achieves a substantial reduction relative
to the baseline on both datasets, indicating improved motion fidelity.

Qualitative Comparison. Fig. 5 compares our method with MARDM (Meng et al., 2024),
SALAD (Hong et al., 2025), and MotionStreamer (Xiao et al., 2025). Across all examples, the
competing methods struggle to accurately follow fine-grained textual instructions. MARDM fails to
follow multi-step instructions and produces low-quality actions (e.g., “sit down” and “crawl”) with
unrealistic body structures. SALAD and MotionStreamer improve overall motion smoothness and
visual quality, yet both still struggle to adhere to fine-grained cues and have difficulty producing
complete and coherent sequences for long, compositional prompts. For instance, key actions such
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Table 3: Ablation study of the proposed modules in TriC-Motion on HumanML3D test dataset, as
well as the analysis of HFA. “2D rep” denotes the spatio-temporal 2D motion representation with
dimensions M × N × 12. “low” and “high” denote low- and high-frequncy modeling in HFA. “w/o
joint” means removing the joint-wise frequency branch while retaining the temporal one.

Method R-Precision ↑ FID ↓ MM Dist ↓ Diversity →
Top 1 Top 2 Top 3

GT 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065

Baseline 0.320±.005 0.498±.004 0.611±.007 0.544±.004 5.566±.027 9.559±.086

TME (2D rep) 0.470±.006 0.671±.006 0.777±.007 2.110±.071 3.293±.023 8.016±.094

TME + STM 0.570±.004 0.771±.005 0.859±.005 0.611±.065 2.617±.018 9.157±.120

TME + HFA 0.583±.007 0.778±.004 0.869±.004 0.374±.015 2.576±.017 9.535±.072

TME + STM + HFA 0.592±.005 0.780±.006 0.867±.005 0.383±.028 2.564±.020 9.679±.082

TME + STM + HFA + S-Fus (Ours) 0.607±.005 0.800±.004 0.886±.004 0.347±.031 2.463±.012 9.428±.085

w/o HFA 0.572±.004 0.765±.004 0.863±.004 0.593±.052 2.599±.022 9.243±.083

w/o FFT 0.595±.006 0.790±.006 0.877±.004 0.405±.050 2.518±.018 9.335±.095

w/o joint 0.599±.008 0.793±.005 0.881±.004 0.418±.035 2.527±.018 9.188±.107

w/o High-band 0.602±.006 0.799±.005 0.885±.005 0.504±.048 2.494±.015 9.029±.080

w/ low + high (Ours) 0.607±.005 0.800±.004 0.886±.004 0.347±.031 2.463±.012 9.428±.085

Table 4: Ablation experiment of CCMD (upper half) and the layer-wise loss weights of Lfcf

(lower half) on HumanML3D. “pre” means that applying causal intervention before S-Fus, whereas
“post” employs it afterward. “temp” denotes applying CCMD only to the temporal domain, while
“temp+spa” denotes applying CCMD jointly to the temporal and spatial domains. {w1, w2, w3, w4}
denotes the weights for Lfcf when J = 4.

Method R-Precision ↑ FID ↓ MM Dist ↓ Diversity →
Top 1 Top 2 Top 3

GT 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065

w/o CCMD 0.568±.007 0.767±.007 0.859±.006 0.561±.060 2.624±.023 9.187±.088

w/ CCMD (post) 0.604±.089 0.798±.007 0.880±.005 0.328±.027 2.512±.018 9.482±.068

w/ CCMD (temp) 0.580±.008 0.773±.008 0.859±.007 0.514±.049 2.617±.024 9.467±.092

w/ CCMD (temp + spa) 0.602±.005 0.792±.006 0.875±.006 0.329±.034 2.525±.019 9.345±.094

w/ CCMD (temp + spa + freq, Ours) 0.607±.005 0.800±.004 0.886±.004 0.347±.031 2.463±.012 9.428±.085

{0, 0, 0, 1} 0.580±.006 0.773±.005 0.860±.006 0.460±.052 2.621±.013 9.033±.088

{0.25, 0.25, 0.25, 0.25} 0.582±.004 0.780±.005 0.867±.004 0.478±.052 2.614±.016 9.201±.092

{0.1, 0.2, 0.3, 0.4} (Ours) 0.607±.005 0.800±.004 0.886±.004 0.347±.031 2.463±.012 9.428±.085

as “waving” are often omitted. Moreover, all three methods struggle with direction-related prompts
(e.g., “forward”, “right”) and left–right limb coordination, leading to motions that deviate from the
specified details. In contrast, our method achieves higher-fidelity motion generation and consistently
aligns with complex, fine-grained prompts.

4.3 ABLATION STUDY

Effectiveness of Tri-domain Modeling. As shown in the upper part of Tab. 3, we progressively
add STM, HFA, and S-Fus on top of TME to reveal each module’s contribution. When S-Fus is
not used, tri-domain features are simply concatenated. Introducing STM or HFA alone already
brings clear gains. STM improves R@1 by about 0.1 and reduces MM-Dist by enforcing realistic
joint topology, while HFA yields the largest FID drop by modeling global trends and fine-grained
dynamics via low- and high-frequency cues. Since spatial structure and frequency characteristics
describe complementary aspects of motions, combining STM and HFA further enhances semantic
alignment and fidelity. Building on these foundation, the full framework with S-Fus achieves the
best performance, improving R@1 to 0.607, by adaptively weighting domain-specific cues rather
than relying on simple concatenation.

Impact of Frequency Components (Low vs. Low + High). The lower part of Tab. 3 validates
the effectiveness of the internal components of HFA. Removing the FFT branch results in a clear
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Table 5: User study results.

Method Text-Motion Alignment Overall Quality

MARDM (Meng et al., 2024) 2.970±.108 3.268±.100

MoMask (Guo et al., 2024) 3.096±.112 3.289±.103

SALAD (Hong et al., 2025) 3.518±.108 3.567±.099

Ours 4.125±.087 3.981±.091

decline in both semantic alignment and motion fidelity, indicating that modeling the low-frequency
components within a hybrid FFT–DWT frequency space enables the network to better capture global
motion structures. Limiting HFA to the temporal domain (“w/o joint”) further degrades multiple
metrics, demonstrating that joint-domain frequency modeling is crucial for capturing fine-grained
spatial dynamics and ensuring coherent multi-joint coordination. Compared to TriC-Motion without
HFA, using only the low-frequency band improves R@1 to 0.602, MM-Dist to 2.494, and reduces
FID. Combining both frequency components achieves the best performance, optimizing coarse mo-
tion trends and fine-grained dynamics, further confirming HFA’s capability for faithful and diverse
motion generation.

Ablation of Causal Intervention. As shown in the upper part of Tab. 4, removing CCMD signifi-
cantly degrades R-Precision and increases FID, demonstrating CCMD’s role in guiding the model to
reduce motion-irrelevant cues, thereby improving generation quality. Applying CCMD solely to the
temporal domain yields measurable improvements in text–motion alignment, with R@1 enhanced
to 0.580. Extending CCMD to both temporal and spatial domains further enhances text-motion
alignment and reduces MM-Dist, achieving performance comparable to the “post” variant. TriC-
Motion with full tri-domain configurations achieves the best performance, confirming that causal
intervention is most effective when jointly applied across all three domains.

Ablation on Layer-wise Loss Weights of Lfcf . We conduct an ablation on the layer-wise weights
of Lfcf , with results shown in the lower part of Tab. 4. The progressively increasing schedule
{0.1, 0.2, 0.3, 0.4} attains the best results. This demonstrates that assigning larger weights to deeper
denoising blocks can suppress domain-specific confounders and provide causal guidance more ef-
fectively, resulting in a more stable denoising process and better overall performance.

4.4 USER STUDY

To validate the perceptual quality of motion generation, we conduct a user study following the
protocol adopted by GMMotion (Tu et al.) and SALAD Hong et al. (2025). In this study, 38 par-
ticipants compare our method against three representative baselines: MARDM (Meng et al., 2024),
MoMask (Guo et al., 2024), and SALAD (Hong et al., 2025), which represent MAR paradigms,
discrete AR models, and continuous diffusion frameworks, respectively. For each method, partici-
pants are presented with 15 video examples and evaluate them based on two criteria: Overall Quality
and Text–Motion Alignment. All ratings are collected using a 5-point Likert scale ranging from 1
(poorest) to 5 (best). The results, summarized in Tab. 5, demonstrate that the motions generated
by TriC-Motion are more preferred by humans in terms of overall visual quality and text–motion
consistency compared to other methods.

5 CONCLUSION

We propose TriC-Motion, a novel diffusion-based framework for text-to-motion generation that inte-
grates temporal, spatial, and frequency modeling with causal intervention. This framework features
three modules, TME, STM, and HFA, for comprehensive domain-specific modeling. S-Fus then
adaptively integrates these domain-specific cues, while TIJ injects semantic information into mo-
tion features. Furthermore, the framework incorporates CCMD to perform causal intervention dur-
ing training, which suppresses motion-irrelevant cues caused by noise while enhancing real causal
contributions. Extensive experiments demonstrate the state-of-the-art performance of TriC-Motion,
particularly in R-Precision and MM-Dist, highlighting its powerful motion-generation capability.
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A APPENDIX

A.1 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experi-
mentation were involved. All datasets used, including HumanML3D and SnapMoGen, were sourced
in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
to avoid any biases or discriminatory outcomes in our research process. No personally identifiable
information was used, and no experiments were conducted that could raise privacy or security con-
cerns. We are committed to maintaining transparency and integrity throughout the research process.
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Figure A1: t-SNE Visualization of the the three feature types in TriC-Motion: motion-relevant fea-
tures Ff , motion-irrelevant (confounding) features Fcf , and the final causally disentangled features
Ftde used for generation. The six text inputs are taken from the HumanML3D test set.

Table A1: FLOPs and average inference time (AIT) comparison across various methods.

Method FLOPs (G) AIT (s)

MDM (Tevet et al., 2022) (DDIM-50step) 325.25 1.5

SALAD (Hong et al., 2025) 233.83 3.0

MARDM (Meng et al., 2024) 23519.50 10.6

MoMask (Guo et al., 2024) 37.50 0.4

Ours 388.45 3.8

A.2 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
the code will be released after the double-blind review process to ensure that the results can be
reproduced and verified. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. Additionally, the HumanML3D and SnapMoGen
datasets are publicly available, ensuring consistent and reproducible evaluation results. We believe
these measures will enable other researchers to reproduce our work and further advance the field.

A.3 LLMS USAGE STATEMENT

This paper utilizes Large Language Models (LLMs) solely as a tool for polishing the texts, thereby
refining the paper and improving readability. All ideas, research concepts, research methodology,
experiments, figures, and visualizations are conducted without the use of LLMs.

A.4 T-SNE VISUALIZATION OF CCMD

As shown in Fig. A1, we present t-SNE visualizations of six different text inputs, from the
HumanML3D test dataset, processed by TriC-Motion, showing the motion-relevant features Ff ,
motion-irrelevant features Fcf , and the final features contributing to generation Ftde obtained
through causal modeling. As shown in the t-SNE visualizations on our website, for certain complex
or easily confusable motion texts, their features Ff overlap in the space. After being modeled by
the CCMD module based on causal learning, the disentangled features Ftde clearly demonstrate that
the features corresponding to each text become separated, and features within the same category are
more clustered. This indicates that after removing the confounding information and motion-relevant
factors, the model generates more accurate and less ambiguous motion features based on the text,
thereby improving the consistency between generated motion and text as well as the fidelity of the
motion.

A.5 COMPARISON OF COMPUTATIONAL COST, INFERENCE TIME AND MODEL PARAMETERS

As showin in Tab. A1, we present the FLOPs and average inference time (AIT) measured over
100 samples on a single NVIDIA RTX 3090 GPU for several representative methods. Parameter
sizes are summarized in Tab. A2. TriC-Motion requires 388.45 GFLOPs, which is only slightly
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Table A2: Parameter size comparison across various methods.

Method Params (M)

MDM (Tevet et al., 2022) 17.88

MLD (Chen et al., 2023b) 26.38

ReMoDiffuse (Zhang et al., 2023b) 46.97

MoMask (Guo et al., 2024) 44.85

SALAD (Hong et al., 2025) 10.10

MARDM (Meng et al., 2024) 310.09

Ours 13.86

Table A3: Sensitivity analysis of the perceptual loss Lp (upper part) and causal loss Lfcf (lower
part). Here, α and β denote the weights of Lp and Lfcf , respectively. The default setting (Ours)
corresponds to α = 1.0, β = 10.

α β
R-Precision ↑ FID ↓ MM-Dist ↓ Diversity →

Top 1 Top 2 Top 3

1.0 10 0.607±.005 0.800±.004 0.886±.004 0.347±.031 2.463±.012 9.428±.085

1.0 1 0.597±.006 0.787±.006 0.867±.005 0.416±.035 2.571±.023 9.917±.066

1.0 20 0.600±.006 0.794±.005 0.878±.004 0.425±.037 2.517±.017 9.229±.074

0.5 10 0.609±.005 0.803±.004 0.882±.004 0.349±.032 2.485±.017 9.464±.071

2 10 0.599±.008 0.793±.005 0.881±.004 0.418±.035 2.527±.018 9.188±.107

higher than our baseline (MDM), and achieves an AIT of 3.8 s, remaining comparable to latent-
space diffusion models such as SALAD (3.0 s) while being considerably faster than MARDM (10.6
s). The model is also highly compact, containing only 13.86M parameters, which is significantly
smaller than many strong baselines including MoMask (44.85M), ReMoDiffuse (46.97M), MLD
(26.38M), and MARDM (310.09M).

The additional computation primarily comes from explicit tri-domain modeling, which cannot be
replicated by simply scaling a single-domain network. Despite incorporating temporal, spatial, and
frequency branches, the overall architecture remains deliberately lightweight. Furthermore, TriC-
Motion conducts diffusion directly in the raw motion space, where multi-step denoising inherently
incurs higher cost. This is a well-known limitation shared across diffusion-based motion generators.
Nevertheless, the proposed tri-domain design yields clear and consistent benefits, improving R@1
to 0.612 and enhancing motion fidelity on both HumanML3D and SnapMoGen.

It is also worth noting that the causal module is used only during training and introduces no
inference-time overhead, and all tri-domain branches are efficient and parallelizable.

Prior works (StableMoFusion (Huang et al., 2024a) and Light-T2M (Zeng et al., 2025)) demon-
strate that advanced samplers (e.g., DPM-Solver (Lu et al., 2022), UniPC (Zhao et al., 2023)) can
reduce diffusion to as few as 10 steps, yielding substantial acceleration with minimal quality degra-
dation. These findings indicate that TriC-Motion can be efficiently accelerated using modern sam-
pling strategies, and in future work we will further explore such techniques while also investigating
diffusion in a more compact latent space to optimize the inference process.

A.6 SENSITIVITY ANALYSIS OF LOSS WEIGHTING

We perform a comprehensive sensitivity analysis on both the perceptual loss and the causal loss,
and the results are presented in Tab. A3. The findings consistently show that TriC-Motion remains
stable under a wide range of loss-weight configurations. When the weight of the perceptual loss
varies from 1 to 20, the changes in R-Precision remain minor, with values of 0.597 and 0.607,
and the corresponding FID values vary only slightly from 0.347 to 0.425. No sign of instability
or significant performance degradation is observed in this process. A similar phenomenon appears
when adjusting the weight of the causal loss from 0.5 to 2, where the resulting performance remains
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Table A4: The performance comparison on HumanML3D dataset between our TriC-Motion without
Lp and the previous state-of-the-art method, SALAD (Hong et al., 2025).

Method R@1 ↑ R@2 ↑ R@3 ↑ MM-Dist ↓

GT 0.511±.003 0.703±.003 0.797±.002 2.974±.008

SALAD (Hong et al., 2025) 0.581±.003 0.769±.003 0.857±.002 2.649±.009

Ours (w/o Lp) 0.585±.005 0.772±.006 0.863±.004 2.553±.019

Ours 0.607±.005 0.800±.004 0.886±.004 2.463±.012

Table A5: Performance comparison on HumanML3D dataset under the CLaM evaluator.

Methods R@1 ↑ R@2 ↑ R@3 ↑

GT 0.738±.200 0.870±.200 0.917±.100

MLD (Chen et al., 2023b) 0.599±.003 0.760±.002 0.831±.002

MotionDiffuse (Zhang et al., 2024a) 0.645±.004 0.803±.003 0.868±.003

T2M-GPT (Zhang et al., 2023a) 0.676±.003 0.820±.004 0.878±.004

MotionGPT (Jiang et al., 2023) 0.478±.002 0.655±.002 0.752±.002

T2M (Guo et al., 2022) 0.577±.003 0.730±.002 0.804±.002

MoMask (Guo et al., 2024) 0.715±.002 0.856±.002 0.909±.001

SALAD (Guo et al., 2024) 0.776±.003 0.902±.002 0.943±.001

Ours 0.786±.006 0.912±.005 0.952±.003

highly consistent. These observations indicate that the causal intervention branch does not introduce
additional sensitivity and that the overall optimization is robust. The results therefore confirm that
TriC-Motion is not sensitive to the weighting of these loss terms.

A.7 ABLATION STUDY OF PERCEPTUAL LOSS Lp AND CROSS-EVALUATOR VALIDATION

We further analyze the role of the perceptual loss Lp to ensure that it does not induce unintended
coupling with the HumanML3D evaluator. The use of a perceptual objective in a learned feature
space follows a well-established practice in generative modeling, where such objectives accelerate
convergence and improve perceptual quality, particularly in diffusion-based image and video gen-
eration. Although incorporating this perceptual signal indeed brings a moderate improvement, its
presence is not the source of our R-Precision gains. As shown in Tab. A4, removing the perceptual
loss still yields competitive results compared to strong baselines (e.g., SALAD (Hong et al., 2025)),
including solid R-Precision and MM-Dist performance. This confirms that the central improvements
originate from our tri-domain modeling and causal intervention design, rather than from coupling
between the loss and the HumanML3D evaluator.

We additionally evaluate the same trained model using CLaM (Chen et al., 2024b), a more advanced
text–motion evaluator whose embedding space is entirely different from the one used during train-
ing. This setup eliminates any possible overlap between the perceptual loss feature space and the
evaluation space. As shown in Tab. A5, despite the shift to this substantially stronger evaluator,
our method consistently achieves superior R-Precision, surpassing both the ground truth and strong
baselines such as SALAD (Hong et al., 2025) by a large margin. Even under the condition where
different evaluators are used during training and inference, these performance improvements persist.
This demonstrates that our performance gain does not rely on the alignment between the perceptual
loss space and the evaluation feature space, nor does it stem solely from the perceptual loss term.
Instead, it originates from the combined innovative design of tri-domain modeling, causal learning,
and other contributions.

A.8 SUPPLEMENTARY VISUAL MATERIAL

To facilitate comprehensive evaluation, we provide a dedicated website hosting all supplementary
qualitative materials, including motion visualizations, side-by-side comparisons with state-of-the-
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art methods, and t-SNE visualization: https://sites.google.com/view/tric-motion-iclr2026. These
materials complement the main paper by offering additional perspectives on motion fidelity and
semantic alignment. Importantly, the website strictly adhere to the double-blind review principles
of the ICLR 2026 conference, ensuring the anonymity of the website.
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